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Abstract— The rapid advancement of sensor technologies and
artificial intelligence are creating new opportunities for traffic
safety enhancement. Dashboard cameras (dashcams) have been
widely deployed on both human driving vehicles and automated
driving vehicles. A computational intelligence model that can
accurately and promptly predict accidents from the dashcam
video will enhance the preparedness for accident prevention. The
spatial-temporal interaction of traffic agents is complex. Visual
cues for predicting a future accident are embedded deeply in
dashcam video data. Therefore, the early anticipation of traffic
accidents remains a challenge. Inspired by the attention behavior
of humans in visually perceiving accident risks, this paper
proposes a Dynamic Spatial-Temporal Attention (DSTA) network
for the early accident anticipation from dashcam videos. The
DSTA-network learns to select discriminative temporal segments
of a video sequence with a Dynamic Temporal Attention (DTA)
module. It also learns to focus on the informative spatial regions
of frames with a Dynamic Spatial Attention (DSA) module.
A Gated Recurrent Unit (GRU) is trained jointly with the
attention modules to predict the probability of a future accident.
The evaluation of the DSTA-network on two benchmark datasets
confirms that it has exceeded the state-of-the-art performance.
A thorough ablation study that assesses the DSTA-network at
the component level reveals how the network achieves such
performance. Furthermore, this paper proposes a method to
fuse the prediction scores from two complementary models and
verifies its effectiveness in further boosting the performance of
early accident anticipation.

Index Terms—Dynamic temporal attention, dynamic spatial
attention, model fusion, autonomous vehicle, human-inspired Al

I. INTRODUCTION

UTONOMOUS driving has drawn increasing atten-
tion and made significant achievements in recent years
[1], [2]. While autonomous driving provides convenience to
people and addresses emerging needs from industry, it raises
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concerns about traffic accidents. From 2014 to September 1,
2021, 337 autonomous vehicle collisions were reported in
California, USA [3]. Moreover, according to the 2018 global
status report on road safety from World Health Organization,
about 1.35 million people are killed in traffic accidents every
year [4]. Accident anticipation is a desired safety-enhancement
capability for not only autonomous vehicles but also countless
human driving vehicles. Successful anticipation of accidents
from the widely deployed dashcams even just a few seconds
ahead would effectively increase the situational awareness of
human drivers, Advanced Driver Assistance Systems (ADAS),
and autonomous vehicles to trigger a higher level of prepared-
ness for accident prevention.

Many causal factors contribute to traffic accidents [5],
including but not limited to human factors, environmental
conditions, road and traffic characteristics, temporal-spatial
factors, and vehicle types [6]. Detecting accident causal fac-
tors can help improve the awareness of accident risks and
develop methods to mitigate their negative impacts on safety.
Dashcams capture many of these causal factors in the form of
video data. Computational methods that can translate the easily
obtained dashcam video data into the perception of accident
risks are largely desired [7].

Some pioneering studies of computer vision-based accident
anticipation use conventional recurrent neural networks to
capture causal factors by distributing soft attention to agents
in the traffic scene [8]-[11]. Dashcam videos contain not
only relevant information but irrelevant information. Without
explicitly considering the spatial and temporal importance
of traffic agents and the driving context along with their
dynamic changes, it is impossible to effectively learn the video
representation for anticipating accidents.

Humans can turn their attention to risky regions in the
driving scene. They use their peripheral vision to assess the
scene and then fixate on regions that seem of high salient
values. Drivers’ choice of attended regions and their levels
of attention to them (e.g., measured by the fixation duration)
vary over time. Their attention level increases when they
perceive accident risks visually. Inspired by humans’ dynamic
visual attention in perceiving traffic risks, this paper developed
a computer vision-based deep neural network for the early
anticipation of traffic accidents. The network has embedded
spatial-temporal attention modules that reinforce its ability to
anticipate traffic accidents. The technical contributions of this
paper are threefold:
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o A new framework named Dynamic Spatial-Temporal
Attention (DSTA) network that learns to dynamically
attend to the salient temporal segments and spatial regions
of the driving scene video for the early accident anticipa-
tion. The network has outperformed the state-of-the-art;

o« A new method named score-level late-fusion that can
be implemented on any set of complementary trained
networks. The fusion method achieves higher prediction
accuracy than the constituent networks;

o A detailed analysis of the applicability and limitations of
representative traffic accident datasets.

The remainder of this paper summarizes the literature
in Section II, delineates the proposed DSTA-network in
Section III, and discusses the implementation detail and the
experimental assessment of the network in Section IV. At the
end, the paper summarizes findings and important future work.

II. THE LITERATURE

Accident anticipation, in general, falls into the category of
problems that predict the probability of a future event. This
problem is studied thoroughly to anticipate human actions. The
computer vision-based approach to human action anticipation
commonly uses appearance features as cues for prediction,
including those at the object, activity, and context levels,
respectively [12]-[16]. Other cues that may further strengthen
the prediction ability include the temporal relationship of sub-
activities or activity-related entities, and the spatial relationship
between humans, other entities, and the environment [5].
Furthermore, the design of the loss function for training
prediction neural networks is a mechanism for encouraging
early predictions [17]. While these studies have built a strong
methodological foundation for the probabilistic prediction of
future events, they analyze video data captured by static sur-
veillance cameras, not applicable to mobile cameras mounted
on vehicles.

Various efforts are made to anticipate traffic accidents from
dashcam videos. Yao er al. [18] developed an unsupervised
approach that utilizes the ego-vehicle motion information
to monitor and predict future locations of traffic agents.
Takimoto et al. [19] incorporated physical location data with
video data to predict the occurrence of traffic accidents.
Closely related to [17], [20], Suzuki er al. [10] proposed
an adaptive loss function for promoting the early anticipa-
tion of accidents. The loss function assigns penalty coeffi-
cients according to the achieved mean time-to-accident during
training.

Recently, attention mechanisms are receiving growing inter-
est. For example, Li ef al. [21] used a convolutional attention
module to improve the network’s ability to extract suffi-
cient spatial information from the input image. The attention
module effectively improves the autonomous vehicle’s ability
to understand the traffic scene. Wang er al. [22] developed
a spatial attention network and integrated it with a deep
multi-task network to segment lane markings for autonomous
vehicles, achieving improved performance and training speed.
Chan et al. [8] introduced the dynamic soft-attention to the
traffic accident anticipation, which fuses the weighted sum
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of object-level features with the frame-level features of each
video frame. The weights represent the attention levels on
different objects. Inspired by [8], Zeng et al. [9] proposed
a soft-attention RNN that models the nonlinear interaction
between traffic agents and locates risky regions where the
agents may involve in a future accident. Fatima et al. [11]
introduced a feature aggregation block that calculates the
weights for aggregating object-level features to capture the
inter-object interactions. The above-discussed studies mainly
focus on learning attentions to spatially distributed agents
that may be related to accidents. The temporal importance
of appearance features are ignored either at the frame-level,
the object-level, or both. From a different application domain,
Cui and Joe [23] integrated both a spatial attention module
and a temporal attention module with a GRU [24] to estimate
the state-of-health of batteries. The model in [23] processes the
feature vector measured at any time using a one-dimensional
(1D) convolution layer, assigns ‘“spatial” weights to filter
kernels, and learns a set of temporal weights that do not update
over time. This approach is not applicable to the recurring task
of accident anticipation from 2D video frames.

Very recently, Bao et al. [25] used a graph convolutional
recurrent neural network (GCRNN) to capture the spatial-
temporal relations among candidate objects. By measuring the
spatial distance between objects in each frame, a graph is
created to capture their spatial relationships. However, spatial
distances between objects in a frame do not capture their true
spatial relationships in the real world. The study further used
a folded vector of all the hidden representations as temporal
attention. Although it is beneficial to model training to a
certain extent, temporal attention does not update dynamically
to reflect the latest temporal information received.

III. METHODOLOGY

The proposed network for accident anticipation integrates a
Gated Recurrent Unit (GRU) with a Dynamic Spatial Atten-
tion (DSA) module, a Dynamic Temporal Attention (DTA)
module, and Temporal Self-Attention Aggregation (TSAA)
module, as Fig.1 illustrates. First, the network reads a dashcam
video. Each frame of the video flows into an object detector to
get multiple objects detected. Then, a feature extractor extracts
both the frame-level features and object-level features. The
weighted aggregation of the object-level features is concate-
nated with the frame-level features, becoming the overall fea-
ture input to the GRU. The GRU reads the input feature and the
weighted aggregation of multiple hidden representations in the
past to generate the hidden representation of the current frame.
This hidden representation is used to predict the probability of
seeing an accident in future frames. The DTA module learns
the attention weights for aggregating hidden representations in
the past, and the DSA module learns the attention weights for
aggregating object-level features. Additionally, the appended
auxiliary network TSAA learns the weights to aggregate all
the hidden representations of each training video to predict the
class of the video only in the training phase. Details of the
proposed network are delineated below.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 31,2022 at 15:29:36 UTC from IEEE Xplore. Restrictions apply.



9592

Input video, v

t—M t—1 t
|
¥

Object
y detector
fe Feature
extractor | Extracted objects
% Dynamic Dynamic
P Spatial Tempqral
Attention Attention
A 4 h'
DSA | t-1 < Biy DTA
module |~ module
H,_
- AT
ht—M ht—z ht*l
1h
h; R
GRU » a,
FC

& PP P

hy hey hy hyyy Ry
L]

J o
Temporal Self- Tsaa | Zv I_ Lo
Attention module v
Aggregation FC

Fig. 1. Overview of the DSTA-framework.

A. Dynamic Spatial-Temporal Attention Framework

The Dynamic Spatial-Temporal Attention (DSTA) network
uses a GRU, a simple yet well-performed type of recurrent
neural network [24], to recurrently predict the probability of
seeing an accident in future frames. The spatial-temporal rela-
tions of objects and the context information provide important
cues for the accident anticipation. The GRU integrates a DSA
module and a DTA module to learn the impact of the spatial-
temporal relations to accident risks.

1) Feature Extraction and Aggregation: An object detector
detects traffic objects from each video frame and keeps the
top N objects of the highest detection score for consideration.
The VGG-16 [26] feature extractor extracts both frame-level
and object-level features from each frame through multiple
convolution and pooling operations. Then, two fully connected
layers flatten the extracted feature maps to become a D
dimensional feature vector. This study adds an additional
fully connected layer to further reduce the dimension of the
feature vector to d (< D). Therefore, the extracted object-
level features are o; € RY*N and the frame-level features
are f, € R, After passing through the DSA module to be
introduced in the next section, o; is turned into a weighted
aggregation, 0, € R?. Then, 0, is concatenated with the frame-
level feature f,,

X, =1lo}; f,, (1)

to form the overall feature vector of each frame, X; € R,
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It should be mentioned that N is fixed although the number
of traffic-related objects varies from one frame to another. This
approach reduces the complexity of feature representation. The
choice of a fixed value for N will be discussed in section IV-B

2) Dynamic Spatial Attention (DSA): Attentions to the
spatially distributed objects in a frame are unequal. This fact is
modeled by the spatial attention weights, &, € RY, calculated
using the weighted aggregation of hidden representations from
the last step, h,_;, to be introduced in the next section and
the object-level features extracted from the current frame, o;:

a, =y (WY tanh(Wh) | + Wyo, + Byp)), 2)

where Wy, € RY, W, € R Wy € R and By €
RY are parameters of the DSA module, which are learned
during training. tanh is an activation function that regulates
the values flowing through the network, and y in this section
is the softmax operator that normalizes the attention scores as
spatial attention weights.

Given the weights, the object-level features are turned into
a weighted aggregation, o, € RY:

0, = 00;. (3)

3) Dynamic Temporal Attention (DTA): Frames in a video
are not equally important for the accident anticipation. Some
frames may contain more discriminative information for acci-
dent prediction, whereas others mainly provide contextual
information. Motivated by this fact, the study designs the
DTA module to provide the temporal attention weights for
aggregating the hidden representations of the most recent M
frames. Denote H,_; € R¥*M a5 the hidden representations
of the past M frames indexed by t — M to ¢t — 1:

H, | =[h_1,....,hpml 4)
The sliding window size M is chosen experimentally. A very
long temporal window may distract the network from the
accident anticipation task and a very short window would not
provide sufficient temporal context for the task. The temporal
attention weights, 8,_; € R?*M are computed as

Bi—1 =7 (Witanh(H; 1)), ®)

where W,, € R?*? are learnable parameters. Then, 8,_; is
used to turn H,_| into a weighted aggregation, h;_, € RY:

hy =B, Hi1)r, (6)

where (, ), represents the row-wise inner product of two
equally-sized matrix.

4) Spatial-Temporal Relational Learning With GRU: At any
frame ¢, the GRU takes the feature vector X; and the hidden
representation k;_, as the inputs to obtain the hidden represen-
tation of the current frame, h;. GRU has two gates, a reset gate
and an update gate, which retain the most relevant information,
g,(r) and g,(”), respectively from the video sequence by filtering
out irrelevant information. The data flow through the GRU are
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expressed mathematically in equations (7-10):

8" = o WX, +BOR,_)), (7
ri = tanh(W, X, + B.(g\"” oh/_))), 8)
g = o (WX, + B, ©)

hi=0-g"%0r +g"ohn_,, (10)

wherein ¢ represents the sigmoid activation function, o is the
element-wise product operator, W’s and B’s (¢ R4*?) are
learnable parameters.

After passing two fully connected layers, ¢, the hidden rep-
resentation h;, is turned into the scores of positive and negative
classes. The scores are further normalized by the softmax
operator to find the probability scores for each class. The
probability score for the positive class, a; can be expressed as:

a; =y [¢p(p(hs; Wo, Bo); Wi, By)], (11)

where W’s and B’s (€ R9*9) are learnable parameters of the
fully connected layers.

5) Temporal Self-Attention Aggregation (TSAA): To help
train the hidden layers of GRU better, the auxiliary module
TSAA is included in the training stage only. The TSAA
module provides learnable weights W, € R” to perform a
temporal self-attention aggregation [27] of all the 7" hidden
representations of each training video to predict the video
class. As illustrated in Fig. 1, all the 7" hidden representations
of the training video indexed by v are stored as a matrix H,:

b hT]l);

Then, the self-attention operation is applied to obtain the
weighted aggregation of all hidden representations, Z, € R¢:

H, =[hy,.. 12)

Z,=H,y(H H,)Wqu, (13)

where Wy, € RT are learnable parameters of TSAA. This
aggregated video-level representation flows into two additional
fully connected layers to get unnormalized class scores for
positive and negative classes. Then a softmax operator normal-
izes the scores to determine the video-level probability scores
for each class. The probability score for positive class, a, can
be expressed as:

ay =7y [¢(¢(zu§ Wvo, Bvo)§ wl)l’Bl)l)]a

where W,’s and B,’s (¢ R?*4) are learnable parameters of
the fully connected layers.

(14)

B. Training Procedure

The goal of the training process is to fit GRU, DSA, DTA,
and TSAA to the training data by determining their learnable
parameters described in Section III-A. A video dataset of size
V, indexed by v, is used to train the DSTA-network. Each
video contains 7 frames in total, captured at the rate of f
per second. The training dataset has two classes: positive and
negative. If a video contains an accident starting from frame
7 (< T), it belongs to the positive class and the video-level
label is [, = 1. Otherwise, it belongs to the negative class and
the label /, = 0 meaning that the video contains no accident.
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Prediction results of the DSTA-network are compared against
the ground truth of training data to determine the loss that
guides the learning process.

aty, calculated in Eq. (11), denotes the probability that
video v contains an accident, anticipated by the DSTA-network
at frame ¢ of the video. The frame-level loss function on the
training dataset is calculated as:

vV

T —t
Lr= Z |:_l“ Z"’_max(%’o) log(ay,»)
=1

v=1

T
—(1—=1,) > log(l — a,,u>] . (5)

t=1

The first term within the square bracket in Eq. (15) is the
loss of a positive video, and the second term is the loss of
a negative video. Negative videos use a regular binary cross
entropy loss function. But the frame-level loss coefficient for
positive videos increases exponentially as approaching the
accident (e.g., t < 7). After that, it reaches the same loss
coefficient for negative videos. The use of the exponentially
increasing loss coefficient for positive videos encourages the
early anticipation of accidents.

The auxiliary TSAA module is trained to predict the prob-
ability that a video contains an accident using the video-level
loss function:

Vv

»CV = z [_ll) log(al)) - (1 — lv)log(l _ av)] ,

v=1

(16)

where a,, calculated in Eq. (14), is the predicted probability
that video o is positive. The video-level loss function is a
regular binary cross entropy loss function. The first term within
the square bracket in Eq. (14) is the loss of a positive video
and the second term is the loss of a negative video.

The objective to achieve in training the DSTA-network is
to minimize the following loss function:

L=Lr+wily. (17)

Here, w, is a hyper-parameter that helps adjust the relative
importance of the auxiliary loss £y relative to the primary
loss L to achieve an appropriate balance between them. This
study chooses 15 as the value for w, experimentally. Finally,
the training progresses by backpropagating the loss £ to update
the learnable parameters of DSA, DTA, GRU, and TSAA.

C. Score-Level Late Fusion

Any model for the early anticipation of traffic accidents,
including the proposed DSTA-network, faces an unavoidable
trade-off between the earliness of prediction and the correct-
ness. Different models have their respective trade-off points.
A deep ensemble of two or more complimentary models may
further improve performance. Motivated by this hypothesis,
the study proposes a method that fuses the prediction scores
of two models that can complement each other to derive a
more reliable prediction. This study found that models of the
same architecture, but different parameters may complement
each other, and so those of different architectures.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 31,2022 at 15:29:36 UTC from IEEE Xplore. Restrictions apply.



9594

Algorithm 1 below summarizes the proposed score-level
late fusion method. Consider a video sequence flowing into
two models. On each frame ¢, the two models give their
own independent frame-level prediction scores, a,(l) and a,(z),
respectively. If both models give scores greater than or equal
to their respective classification thresholds, a® and &(2), the
driving scene is anticipated to involve in a future accident
confidently. Therefore, the fusion method takes the maximum
score from the two models as the new anticipation probability.
Similarly, if both the models return scores lower than their
respective threshold values, the driving scene is anticipated to
be safe confidently. Accordingly, the fusion method takes the
minimum score from the two model as the new anticipation
probability. If one model returns a score greater than or equal
to its threshold while the other returns a score lower than its
threshold, The two models give conflict classification. In such
a case, the fusion method takes the mean of their scores as
the new anticipation probability.

Algorithm 1 The Score-Level Late Fusion Method

Notation:
T: number of frames in a video sequence, indexed by ¢
a,(l) and a,(z): prediction scores by models 1 and 2, respec-
tively, at frame ¢
a® and a®: classification thresholds of models 1 and 2,
respectively
Input: Frames of a video sequence
Output: Accident prediction scores, {a;|t =1,...,T}
fort =1toT do

if a,(l) >a® and ¢® > @ then

a = max(at(l), a,(2
else if a,(l) <a and a,(z) < a® then

a; = min(a,(l), at(z))

else
a = mean(at(l), a,(2))
end if
end for

The threshold values of the two constituent models in
Algorithm 1 are design parameters that impact the effective-
ness of the fusion method. Different models have different
prediction behavior. For example, one model may focus more
on the earliness of prediction, while the other may focus more
on the correctness. Therefore, using separate threshold values
for the constituent models allow for taking advantage of their
respective strengths. The values of @1 and @@ are determined
in a numerical optimization approach. That is, given a pair of
threshold values, the corresponding performance of the fusion
method on the testing dataset is obtained. The decision is
to select a pair of threshold values which leads to the best
performance.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The study illustrates the implementation and evaluation of
the proposed DSTA-network for the early accident anticipation
on two publicly available datasets.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

A. Datasets

1) Dashcam Accident Dataset (DAD) [8]: It contains a
diverse set of videos captured across different cities in Taiwan.
The frame rate of the video is 20 frames per second (fps). Each
video lasts 5 seconds and thus consists of 100 (7)) frames.
This dataset has 1,130 negative videos without any accident
and 620 positive videos that each contains an accident in the
last 0.5 seconds. The training dataset includes 455 positive
and 829 negative videos, whereas the testing dataset comprises
165 positive and 301 negative videos.

2) Car Crash Dataset (CCD) [25]: Tt is a dashcam dataset
with diverse environmental attributes. It contains 4,500 videos.
80% are training data and 20% are testing data. For both
training and testing data, the ratio of positive videos to negative
videos is 1:2. Each video lasts 5 seconds with 50 frames in
total (i.e., fps is 10). For a positive video, the accident starting
time is randomly placed in the last 2 seconds of the video.

B. The Detail of Implementation

The study implemented the proposed approach using
PyTorch [28]. Training and testing were performed using an
Nvidia Tesla V100 GPU with 32GB of memory. This study
utilizes the prior knowledge about the frequencey distribution
of traffic objects in the datasets and the recommended value
by the prior studies [8], [25] to select the value for N. The
frequency distribution of traffic objects per frame in both
dataset suggests that the chance that a frame contains 19 or
less traffic objects exceeds 90%. Therefore, 19 is a reasonable
choice for N which keeps a balance between the computational
expense and the prediction performance. In use of the DAD
dataset, this study adopted the features of the candidate objects
and the frame-level appearance features provided by [8]. The
candidate object classes are different traffic agents such as
human, car, van, cyclist, truck, etc. which were detected using
Faster R-CNN [29]. For the CCD dataset, the study also
directly uses the features provided by [25] for a fair result
comparison, where candidate objects were detected using
Cascade R-CNN [30]. The dimension of VGG-16 features in
both datasets is 4,096 (D). These features were passed through
fully-connected embedding layers to reduce the dimension to
512 (d). The dimension of hidden representations returned
by GRU is 512 too. Features and hidden representations of
this dimension can represent input video frames well and
they are learned within a reasonable amount of training time.
Parameters of the DSTA-network were initialized randomly,
by taking values from a normal distribution with 0 mean and
0.01 standard deviation. The temporal sliding window for the
DTA module is 0.5 seconds (M = 0.5f), which is veri-
fied experimentally to be suitable. Similar to Chan et al. [8],
a learning rate of 0.0001 and a batch size 10 were used to train
the network. ReduceLROnPlateau was used as the learning rate
scheduler. Adam optimizer was used to optimize the network
for 60 epochs that are sufficiently long for this study.

The proposed approach achieves an inference speed of
24 fps with the same setup as the model training. Moreover,
a lightweight feature extractor can further increase the infer-
ence speed of the proposed model.
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C. Evaluation Metrics

The evaluation of a model for the early accident anticipation
needs to consider two aspects: the earliness and the correctness
of prediction.

1) Correctness: The ability of a model to correctly antici-
pate accidents can be measured by its performance in classi-
fying a set of testing videos. This study adopts the following
three classic metrics [31].

o Recall (R): the ratio of correctly predicted positives over

the total number of positive videos

o Precision (P): the ratio of correctly predicted positive

videos over the total number of positive predictions

o Average Precision (AP): The recall value and the preci-

sion value are changing when the classification threshold
changes. The average precision is the area below the
precision-recall curve:

AP = / PrdR, (18)

where PR is the precision corresponding to the recall R. AP is
independent of the choice of classification threshold.

A high recall value certainly is critical for accident antici-
pation due to the severe consequence of false negatives. But
a very high recall could be unrealistic, especially when it is
at the cost of very low precision. In accident anticipation
studies [8], [25], 80% represents a reasonably good recall
value for evaluating the corresponding precision. This study
adopts the precision corresponding to 80% recall, denoted by
Pgor, as another metric for the performance evaluation.

2) Earliness: The sooner a model can anticipate an acci-
dent, the more capable the accident prevention is. This study
measures the earliness of accident anticipation using the
following metrics [8]-[10], [25]:

o Time-to-Accident (TTA): The first time when the frame-
level anticipation probability a; goes across the classifi-
cation threshold a is the time to classify a video as a
positive. TTA is the period between this time and the
starting time of accident, 7:

TTA = max{r —tla; > a,1 <t <1} (19)

o mean Time-to-Accident (mTTA): TTA is changing if
the classification threshold a changes. The study thus
calculates the mean value of TTA:

mTTA = E[TTA]. (20)

mTTA is independent of the classification threshold. AP and
mTTA are commonly used as a pair of metrics for the model
assessment. TTAgor is the TTA at 80% recall. TTAgor reflects
the TTA at a relatively high requirement on recall.

D. Evaluation of the DSTA-Network

1) Experimental Evaluation: A learning behavior is
observed from training the DSTA-network, which attempts
to seek models that have larger AP and longer mTTA over
multiple epochs. A trade-off between the earliness and the cor-
rectness of accident anticipation presents because the exponen-
tially increasing loss coefficient for positive videos in Eq. (15)
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Fig. 2. Relationship between mTTA and AP on the DAD dataset.

encourages predicting accidents earlier. The network learns a
set of models that are positioned at different places on the
mTTA-AP diagram. Models on the Pareto-optimal frontier [32]
are efficient models in that neither their mTTA nor AP can
be further improved without sacrificing the other. Fig. 2 is
the mTTA-AP diagram that displays a group of models the
proposed DSTA-network learnt on the DAD dataset. It keeps
models with at least 1 second of mTTA and at least 50%
of AP because a very short mTTA or a very low AP is not
applicable in real-world applications. As seen from the figure,
the efficient model with the longest mTTA (3.75 seconds)
achieves 53.7% AP. Increasing the AP of an efficient model
requires to shorten the mTTA. The rightmost point in this
mTTA-AP diagram is the efficient model with the best AP,
which achieves 1.5 seconds of mTTA at 72.3% AP. A similar
relationship between mTTA and AP is also observed when
training the DSTA-network on the CCD dataset.

Selection of an efficient model from the Pareto-optimal
frontier for the implementation should consider the specific
need of users. Requirements on accident anticipation systems
can vary, depending on the weather conditions, time of the day,
and areas where vehicles are running [5]. Some may demand
super early prediction where false alarms are handled well.
Others may require a high accuracy where earliness is not
essential.

2) Comparison to the State-of-the-Art Models: The DSTA-
network is compared to the state-of-the-art models targeting
longer mTTA [8]-[10], [25]. TABLE I summarizes the results
of the comparative study. The performance of [8]-[10], [25]
are cited from [9] and [25]. On the DAD dataset,
DSA published in 2016 [8] achieved 48.1% AP and
1.34 seconds mTTA. Within four years, other studies have
progressively increased the AP to 53.7% and extended the
mTTA to 3.66 seconds [9], [10], [25]. The proposed DSTA-
network further leverages the AP by another 2.4% and mTTA
by 0.13 seconds, achieving 56.1% AP and 3.66 secconds
mTTA. This confirms that DSTA can improve both AP and
mTTA on such a challenging dataset. On the CCD dataset,
the state-of-the-art performance seems has saturated already.
But DSTA still outperforms it with a small margin, achieving
99.6% AP with 4.87 seconds mTTA. On both DAD and CCD
datasets, the proposed DSTA-network has outperformed the
existing state-of-the-art performance.
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TABLE I
COMPARISON OF MODELS SEEKING LONGER mTTA oN DAD AND CCD

Dataset Year | Model AP(%) | mTTA(s)
2016 | DSA [8] 48.1 1.34
2017 | L-RAI [9] 51.4 3.01
DAD 2018 | adaLEA [10] 52.3 343
2020 | GCRNN [25] 53.7 3.53
2021 DSTA (Ours) 56.1 3.66
2016 | DSA [8] 99.6 4.52
CCD 2020 | GCRNN [25] 99.5 4.74
2021 | DSTA (Ours) 99.6 4.87
TABLE 11
COMPARISON OF BEST AP MODELS ON DAD
Model AP(%) mTTA(s) TTAgor(S)
GCRNN [25] 7222 1.33 1.56
DSTA (Ours) 72.34 1.50 1.81
TABLE III
ABLATION STUDY ON THE DAD DATASET
Experiment | RNN DSA DTA TSAA | AP (%) | mTTA (s)
1 GRU v v v 72.34 1.50
2 GRU v v (M=1) v 70.74 1.36
3 GCRNN v v v 70.47 1.22
4 LSTM v v v 69.08 1.48
5 GRU v v 69.89 1.70
6 GRU v v 69.72 1.43
7 GRU v v 68.15 1.33
8 GRU v 66.04 1.39
9 GRU v 65.99 1.42
10 GRU v 65.03 1.55

TABLE 1I further compares the best AP model that the
DSTA-network attains to that of GCRNN [25]. Compared to
GCRNN, the best AP model of DSTA extends the mTTA
by 13% and TTAgor by 16%. Meanwhile, it increases AP
slightly, to 72.34 %. Not to mention that extending the TTA
even for a fraction of second can create better opportuni-
ties for accident prevention. Results in TABLES I and II
verify the competitiveness of the DSTA-network in meeting
various requirements for prediction correctness and earliness.
The above-cited performances are associated with individual
models. The proposed fusion method, to be discussed in
Section IV-E, will achieve further improvement.

3) Ablation Study: An ablation study comprising 10 exper-
iments is performed to assess the architecture of the proposed
DSTA-network. A decrease in the model’s performance due to
the removal or replacement of a key component measures the
component’s contribution. TABLE III summarizes the best AP
and corresponding mTTA attained in each of the experiments.

Experiment 1 is the DSTA-network with all the components
in place. The attained AP is higher than that of any other
experiment. It shall be mentioned that the DSTA-network
can provide another model (see Fig. 2), whose AP is 70.5%
and mTTA is 1.74 seconds, longer than that of any other
experiment in TABLE III.
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In experiment 2, the sliding window of the temporal atten-
tion model, M, is reduced to one frame (i.e., the last frame).
This change reduces the AP for 1.6%, which signifies the
effectiveness of using several recent frames’ hidden represen-
tations to learn the temporal relation.

In experiment 3, a GCRNN replaces the GRU, resulting
a drop of the AP for 1.87% and a decrease of mTTA for
0.28 seconds. This is mostly because the edge weights of the
GCRNN are less effective than the dynamic spatial attention
weights that the DSTA-network learns. Similarly, the replace-
ment of the GRU by an LSTM in experiment 4 lowers the AP
for 3.26% and reduces the mTTA slightly, for 0.02 seconds,
despite of increasing the number of parameters. Additionally,
the training time of experiment 3 is about five times longer
than the training times of experiments 1 and 4.

Experiment 5 drops the TSAA module, which decreases
the AP for 2.45% but increases the mTTA for 0.20 seconds.
Experiment 6 drops the DTA module, resulting a decrease in
the AP for 2.62% and the mTTA for 0.07 seconds. Experiment
10 drops both modules, which decreases the AP for 7.31%
and but slightly increases the mTTA for 0.05 seconds. These
experiments verify the importance of the temporal attention
modules in improving AP.

Compared to experiment 1, experiment 7 drops the DSA
module. This change reduces the AP for 4.19% and the mTTA
for 0.17 seconds. Similar observations are seen from the
comparison between experiments 9 and 5 and the compari-
son between experiments 8 and 6. These experiments verify
that the DSA module in the DSTA-network is effective in
increasing both the AP and the mTTA.

The ablation study verifies the merits of the DSTA-network
design. Each of the attention modules positively contributes
to the improvement of AP. Their net effect on mTTA is
also positive. This study also confirms that, given all these
attention modules, GRU is a better choice than both LSTM
and GCRNN.

4) Qualitative Results: The DSTA-network can focus on the
most semantically significant spatial and temporal regions in
a video sequence. Fig. 3 illustrates the dynamics of the spatial
and temporal attentions using a few sample frames from a
positive video wherein two vehicles (cars) are approaching
to each other in an intersection. The color bar on the right
indicates the magnitude of the attention weights.

The first row is the original sample frames. In the second
row, the top two attended objects in each frame are indicated
by colored rectangular boxes. The object receiving the highest
spatial attention weight and the magnitude of this weight may
vary from one frame to another. In this example, the top two
attended objects in frames #50, #54, and #56 are traffic agents
that will soon involve in an accident. In frames #48 and #52,
only the object with the top attention weight is a related traffic
agent. The observation indicates that the network will get more
contextual information as time goes by and it will become
more accurate in assigning the spatial attention.

According to Eq.(5), the temporal attention assigned to
the hidden representation of frame ¢ — j, f;—;, for j =
1,..., M, is a vector. This study calculates the mean value
of this vector and uses it to visualize the temporal attention
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with corresponding frames
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frame # 54
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Ilustrating the dynamics of the spatial and temporal attentions of the DSTA-network.
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Fig. 4. Examples of accident anticipation on the DAD dataset: a) a true-positive sample, b) a true-negative sample, and c) a false-negative sample. For better
visualization, white bounding boxes with a shade are added to the top two attended objects. The red curve indicates the prediction probability at each frame.

on this frame assigned at 7. The third row of Fig. 3 shows
the frames overlaid with their averaged temporal attention
weights assigned at frame #58. Frame #52 receives the highest
attention whereas frame #50 receives the lowest attention.
The fourth row further shows the frames overlaid with their
averaged temporal attention weights obtained at frame #60.
The change of attention weights from row three to row four
illustrates the dynamic nature of the temporal attention.

Fig. 4 illustrates three examples of accident anticipation
by the proposed DSTA-network. a) and b) are successful
examples on analyzing a positive video and a negative video,
respectively. ¢) is a false-negative example. For the illustration
purpose, a threshold value of 0.5 is used to trigger the pre-
diction of a future accident. In each example, sample frames
of the video are shown on the top and the time series of the
accident anticipation probability (i.e., the red colored curve) is
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TABLE IV
ASSESSMENT OF THE FUSION METHOD

Model-1 Model-2 a) | a® | AP (%) | Psor (%) | mTTA (s) | TTAggr (s)
DSTA (I) - 723 46.6 1.50 1.81
Individual | PSTA (D - 68.6 53.1 1.50 1.69
GCRNN - 68.3 50.8 131 1.58
GCRNN+AdaLEA | - - - 69.4 50.6 1.02 1.18
DSTA (I) GCRNN+AdaLEA | 0.72 | 0.55 74.1 53.1 1.08 1.18
Fusion DSTA (I) GCRNN 040 | 0.20 73.8 48.9 1.47 1.60
DSTA (I) DSTA (II) 0.42 | 0.50 72.6 56.4 1.50 1.70

displayed at the bottom. In a), the probability of anticipating
an accident has reached the threshold at frame #54, yielding
1.75 seconds TTA. From the sample frames, it is clear that
the network successfully identifies the risk of accident when
a few motorcycles are coming to the direct lane of the car
involved in the accident later on. In b), the network does not
predict an accident because the probability is always below
50%. In c), the accident happens between a yellow car and a
motorcycle, which are relatively far from the ego vehicle. The
prediction score never exceeds the selected threshold value
0.5. The long-distance of the accident-involved agents from
the ego vehicle might cause difficulty in extracting salient
spatial-temporal relational dynamics of the two vehicles from
their features. Therefore, the network missed predicting the
accident ahead of time.

E. Performance of the Fusion Method

The study evaluates the effectiveness of the proposed score-
level late-fusion method on the DAD dataset. The top portion
of TABLE 1V lists four candidate models for fusion, which
are efficient and may complement one and another. The first
two candidate models are learnt by the DSTA-network, which
only differ in model parameters. DSTA(I) is the model yielding
the best AP (see Fig. 2) and DSTA(II) is the one achieving
the best Pgor. The third candidate model is the best AP
model of GCRNN [25], and its performance is attained by
reproducing the model using the publicly available code.! The
last candidate model is a modification of GCRNN, which is
trained using the adaptive loss function of AdaLEA [10]. Here,
AdaLEA provides another degree of flexibility to explore a
higher AP. Compared to GCRNN, GCRNN-+AdaLEA attains
higher AP and PgoRr, but shorter mTTA and TTAgor. The last
two candidate models have their respective network architec-
ture, different than the DSTA-network.

The bottom portion of Table IV summarizes three selected
fusion results. Fusing the predicted scores of DSTA(I) and
GCRNN+AdaLEA achieves a remarkably high AP, 74.1%,
with the corresponding mTTA 1.08 seconds. This result
is achieved by selecting the prediction threshold 0.72 for
DSTA(), and 0.55 for GCRNN+AdaLEA. Compared to
the first fusion result, the fusion of DSTA(I) with GCRNN
slightly lowers the AP for 0.3% but extends the mTTA
for 0.39 seconds. Fusing DSTA(I) and DSTA(II) effectively

1 https://github.com/Cogito2012/UString

leverages the Pgor to 56.4%, equivalent to a margin of 9.8%
compared to DSTA(I) and 3.3% compared to DSTA(ID). It is
noted that the fusion of DSTA(I) and DSTA(II) provides a
practical solution to real-world applications. This fusion result
dominates all of the four individual models on the mTTA-AP
diagram. Meantime, it provides probably the most attractive
combination of precision and TTA, at 80% recall. This fusion
result further highlights the contribution of the proposed
DSTA-network. The study found that the improvement from
fusing more than two efficient models is marginal.

FE. Impact of the Datasets

TABLE I shows that performances of the accident anticipa-
tion models on the DAD dataset are significantly lower than on
the CCD dataset. The literature has not revealed the underlying
reasons for the observed dramatic difference. In attempt to
reveal some of the unknowns, a thorough experimental study
is conducted to evaluate the applicability and limitations of
representative datasets for the early accident anticipation.

CCD is over 2.5 times larger than DAD. To determine if the
performance gap is caused by the data size difference, a subset
of CCD, which is in the same size as DAD and named as
CCD-small, is created by randomly selecting videos from the
original CCD dataset. Despite of its reduced size, the DSTA-
network trained on CCD-small still achieves 98.51% AP and
4.83 seconds mTTA. This verifies that the larger size of CCD
is not the main reason for the superior performance of early
accident anticipation on CCD.

DAD and CCD datasets are dramatically different.
Accidents in the DAD dataset always start from the last
0.5 seconds of positive videos, only 10% of the total video
length. Most importantly, 90% of the positive videos in DAD
contains extremely complex urban traffic accidents, where
ego-vehicles are not involved in accidents, and traffic agents
involved in, or affected by accidents, may appear in the video
for a very short time in relative to the full length of the
training videos. In the CCD dataset, 53.4% of the accidents
are ego-vehicle involved. Changes in motion, size, and other
appearance features in accident videos are relatively large.
The starting time of accidents in CCD is placed randomly
in the last 2 seconds, and the mean starting time is in the
last 1.28 seconds. These differences are important reasons
that accident anticipation models have largely different per-
formance on the two datasets. To determine if the above-
discussed data differences would impact the generalization
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TABLE V
THE IMPACT OF DATASET DIFFERENCES

Training Testing | AP(%) | mTTA (s)
DAD CCD 35.99 4.98
CCD DAD 35.74 4.99
CCD-smallUDAD CCD 98.89 448
CCD-smallUDAD DAD 69.67 1.40

capability of the proposed DSTA-network, four experiments
listed in TABLE V are conducted. In these experiments,
the frequency of DAD videos is reduced to 10 fps to be
compatible with CCD. The first two experiments in this table
are cross-testing. Both of the tests achieve a low AP value,
near 36%. The dramatically reduced AP implies a challenge
for the early accident anticipation arising from differences
in traffic scenes and accident types. The network is further
trained on the dataset that mixes the CCD-small and the DAD
training dataset. This model performs better than in the cross-
testing experiments, achieving 98.89% AP and 4.48 secconds
mTTA when tested on the CCD dataset, and 69.67% AP and
1.40 sec mTTA on DAD. But the performances are below
those in TABLE 1.

This experimental study verifies that the data foundation
for the early accident anticipation is crucial. A comprehensive
dataset is desired, which has balanced ego-vehicle involved
and uninvolved accidents and diverse scene configurations
from different regions and countries.

V. CONCLUSION

This paper presented a novel end-to-end DSTA-network for
the early anticipation of traffic accidents from widely deployed
dashcams. Through designing a new model fusion method and
analyzing existing datasets, this paper identifies opportunities
for further advancing the early accident anticipation.

Computer vision has been playing vital roles in traffic safety
enhancement and autonomous driving. It can augment or sub-
stitute for human vision in the transportation system. Just like
human vision that is one, but not the only, sensing and learning
mechanism, computer-vision based early accident anticipation
should be further integrated with other safety-enhancement
technologies and methods such as LiDAR, internet of things,
and transportation safety surrogate measurements (SSM) to
deliver a multimodal, multifunctional system for the early
accident anticipation. The convergence of these technologies
with the proposed method is an important direction that will
bring exciting opportunities for safety enhancement.

This study envisaged multiple lines of future work. The
proposed DSTA-network has a common limitation as many
other deep learning models, which is the unexplainability of
the rationale behind the network’s decision-making process.
Moreover, autonomous vehicles will benefit from knowing the
location of a potential future accident, or locations of traffic
agents that are likely to involve in or be affected by the
accident. Although the proposed method distributes attention
weights to the most important objects pertinent to the accident
risk in the input video frame, it does not explicitly localize
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a future accident location. Follow-up studies include revealing
the risk perception mechanism of the network to make it
explainable and trustworthy to humans as well as visualizing
the objects/regions that may cause an accident or be affected
by an accident. Another important future research direction is
to predict the type of a prospective accident which effectively
turns the current binary classification problem into a multiclass
classification problem. To achieve this goal, a diverse dataset
supporting the classification of expected accidents by types is
required. In transportation, various surrogate safety measure-
ments are effectively used to identify accident risks. An excit-
ing future direction is to develop sensor-fusion based, SSM-
informed deep learning networks for safety enhancement. This
study also evidences the need for a strong data foundation
for the accident anticipation. Finally, accident anticipation is
also a desired capability for mobile robots such as drones
and remotely operated underwater vehicles. The application of
the DSTA-network to those robots faces additional challenges.
This paper lays a foundation for exploring the above-discussed
exciting opportunities.
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