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ABSTRACT

Ultrasound elasticity images which enable the visualization

of quantitative maps of tissue stiffness can be reconstructed

by solving an inverse problem. Classical model-based ap-

proaches for ultrasound elastography use deterministic finite

element methods (FEMs) to incorporate the governing phys-

ical laws resulting in poor performance in noisy conditions.

Moreover, these approaches utilize fixed regularizers for var-

ious tissue patterns while appropriate data-adaptive priors

might be required for capturing the complex spatial elasticity

distribution. In this regard, we propose a joint model-based

and learning-based framework for estimating the elasticity

distribution by solving a regularized optimization problem.

We present an integrated objective function composed of a

statistical physics-based forward model and a data-driven

regularizer to leverage deep neural networks for learning the

underlying elasticity prior. This constrained optimization

problem is solved using the gradient descent (GD) method

and the gradient of regularizer is simply replaced by the

residual of the trained denoiser network for having an explicit

objective function with reduced computation time.

Index Terms— ultrasound elastography, optimization

problem, tissue stiffness, denoising regularizer, statistical

model, deep neural networks.

1. INTRODUCTION

Elasticity imaging is concerned with the problem of recon-

structing tissue parameters in terms of stiffness distribution

which is the most prominent indicator of biomechanical tis-

sue characteristics and has a large number of applications in

non-invasive diagnostics and tissue property characterization.

Ultrasound elastography seeks to address cancer malignancy

in various soft organs such as the liver, kidney, and lungs

in a cost and time-efficient way by generating accurate and

high-quality images of tissue stiffness. These non-iodized

elastography methods are efficient in the early detection of

soft tissue abnormalities as a replacement for tissue biopsy

and can evaluate a larger area of tissue compared to a biopsy
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method. Elastography techniques generate the elasticity dis-

tribution by examining the tissue’s response to some excita-

tion. Conventional FEM-based elastography methods which

employ governing partial differential equations (PDEs) use

Gaussian-Newton methods which assume an initial elastic-

ity modulus and solve the constrained global stiffness equa-

tion iteratively until converging to a stationary point leading

to a poor and unstable performance in noisy condition [1].

Furthermore, these methods employ fixed hand-crafted reg-

ularizers [2] for all tissue patterns although adaptive priors

should be exploited for each specific tissue type. Deep neu-

ral network (DNN) capabilities propose to integrate the for-

ward imaging model with learned data-driven priors as a con-

strained optimization problem rather than using end-to-end

learning approaches [3, 4, 5, 6]. This infusing scheme results

in both guaranteed elasticity reconstructions with the physical

imaging model and exploiting complex data-driven informa-

tion even with a limited training dataset [7].

One group of methods for integrating physics-based model-

ing and deep learning priors including Plug-and-Play (PnP)

[8, 9, 10, 11] and regularization by denoising (RED) [12]

seeks to learn a data-adaptive denoiser and then exploits it

into a regularized optimization problem as the proximal op-

erator of regularizer or the gradient of the regularizer. The

other group of methods is based on unfolding the iterations of

the minimization task in terms of a layer in a neural network

including PI-GAN [13]. Despite the PnP paradigm demon-

strates successful empirical results, it does not provide any ex-

plicit representation for the objective function which yields no

strong theoretical convergence guarantees to the global solu-

tion of the minimization task. On the contrary, RED method-

ology results in an explicit prior by replacing the regularizer

gradient with denoiser network residual encouraging theoret-

ical convergence analysis[14].

In this paper, we introduce an integrated statistical and deep

learning RED paradigm for the reconstruction of elasticity

modulus in noisy conditions. By this technique, the forward

imaging model of ultrasound elastography is employed by a

linear algebraic formulation of equilibrium equations devel-

oped with analytical error modeling of the forward model.

Further, data-driven prior knowledge of the underlying elas-

ticity distribution is learned using a DNN; and adhering to the
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RED scheme, the gradient of the regularizer is replaced by

the residual of this denoiser network in the GD update iter-

ations. The resulting objective function leads to a better un-

derstanding of the solution behavior and more appropriately

tuning the hyper-parameters. Our simulations implemented

on a synthetic dataset manifest the improved reconstruction

performance of the proposed methodology.

The rest of this article is arranged as follows. We describe

the ultrasound elasticity imaging model and the equivalent in-

verse model in Sections 2 and 3 accordingly. The proposed

RED scheme for solving the elastography inverse problem is

explained in Section 4. The simulation results of elasticity

image reconstruction are presented in Section 5, and at last,

we provide some concluding remarks in Section 6.

2. FORWARD MODEL FORMULATION

In the ultrasound imaging system, quasi-static forces on the

boundary of the elastic material generate a displacement

or a disturbance propagating through the medium and this

dynamic response of the tissue depends upon the physical

properties of the tissue. The governing physics-based model

in ultrasound imaging modality is introduced by PDEs, as

the system equilibrium equations, which unveil the relation-

ship between speckle displacement and tissue elasticity . To

have a simplified representation of the governing PDEs, finite

element methods (FEM) [15] is employed to discretize the

medium cross-section. The resulting global stiffness equation

of ultrasound elastography problem can be represented by

[9]:
K(E)u = D(u)E = ftrue (1)

where N is the number of nodes in the mesh, K(E) ∈
R

2N×2N indicates the global stiffness matrix, D(u) ∈
R

2N×2N , u ∈ R
2N×1 represents the axial and lateral dis-

placements, E ∈ R
N×1 is the desired elasticity distribution

of the tissue over the nodes and ftrue ∈ R
2N×1 indicates the

Neumann boundary conditions (BCs) on observed displace-

ment.

3. INVERSE PROBLEM FORMULATION

The statistical forward model of ultrasound elastography can

be represented as follows:

f = D(u)E+w w ∼ N (0, Σw) (2)

where f stands for the noisy observed force BCs and w ∈
R

2N×1 indicates the Gaussian noise. Considering the obser-

vation process of tissue displacements u
m = u + n where

n ∼ N (0, Σn), u
m expresses the noisy displacement fields

corrupted with noise n ∈ R
2N×1 with covariance matrix Σn.

Infusing the statistical forward model in (2) with the noisy

observation process proceeds to:

f = K(E)u+w = K(E)(um − n) +w

= K(E)um −K(E)n+w (3)

Defining w̃ = −K(E)n + w and utilizing noisy displace-

ment in D(um)E = K(E)um result in the following unified

forward model:

f = D(um)E+ w̃ w̃ ∼ N (0, Γ) (4)

where Γ is denoted by:

Γ = Σw +K(E)ΣnK(E)T (5)

We refer to (4) as a statistical linear imaging model where the

noise has a signal-dependent correlated structure. By measur-

ing f and u
m fields, it is required to solve a regularized op-

timization task for estimation of the unknown elasticity fields

E by:

Ê = argmin
E

1

2
‖f −D(um)E‖2

Γ−1 + N

2
log |Γ|+ λR(E)

s.t. E > 0
(6)

where ‖A‖2
B

:= (AT
BA), R(E) expresses the regulariza-

tion term and λ is the regularization parameter. To solve

this constrained optimization problem, a fixed-point paradigm

[16] is employed which estimate E while Γ is fixed and this

updated E is exploited in (5) for estimating Γ. We utilize

the gradient descent (GD) as a solver to update the unknown

elasticity fields E as follows:

E←− [E− ε(∇g(E) + λ∇R(E))]+ (7)

where:

g(E) =
1

2
(f −D(um)E)TΓ−1(f −D(um)E) (8)

∇g(E) = −(D(um))TΓ−1(f −D(um)E) (9)

ε denotes the solver step-size, []+ expresses for the positivity

condition on estimated elasticity and ∇R(E) is elaborated in

the following Section.

4. PRIOR LEARNING BY RED PARADIGM

Following the proposed estimation procedure of elasticity E,

the prior knowledge of the underlying tissue patterns and its

equivalent gradient has to be employed in (6) and (7). In this

regard, we introduce the RED methodology for exploiting a

data-adaptive regularizer for capturing the spatially variant

tissue elasticity pattern. The RED scheme suggests a com-

putationally efficient methodology for regularizer learning by

a denoiser network and exploiting the residual of obtained

denoiser network as the gradient of regularizer in (7). RED

methodology introduces the regularizer gradient by:

∇R(E) = E−Cw(E) (10)

where Cw(.) expresses the learned denoiser with weights w

satisfying RED conditions [12], [14] as well. It is notewor-

thy to mention that in (10) no computing of gradient is re-

quired and alternately, the denoiser network residual is easily

exploited as the gradient which manifests the RED potential

in terms of computational efficiency. Furthermore, RED pro-

vides us an explicit regularizer and consequently cost func-

tion in (7) which encourages the convergence analysis and
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