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ABSTRACT

Ultrasound elasticity images which enable the visualization
of quantitative maps of tissue stiffness can be reconstructed
by solving an inverse problem. Classical model-based ap-
proaches for ultrasound elastography use deterministic finite
element methods (FEMs) to incorporate the governing phys-
ical laws resulting in poor performance in noisy conditions.
Moreover, these approaches utilize fixed regularizers for var-
ious tissue patterns while appropriate data-adaptive priors
might be required for capturing the complex spatial elasticity
distribution. In this regard, we propose a joint model-based
and learning-based framework for estimating the elasticity
distribution by solving a regularized optimization problem.
We present an integrated objective function composed of a
statistical physics-based forward model and a data-driven
regularizer to leverage deep neural networks for learning the
underlying elasticity prior. This constrained optimization
problem is solved using the gradient descent (GD) method
and the gradient of regularizer is simply replaced by the
residual of the trained denoiser network for having an explicit
objective function with reduced computation time.

Index Terms— ultrasound elastography, optimization
problem, tissue stiffness, denoising regularizer, statistical
model, deep neural networks.

1. INTRODUCTION

Elasticity imaging is concerned with the problem of recon-
structing tissue parameters in terms of stiffness distribution
which is the most prominent indicator of biomechanical tis-
sue characteristics and has a large number of applications in
non-invasive diagnostics and tissue property characterization.
Ultrasound elastography seeks to address cancer malignancy
in various soft organs such as the liver, kidney, and lungs
in a cost and time-efficient way by generating accurate and
high-quality images of tissue stiffness. These non-iodized
elastography methods are efficient in the early detection of
soft tissue abnormalities as a replacement for tissue biopsy
and can evaluate a larger area of tissue compared to a biopsy
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method. Elastography techniques generate the elasticity dis-
tribution by examining the tissue’s response to some excita-
tion. Conventional FEM-based elastography methods which
employ governing partial differential equations (PDEs) use
Gaussian-Newton methods which assume an initial elastic-
ity modulus and solve the constrained global stiffness equa-
tion iteratively until converging to a stationary point leading
to a poor and unstable performance in noisy condition [1].
Furthermore, these methods employ fixed hand-crafted reg-
ularizers [2] for all tissue patterns although adaptive priors
should be exploited for each specific tissue type. Deep neu-
ral network (DNN) capabilities propose to integrate the for-
ward imaging model with learned data-driven priors as a con-
strained optimization problem rather than using end-to-end
learning approaches [3, 4, 5, 6]. This infusing scheme results
in both guaranteed elasticity reconstructions with the physical
imaging model and exploiting complex data-driven informa-
tion even with a limited training dataset [7].

One group of methods for integrating physics-based model-
ing and deep learning priors including Plug-and-Play (PnP)
[8, 9, 10, 11] and regularization by denoising (RED) [12]
seeks to learn a data-adaptive denoiser and then exploits it
into a regularized optimization problem as the proximal op-
erator of regularizer or the gradient of the regularizer. The
other group of methods is based on unfolding the iterations of
the minimization task in terms of a layer in a neural network
including PI-GAN [13]. Despite the PnP paradigm demon-
strates successful empirical results, it does not provide any ex-
plicit representation for the objective function which yields no
strong theoretical convergence guarantees to the global solu-
tion of the minimization task. On the contrary, RED method-
ology results in an explicit prior by replacing the regularizer
gradient with denoiser network residual encouraging theoret-
ical convergence analysis[14].

In this paper, we introduce an integrated statistical and deep
learning RED paradigm for the reconstruction of elasticity
modulus in noisy conditions. By this technique, the forward
imaging model of ultrasound elastography is employed by a
linear algebraic formulation of equilibrium equations devel-
oped with analytical error modeling of the forward model.
Further, data-driven prior knowledge of the underlying elas-
ticity distribution is learned using a DNN; and adhering to the



RED scheme, the gradient of the regularizer is replaced by
the residual of this denoiser network in the GD update iter-
ations. The resulting objective function leads to a better un-
derstanding of the solution behavior and more appropriately
tuning the hyper-parameters. Our simulations implemented
on a synthetic dataset manifest the improved reconstruction
performance of the proposed methodology.

The rest of this article is arranged as follows. We describe
the ultrasound elasticity imaging model and the equivalent in-
verse model in Sections 2 and 3 accordingly. The proposed
RED scheme for solving the elastography inverse problem is
explained in Section 4. The simulation results of elasticity
image reconstruction are presented in Section 5, and at last,
we provide some concluding remarks in Section 6.

2. FORWARD MODEL FORMULATION

In the ultrasound imaging system, quasi-static forces on the
boundary of the elastic material generate a displacement
or a disturbance propagating through the medium and this
dynamic response of the tissue depends upon the physical
properties of the tissue. The governing physics-based model
in ultrasound imaging modality is introduced by PDEs, as
the system equilibrium equations, which unveil the relation-
ship between speckle displacement and tissue elasticity . To
have a simplified representation of the governing PDE:s, finite
element methods (FEM) [15] is employed to discretize the
medium cross-section. The resulting global stiffness equation
of ultrasound elastography problem can be represented by
) K(E)u =D(u)E = firue 1)
where N is the number of nodes in the mesh, K(E) €
R2N*2N indicates the global stiffness matrix, D(u) €
R2VX2N " ¢ R2N*1 represents the axial and lateral dis-
placements, E € RN *1 is the desired elasticity distribution
of the tissue over the nodes and firue € R2V*! indicates the
Neumann boundary conditions (BCs) on observed displace-
ment.

3. INVERSE PROBLEM FORMULATION

The statistical forward model of ultrasound elastography can
be represented as follows:

f=DWE+w w~N(0,X,) )

where f stands for the noisy observed force BCs and w €
R2N*1 indicates the Gaussian noise. Considering the obser-
vation process of tissue displacements u™ = u + n where
n ~ N(0, 3,,), u™ expresses the noisy displacement fields
corrupted with noise n € R?V>*! with covariance matrix X,,.
Infusing the statistical forward model in (2) with the noisy
observation process proceeds to:

f = KEu+w=KE)(u"—-n)+w
= KEuU"-KEn+w 3)

Defining w = —K(E)n + w and utilizing noisy displace-
ment in D(u™)E = K(E)u™ result in the following unified
forward model:

f=DU™E+W% Ww~N(OT) )

where I' is denoted by:

r'=3, +KE)S,KE)" (5)
We refer to (4) as a statistical linear imaging model where the
noise has a signal-dependent correlated structure. By measur-
ing f and u™ fields, it is required to solve a regularized op-

timization task for estimation of the unknown elasticity fields
E by:

E = argming 1 [|f - D(u™)E|7-. + Ylog |T'| + AR(E)
st. E>0

where ||A||]23 := (ATBA), R(E) expresses the regulaxriég2
tion term and A is the regularization parameter. To solve
this constrained optimization problem, a fixed-point paradigm
[16] is employed which estimate E while I" is fixed and this
updated E is exploited in (5) for estimating I'. We utilize
the gradient descent (GD) as a solver to update the unknown
elasticity fields E as follows:

B« [B-c(Vy(E)+\VRE), O
where:
o(E) = 5(f - D@™E)T (- DW™E)  (§)

Vy(E) = —(D@™))'T~(f ~-D™E) (9

e denotes the solver step-size, [|1 expresses for the positivity
condition on estimated elasticity and VR(E) is elaborated in
the following Section.

4. PRIOR LEARNING BY RED PARADIGM

Following the proposed estimation procedure of elasticity E,
the prior knowledge of the underlying tissue patterns and its
equivalent gradient has to be employed in (6) and (7). In this
regard, we introduce the RED methodology for exploiting a
data-adaptive regularizer for capturing the spatially variant
tissue elasticity pattern. The RED scheme suggests a com-
putationally efficient methodology for regularizer learning by
a denoiser network and exploiting the residual of obtained
denoiser network as the gradient of regularizer in (7). RED
methodology introduces the regularizer gradient by:

VR(E)=E — C,(E) (10)
where C,,(.) expresses the learned denoiser with weights w
satisfying RED conditions [12], [14] as well. It is notewor-
thy to mention that in (10) no computing of gradient is re-
quired and alternately, the denoiser network residual is easily
exploited as the gradient which manifests the RED potential
in terms of computational efficiency. Furthermore, RED pro-
vides us an explicit regularizer and consequently cost func-
tion in (7) which encourages the convergence analysis and
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Fig. 1: Elasticity image reconstruction using statistical physical modeling and prior learning by RED paradigm.

efficient tuning of hyper-parameters such as A. To this end,
the explicit RED regularizer is expressed as:
RB)pzp = 3 (BB — C,(B)) = LB (B~ O, (E))
Y
Benefiting the explicit objective function introduced by (6)
and (11), the regularization parameter A can be tuned effi-
ciently using the noise level information. In this regard, we
utilize strong passivity condition of RED [12] which indicates
that ||[VgC,(E)|| < 1, thus, A at the equilibrium point can
be estimated by:
> [ Vg(E)| (12)

It is worth mentioning that the denoising network C,, is pre-
trained supervisedly by feeding the clean elasticity images
and the corrupted noisy ones E estimated by solving the min-
imization problem in (6) without any regularization as max-
imum likelihood (ML) estimates of elasticity. Once the de-
noiser network C,, is trained, the denoiser residual is fed into
the GD estimation scheme in (7).

Fig. 1 illustrates the overall elasticity estimation procedure.
In this methodology, the initial elasticity fields E is a noisy
ML elasticity estimate. Utilizing RED yields to explicitly sep-
arate regularizer learning from the data-fidelity term which
expresses the statistical forward model of the imaging system.
Following the fixed-point methodology, the forward model
covariance matrix I is estimated by feeding the current elas-
ticity estimate E and then we compute the data-fidelity gra-
dient using the estimated I'. Besides, the regularizer gradient
is simply achieved by the denoiser network residual; and ulti-
mately, these gradients are utilized in the GD update scheme.
It must be noted that since the statistical forward model is
exploited in the optimization problem explicitly, massive net-
work weights are not wasted for the physical model learning
which encourages the network training even with a limited
training dataset.

5. SIMULATIONS AND RESULTS

For performance evaluation, ultrasound elasticity images E
are reconstructed using the measured noisy deformations
u™ and Neumann BCs f. In preliminary simulations, a
dataset consisting of 540 mask images [17] is used to gen-
erate ground-truth synthetic elasticity images representing

some inclusions embedded in the background tissue. The
normalized elasticity scale for each inclusion is selected in
the range 0.3-0.8 KPa and the normalized elasticity scale
for background tissue is selected in the range 0.1-0.15 KPa
randomly. These settings lead to inclusion to background
elasticity ratio in the range of 2-8 which follows experi-
ments constraints. Using this dataset, the clean displacement
images are generated by solving the deterministic global
stiffness equation (1) and the noisy ones u™ are obtained
by contaminating with multi-variate Gaussian noise n with
SNR = 35dB. UNet denoiser network C,, is trained us-
ing synthetic clean elasticity images and the corresponding
noisy images. For generating noisy elasticity images, we
map the noisy displacement fields u™ to the image domain
by solving the unregularized inverse problem consisting of
a data-fidelity term and a positivity constraint. The network
residual is plugged into the reconstruction procedure depicted
in Fig. 1 without any gradient computation. Representative
simulation results in Fig. 2 illustrate the effectiveness of
the proposed approach for elasticity modulus reconstruction
in presence of noise in comparison to conventional imaging
using the Gaussian-Newton method as well as the statistical
approach without learning-based regularization. For a de-
tailed comparison of implemented approaches, cross-section
representation of reconstructed elasticity fields E is depicted
in Fig. 3 which manifests the RED method effectiveness.

6. CONCLUSION

In this paper, we investigated a joint statistical and data-
driven methodology for ultrasound elastography on the basis
of FEMs by solving a regularized optimization problem.
The proposed approach introduces an explicit integrated cost
function including the statistical representation of the for-
ward imaging model and a data-driven regularization term
responsible for obtaining the underlying tissue elasticity dis-
tribution. The statistical representation of the forward model
is implemented by a linear algebraic model with respect to
the unknown elasticity image and a signal-dependent cor-
related model of noise. Following the RED paradigm, the
data-driven regularizer is learned by supervisedly training a
denoiser network and simply utilizing the network residual
as the regularizer gradient which results in an explicit repre-
sentation of the regularizer and subsequently the optimization



Fig. 2: Ground-truth and reconstructed elasticity images. (a) Ground-truth image. (b) Classical Gauss-Newton approach. (c)
Statistical approach without regularization. (d) Proposed statistical approach with learned regularizarion by denoising (RED).
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problem. Leveraging theoretical convergence and uniqueness
guarantees of the RED approach, the corresponding optimiza-

tion

task is solved by fixed-point iterative paradigm and GD

which leads to stable elasticity estimation. Our simulation
results verify the effectiveness of the proposed method.
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