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We present the first numerical solutions of the causal, stable relativistic Navier-Stokes equations as

formulated by Bemfica, Disconzi, Noronha, and Kovtun (BDNK). For this initial investigation we restrict

to plane-symmetric configurations of a conformal fluid in Minkowski spacetime. We consider evolution of

three classes of initial data: a smooth (initially) stationary concentration of energy, a standard shock tube

setup, and a smooth shockwave setup. We compare these solutions to those obtained with a code based on

the Müller-Israel-Stewart (MIS) formalism, variants of which are the common tools used today to model

relativistic, viscous fluids. We find that for the two smooth initial data cases, simple finite difference

methods are adequate to obtain stable, convergent solutions to the BDNK equations. For low viscosity, the

MIS and BDNK evolutions show good agreement. At high viscosity the solutions begin to differ in regions

with large gradients, and there the BDNK solutions can (as expected) exhibit violation of the weak energy

condition. This behavior is transient, and the solutions evolve toward a hydrodynamic regime in a way

reminiscent of an approach to a universal attractor. For the shockwave problem, we give evidence that if a

hydrodynamic frame is chosen so that the maximum characteristic speed of the BDNK system is the speed

of light (or larger), arbitrarily strong shockwaves are smoothly resolved. Regarding the shock tube problem,

it is unclear whether discontinuous initial data is mathematically well-posed for the BDNK system, even in

a weak sense. Nevertheless we attempt numerical solution, and then need to treat the perfect fluid terms

using high-resolution shock-capturing (HRSC) methods. When such methods can successfully evolve the

solution beyond the initial time, subsequent evolution agrees with corresponding MIS solutions, as well as

the perfect fluid solution in the limit of zero viscosity.
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I. INTRODUCTION

In a modern interpretation, hydrodynamics can be

thought of as a coarse-grained model of an underlying

microscopic theory, allowing for tractable study of certain

macroscopic phenomena. In that sense then hydrodynamics

is not a single theory, but a hierarchy of theories that

successively include more details and properties of the

underlying microphysics (see e.g., [1,2]). The leading order

model (zeroth order in a gradient expansion) is applicable

to matter in local thermodynamic equilibrium, character-

ized by basic material properties such as energy density and

temperature, and subject to evolution equations consistent

with stress-energy conservation (the Euler equations),

conservation of particle number for baryons, etc. At

next-to-leading (first) order, effects associated with devia-

tions from equilibrium appear, such as viscous dissipation

due to velocity gradients, or heat conduction due to thermal

gradients. The corresponding statement of stress-energy

conservation is captured by the Navier-Stokes equations.

Despite the simple physical principles that underlie these

hydrodynamic theories, the equations are nonlinear, and

even exhibit complicated phenomena such as turbulence,

and singular behavior (discontinuities) in some shock-

waves. Singularities are often a problem for the predict-

ability of a theory, though for the Euler equations, requiring

stress-energy conservation and consistency with the second

law of thermodynamics is adequate to allow for unique

weak-form solutions that accurately capture the behavior

outside of the discontinuity [3]. In other words, the details

of the microphysics that would ostensibly resolve the

discontinuity seems irrelevant on large scales, and remark-

ably, the Euler equations reflect this, despite a complete

breakdown of the small-gradient assumption that would

otherwise justify them as a sound mathematical model of

the corresponding physical phenomenon.

Historically, the success of hydrodynamics as a model of

the dynamics of macroscopic distributions of matter

seemed to fail at first order for relativistic theories, as

originally formulated by Eckart [4] in 1940, and a different

variant by Landau and Lifshitz in the 1950s [5]. A problem

recognized early on is that the resultant relativistic Navier-

Stokes equations are parabolic, inconsistent with causality

as defined by the postulates of relativity. A reasonable
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assumption would have been that this simply implies a

limited range of scenarios where the relativistic Navier-

Stokes equations should be expected to provide accurate

predictions. However, that notion was dramatically dis-

proven by Hiscock and Lindblom in 1985 [6], when they

showed these theories do not admit stable equilibrium

solutions for reasonable forms of matter, even in non-

relativistic settings.

To address the issues of hyperbolicity and causality, in

the 1960s Müller [7], and subsequently Israel and Stewart

[8,9], showed that the inclusion of second-order terms may

be able to yield a more suitable theory. Though the

additional terms significantly complicate nonlinear analy-

sis, the theory was later shown to be stable, causal, and

hyperbolic when linearized about equilibrium [10], moti-

vating its use over the theories of Eckart and Landau-

Lifshitz. As a result, the so-called Müller-Israel-Stewart

(MIS) theories are behind essentially all current numerical

efforts to model relativistic dissipative fluids (see [2] for a

comprehensive review). Applications of contemporary

interest include modeling relativistic heavy ion collisions

[2], neutron star dynamics [11,12], early universe cosmol-

ogy [13], plasma physics [14], black hole accretion [15,16]

and relativistic jets [17].

Though highly successful in the above mentioned

applications, there are a few issues with MIS theories.

One is that of aesthetics: it seems rather excessive to need

all the complexity of the second-order theory (with over a

dozen new transport coefficients that appear relative to first

order [2]) if only the first-order terms are expected to be

relevant in a given problem. As such, many practitioners

use a truncated version of MIS (as we do here for the

comparison model, discussed more in Sec. II D below);

though somewhat ad hoc, this is justifiable in scenarios

where second-order effects are small. Another problem

with MIS-type theories is they generically do not admit

solutions describing high Mach number strong shocks,

even in a weak sense [18,19]. Though one might argue this

is not surprising for a theory based on a gradient expansion,

and it is likely just the simplicity of the Euler equations that

the latter can be “fixed” in this regard, it would still mean

that beyond zeroth order, relativistic hydrodynamics breaks

down as a predictive theory when strong shocks form.

There have been other proposals to resolve the problems

with traditional first-order relativistic hydrodynamics (in

particular [20]), though just within the past decade has a

revolution in understanding the source of the latter’s pathol-

ogy arisen, giving a clear and systematic approach to

constructing well-posed first-order theories. Building on

earlier work by Ván and Biró [21] and Freistühler and

Temple [22–24], the key insight by Bemfica, Disconzi and

Noronha [25], and expanded upon by Kovtun [26], was

recognizing how the choice of the hydrodynamic frame

influences the hyperbolicity of the underlying equations (in

this paperwewill often simply use “frame”when referring to

the hydrodynamic frame, andwhenweuse “reference frame”

or “rest frame” we mean a coordinate (Lorentz) frame).

Eckart and Landau-Lifshitz already knew that the hydro-

dynamic variables do not have unique definitions outside of

equilibrium. The hydrodynamic frame is then essentially

the choice of definition of a complete set of fundamental

variables, such as the flow four-velocity ua, energy density

ϵ, and particle number density n (or equivalent replace-

ments of thermodynamic quantities using the equation of

state), and how they relate to the stress-energy tensor Tab,

particle four-current Ja and various transport coefficients

through a series of constitutive relations. For example, out

of equilibrium, the particle number flux 4-velocity vector

uaN does not need to be tangent to the energy flux 4-velocity

uaE (defined as an eigenvector of Tab); among other choices,

Eckart used a frame where ua ¼ uaN , while Landau and

Lifshitz used one where ua ¼ uaE. The choice of frame

constrains the set of transport coefficients appearing in Tab

and Ja, and by considering field redefinitions one can

determine how some vary and others are invariant under

changes of hydrodynamic frame [26]. More importantly for

our discussion, the choice of frame also affects the

character of the partial differential equations (PDEs) in

the resultant Navier-Stokes and various charge conserva-

tion equations: a judicious choice of frame allows for a

well-posed, strongly hyperbolic system of PDEs with

causal propagation speeds [25,27–30].

The purpose of this paper is to report on initial results

implementing the relativistic viscous hydrodynamics the-

ories of Bemfica, Disconzi, Noronha and Kovtun (BDNK)

in a numerical solution scheme, which to our knowledge

has not been done before. Given the decades of research

into developing stable codes to solve the relativistic Euler

equations, and MIS-inspired schemes to model dissipative

corrections, it may seem like it would be a trivial process to

retool one of these codes to solve the BDNK systems.

Indeed, one of the results from our work is that standard

methods can straight-forwardly be adapted to the BDNK

equations, at least for the scenario studied here: a conformal

fluid restricted to planar symmetry in Minkowski space-

time. However, that is not a priori an obvious conclusion

for a few reasons. The main one is related to what portion of

the stress tensor Tab contains the principle parts of PDEs

that govern the equations’ character (here hyperbolic),

and what that implies for numerical solution. The Euler

equations are most commonly written in flux-conservative

form, allowing for the application of Godunov-type meth-

ods to deal with discontinuities that form in many scenarios

of interest. Such techniques essentially assume a disconti-

nuity is present at each cell interface, and solve an exact or

approximate Riemann problem at each interface to update

cell averages of the fluid variables at each time step. As

illustrated in more detail in Sec. II D, the addition of

dissipative terms via the MIS approach does not alter the

basic structure of the hydrodynamic evolution, as the

ALEX PANDYA and FRANS PRETORIUS PHYS. REV. D 104, 023015 (2021)

023015-2



higher order corrections to the stress tensor are elevated to

the status of new fundamental variables with their own

evolution equations, and only couple to the Euler equations

as lower order source terms.

For the BDNK equations this is not the case: the

principle parts of the PDEs are now entirely determined

by the viscous part of the stress tensor, with the Euler terms

relegated to lower order. Stable, convergent numerical

solution schemes mirror the proofs of the well-posedness

of continuum equations: they must be tailored to the

structure of the principle parts of the PDEs, and then

(for the most part) the lower order terms will not adversely

affect the numerical evolution. The difficulty contemplating

taking this route for a BDNK system is that for equilibrium

states, which will generically be present in at least parts of

the domain, the viscous terms are identically zero, and near

equilibrium evolution is governed by the lower order Euler

terms. Since the latter by themselves are also hyperbolic,

this should not be a problem for smooth flows. Though

when shocks form, even if in principle viscosity is able to

smooth them, the scale over which the fluid profile

smoothly transitions from one state to another may be

too small to resolve in practice. Also, nothing prevents one

from putting in nonsmooth initial data, and certain appli-

cations effectively require this (e.g., the moment of colli-

sion in a binary neutron star merger). Thus it seems

important to maintain the ability of a numerical scheme

to stably evolve nonsmooth data when dissipative effects

are included, but it is unclear whether the analogue of the

Riemann problem makes mathematical sense for a theory

governed by second-order PDEs such as BDNK.
1

In the remainder of this introduction, we outline the rest

of the paper, and give a brief summary of our main results.

After a more general discussion of the gradient expan-

sion in Sec. II, in Secs. II B, II C and II D we describe the

perfect fluid, BDNK and truncated MIS systems we

consider here, respectively. Beyond demonstrating stable

evolution of the BDNK equations, one goal is to compare

evolution of identical initial data using these three different

theories for a select set of problems, and identifying in what

regimes they agree. For the dissipative schemes we also

investigate some self-consistent diagnostic measures

(described in Sec. VI) to check whether the state has

evolved to a regime where the results should not be trusted,

even if there is no breakdown or other apparent issue with

the numerical solution. For simplicity in this first study we

restrict to a conformal fluid, and planar symmetry in

Minkowski spacetime (i.e., ð1þ 1ÞD evolution), and in

Sec. III give the explicit form of the three sets of equations

we will solve numerically. In Sec. IV we describe the

numerical methods we employ. For concreteness, we will

choose parameters of the test problems to mimic conditions

relevant to heavy ion collisions; we discuss this and the

units we use in Sec. V.

We present results in Sec. VII, one for an initially static

fluid with a Gaussian distribution for the energy density, the

second a standard shock tube problem with discontinuous

initial data, and the third smooth initial data transitioning

between an upstream supersonic flow and a downstream

subsonic flow.

For the Gaussian initial data, the perfect fluid eventually

develops shocks, while for BDNK and MIS with non-zero

viscosity the fluid variables remain smooth for the length of

the simulations. The dissipative schemes show similar

results for low viscosity, but begin to differ at high

viscosity. In that regime the BDNK solutions develop

regions where the weak energy condition is violated, as

expected when the gradient terms in the stress energy tensor

become large [25]. Interestingly, though the resultant

solutions then are markedly different from the correspond-

ing MIS solutions, or between two BDNK solutions

obtained with different hydrodynamic frames (all having

started with identical initial data), these “nonhydrody-

namic” features decay away exponentially, and the solu-

tions soon closely resemble each other again. This is

reminiscent of so-called universal attractor behavior found

to be present in beyond-ideal theories modeling Bjorken

flow [32,33] (a flow that seems to describe the leading

order phase of expansion of a quark-gluon plasma formed

in an ultrarelativistic heavy ion collision).

For the shock tube test, similar energy condition viola-

tions occur near the initial time, but soon afterward, both

for MIS and BDNK, the evolution approaches a state that

looks like a smoothed version of the perfect fluid case,

with the diagnostics suggesting the dissipative corrections

have become small from the perspective of the gradient

expansion.

Regarding shockwaves in viscous hydrodynamics, as

mentioned above, there are theorems that in MIS-type

relativistic theories solutions do not exist for sufficiently

strong (high Mach number) shocks, even in a weak sense.

This is disconcerting, and considered by some a significant

shortcoming of such theories [18,19,22]. However, the

nature of the proofs are more suggestive of a failure of

hyperbolicity than some intrinsic inadequacy of relativistic

dissipative hydrodynamics: the limiting upstream velocity

above which shock solutions cease to exist is precisely

when the largest upstream characteristic speed of the

system becomes zero in the observer’s reference frame.
2

For such supersonic flows, information about the down-

stream state cannot be propagated upstream, arguing for the
1
For the nonrelativistic Navier-Stokes equations similar rea-

soning holds. Another difficulty in that case is the dissipative
terms make the equations parabolic, which can impose severe
time-stepping restrictions for stable evolution; methods have been
developed to alleviate this, such as those shown in [31].

2
The characteristic speeds of the PDEs governing beyond-ideal

hydrodynamic theories generally do not coincide with the sound
speed of the fluid.
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presence of discontinuities in the flow at the shock front.

This is what happens with the Euler equations, and sensible

weak-form solutions can be derived there, giving the

Rankine-Hugoniot jump conditions. For the Newtonian

Navier-Stokes equations, discontinuities are not inevitable,

as the equations are parabolic and information can always

be propagated upstream regardless of the flow speed;

intuition suggests the dissipative terms should smooth

out the shock front, and this is confirmed by numerical

solution, even though in some cases shock properties do not

match experiments very well (see e.g., [34]). It would be a

curious circumstance if viscosity failed to “work” in this

sense in relativity, but would be acceptable if weak form

solutions still existed; that they do not for MIS-type

theories is a much more severe problem, for, as mentioned,

it implies failure of the Cauchy problem and subsequent

loss of predictability.

As we demonstrate here, for the shockwave test case

similar problems can be present within BDNK theories.

However, we also show that this is tied to the choice of

hydrodynamic frame, and we can choose one where the

trends indicate arbitrarily strong shocks can be smoothly

resolved. This is consistent with the above theorems

[18,19] in that the “good” frames for resolving shocks

are those where the maximum characteristic speed is the

speed of light (or larger). This is also consistent with the

work of Freistühler and Temple [22], who demanded

existence of arbitrarily strong shock solutions as a defining

criterion for the class of first-order relativistic theories they

proposed. In doing so, they had to abandon the restriction

that entropy production is positive along all gradients, but

found that violations of the second law actually do not

occur along shock profiles. We similarly observe positive

entropy production along shocks, though given that we are

using a conformal fluid (there is a simple one-to-one

relationship between entropy density s and energy density

ϵ), and the shock smoothly transitions between flows which

asymptotically approach the corresponding perfect fluid

states (by conservation of stress-energy), this is somewhat

of a trivial conclusion in our case. That is not to suggest that

sufficiently far out of equilibrium regimes do not exist

where BDNK theories could show violation of the sec-

ond law. However, one could view such pathological

evolution as a “feature” of these theories, providing an

additional diagnostic—similar to the weak energy condi-

tion violation—to tell when the fluid is outside the realm

where only first-order dissipative corrections are adequate

to describe its dynamics.

As we completed this work, a paper by Freistühler [35]

appeared on the archive that proves some results related to

strong shocks within the BDNK system, and likewise

seems consistent with the above discussion. In the results

below we will mention where the particular examples we

present fall within the characterization of the BDNK frames

introduced in [35].

We conclude in Sec. VIII with a discussion of potential

follow up work. We leave the explicit form of the primitive

variable recovery and numerical algorithm for our BDNK

scheme to Appendixes A and B respectively, a listing of the

steady state equations relevant to the shockwave problem to

Appendix C, and some convergence tests to Appendix D.

II. THE GRADIENT EXPANSION

In this section we begin by reviewing hydrodynamics

from the perspective of a gradient expansion. Then in

Sec. II A we describe simplifications that result for a

conformal fluid, followed by details specific to the zer-

oth, first and second-order theories we consider here in

Secs. II B, II C and II D respectively.

Relativistic fluid models are typically defined in terms of

two conserved currents: the stress-energy tensor Tab, which

arises as a result of spacetime translation invariance, and a

U(1) conserved current Ja, coming from the local con-

servation of the number of particles (baryons) [1,36]. These

currents are functions of a set of hydrodynamic variables:

the energy density ϵ, the baryon number density n, isotropic
rest-frame pressure P, the flow four-velocity ua, chemical

potential μ, temperature T, etc., that define the macroscopic

state of the fluid. The corresponding conservation laws are

∇aT
ab ¼ 0 ð1Þ

∇aJ
a ¼ 0; ð2Þ

where ∇a is the covariant derivative compatible with the

spacetime metric gab, which we take to have the “mostly

plus” signature ð−þþþÞ. This gives dþ 1 equations

constraining the dynamics of Tab and Ja, where d is the

dimension of the spacetime (we consider d ¼ 4 here). A

defining feature of hydrodynamics is that these dþ 1

equations are assumed to be sufficient to predict the unique

evolution of the state of the fluid from given initial data.

This is only possible because not all the hydrodynamic

variables are independent; the additional constraints needed

to close the system come from the thermodynamic equation

of state, which characterizes microphysical properties of

the particular fluid under consideration. That further

implies there is freedom in choosing a subset of these as

independent variables that will be explicitly solved for; in

the description below we will mainly use ϵ, n, and ua (this
is a common choice for astrophysical applications).

For fluids in local thermodynamic equilibrium, or when

dissipative effects are negligible, Tab and Ja are simply

algebraic functions of the hydrodynamic variables, and the

interpretation of these variables is unambiguous. Outside of

equilibrium, however, this is no longer true. Nevertheless, it

is conventional to assume that Tab; Ja may be still be

parametrized by the hydrodynamic variables provided the

fluid is sufficiently close to equilibrium, though one must
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now also consider combinations of the hydrodynamic

variables and their derivatives. In particular, near equilib-

rium one assumes one can express the conserved currents in

terms of a gradient expansion

Tab ¼ Tab
ð0Þ þ Tab

ð1Þ þ Tab
ð2Þ þ � � �

Ja ¼ Jað0Þ þ Jað1Þ þ Jað2Þ þ � � � ; ð3Þ

where the zeroth-order terms Tab
ð0Þ; J

a
ð0Þ are the equilibrium

case considered previously. At first order, Tab
ð1Þ; J

a
ð1Þ depend

linearly on first derivatives of the variables, i.e., ∇aub, ∇aϵ

and ∇an. At second order and above, one counts higher

order gradients and products of lower order gradients on the

same footing; for example, both ∇a∇bϵ and ð∇aϵÞð∇bϵÞ
would appear in the second-order contribution to the stress-

energy tensor, Tab
ð2Þ.

It is impractical to work with Tab; Ja in (3) up to high

order in gradients,
3
so we will always truncate them at some

order k. In these truncated expressions, following the

notation of [30], we will use the subscript k (without

parentheses) to define a quantity computed up to and

including kth order gradients, e.g.,

Tab
k ¼ Tab

ð0Þ þ Tab
ð1Þ þ � � � þ Tab

ðkÞ; ð4Þ

where the terms with subscript (k) (with parentheses)

denote a term entirely at kth order. It will be useful to

also define the dissipative corrections to the stress-energy

tensor and particle current:

Tab
k ¼ Tab

ð0Þ þ πabk ð5Þ

Jabk ¼ Jabð0Þ þ ξabk ; ð6Þ

which include all gradient corrections to the equilibrium

stress-energy tensor and particle current, e.g., πabk ¼
Tab
ð1Þ þ…þ Tab

ðkÞ.

At this point it is possible to define Tab; Ja by writing

them as linear combinations of all possible gradient terms

of the hydrodynamic variables fϵ; n; uag up to kth order. As
k increases, however, the number of possible terms grow

rapidly and the need for a bookkeeping system becomes

apparent. It is conventional to begin by decomposing

Tab; Ja in terms of ua, which is taken to be timelike,

ucu
c ¼ −1. Then, without loss of generality [1]

Tab ¼ EuaubþPΔabþðQaubþQbuaÞþT ab ð7Þ

Ja ¼ N ua þ J a; ð8Þ

where E, P,N are scalars;Qa, J a are vectors transverse to

ua (i.e., uaQ
a ¼ uaJ

a ¼ 0); T ab is a symmetric transverse

traceless tensor (uaT
ab ¼ gabT

ab ¼ 0); and the symmetric

tensor

Δ
ab ≡ gab þ uaub ð9Þ

projects onto the space transverse to the fluid velocity

(uaΔ
ab ¼ 0). In terms of Tab; Ja, these quantities are

defined by

E ¼ ucudT
cd; P ¼ 1

d− 1
ΔcdT

cd; Qa ¼ −ΔacudT
cd

N ¼ −ucJ
c; J a ¼ΔacJ

c; T ab ¼ Thabi: ð10Þ

The angle brackets are shorthand for

Xhabi ¼ 1

2

�

Δ
ac
Δ

bdXcd þ Δ
ac
Δ

bdXdc

−
2

d − 1
Δ

ab
Δ

cdXcd

�

; ð11Þ

which gives the transverse traceless part of a general rank-

two tensor Xab (uaX
habi ¼ gabX

habi ¼ 0).

Specifying a fluid theory at order k amounts to replacing

(10) with a set of constitutive relations defining

fEk;Pk;Q
a
k ; T

ab
k ;N k;J

a
kg in terms of the hydrodynamic

variables fϵ; n; uag, the spacetime metric gab, and their

gradients up to order k.

A. Conformal fluids

Before writing down the constitutive relations at zeroth,

first, and second order—corresponding to the relativistic

Euler, BDNK, and MIS equations respectively—we will

restrict our attention to a fluid with an underlying con-

formal symmetry (gabT
ab ¼ 0) and no conserved baryon

current (Ja ¼ 0). These assumptions yield a significant

simplification to the stress-energy tensor at higher orders of

the gradient expansion, and allow us to more easily

make contact with established results from the relativistic

heavy ion collision community, which often uses a vis-

cous conformal fluid as a toy model for quark-gluon

plasma
4
(QGP).

A straightforward calculation shows that tracelessness of

the perfect fluid Tab (see (12) below) requires the equation

of state relating the fluid pressure P to the energy density ϵ

to be P ¼ ϵ=3 (for d ¼ 4). This result also implies that

ϵ ¼ ϵ0T
4, where T is the temperature and ϵ0 is a dimen-

sionful constant whose value should be derived from the

thermodynamics of the substance being modeled.

3
And in fact, the series likely has a zero radius of convergence

at infinite order [37–40].

4
Though QGP is often far from conformal in heavy-ion

collisions [41], quantum chromodynamics (QCD) is nearly
conformal at sufficiently high temperatures [42].
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A simple example of a conformal fluid is a gas of free,

massless particles, such as a free photon gas, or a perfect

fluid with the so-called ultrarelativistic equation of state

[43] P ¼ ðΓ − 1Þϵ with Γ ¼ 4=3.

B. Zeroth-order hydrodynamics: Relativistic

Euler equations

Since we are considering a conformal fluid with no

conserved particle number n, fϵ; uag are the only hydro-

dynamic variables that will appear in the constitutive

relations. Using the velocity decomposition for Tab (7),

one sees that the hydrodynamic variables alone cannot form

a transverse vector or a transverse traceless tensor, so

Qa ¼ T ab ¼ 0. We are left with only the scalars E, P, each

of which must be a function of ϵ. An observer comoving

with a fluid will see a rest frame energy density ϵ and

isotropic pressure P ð¼ ϵ=3Þ, requiring E ¼ ϵ and P ¼ P
in (7). Thus

Tab
ð0Þ ¼ ϵuaub þ PΔab; ð12Þ

which is the stress-energy tensor for a perfect (ideal) fluid.

Combining (12) with (1) yields the relativistic Euler

equations, which govern the time evolution of an inviscid

fluid in local thermodynamic equilibrium.

C. First-order hydrodynamics: Relativistic

Navier-Stokes equations

1. First-order constitutive relations

At first order in the gradient expansion, one must now

incorporate derivatives of the hydrodynamic variables into

the constitutive relations defining E;P;Qa; T ab, replacing

(10). For a conformal fluid without a conserved baryon

number n, the only allowed first-order terms are the scalars

∇cu
c; uc∇cϵ, the transverse vectors Δ

ac∇cϵ; u
c∇cu

a, and

the shear tensor σab ≡∇haubi. One can then show that the

following are the complete set of linear combinations of

these terms that arise at first order [2]

E1 ¼ ϵþA1

A1 ≡
3χ

4ϵ
uc∇cϵþ χ∇cu

c

Qa
1
¼ 3λc2s

4ϵ
Δ

ac∇cϵþ λuc∇cu
a

T ab
1

¼ −2ησab; ð13Þ

where P1 ¼ E1=3 comes from the requirement that Tab be

trace free, and c2s ≡ dP=dϵ ¼ 1=3 is the square of the

sound speed for a conformal fluid. The coefficients χ, λ, η

are gradient-free functions of the hydrodynamic variables,

and will be discussed in detail in the next subsection.

Before moving on, it will be useful to define the

dissipative correction tensor at first order, πab
1

(5) corre-

sponding to (13):

πab
1

¼ Tab
ð1Þ

¼ A1

�

uaub þ Δ
ab

3

�

þ ðQa
1
ub þQb

1
uaÞ þ T ab

1
: ð14Þ

In summary, Tab up to first order is defined by inserting

(13) into (7), or equivalently by inserting (12) and

(13)–(14) into (5).

2. First-order transport coefficients

The coefficients χ, λ, η are often referred to as transport

coefficients, and their particular functional forms depend

both on the choice of hydrodynamic frame, and physical

properties of the underlying microscopic theory to which

the fluid model is a long-wavelength approximation. The

coefficients χ, λ are not usually named, but in this case

control the size of gradient corrections to the energy density

(A1 ∝ χ) and heat flow (Qa
1
∝ λ) respectively.

5
The remain-

ing coefficient, η, is the shear viscosity and determines the

extent to which the fluid responds to trace-free gradients in

the flow velocity ua (T ab
1

∝ η∇haubi). The fluid’s response
to the trace of the velocity gradient (∇cu

c) determines its

reaction to expansion or contraction, and can appear in

various parts of the dissipative correction tensor; its

contribution to the isotropic (trace) part can be thought

of as a contribution to the fluid pressure, and is called the

bulk viscosity with coefficient ζ. The fact that a conformal

fluid’s stress-energy tensor is trace free implies that ζ ¼ 0,

which is why ζ does not appear in (13).

Here we adopt the following 3-parameter ðη0; λ0; χ0Þ
family of transport coefficients,

η≡ η0ϵ
3=4; λ≡ λ0ϵ

3=4; χ ≡ χ0ϵ
3=4; ð15Þ

where η0 is a free parameter that largely determines the

amount of dissipation in the fluid, and λ0, χ0 are constants

controlling the hydrodynamic frame. In [25], existence and

uniqueness of solutions, causality, and linear stability about

equilibrium were proven provided the transport coefficients

obey the following constraints: η0 > 0, χ0 ¼ a1η0, and

λ0 ≥
3η0a1
a1−1

, with a1 ≥ 4. Here we take η0 > 0 and consider

two choices of hydrodynamic frame

5
In [36] the coefficients λ, χ are replaced with relaxation times

τQ, τϵ, τP. The requirement that Ta
a ¼ 0 for a conformal fluid

forces τP ¼ τϵ
3
, and comparison of the tensor in [25] with that of

[36] implies τϵ ¼ 3χ

4ϵ
and τQ ¼ 3λ

4ϵ
.
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A∶ ðλ0; χ0Þ ¼
�

25η0

3
;
25η0

2

�

;

B∶ ðλ0; χ0Þ ¼
�

25η0

7
;
25η0

4

�

; ð16Þ

which can be shown to satisfy the above constraints.
6

In the characterization of [35], frame A is strictly causal,

with maximum characteristic speeds less than 1, while

frame B is sharply causal with maximum characteristic

speeds equal to the speed of light (explicit expressions for

the characteristic speeds are given in Sec. VII C 2).

Combining (15), (13), and (7) or equivalently (12)–(15)

and (5) gives Tab up to first order; inserting Tab into

(1) yields the causal, stable relativistic Navier-Stokes

equations.

D. Second-order hydrodynamics:

Müller-Israel-Stewart theory

As mentioned in the introduction, an alternative

approach to the unphysical Eckart and Landau-Lifshitz

theories was developed by Müller [7] and Israel and

Stewart [9] in the 1960s–1970s, long before it was known

that the choice of hydrodynamic frame was the cause of the

pathologies at first order. In the so-called Müller-Israel-

Stewart (MIS) formalism, one begins by computing Tab up

to second order in gradients of the hydrodynamic variables,

at which point one writes the second-order stress-energy

tensor as [cf. (5)]

Tab
2

¼ Tab
ð0Þ þ πab

2
: ð17Þ

The MIS approach differs from that of the BDNK equa-

tions, however, in that at first order MIS takes the Landau

frame rather than one of the causal, stable frames:

πab
2

¼ Tab
ð1Þjλ¼χ¼0 þ Tab

ð2Þ ¼ πab
1;L þ Tab

ð2Þ; ð18Þ

where we have defined the shorthand

πab
1;L ≡ Tab

ð1Þjλ¼χ¼0 ¼ T ab
1

¼ −2ησab ð19Þ

for the Landau frame first-order dissipative correction πab
1;L,

which comes from taking the λ ¼ χ ¼ 0 case of (13)–(14).

The MIS formalism corrects the pathologies from using

the Landau frame by manipulating the second-order terms

in the definition of πab
2
. Writing this definition in compact

form, namely showing only πab
1;L and one key second-order

term while pushing the others into the second-order tensor

Ĩabπ , one has

πab
2

¼ πab
1;L þ c0u

hc∇cσ
abi þ Ĩabπ ð20Þ

¼ πab
1;L −

c0

2η
uhc∇cð−2ησabÞi þ

c0

η
uhcσabi∇cη

þ Ĩabπ : ð21Þ

Going from Eq. (20) to (21) above we have replaced σab in

(20) with −2ησab in (21), adding necessary terms to the

latter equation to keep them equal. The first step to arrive at

the MIS equations is to replace −2ησab ¼ πab
1;L (19) with

πab
2

in (21). Recalling our notation that πab
2

¼ Tab
ð1Þ þ Tab

ð2Þ,

here, since Tab
ð1Þ ¼ −2ησab, this introduces an error that is

the gradient of a second-order term, hence is of third order

and negligible. Performing the replacement, renaming

τπ ≡ c0=ð2ηÞ, moving the ∇cη term into a new tensor of

second-order terms Iabπ , and rearranging, we find [42]

uhc∇cπ
abi
2

¼ 1

τπ
ðπab

1;L − πab
2
Þ þ Iabπ : ð22Þ

This is an advection-type equation for πab
2

with source term

that (ignoring Iabπ ) drives the solution toward πab
1;L on a

timescale determined by the relaxation time transport

coefficient τπ . The final step in the MIS approach is to

now consider πab
2

as new, independent degrees of freedom,

with (22) becoming their evolution equation, and using (17)

verbatim in the conservation equation (1).

The convenience of having another set of evolution

equations (22) comes at the cost of second-order terms, of

which there are a great number. In (22) these terms are

hidden in Iabπ , and each acquires a corresponding transport

coefficient which must be computed separately using some

microscopic theory of the substance being modeled. Since

we are here only interested in first-order dissipative effects

on fluid dynamics, we drop Iabπ ; this is sometimes called

“truncated” MIS theory, though for brevity in Sec. III and

beyond will not write “truncated” unless the distinction is

important. Dropping Iabπ violates conformal symmetry [42],

so our comparisons between BDNK and MIS evolutions

presented later are more to illustrate how these two theories

provide dissipation in beyond-ideal hydrodynamics, rather

than to serve as a comparison between two models of the

same hypothetical underlying microscopic theory. Were we

to include terms to retain conformal symmetry in MIS, the

two theories would still not be identical at first order even

taking frame transformations into account, and it is not

straightforward to envision how a quantitative “apples-to-

apples” comparison could be made; we plan to investigate

this issue in more detail in future work.

Over the nearly sixty years of its existence, a lot has

come to be understood about MIS theory, both in general

and as it pertains to the study of the QGP. For a more

complete treatment of second-order dissipative hydrody-

namics see the review [2]; for a thorough treatment of

6
The Eckart and Landau-Lifshitz theories instead choose

χ ¼ 0 and λ ¼ χ ¼ 0, respectively [1]; as mentioned in the
introduction, these choices lead to acausal equations of motion
with unstable equilibrium states.
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conformal second-order terms (BRSSS formalism) see

[42]; a general discussion of hyperbolic conformal theories

of divergence form can be found in [44]; and for a

derivation from the Boltzmann equation (DNMR formal-

ism) see [45,46].

Much has also been learned about the mathematical

properties of the MIS equations of motion, though the

added complexity of working at second order has stymied

the derivation of some results which are already known for

the more recently developed first-order theories. As was

mentioned in Sec. II C, the BDNK equations are stable,

causal, consistent with the second law of thermodynamics,

strongly hyperbolic, and well-posed with appropriate con-

straints on the transport coefficients [25,36]. For MIS on

the other hand, the known properties are slightly weaker.

The MIS equations are stable at the linear level, which in

turn implies causal propagation [10]; they are consistent

with the second law of thermodynamics by construction

[9]; they have been shown to be well-posed in the case

where πab
2

does not include heat conduction or particle

diffusion [47]; and they have only been proven to be

hyperbolic when all dissipative effects but bulk viscosity

are neglected [48]. Nonlinear proofs of stability, causality,

local well-posedness, and hyperbolicity do not yet exist for

the general case in ð3þ 1ÞD.

III. DISSIPATIVE FLUIDS IN SLAB-SYMMETRIC

4D MINKOWSKI SPACETIME

This work is meant to be a first study of the nonlinear

dynamics of the BDNK equations, and to compare those

solutions with ones obtained using an MIS-based code;

to that end, we will focus entirely on the behavior of the

fluid and neglect spacetime curvature, specializing

to 4D Minkowski spacetime. Furthermore, to simplify

the numerics we will use Cartesian coordinates xa ¼
ðt; x; y; zÞT , and will restrict ourselves to systems which

only vary in t, x (“slab” or “planar” symmetry).

In slab-symmetric 4D Minkowski spacetime, the fluid

four-velocity may be written

ua ¼ ðW;Wv; 0; 0ÞT ; ð23Þ

where W ≡ ð1 − v2Þ−1=2 is the Lorentz factor of the flow.

The two nontrivial hydrodynamic variables are then ϵðt; xÞ
and vðt; xÞ, and only the t, x components of (1) are

nontrivial, ∂cT
ct ¼ 0; ∂cT

cx ¼ 0. Using the decomposition

(5), one may write these equations as

0 ¼ _Ttt
ð0Þ þ ðTtx

ð0ÞÞ0 þ _πttk þ ðπtxk Þ0 ð24Þ

0 ¼ _Ttx
ð0Þ þ ðTxx

ð0ÞÞ0 þ _πtxk þ ðπxxk Þ0 ð25Þ

where the k ¼ 0 case corresponds to the perfect fluid

equations of motion (relativistic Euler equations), k ¼ 1 the

BDNK equations, and k ¼ 2 the MIS equations. In the

equations above and for the remainder of this work, an

overdot represents the time derivative of a quantity ∂t, and a

prime denotes a spatial derivative ∂x.

The following three subsections define the terms

in (24)–(25), giving the relativistic Euler equations

(Sec. III A), BDNK equations (Sec. III B) and MIS equa-

tions (Sec. III C).

A. Relativistic Euler equations

In slab-symmetric 4D Minkowski spacetime, the com-

ponents of Tab
ð0Þ are

Ttt
ð0Þ ≡ τ ¼ ðϵþ PÞW2 − P ð26Þ

Ttx
ð0Þ ≡ S ¼ vðτ þ PÞ ð27Þ

Txx
ð0Þ ¼ Svþ P; ð28Þ

where we have defined the shorthand τ, S for Ttt
ð0Þ; T

tx
ð0Þ,

respectively, following [43,49,50]. At zeroth order, (26)–

(28) complete the equations of motion (24)–(25), as

zeroth-order hydrodynamics has no dissipative correction

(πab
0

¼ 0) by definition. Hence the nontrivial equations of

motion for the perfect fluid are

0 ¼ _τ þ S0 ð29Þ

0 ¼ _Sþ ðSvþ PÞ0: ð30Þ

B. BDNK equations

At first order, the constitutive relations defining πab
1

take

the form

A1 ¼
3

4

χ0

ϵ1=4
Wð_ϵþ vϵ0Þ þ χ0ϵ

3=4W3ðv_vþ v0Þ

Qx
1
¼ λ0

4ϵ1=4
W2ðv_ϵþ ϵ0Þ þ λ0ϵ

3=4W4ð _vþ vv0Þ

T xx
1

¼ −
4

3
η0ϵ

3=4W5ðv _vþ v0Þ ð31Þ

where the requirement that Qa
1

be transverse implies

Qt
1
¼ vQx

1
, and the requirement that T ab

1
is transverse

and traceless implies T tt
1
¼vT tx

1
¼vT xt

1
¼v2T xx

1
. Inserting

the definitions (31) into (14) gives the components of πab
1
:

πtt
1
¼ 1

3
W2ð3þ v2ÞA1 þ 2WvQx

1
þ v2T xx

1

πtx
1
¼ 4

3
W2vA1 þWð1þ v2ÞQx

1
þ vT xx

1

πxx
1

¼ 1

3
W2ð1þ 3v2ÞA1 þ 2WvQx

1
þ T xx

1
; ð32Þ
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which may be combined with the zeroth-order stress-

energy tensor components (26)–(28) to complete the

equations of motion (24)–(25), yielding

0 ¼ _τ þ S0 þ _πtt
1
þ ðπtx

1
Þ0

0 ¼ _Sþ ðSvþ PÞ0 þ _πtx
1
þ ðπxx

1
Þ0: ð33Þ

C. MIS equations

Since πab
2

is defined to be symmetric, transverse to ua,
and traceless, we have the identities [42]

πtt
2
¼ vπtx

2
¼ vπxt

2
¼ v2πxx

2
: ð34Þ

As a result, evolving πxx
2
is sufficient to constrain the whole

tensor
7
πab
2
, and we will only need the xx component of

(22), which is

_πxx
2
þ vðπxx

2
Þ0 ¼ 1

Wτπ
ðπxx

1;L − πxx
2
Þ

þ 2W2vπxx
2
_vþ 2W2v2πxx

2
v0; ð35Þ

where the Landau frame first-order dissipative correction is

πxx
1;L ¼ T xx

1
from (31). The equations of motion for the MIS

system are then (35) to evolve πxx
2
, and the two nontrivial

components of the stress-energy conservation equation:

0 ¼ _τ þ S0 þ _πtt
2
þ ðπtx

2
Þ0 ð36Þ

0 ¼ _Sþ ðSvþ PÞ0 þ _πtx
2
þ ðπxx

2
Þ0: ð37Þ

IV. NUMERICAL METHODS

A. Conservative schemes for ideal hydrodynamics

The ultimate goal when writing down a fluid model is to

determine the time evolution of the hydrodynamic varia-

bles. With this in mind, a naive way to formulate a

numerical method to solve (1) at zeroth order in gradients

(ideal hydrodynamics) would be to treat it as a set of

evolution equations for ϵ, v explicitly, e.g., the t, x

components of ∇aT
ab
0

¼ 0, (29)–(30), would be written

_ϵ ¼ Fð _v; ϵ0; v0; ϵ; vÞ
_v ¼ Gð_ϵ; ϵ0; v0; ϵ; vÞ; ð38Þ

for some nonlinear functions F, G. One would then solve a
discretization of the coupled nonlinear PDEs (38) to evolve

ϵ, v forward in time.

A naive scheme of the form (38) should work in principle

as long as the solutions are smooth. However, solutions to

the relativistic Euler equations (1), (26)–(28), are not

generically smooth, as discontinuities in ϵ, v (shockwaves)

can form dynamically [51,52]. In these cases the physical

solution is given not by direct solution of the PDEs (38)—

as derivative terms ϵ0; v0 diverge—but instead by solution to

the weak formulation of the equations [53].

To resolve shocks in ideal hydrodynamics, instead of

(38) one writes (26)–(28) in so called flux conservative

form

∂

∂t
qþ ∂

∂xi
f ½i� ¼ ψ; ð39Þ

where the vector q is populated with conservative varia-

bles, f ½i� is the ith component of a vector of fluxes (with i

restricted to spatial indices), ψ is a vector of sources, and

each is a function of the primitive variables p (in this case,

p ¼ ðϵ; vÞT). This approach is specialized to conservation

laws, and allows one to apply special methods rooted in the

weak formulation of the equations to handle the spatial

derivative term, ∂f ½i�=∂x
i, when discontinuities are present.

Among these methods are artificial viscosity techniques,

which smooth shocks until they no longer destabilize the

numerical scheme, and high-resolution shock-capturing

(HRSC) methods, which use the characteristic structure

across a discontinuity to derive a discretization for f that is

stable across it. For a detailed summary of these methods,

see for example the reviews of Martí and Müller [49], Font

[54], and LeVeque’s book [55].

Note that it is typically unfeasible and sometimes

impossible to analytically solve for the primitive variables

p as explicit functions of the conservative variables q; hence

the flux f ½i� and the source term ψ are generically written as

functions of both q and p. Since a solution to (39) only

provides updated values of q, it becomes necessary to

compute p from the updated variables q in order to perform

the next time evolution step. This process of computing

pðqÞ, sometimes called primitive variable recovery, often

involves solving a system of coupled nonlinear algebraic

equations and occurs many times within a time step. For

this reason it is often the most time consuming part of the

numerical scheme; fortunately a number of algorithms have

been discovered for the standard sets of conservative and

primitive variables, and the computational cost is usually

not prohibitive [49].

B. Conservative formulations for the relativistic Euler,

BDNK, and MIS equations

In this subsection we will cast the zeroth-order relativ-

istic Euler, first-order BDNK, and second-order MIS

equations into conservative form (39).

1. Zeroth order: relativistic Euler equations

Starting at zeroth order, comparing the relativistic Euler

equations (29)–(30) with (39), we can see that

7
Only πxx

2
is needed as long as π

yy
2
; πzz

2
are initialized to zero, as

is the case here.
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qPF ¼
�

τ

S

�

; fPF ¼
�

S

SvþP

�

; ψ
PF ¼ 0: ð40Þ

It turns out that the high degree of symmetry in the

conformal fluid Tab
0

allows one to do the primitive variable

recovery analytically, and one finds pðqÞ to be [43]

ϵ ¼ −τ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4τ2 − 3S2
p

v ¼ 3S

3τ þ ϵ
: ð41Þ

2. First order: BDNK equations

Since Tab
1

is first order in gradients, the BDNK equa-

tions (24)–(25) are second order PDEs. Hence, as men-

tioned in the Introduction, one would expect to have to

adapt numerical methods to this structure, rather than being

able to use methods devised for the Euler equations (which

contain only first derivatives). If one wants to keep the

equations in conservation-law form, one can do so by

performing a first order reduction in time, and instead

taking the primitive variables to be pNS ≡ ð_ϵ; _vÞT . The

BDNK equations then take the form (39) with

qNS ¼
�

πtt
1

πtx
1

�

; fNS ¼ fPFþ f π
1
; ψ

NS ¼−_qPF; ð42Þ

where

f πk ≡

�

πtxk

πxxk

�

ð43Þ

which appears with k ¼ 1 in (42). For simplicity we do not

include in the conservative system the “trivial” evolution

equations dϵ=dt ¼ _ϵ and dv=dt ¼ _v that are used to update

ϵ, v (if one did, ðϵ; vÞ would be added to the vector of

conservative variables, and their corresponding flux and

source terms would be (0,0) and ð_ϵ; _vÞ respectively).
For the BDNK system, the conservative variables are

linear functions of the primitive variables, and it is

straightforward to solve for pNSðqNSÞ analytically; the

results are lengthy and not particularly illuminating, so

we list them in Appendix A.

3. Second order: MIS equations

For the MIS formalism, one is able to use the additional

evolution equation for πxx
2
(35) to evolve all of the first and

second-order terms from Tab
2
. It is not a conservation law,

and may be solved using standard methods.

The presence of (35) allows us to use (24)–(25) to evolve

τ, S as in the perfect fluid case, and accordingly allows us to

cast (24)–(25) in conservative form (39) with the same set

of conservative variables, hence the same pðqÞ primitive

variable recovery scheme (41). The full set of terms are

qMIS ¼ qPF; fMIS ¼ fPFþ f π
2
; ψ

MIS¼−

�

_πtt
2

_πtx
2

�

; ð44Þ

with f π
2
¼ ðπtt

2
; πtx

2
ÞT , (43).

C. Discretization

We use a finite volume approach to discretize the fluid

equations of motion, dividing the domain into cells of area

ΔxΔt bounded by ½xi−1=2; xiþ1=2� in space and ½tn; tnþ1� in
time. Continuum fields describing the fluid C are then

replaced with their cell averages Cn
i . For all of the

simulations performed here, we divide the spatial domain

into N cells, with N − 1 ¼ 27 to 212, and use a Courant

factor λ≡ Δt=Δx ¼ 0.1. For the smooth Gaussian test

problem we use a periodic domain (identifying cell 0 with

cellN − 1), and no boundary conditions are needed. For the

other two tests, at the spatial boundaries of the domain, the

outermost two cells at each end (i ¼ 0; 1; N − 2; N − 1) are

designated ghost cells, whose values are not evolved using

the discretized PDEs, but are instead copied from the

nearest nonghost cell. Explicitly, at time level n we copy

the value Cn
2
into Cn

0
; Cn

1
, and Cn

N−3 into Cn
N−2; C

n
N−1.

Convergence tests are described in Appendix D.

1. Zeroth order: Relativistic Euler equations

We discretize the relativistic Euler equations using the

method of lines, following [43,50]. Specifically, we evolve

in time using Heun’s method (an explicit second-order

Runge-Kutta-type scheme) [50,55,56]. Writing (39) as
_q ¼ ψ − f 0 ≡HðqÞ, Heun’s method updates q in two

steps via

q̄nþ1 ¼ qn þ ΔtHðqnÞ

qnþ1 ¼ qn þ Δt

2
½HðqnÞ þHðq̄nþ1Þ�: ð45Þ

To discretize the flux term f 0, we use the Roe approxi-

mate Riemann solver [57] along with the minmod slope

limiter [43].

2. First order: BDNK equations

Shock-capturing methods were developed for the rela-

tivistic Euler system because the equations are known to

possess physical, discontinuous shock solutions [53]. As

discussed in the introduction, it is unclear whether solutions

with discontinuities in the hydrodynamic variables can be

made sense of for the BDNK or MIS equations. Even if

such solutions are mathematically sensible, their infinite

gradients would make them untrustworthy from the per-

spective of the gradient expansion. However, since we are

ultimately interested in applications where sharp transitions

may develop over scales too small to resolve, it would

behoove us to use methods that can deal with such effective

discontinuities. With that in mind, we use a simple scheme

ALEX PANDYA and FRANS PRETORIUS PHYS. REV. D 104, 023015 (2021)

023015-10



that is able to evolve the kind of discontinuous initial data

used in our shock tube test, at least if the discontinuity and/

or viscosity is not too large.

For large jumps or large viscosity—the region of

parameter space where the gradient expansion should break

down—our numerical method fails.
8
In addition, since we

have based our algorithm on a conservative form of the

equations adapted to their principal structure (Sec. IV B 2),

it does not work with exactly zero viscosity (and in practice

neither for viscosity so small that the primitive variable

recovery (A1)–(A2) becomes dominated by round-off

error, as those expressions have a 0=0 form in the limit

η → 0). If being able to run with exactly zero viscosity is

important for a BDNK scheme, then a different set of

variables and solution algorithm would be required (for

example, one more akin to that used for the MIS equations

described in the following subsection).

As with the Euler equations (Sec. IV C 1), we use Heun’s

method to evolve q forward in time. We also compute the

perfect fluid contribution fPF to the flux term fNS ¼ fPF þ
f π
1
as with the Euler equations, namely using the Roe flux

with minmod limiter. The main difference for the BDNK

equations then is how we deal with the viscous part f π
1
of

the flux. For this, we effectively treat it as a source term,

discretizing the spatial derivative ðf π
1
Þ0 using standard

centered, second-order-accurate finite difference stencils.
9

Regarding that, it is crucial to note that of the two

components of the flux f π
1
¼ ðπtx

1
; πxx

1
ÞT , only the first is

a conservative variable q being dynamically evolved. For

the second component πxx
1

then, we need to replace it with

its definition (13), (14), which contains derivative terms

such as ϵ0; v0. Thus, the gradient of the corresponding flux

term contains second spatial derivatives, that we also

discretize using a standard centered second-order-accurate

finite difference stencil. Note that we do not need to use

mixed space-time difference operators, as our primitive

variables are p ¼ ð_ϵ; _vÞT , i.e., in the gradient of the flux

term it is simply their spatial derivatives that appear. For the

sake of clarity, we provide a detailed list of the actions

performed during one time evolution step of our BDNK

numerical algorithm in Appendix B.

When evolving discontinuous initial data, at early times

we find adding Kreiss-Oliger style dissipation [58] helps in

achieving stable evolution. Specifically, during both the

predictor and corrector step of the time integration we

apply this artificial dissipation to πtx
1
and πxx

1
with ampli-

tude coefficient αKO ∼ 0.1. Kreiss-Oliger dissipation is

unnecessary for evolutions starting from smooth initial

data, and ceases to be necessary shortly after physical

dissipation smooths the shock in cases with discontinuous

initial data.

3. Second order: MIS equations

For the MIS equations, we discretize the πxx
2

evolution

equation (35) using a simple first-order upwind scheme

[59,60]. Explicitly, we write the advection operator as

ð∂t þ v∂xÞC ≈ _Cþ
(

vni
Cn
i
−Cn

i−1

Δx
vni ≥ 0

vni
Cn
iþ1

−Cn
i

Δx
vni < 0;

ð46Þ

where the time evolution of _C is again performed using

Heun’s method, and all remaining spatial derivatives out-

side the advection operator (such as v0) are handled with

centered, second-order-accurate finite differences.

For the conservation law (39) we again use Heun’s

method for the time evolution. We also follow the BDNK

approach by splitting the flux into a perfect fluid piece and

a dissipative piece, using a Roe solver and finite differences

for ðfPFÞ0 and ðf π
2
Þ0, respectively. MIS differs from BDNK

though in that ðf π
2
Þ0 only requires first differences of v and

πxx
2

(34).

We handle the source term ψ
MIS (44) in the same way as

[56], using a backward time difference _C ≈ ðCn
i − Cn−1

i Þ=Δt
in the predictor step ofHeun’smethod (computing q̄ in (45)).

In the corrector step we use the advanced time level from the

predictor step, _C ≈ ðC̄nþ1

i − Cn
i Þ=Δt.

V. PHYSICAL REGIME OF INTEREST

We adopt natural units, which means that a quantity with

SI units kgαmβsγ is written ðEÞα−β−γℏβþγcβ−2α, where E is

an energy unit (e.g. GeV, J, etc.) and the factors of ℏ, cmay

be ignored once one sets the fundamental constants

c ¼ ℏ ¼ kB ¼ 1. As a result of conformal symmetry, the

choice of energy unit in this case fixes an overall energy

scale, but does not meaningfully alter the dynamics.
10
With

this in mind, for the remainder of this work we (arbitrarily)

choose to measure energies in GeV.

We derive intuition from the phenomenology of heavy-

ion collisions to make our choice for η0, which determines

the amount of viscosity in the solution. QGP viscosities

have been measured to be within about 10% of the so-called8
Our algorithm also breaks down in the typical problematic

regimes experienced by many relativistic hydrodynamic codes,
e.g., flow velocities approaching the speed of light, or very low
densities. To help distinguish those failures from ones that may be
associated with viscosity, one can monitor the series of tests (see
Sec. VI) designed to indicate whether one is evolving outside of
the regime of validity of the gradient expansion.

9
For smooth initial data, even the perfect fluid flux can be

computed with finite differences—using the Roe flux is only
necessary at early times for the shock tube test.

10
For example, consider the effect of a change in units E →

E0 ¼ λE on the spacetime evolution of the system, TabðxaÞ. The
transformation takes Tab

→ λ4Tab and xa → λ−1xa; the latter is a
symmetry of the stress-energy tensor due to conformal invari-
ance, and hence the net effect of E → E0 is just the constant
rescaling TabðxaÞ → λ4TabðxaÞ. Another way to see this is to
notice that λ cancels from the equations of motion, (1).
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KSS bound [61] which gives the predicted minimum ratio

of shear viscosity η to entropy density s for any fluid [62]:

ηmin

s
¼ 1

4π
: ð47Þ

We can compute the value of our free parameter η0 required

to reach the KSS bound using (15) and the entropy density

for a conformal fluid [25]

s ¼ ϵþ P

T
;

giving

ηmin
0

¼ ϵ
1=4
0

3π
:

For a QGP the ratio ϵ=T4 ¼ ϵ0 ∼ 10 [63,64]. In our results

below, we consider fluids with ϵ0 ¼ 10, and viscosities

ranging between the KSS bound η=s ¼ ð4πÞ−1 and

η=s ¼ 20 · ð4πÞ−1.
Despite nearly saturating the KSS lower bound for

entropy-normalized viscosity η=s, the QGP has a high

viscosity η by everyday standards, which is then compen-

sated for by a correspondingly high entropy density s. In SI

units, the QGP viscosity is roughly η ∼ 1012 Pa · s [65],

nearly 1013 times that for water at STP, despite the fact that

water’s entropy-normalized viscosity is many times larger,

η=s ∼ 380 · ð4πÞ−1 [62].

The convergence of the gradient expansion is determined

entirely by the size of gradients (such as σab) and transport

coefficients (such as η), not by normalized quantities like

η=s. Since the QGP has a large shear viscosity η and has

variation on scales of order fm, both the transport coef-

ficients and gradients in the expansion (3) are relatively

large. Hence, if the BDNK and MIS equations can

accurately model the dynamics of the QGP, it would be

reasonable to expect similar success in regimes where the

transport coefficients and gradients are smaller, as is often

the case in astrophysics. One example would be oscillations

in an isolated, cold neutron star: neutron star cores are

predicted to have viscosities a factor of ∼106 times larger

[66] than the QGP, but variation on scales of km, making

gradients at least a factor of ∼1018 smaller. Following a

binary neutron star merger [12], if the remnant does not

promptly collapse to a black hole, a differentially rotating

star would form with much smaller lengthscale variations

and higher temperatures (due to shock heating from the

collision, reaching ∼10 MeV, which compares to

∼150 MeV for the QGP [12,67,68]). However, these

conditions are likely still well within the regime of validity

of the BDNK and MIS equations (unlike the QGP-inspired

examples we show below, where already at 20 times the

KSS bound we see, for example, violations of the weak

energy condition in BDNK evolutions).

For the MIS system, in addition to the viscosity η we

have another degree of freedom: the relaxation time τπ .

Using holographic arguments, [42] finds it to be

τπ ¼
2 − ln 2

2πT
¼ ð2 − ln 2Þϵ1=4

0

2πϵ1=4
: ð48Þ

For the sake of simplicity, we follow [59,60] in setting it to

be a constant,
11
specifically τπ ¼ 0.3 GeV−1 unless other-

wise stated. The chosen value is somewhat smaller than if

we were to use (48) for the Gaussian and shock tube test we

show below, which have a maximum energy density ϵ ¼
0.4 GeV4 (implying τπ ≈ 0.47 GeV−1). The shockwave

test has ϵ larger by a factor of a few. On the other hand,

here we are actually not interested in treating τπ as an

additional, physical transport coefficient; rather, it is a

device to drive the independent tensor πab
2

toward the first-

order dissipative tensor πab
1;L (see (22) with Iabπ ¼ 0) that

contains the physics we are interested in modeling. Thus,

we want τπ to be small enough that it does not affect the

results, but not so small as to require prohibitively small

time steps for stable numerical evolution; τπ ¼ 0.3 GeV−1

is a good choice in that regard. Varying τπ by factor of a few

causes negligible differences in the results for most of the

cases studied below, the exception being in far from

equilibrium scenarios, where for the sake of illustration

we also present an example with τπ ¼ 30 GeV−1.

VI. MONITORING CONVERGENCE

OF THE GRADIENT EXPANSION

The BDNK and MIS theories described here are only

well justified modeling dissipative hydrodynamics in

regimes where the gradient expansion (3) converges.

Though we are unable to make claims about the conver-

gence or divergence of the gradient series for the nonlinear

numerical solutions presented here,
12

one expects that a

truncation at order kþ 1 should be reliable when its

contribution to the stress-energy tensor is smaller than

the contribution at order k. As such we compute the

quantity jTtt
ð1Þ=T

tt
ð0Þj for the BDNK and MIS solutions,

taking Ttt
ð1Þ ¼ πtt

1
for the former and Ttt

ð1Þ ¼ πtt
1;L ¼ v2πxx

1;L

for the latter. In regions where jTtt
ð1Þ=T

tt
ð0Þj≳ 1, one would

expect higher order terms to be important, and the first-

order results to no longer be trustworthy.

The authors of [36] also suggest checking that

the weak energy condition remains satisfied, namely

11
Though it is not an issue for our purposes, it is important

to note that choosing τπ to be constant violates conformal
symmetry [42]—see Sec. II D.

12
Such claims can be made for highly symmetric flows—see

[37–40,69].
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XaXbT
ab ≥ 0 ∀Xa with XcX

c ¼ −1, as its violation may

indicate entry into a regime in which (3) no longer

converges. Along these lines we monitor two choices for

Xa: the fluid four velocity ua and the simulation reference

frame four velocity ð∂=∂tÞa. For the BDNK system we also

check if jA1=ϵj, (13)–(14), approaches or exceeds unity.

VII. RESULTS

In this section we discuss numerical solutions to the

relativistic Euler, BDNK, and MIS equations for three

distinct sets of initial data: (A) a smooth, initially stationary

profile, (B) a discontinuous (shock tube) setup, and (C) a

smooth transition from a supersonic flow at the left

boundary to subsonic flow at the right boundary. In all

cases, this amounts to particular choices of ϵðt ¼ 0; xÞ and
vðt ¼ 0; xÞ. For the Euler equations, that completes speci-

fication of the initial data.

For the BDNK equations, we additionally need to

specify πtt
1
ðt ¼ 0; xÞ and πtx

1
ðt ¼ 0; xÞ (or equivalently

_ϵðt ¼ 0; xÞ and _vðt ¼ 0; xÞ from (A1)), and for the MIS

equations πxx
2
ðt ¼ 0; xÞ. In all cases for BDNK we set

πttðt ¼ 0Þ ¼ πtxðt ¼ 0Þ ¼ 0, and for MIS πxxðt ¼ 0Þ ¼ 0.

For the MIS equations this always results in the initial

evolution being identical to the perfect fluid at t ¼ 0. For

the BDNK equations this will only be so if vðt ¼ 0; xÞ ¼ 0,

as is the case for tests (A) and (B), though not so for the

shockwave test (C) (if desired one can always choose _ϵðt ¼
0; xÞ and _vðt ¼ 0; xÞ to be equal to that of the perfect fluid,

but for (C) we are more interested in understanding the

nature of strong shock solutions within BDNK than

comparing to the perfect fluid evolution).

A. Smooth, stationary initial data

We first consider the evolution of data that is initially

stationary vðt ¼ 0; xÞ ¼ 0, and has a smooth Gaussian

profile in the energy density

ϵðt ¼ 0; xÞ ¼ Ae−x
2=w2 þ δ: ð49Þ

For a concrete example we choose the amplitude A ¼
0.4 GeV4, width w ¼ 25 GeV−1, and background energy

density δ ¼ 0.1 GeV4. Figure 1 shows a snapshot of ϵðt; xÞ
at t ¼ 47 GeV−1, run with three values of the viscosity

η=s ¼ f0; 1; 3g · ð4πÞ−1. The viscous evolutions in this

figure were produced with the BDNK equations using

frame A (16), but look identical (at the scale of the figure)

to the corresponding cases evolved with the MIS equations.

By the time shown in the figure, the initial Gaussian profile

in ϵ has split into two clumps that are propagating away

from each other. One can clearly see from the figure that

viscosity acts to smooth sharp features in the energy density

profile (and similarly in the velocity profiles that develop).

Despite the fact that the flow velocities are initialized

to zero, the outer edges of the perfect fluid profile

dynamically become supersonic, and a step function dis-

continuity can be seen at x ≈�38 GeV−1; discontinuities

do not form in the viscous cases with this initial data.

In Fig. 2 we compare solutions of the BDNK (frame A)

and MIS equations (blue lines and red dots, respectively)

with a sufficiently large viscosity η=s ¼ 20 · ð4πÞ−1 (right

panel) that they show markedly different evolution (for

reference, in the left and center panels we also show the two

viscous cases from Fig. 1, though this snapshot is at a

slightly earlier time). With time, the BDNK case splits into

four clumps in ϵ rather than two. The MIS solution still

splits into two clumps, though at the time shown in Fig. 2 it

is in the midst of doing so; it eventually settles to a state

qualitatively similar to the lower viscosity cases shown in

the left and center panels.

The qualitative change in behavior of the BDNK

evolution evident in the rightmost panel of Fig. 2 leads

one to question if the high viscosity has pushed the system

outside of the regime of convergence of the gradient

expansion (or at least outside of where only first-order

corrections are adequate). The diagnostics (see Sec. VI)

shown in Fig. 3 for this case seem to confirm this suspicion,

as the BDNK solution (blue lines) violates the weak energy

condition (top panel) and has jTtt
ð1Þj > jTtt

ð0Þj (bottom panel)

at certain locations in the flow.

Interestingly, the MIS solution for the same initial data

and viscosity shows no indication (Fig. 3, dashed red line),

FIG. 1. Qualitative effect of viscosity on the evolution of

smooth initial data for η=s¼f0;1;3g ·ð4πÞ−1 at t¼47GeV−1,

computed using the relativistic Euler equations (29)–(30) for

η ¼ 0, and the BDNK equations (31)–(33) for the viscous cases

(MIS solutions for these would appear identical—see Fig. 2). As

expected, viscosity smooths the profile in ϵ compared to the

perfect fluid case. Also evident is the steepening of the leading

feature of each pulse, which for the perfect fluid case forms a step

function discontinuity at x ≈�38 GeV−1 (discontinuities do not

form for the two viscous cases).
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via the same diagnostics, that one may be in a regime

outside the validity of first-order dissipative hydrodynam-

ics. This occurs because the truncated MIS evolution

equation for πxx
2

(35) only includes the Landau frame

first-order correction, which has gradients of v but not ϵ, the
latter being much more relevant for this particular evolu-

tion. In general, these terms would appear at second order,

and would likely dominate the evolution and give signifi-

cantly different results from the case shown in Fig. 3. This

suggests the diagnostics we have considered here are not

effective to judge whether one can trust the results of the

truncated MIS evolution, and instead one should monitor

the magnitude of second-order terms that were dropped.
13

As discussed above and illustrated in Figs. 2–3, with

large dissipative terms the BDNK vs MIS evolutions

become starkly different soon after evolution begins, and

as judged by the BDNK diagnostics are well outside the

regime of near-equilibrium hydrodynamics. Remarkably

though, after their initial growth, the large gradients in

BDNK decay quite rapidly, returning to solutions that are

very similar to those obtained with MIS, and show no

distinctive features left over from this far from equilibrium

phase—see Fig. 4 for later time snapshots, and also a

comparison between evolutions beginning with different

amplitude initial data. This is reminiscent of so-called

universal attractor behavior observed in solutions of various

beyond-ideal theories applied to Bjorken flow [32,33].

There, essentially arbitrary initial data (within the class

relevant to the highly symmetric Bjorken flow) quickly

approaches a hydrodynamic attractor solution via the decay

of nonhydrodynamic modes present in the dissipative

theories. Though we have not performed any mode analysis

in our simulations, this qualitatively seems to describe what

happens here as well; for example, in Fig. 5 we plot norms

of πtt for the runs depicted in Fig. 4, showing an initial fast

exponential decay, followed by a slower power-law

decay.
14

Presumably the exponential phase is the decay

of the nonhydrodynamic modes, which for BDNK could be

explained (mathematically) as coming from the second-

order nature of the PDEs. Similar behavior should also be

present in the MIS evolution, where the nonhydrodynamic

modes can be associated with the treatment of πab as an

independent tensor. This indeed seems to the case, though

to make it more evident one needs to increase the relaxation

time parameter τπ—see Fig. 6.

B. Discontinuous initial data

A standard test for fluid codes is the so-called shock tube

problem: an initially static configuration, but with different

constant energy densities (and pressures) to the left and

right of a fictitious membrane separating these states (at

x ¼ 0 here), that is “removed” at t ¼ 0. As discussed

earlier, such initial data is mathematically justifiable for the

Euler equations, and by extension then the MIS equations

FIG. 2. Comparison of solutions for the tt component of the stress-energy tensor, Ttt, obtained with the BDNK theory (frame A (16))

and MIS theory, in lines and dots respectively, at t ¼ 35 GeV−1 for viscosities η=s ¼ f1; 3; 20g · ð4πÞ−1 from left to right. Note that at

the two lower viscosities, the solutions are qualitatively identical for the BDNK and MIS equations. In the highest viscosity case

(rightmost panel) BDNK theory gives a qualitatively different solution from MIS and the lower viscosity solutions, instead forming

multiple maxima, developing sharp features, and even changing sign (the MIS solution shown is in the process of splitting into two

clumps, as in the lower-viscosity cases). There is evidence that this solution lies outside of the regime of validity of the gradient

expansion at first order—see Fig. 3. Note that to avoid clutter the MIS points are a sparse sampling of the actual resolution of the

simulation.

13
In the literature (e.g., [42,70]) it is common to use the zeroth-

order equations of motion to simplify the terms at second order
and above. For example, in [42] the second-order terms are
expressed entirely in terms of v, eliminating gradients of ϵ

(though they use T ∝ ϵ1=4 as a variable rather than ϵ). In these
cases, one would need to monitor that the zeroth-order EOM are
being satisfied to Oð∇Þ in order to justify using them to replace ϵ
gradient terms.

14
Incidentally, Fig. 5 also makes it clear that despite the initial

data having πabðt ¼ 0Þ ¼ 0, and hence by definition will have the
same evolution as the ideal fluid case precisely at t ¼ 0, this still
constitutes a far-from-ideal initial condition; i.e., we are simply
starting at a zero-crossing of πab, which also occurs periodically
at later times due to our periodic domain.
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considering πxx
2

to truly be an independent degree of

freedom, but it is unclear whether similar justification

could be made for the BDNK equations. Nevertheless,

we compare such evolutions for the three different theories

in this section. Specifically, for our step function disconti-

nuity in ϵ we choose:

FIG. 3. Comparison between the BDNK solution (solid blue

line) and MIS solution (dashed red line) for the η=s ¼ 20 · ð4πÞ−1
case from the rightmost panel of Fig. 2. The toppanel shows that the

BDNK solution violates the weak energy condition, uaubT
ab < 0,

at x ¼ �23 GeV−1, while theMIS solution has uaubT
ab ≥ 0 at all

times during the simulation. Bottom panel: comparison of the

BDNK andMIS solutions for the quantity jTtt
ð1Þ=T

tt
ð0Þj. The BDNK

solution (solid blue line) has jTtt
ð1Þ=T

tt
ð0Þj ≥ 1 at the same place

where the weak energy condition is violated. The MIS solution

(dashed red line) stays below 1 throughout the simulation.

FIG. 4. Behavior of smooth BDNK (frame B) solutions passing through the “far from equilibrium” phase, as a function of Gaussian

amplitude A [cf. (49)] for η=s ¼ 20 · ð4πÞ−1. To aid comparison, what is plotted is the energy density minus the initial background value,

(ϵ − δ), then scaled by 1=A; this is done so that all curves overlap at t ¼ 0. In all cases, the solution forms a structure with four peaks;

these peaks decay at a rate proportional to their amplitude, and the solution eventually settles to one with only two propagating maxima

(within the periodic domain). The late-time solutions for these sets of initial data are very similar between BDNK and MIS.

FIG. 5. Decay rate of the spatial integral of jπttj over the

simulation domain as a function of time—a proxy for the total

effect of dissipation on the solution—for the three BDNK (frame

B) cases at η=s ¼ 20 · ð4πÞ−1 shown in Fig. 4. At early times

when in the far from equilibrium phase, where ϵ develops four

peaks, the dissipative correction decays exponentially. The end of

the exponential phase coincides with these peaks being essen-

tially completely smoothed out, and then there is a transition to a

slower power-law decay (the oscillatory features are introduced

by the periodic boundary conditions). At these later times, BDNK

(in both frames A and B) and MIS solutions are in good

agreement, despite the qualitative disagreement at earlier times

(as can be seen in the right panel of Fig. 2, for example).
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ϵ ¼
�

0.4 GeV4 x < 0

0.1 GeV4 x ≥ 0:
ð50Þ

The qualitative behavior of these solutions is shown in

Fig. 7, again for the relativistic Euler equations (η=s ¼ 0)

and the BDNK equations (η=s ¼ f1; 3g · ð4πÞ−1) using

frame A, where once again the MIS solutions at these

viscosities are nearly identical. In all cases, three regions

form: a backward-propagating rarefaction region, a for-

ward-propagating shock front, and a plateau connecting the

two regions. Dissipation in the BDNK solution smooths out

the rarefaction region and the shock front, while in the

perfect fluid solution the latter remains discontinuous.

Despite the smoothing, all features propagate at essentially

the same speeds.

In Fig. 8 we show a comparison between the BDNK and

MIS solutions for this initial data, similar to Fig. 2. As in the

smooth data comparison, we find that the BDNK and MIS

solutions are effectively identical for η=s ¼ f1; 3g · ð4πÞ−1.
It is important to note that for discontinuous initial data,

our BDNK evolution becomes “increasingly numerically

unstable” with resolution. By this we mean, as we increase

resolution, more ad hoc numerical “tricks” are needed to

evolve without a crash at t ¼ 0; these are, as described in

Sec. IV C 2, treating the perfect fluid flux with a Roe

scheme, and adding increasing amounts of Kreiss-Oliger

dissipation. With the initial data in (50), going beyond N ¼
2048þ 1 our current algorithm fails. At lower resolutions,

we also do not see convergence about ðx ¼ 0; t ¼ 0Þ,
though soon afterward the solutions begin to converge

(see Appendix D). In that sense then the solutions shown in

Fig. 8 can be considered valid approximate solutions to the

BDNK and MIS equations, though (in particular for

BDNK) we cannot claim they have evolved from a

discontinuity at t ¼ 0. On the other hand, given the close

similarity between the BDNK and MIS solutions, and that

these seem to approach the perfect fluid case as viscosity

decreases, suggests a smooth (convergent) approximation

to step function initial data would approach this solution in

the limit for BDNK, even if the exact limiting case is not

well defined (and of course, regardless, as the limit is taken

beyond some point one would expect to violate the

assumptions of the gradient expansion).

C. Supersonic (shock) initial data

1. Shockwaves in the relativistic Euler equations

As mentioned earlier, a well-known property of the

inviscid equations is that flows which are initially smooth

and subsonic can evolve to a state with discontinuities.

While the formation of these discontinuities is nontrivial

and not yet fully understood [51,52], it is simpler to see

FIG. 6. Behavior of smooth MIS solutions for η=s ¼ 20 · ð4πÞ−1 as a function of the relaxation time τπ , along with the perfect fluid

solution η ¼ 0 (equivalent in this case to the limit τπ → ∞). The two cases with finite τπ eventually approach a common solution, which

agrees with that from the BDNK equations.

FIG. 7. Qualitative effect of viscosity on the evolution of

discontinuous initial data for η=s ¼ f0; 1; 3g · ð4πÞ−1 at t ¼
35 GeV−1 (BDNK equations, frame A). Once again, viscosity

smooths out the entire profile, including both the rarefaction fan

(here at x ≈ −60 GeV−1) and the forward-propagating shock

front (here at x ≈ 100 GeV−1).
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why they persist once formed (beyond the intuition that

without viscosity there is no mechanism to smooth them

out). This comes from considering the characteristics of the

PDEs, which for the relativistic Euler equations with

conformal fluid equation of state, evaluated in the rest

frame v ¼ 0 of the fluid, are

c
RE
� ¼ �cs ¼ � 1

ffiffiffi

3
p : ð51Þ

This tells us that a supersonic flow (defined by jvj > cs)
moves faster than the equations can propagate information,

namely at cRE� relative to v. A shockwave is a discontinuity

that propagates supersonically, hence there is no way that

the structure of the subsonic region ahead of a shockwave

can inform the structure of the supersonic region behind the

shockwave, and the discontinuity must persist.

The Euler equations thus describe a physical shockwave

as a step function discontinuity bridging the upstream and

downstream states. By asserting that this jump in the fluid

state satisfies the weak formulation of the conservation law

(39), one arrives at the Rankine-Hugoniot conditions, one

of which gives the propagation speed us of the shock front

us ¼
f½1�ðxLÞ − f½1�ðxRÞ
q½1�ðxLÞ − q½1�ðxRÞ

: ð52Þ

Here, the shock is propagating in the x (i ¼ 1) direction,

and the components of the flux and state vectors f½1� and
q½1�, respectively, are evaluated just to the left (xL) and the

right (xR) of the shock front.

In the following subsection we will study propagating

shockwaves separating two asymptotic perfect fluid states,

ϵL, vL at x → −∞ and ϵR, vR at x → þ∞. In the rest frame

of these shocks, the steady-state solution is time-indepen-

dent, and the relativistic Euler, BDNK, and MIS PDEs

reduce to coupled ODEs. Without time dependence, the

Euler equations (29)–(30) become S0 ¼ 0; ðSvþ PÞ0 ¼ 0,

which have nontrivial solutions given by

ϵðxÞ; vðxÞ ¼
�

ϵL; vL x ≤ 0

ϵR; vR x > 0

ϵR ¼ ϵL
9v2L − 1

3ð1 − v2LÞ

vR ¼ 1

3vL
: ð53Þ

These are the Rankine-Hugoniot conditions boosted to

the reference frame where us ¼ 0. Hence, considering a

flow to the right (v > 0), after specifying ϵL, vL, the full

solution is determined for all x, with a step function jump

connecting the two asymptotic states at x → �∞. Note that

restricting to right-moving shockwaves vL > 0, nontrivial

(ϵL ≠ ϵR; vL ≠ vR) solutions do exist for 0 < vL < 1=
ffiffiffi

3
p

;

however, for 1=3 < vL < 1=
ffiffiffi

3
p

they violate the second law

of thermodynamics (the right state has less entropy density

than the left), and for vL < 1=3 the right state is super-

luminal and has negative energy density. Thus right-moving

physical shockwaves only exist for vL > 1=
ffiffiffi

3
p

.

Since we are considering a shockwave joining two

asymptotic equilibrium states, the solutions for viscous

fluids, considered in the next section, should be well

approximated by (53) outside a finite region around the

shockwave itself (or said another way, the viscous solutions

will replace what is a step function solution of the Euler

equations with a smooth transition between the same

asymptotic end states).

FIG. 8. Comparison between the BDNK (frame A; blue lines) and MIS solutions (red dots) evolved from discontinuous initial data,

here at t ¼ 35 GeV−1, for η=s ¼ f1; 3g · ð4πÞ−1. As in Fig. 2, to avoid clutter the MIS points are a sparse sampling of the actual

resolution of the simulation.
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2. Shockwaves in viscous fluids

One is forced to accept discontinuous shockwave sol-

utions to the relativistic Euler equations because all

shockwaves propagate faster than the characteristic speeds

of the equations. This behavior is not shared by the BDNK

and MIS equations, as they have a larger number of

characteristic speeds, some of which are greater than the

fluid sound speed. This allows for the possibility that these

theories can possess continuous shock solutions. Such

solutions have been investigated for certain MIS-type

theories, where they were found to exist only so long as

the upstream flow velocity is less than the maximum

characteristic speed of the system [18,19].

Guided by these results, we apply similar reasoning to

the two viscous theories considered here. The first step is to

compute the characteristic speeds of the PDEs we evolve.

For the BDNK equations the result is (again for simplicity

expressed in the rest frame v ¼ 0 of the fluid):

c
BDNK
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ0ð2η0 þ λ0Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η0χ0ðχ0ðη0 þ λ0Þ þ λ2
0
Þ

p

3λ0χ0

s

:

ð54Þ

Notice that this expression depends on all the first-order

transport coefficient parameters, which, crucially, depend

on the hydrodynamic frame. For frame A (16), (54)

evaluates to

c
BDNK;A
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

31� 2
ffiffiffiffiffiffiffiffi

134
p

75

s

∼�0.32;�0.85: ð55Þ

That the maximum speed is less than the speed of light

implies (and as we show empirically is true, and also

recently proven in [35] in an independent work), that

arbitrarily strong, smooth shock solutions do not exist

within this frame. This inspired us to consider frame B (16),

where we chose the frame parameters specifically so that

the maximum speed is equal to the speed of light (this is not

the unique choice, but is a particularly simple example):

c
BDNK;B
i ¼ �1; � 1

5
: ð56Þ

Performing the same calculation for the truncated MIS

equations, one finds (again with v ¼ 0)

c
MIS
i ¼ 0; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
þ 4η0ϵ

3=4

ð4ϵþ 3πxx
2
Þτπ

s

: ð57Þ

One can think of the zero-speed mode as being associated

with the transport equation for πxx
2

(35), and the other two

giving the characteristic speeds of the fluid variables.

Notice that, in contrast to the BDNK characteristics above,

the nonzero speeds do depend on the state of the system,

which underlies the claims [18,19] that MIS-type theories

do not allow strong shock solutions in all situations;

i.e., one can always find some state where the maximum

characteristic speeds are less than 1 (in (57) for sufficiently

large ϵ, for example). In contrast, it is easy to choose values

for τπ such that the characteristic speeds are superluminal,

and in fact, that is the case for the shockwave examples

discussed below when using MIS, as well as most other

cases presented here using τπ ¼ 0.3 GeV−1. However, with

these, and all other examples we have looked at, the

solutions do not seem to exhibit any problematic behavior;

i.e., the equations “merely” happen to have characteristic-

cones that lie outside the light cone. In particular, near

equilibrium, localized perturbations in the fluid still propa-

gate at the sound speed, and when far from equilibrium, the

dynamics, though much more complicated as illustrated in

Fig. 6, still do not seem to show superluminal propagation

of prominent features, nor flow velocities that become

superluminal. Thus it is unclear under what circumstances a

superluminal characteristic structure leads to violation of

causality in the problematic sense of the phrase. For a

detailed analysis of this issue for the wider class of MIS

theories, see [47,71].

To numerically explore shockwave solutions, for initial

data we choose the following smooth transition between

two chosen asymptotic states (ϵL; vL > 1=
ffiffiffi

3
p

) and

(ϵR; vR < 1=
ffiffiffi

3
p

):

ϵðx; t ¼ 0Þ ¼ ðϵR − ϵLÞ
2

�

erf

�

x

w

�

þ 1

�

þ ϵL

vðx; t ¼ 0Þ ¼ ðvL − vRÞ
2

�

1 − erf

�

x

w

��

þ vR; ð58Þ

where erfðx=wÞ is the Gaussian error function.
15

For the

examples shown here we set w ¼ 10, freely choose

ϵL; vL > 1=
ffiffiffi

3
p

, and then compute ϵR, vR using the perfect

fluid jump conditions (53).

We find that, evolving with the BDNK equations, all

members of the family of initial data (58) we studied

converge to smooth, steady-state shock profiles as long as

vL is less than the maximum characteristic speed of the

particular frame (which for frame B (56) includes all

cases up to the largest velocities our code can generically

handle). The typical evolution for such a case begins with a

transient “blob” of fluid forming around the transition, that

then propagates off to the right, after which the fluid

relaxes to the steady-state profile.
16
For frame A (55), when

15
One can show that this set of initial data approaches a step

function jump in state at x ¼ 0 in the limit w → 0þ using the
identity [72] limw→0þerfðxwÞ ¼ 2ΘðxÞ − 1, where the step function

Θðx > 0Þ ¼ 1 and Θðx ≤ 0Þ ¼ 0.
16
If one does not choose the right state conditions to match the

perfect fluid ones (53), the transient feature that propagates to the
right is correspondingly larger, and the solution can settle to a
steady state where the shock front is moving in the simulation
reference frame. Boosting to the rest frame of this shock front
then gives a solution that does satisfy (53) asymptotically.
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vL ≳ 0.85, some time after evolution begins a high fre-

quency instability develops near the left side of the shock

transition—see Fig. 9, where we also show the same case

obtained with frame B for comparison.

Since our code develops other numerical problems when

flow speeds are larger than v ∼ 0.9, it is reasonable to

question whether we can indeed claim that the BDNK

equations allow smooth shockwaves for arbitrarily large

upwind speeds (note that the recent proof [35] of failure of

existence of sufficiently strong shock solutions in strictly

causal frames, as frame A, does not prove that in sharply

causal frames, as frame B, that all shocks must have smooth

profiles). To give further evidence for this claim, we note

that the steady state solutions we evolve to in the dynamical

code match, to within truncation error, the “exact” sta-

tionary profiles one can obtain by integrating the ODEs

governing the corresponding time-independent limit of the

BDNK equations (listed in Appendix C). Moreover, these

ODEs have singularities (not coincidentally) at exactly the

points where the flow velocity crosses a characteristic

speed of the system. Also, from the ODEs one can estimate

that the characteristic width of the transition from left-to-

right asymptotic states, when a solution exists, scales as

∼ð1 − v2LÞ1=4; hence, the steepening of the shock profile

with strength vL is largely frame independent, and a

discontinuity only forms in the limit vL → 1 (though above

some value of vL before 1, the gradients in the transition

region will become large enough that one would not trust

the first-order theory to give an accurate description of the

shock profile there). To illustrate, in Fig. 10, we show a

solution to the ODEs for vL ¼ 0.9999, as well as plots of

the diagnostics vetting the first-order description.

FIG. 9. BDNK evolution of supersonic shock initial data (58)

with ϵL ¼ 1; vL ¼ 0.87, and ϵR, vR given by the perfect fluid jump

conditions (53). The top panel was obtained using frame A (16),

which has a maximum rest-frame characteristic speed (55) less

than vL. This results in an instability that causes the code to crash
soon after the time depicted. The inset focuses in on where the

instability first develops. Overlaid are the results from three

different resolution runs; the higher resolutions (darker curves)

crash sooner, indicative of a high frequency numerical instability.

Also evident on the top (main) panel near the right edge is the

transient “blob” mentioned in the text, which is an artifact of

the initial data not matching the stationary shock profile between

the two chosen end states. The bottom panel is the same initial data

obtained with frame B that has a maximum characteristic speed

equal to the speed of light (56). No instability occurs, and a steady

state is reached (notice the much later time stamp, in particular

long after the transient blob has propagated off the domain).

FIG. 10. Shockwave solution to the steady-state BDNK

equations (C1)–(C2) in frame B (16), with vL ¼ 0.9999;
ϵL ¼ 1. Top panel: solution in v (black) alongside that in ϵ

(blue), the latter on a log scale because ϵR → ∞ as vL → 1. Note

that these solutions are qualitatively similar to those for smaller

vL (see Fig. 9 for example), except for the differences in scale.

Bottom panel: measures of the gradient expansion convergence

jTxx
ð1Þ=T

xx
ð0Þj (black) and the weak energy condition uaubTab (blue)

for the same solution. Notice that the former exceeds unity in the

central transition region, implying the solution is outside the

regime of validity of the gradient expansion here (the less

relativistic the shock the smaller the maximum of jTxx
ð1Þ=T

xx
ð0Þj

becomes; for example, it is about an order of magnitude smaller

for the case shown in Fig. 9). The weak energy condition is not

violated anywhere.
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For the MIS equations we evolved the same set of cases

as with the BDNK examples; all MIS evolutions had

maximum characteristic speeds greater than 1 throughout

the domain, and reached similar, stable steady-states.

VIII. CONCLUSION

We have performed a first numerical study of a class of

causal, stable, first-order relativistic hydrodynamic theories

recently developed by Bemfica, Disconzi, Noronha [25]

and Kovtun [26]. The results are encouraging in that for

smooth initial data, with small to moderate viscosity, the

results agree with those obtained by a code based on the

Müller-Israel-Stewart formalism commonly used today

when dissipative effects are important in a relativistic

setting. The latter requires appealing to second-order

effects to circumvent problems that arise when traditional

(Eckart or Landau-Lifshitz) hydrodynamic frames are

adopted. Though this approach works, it is reassuring

and could prove more useful in certain situations that

one can instead self-consistently and stably remain within

the realm of first-order hydrodynamics if the corresponding

dissipative effects are adequate to model the problem

at hand.

Regarding larger viscosities, an appealing feature of the

first-order theories is they offer simple diagnostics that can

be used to judge whether a given flow is adequately

described by first-order only dissipative effects (in contrast

to the truncated-MIS evolutions considered here, which

would have required computation of dropped second-order

terms to realize that the solutions were outside of the

regime of validity, from the perspective of a gradient

expansion). However, for the cases we explored, even

when starting with initial data with large gradients (far from

equilibrium), the evolution quickly carried the system back

to the hydrodynamic (small-gradient) regime, and—quite

remarkably—did so in a manner that seemed to erase all

signs of the nonhydrodynamic behavior in the flow that

developed at early times. This is similar to universal

attractor behavior found in Bjorken-like flows [32,33],

though here in cases with less symmetry.

Our results on strong shockwave solutions, consistent

with the recent work [35], also suggests that arbitrarily

strong, smooth shocks are generically allowed in the first-

order relativistic theories, if an appropriate class of hydro-

dynamic frames are employed. This is another possible

advantage over MIS-type theories, which do not share this

feature [18,19]. On the other hand, this might simply

suggest that the question of the existence of smooth, strong

shock solutions in second-order theories needs to be

reconsidered after restoring full freedom to choose the

hydrodynamic frame.

Regarding discontinuous initial data, though (as dis-

cussed at length earlier in the paper) it is not clear such data

is well-posed within BDNK theory, nevertheless, when our

scheme can stably evolve past t ¼ 0, the late time solutions

agree well with corresponding MIS solutions, giving

smoothed versions of the solutions found in the perfect

fluid limit (as one would intuitively expect).

There are numerous avenues for follow up work. Within

scenarios where symmetries can reduce the problem to

ð1þ 1ÞD PDEs, as here, a couple of such directions are to

go beyond conformal fluids, and to include gravity in a

spherically symmetric setting. Relaxing symmetries, it

would be interesting to attempt to tackle essentially all

applications mentioned in the introduction where relativ-

istic, first-order dissipative effects need to be modeled.
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APPENDIX A: BDNK PRIMITIVE

VARIABLE RECOVERY

For the BDNK equations (39), (42), we recover the

primitive variables pNS ¼ ð_ϵ; _vÞT from the conservative

variables qNS ¼ ðπtt
1
; πtx

1
ÞT analytically via

_ϵ ¼ −
2

K
ðϵ0ðv3ð2η0λ0 þ 6η0χ0 þ λ0χ0Þ − 3λ0vχ0Þ

þ 2λ0v
0ϵðv2ðχ0 − 4η0Þ − 3χ0ÞÞ

−
4πtt

1
ϵ1=4ð3λ0 þ v2ð−4η0 þ 3λ0 þ 4χ0ÞÞ

KW

þ 4πtx
1
vϵ1=4ð3ð2λ0 þ χ0Þ þ v2ðχ0 − 4η0ÞÞ

KW
ðA1Þ

_v¼ −
3ϵ0λ0ðv2 − 3Þχ0

4KW4ϵ

þ 3λ0vðπtt1v2 þ πtt
1
− 2πtx

1
vÞ− 3χ0ðπtx1 ðv2 þ 3Þ− 4πtt

1
vÞ

KW3ϵ3=4

−
2vv0ð2η0ðλ0v2 þ 3χ0Þ þ λ0ðv2 − 3Þχ0Þ

K
ðA2Þ

where we have defined the shorthand

K ≡ −9λ0χ0 þ λ0v
4ð4η0 − χ0Þ þ 6v2χ0ð2η0 þ λ0Þ:
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The equations above are regular as long as ϵ > 0;
v ∈ ð−1; 1Þ; for both frames (16) considered here the only

physical root of K (with jvj < 1) is η0 ¼ 0.

APPENDIX B: DETAILED DESCRIPTION

OF THE BDNK ALGORITHM

We advance the solution forward in time using Heun’s

method (45): beginning from time tn when the state of the

fluid (Tab
1
) is completely known, we first evolve to a

predictor level t̄nþ1 before updating to the advanced time

tnþ1 ¼ tn þ Δt. Henceforth we will denote quantities at the
known level with an upper index n, quantities at the

predictor level with a bar and index nþ 1, and quantities

at the advanced level with index nþ 1 and no bar, e.g., we

evolve ϵn → ϵ̄nþ1
→ ϵnþ1.

We do this by solving four equations: (A1) for ϵ; (A2) for

v; and the two components of the conservation law (39)–

(40), (42)–(43) for πtt
1
; πtx

1
. The actions performed for each

time integration step of this algorithm are as follows.

(1) Given ϵ; v; πtt
1
; πtx

1
are known at tn, compute ðπxxÞn

from its definition (31)–(32).

(2) Compute _ϵn; _vn using (A1), (A2) respectively. These
quantities may be used immediately to compute

ϵ̄nþ1; v̄nþ1, e.g., ϵ̄nþ1 ¼ ϵn þ Δt_ϵn.
(3) Use the two components of the conservation law

(39)–(40), (42)–(43) to compute ðπtt
1
Þnþ1; ðπtx

1
Þnþ1

,

respectively.

(4) Insert ϵ̄nþ1; v̄nþ1; ðπtt
1
Þnþ1; ðπtx

1
Þnþ1

in (A1), (A2) to

compute _̄ϵnþ1; _̄vnþ1.

(5) Compute ϵnþ1; vnþ1 using the second step of (45).

For example, ϵ would be evolved via ϵnþ1 ¼
ϵn þ Δt

2
ð_ϵn þ _̄ϵnþ1Þ.

(6) Solve for ðπtt
1
Þnþ1; ðπtx

1
Þnþ1 using the conservation

law (39)–(40), (42)–(43) with values at the known

level tn and the predictor level t̄nþ1 via the second

step of (45).

In steps 3 and 6 above, we optionally use the Roe flux to

compute fPF (42) (otherwise we use finite differences), and

optionally apply Kreiss-Oliger dissipation to qNS (42).

APPENDIX C: BDNK STEADY-STATE ODEs

If one restricts to time-independent (steady-state) sol-

utions, all time derivative terms vanish and the PDEs

describing stress-energy conservation reduce to coupled

ODEs. The structure of (1) further implies (in planar

symmetry in Minkowski spacetime) that the remaining

equations are total x derivatives of the form ∂xT
xb ¼ 0,

which may be trivially integrated to yield Ttx ¼ C1; T
xx ¼

C2 for real constants C1, C2. For the perfect fluid, the

steady-state equations are S ¼ C1; Svþ P ¼ C2, with a

trivial solution ϵ; v ¼ constant and a nontrivial solution

describing a shockwave given by the Rankine-Hugoniot

conditions (53).

For BDNK theory (31)–(33), the equations after the

trivial integral are coupled nonlinear ODEs; these ODEs

may be rearranged to yield

ϵ0¼ −4ϵ1=4
ffiffiffiffiffiffiffiffiffiffiffi

1−v2
p

9λ0χ0ðv−c1Þðv−c2Þðv−c3Þðv−c4Þ
×ðC1ð4η0−χ0ÞþvðC2ð−4η0þ3λ0þ4χ0Þ
þ3λ0v

2ðC2þϵÞ−3C1vð2λ0þχ0Þ−ϵð4η0þλ0ÞÞÞ ðC1Þ

FIG. 11. Convergence plotsQNðtÞ for the BDNK (frame A) and

MIS solutions for the case η=s ¼ ð4πÞ−1 for an independent

(leapfrog) discretization of the t component of (1). In order of

increasing darkness, the lines correspond to N ¼ 513, 1025,

2049. The top two panels correspond to cases with Gaussian

initial data (49), and show the expected trend to convergence as

resolution is increased (in particular, for the BDNK equations this

should be second order, QNðtÞ ∼ 4, and for the MIS equations

somewhere between first and second order, QNðtÞ ∼ 2–4, de-

pending on how significant the first order advection term is in the

solution). The bottom two panels correspond to the discontinuous

shock tube initial data (50), and do not show convergence near

t ¼ 0 as measured by QNðtÞ; as discussed in the text, this is

expected, and once viscosity smooths out the discontinuity we do

see return to convergence.
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and

v0 ¼ −ð1 − v2Þ3=2ϵ−3=4
9λ0χ0ðv − c1Þðv − c2Þðv − c3Þðv − c4Þ
× ð9C1v

3χ0 − 3v2ðC2ðλ0 þ 4χ0Þ þ λ0ϵÞ
þ 3C1vð2λ0 þ χ0Þ þ λ0ðϵ − 3C2ÞÞ; ðC2Þ

where ci with i ∈ f1; 2; 3; 4g are the four characteristic

speeds from (54). Notice that the equations share the same

denominator, which becomes singular when the flow

velocity crosses any of ci. Thus, as discussed in detail in

Sec. VII C, a judicious choice of frame is required to be

able to represent all steady state solutions of interest, which

in a dynamical setting seems to translate to the well-

posedness of the corresponding initial value problem near

such states.

APPENDIX D: CONVERGENCE TESTS

For all of the runs performed here, we check for both the

correctness of our results and convergence by monitoring

the rate QNðtÞ at which an independent residual of the

evolution equations [typically the t component of (1)]

converges to zero; specifically

QNðtÞ ¼
kL2hu2hk
kLhuhk ; ðD1Þ

where Lhuh denotes the discretization of the residual

operator L acting on a PDE solution u evolved on a mesh

with grid spacing h ¼ ðxmax − xminÞ=ðN − 1Þ, and k·k
denotes any vector norm; here we use the 1-norm. The

convergence factor (D1) divides the discrete residual of a

solution computed with grid spacing 2h by that computed

at spacing h, and for smooth solutions can be shown to

asymptote to Q → 2n in the continuum limit h → 0 for a

convergent numerical scheme with truncation error OðhnÞ.
For all three of the systems of PDEs considered here—

the relativistic Euler, BDNK, andMIS equations—all of the

discrete elements in the algorithm are second-order accu-

rate, with two exceptions: first is that the perfect fluid part

of the flux fPF, as a result of the slope limiter, converges at

second order only in regions where the solution is smooth,

elsewhere it is first order; the other is in the MIS πxx
2

evolution equation (35), which uses a first-order upwind

discretization for the advection operator (46).

As a result—see Fig. 11 for examples—we find that

QNðtÞ tends to 4 with increasing resolution for the

relativistic Euler and BDNK equations at times when the

solution is smooth. For MIS solutions, though strictly

speaking in the limit h → 0 the first-order term should

dominate, at the resolutions considered here (N from

128þ 1 to 2048þ 1) we see somewhere between first

(QNðtÞ ∼ 2) and second order (QNðtÞ ∼ 4) convergence.

For solutions about discontinuities (D1) is not justified, and

we do not expect (and do not see) convergence by this

measure. For the Euler equations, we have checked that we

do converge to solutions about shock fronts that are

consistent with the Rankine-Hugoniot conditions (52).

As discussed in the main text, for the BDNK and MIS

equations we have not found situations where discontinu-

ities dynamically form, and so the only examples we

looked at are the shock tube tests where we put them in

by hand at t ¼ 0, whether that is justifiable in a weak-sense,

as they are for the Euler equations, or not. Though at least

the way the code “resolves” these discontinuities, once

some dissipation with evolution has occurred, is consistent

with energy-momentum conservation, in particular in that

the resulting smooth shock fronts have the same propaga-

tion speeds and asymptotics as in the perfect fluid limit.
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