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We present the first numerical solutions of the causal, stable relativistic Navier-Stokes equations as
formulated by Bemfica, Disconzi, Noronha, and Kovtun (BDNK). For this initial investigation we restrict
to plane-symmetric configurations of a conformal fluid in Minkowski spacetime. We consider evolution of
three classes of initial data: a smooth (initially) stationary concentration of energy, a standard shock tube
setup, and a smooth shockwave setup. We compare these solutions to those obtained with a code based on
the Miiller-Israel-Stewart (MIS) formalism, variants of which are the common tools used today to model
relativistic, viscous fluids. We find that for the two smooth initial data cases, simple finite difference
methods are adequate to obtain stable, convergent solutions to the BDNK equations. For low viscosity, the
MIS and BDNK evolutions show good agreement. At high viscosity the solutions begin to differ in regions
with large gradients, and there the BDNK solutions can (as expected) exhibit violation of the weak energy
condition. This behavior is transient, and the solutions evolve toward a hydrodynamic regime in a way
reminiscent of an approach to a universal attractor. For the shockwave problem, we give evidence that if a
hydrodynamic frame is chosen so that the maximum characteristic speed of the BDNK system is the speed
of light (or larger), arbitrarily strong shockwaves are smoothly resolved. Regarding the shock tube problem,
it is unclear whether discontinuous initial data is mathematically well-posed for the BDNK system, even in
a weak sense. Nevertheless we attempt numerical solution, and then need to treat the perfect fluid terms
using high-resolution shock-capturing (HRSC) methods. When such methods can successfully evolve the
solution beyond the initial time, subsequent evolution agrees with corresponding MIS solutions, as well as

the perfect fluid solution in the limit of zero viscosity.
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I. INTRODUCTION

In a modern interpretation, hydrodynamics can be
thought of as a coarse-grained model of an underlying
microscopic theory, allowing for tractable study of certain
macroscopic phenomena. In that sense then hydrodynamics
is not a single theory, but a hierarchy of theories that
successively include more details and properties of the
underlying microphysics (see e.g., [1,2]). The leading order
model (zeroth order in a gradient expansion) is applicable
to matter in local thermodynamic equilibrium, character-
ized by basic material properties such as energy density and
temperature, and subject to evolution equations consistent
with stress-energy conservation (the Euler equations),
conservation of particle number for baryons, etc. At
next-to-leading (first) order, effects associated with devia-
tions from equilibrium appear, such as viscous dissipation
due to velocity gradients, or heat conduction due to thermal
gradients. The corresponding statement of stress-energy
conservation is captured by the Navier-Stokes equations.
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Despite the simple physical principles that underlie these
hydrodynamic theories, the equations are nonlinear, and
even exhibit complicated phenomena such as turbulence,
and singular behavior (discontinuities) in some shock-
waves. Singularities are often a problem for the predict-
ability of a theory, though for the Euler equations, requiring
stress-energy conservation and consistency with the second
law of thermodynamics is adequate to allow for unique
weak-form solutions that accurately capture the behavior
outside of the discontinuity [3]. In other words, the details
of the microphysics that would ostensibly resolve the
discontinuity seems irrelevant on large scales, and remark-
ably, the Euler equations reflect this, despite a complete
breakdown of the small-gradient assumption that would
otherwise justify them as a sound mathematical model of
the corresponding physical phenomenon.

Historically, the success of hydrodynamics as a model of
the dynamics of macroscopic distributions of matter
seemed to fail at first order for relativistic theories, as
originally formulated by Eckart [4] in 1940, and a different
variant by Landau and Lifshitz in the 1950s [5]. A problem
recognized early on is that the resultant relativistic Navier-
Stokes equations are parabolic, inconsistent with causality
as defined by the postulates of relativity. A reasonable
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assumption would have been that this simply implies a
limited range of scenarios where the relativistic Navier-
Stokes equations should be expected to provide accurate
predictions. However, that notion was dramatically dis-
proven by Hiscock and Lindblom in 1985 [6], when they
showed these theories do not admit stable equilibrium
solutions for reasonable forms of matter, even in non-
relativistic settings.

To address the issues of hyperbolicity and causality, in
the 1960s Miiller [7], and subsequently Israel and Stewart
[8,9], showed that the inclusion of second-order terms may
be able to yield a more suitable theory. Though the
additional terms significantly complicate nonlinear analy-
sis, the theory was later shown to be stable, causal, and
hyperbolic when linearized about equilibrium [10], moti-
vating its use over the theories of Eckart and Landau-
Lifshitz. As a result, the so-called Miiller-Israel-Stewart
(MIS) theories are behind essentially all current numerical
efforts to model relativistic dissipative fluids (see [2] for a
comprehensive review). Applications of contemporary
interest include modeling relativistic heavy ion collisions
[2], neutron star dynamics [11,12], early universe cosmol-
ogy [13], plasma physics [14], black hole accretion [15,16]
and relativistic jets [17].

Though highly successful in the above mentioned
applications, there are a few issues with MIS theories.
One is that of aesthetics: it seems rather excessive to need
all the complexity of the second-order theory (with over a
dozen new transport coefficients that appear relative to first
order [2]) if only the first-order terms are expected to be
relevant in a given problem. As such, many practitioners
use a truncated version of MIS (as we do here for the
comparison model, discussed more in Sec. I[ID below);
though somewhat ad hoc, this is justifiable in scenarios
where second-order effects are small. Another problem
with MIS-type theories is they generically do not admit
solutions describing high Mach number strong shocks,
even in a weak sense [18,19]. Though one might argue this
is not surprising for a theory based on a gradient expansion,
and it is likely just the simplicity of the Euler equations that
the latter can be “fixed” in this regard, it would still mean
that beyond zeroth order, relativistic hydrodynamics breaks
down as a predictive theory when strong shocks form.

There have been other proposals to resolve the problems
with traditional first-order relativistic hydrodynamics (in
particular [20]), though just within the past decade has a
revolution in understanding the source of the latter’s pathol-
ogy arisen, giving a clear and systematic approach to
constructing well-posed first-order theories. Building on
earlier work by Van and Biré [21] and Freistiihler and
Temple [22-24], the key insight by Bemfica, Disconzi and
Noronha [25], and expanded upon by Kovtun [26], was
recognizing how the choice of the hydrodynamic frame
influences the hyperbolicity of the underlying equations (in
this paper we will often simply use “frame” when referring to

the hydrodynamic frame, and when we use “reference frame”
or “rest frame” we mean a coordinate (Lorentz) frame).

Eckart and Landau-Lifshitz already knew that the hydro-
dynamic variables do not have unique definitions outside of
equilibrium. The hydrodynamic frame is then essentially
the choice of definition of a complete set of fundamental
variables, such as the flow four-velocity u“, energy density
€, and particle number density n (or equivalent replace-
ments of thermodynamic quantities using the equation of
state), and how they relate to the stress-energy tensor T,
particle four-current J* and various transport coefficients
through a series of constitutive relations. For example, out
of equilibrium, the particle number flux 4-velocity vector
u$; does not need to be tangent to the energy flux 4-velocity
ué. (defined as an eigenvector of 7%”); among other choices,
Eckart used a frame where u“ = uf;,, while Landau and
Lifshitz used one where u“ = u$. The choice of frame
constrains the set of transport coefficients appearing in 7%
and J¢ and by considering field redefinitions one can
determine how some vary and others are invariant under
changes of hydrodynamic frame [26]. More importantly for
our discussion, the choice of frame also affects the
character of the partial differential equations (PDEs) in
the resultant Navier-Stokes and various charge conserva-
tion equations: a judicious choice of frame allows for a
well-posed, strongly hyperbolic system of PDEs with
causal propagation speeds [25,27-30].

The purpose of this paper is to report on initial results
implementing the relativistic viscous hydrodynamics the-
ories of Bemfica, Disconzi, Noronha and Kovtun (BDNK)
in a numerical solution scheme, which to our knowledge
has not been done before. Given the decades of research
into developing stable codes to solve the relativistic Euler
equations, and MIS-inspired schemes to model dissipative
corrections, it may seem like it would be a trivial process to
retool one of these codes to solve the BDNK systems.
Indeed, one of the results from our work is that standard
methods can straight-forwardly be adapted to the BDNK
equations, at least for the scenario studied here: a conformal
fluid restricted to planar symmetry in Minkowski space-
time. However, that is not a priori an obvious conclusion
for a few reasons. The main one is related to what portion of
the stress tensor 7% contains the principle parts of PDEs
that govern the equations’ character (here hyperbolic),
and what that implies for numerical solution. The Euler
equations are most commonly written in flux-conservative
form, allowing for the application of Godunov-type meth-
ods to deal with discontinuities that form in many scenarios
of interest. Such techniques essentially assume a disconti-
nuity is present at each cell interface, and solve an exact or
approximate Riemann problem at each interface to update
cell averages of the fluid variables at each time step. As
illustrated in more detail in Sec. II D, the addition of
dissipative terms via the MIS approach does not alter the
basic structure of the hydrodynamic evolution, as the
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higher order corrections to the stress tensor are elevated to
the status of new fundamental variables with their own
evolution equations, and only couple to the Euler equations
as lower order source terms.

For the BDNK equations this is not the case: the
principle parts of the PDEs are now entirely determined
by the viscous part of the stress tensor, with the Euler terms
relegated to lower order. Stable, convergent numerical
solution schemes mirror the proofs of the well-posedness
of continuum equations: they must be tailored to the
structure of the principle parts of the PDEs, and then
(for the most part) the lower order terms will not adversely
affect the numerical evolution. The difficulty contemplating
taking this route for a BDNK system is that for equilibrium
states, which will generically be present in at least parts of
the domain, the viscous terms are identically zero, and near
equilibrium evolution is governed by the lower order Euler
terms. Since the latter by themselves are also hyperbolic,
this should not be a problem for smooth flows. Though
when shocks form, even if in principle viscosity is able to
smooth them, the scale over which the fluid profile
smoothly transitions from one state to another may be
too small to resolve in practice. Also, nothing prevents one
from putting in nonsmooth initial data, and certain appli-
cations effectively require this (e.g., the moment of colli-
sion in a binary neutron star merger). Thus it seems
important to maintain the ability of a numerical scheme
to stably evolve nonsmooth data when dissipative effects
are included, but it is unclear whether the analogue of the
Riemann problem makes mathematical sense for a theory
governed by second-order PDEs such as BDNK.'

In the remainder of this introduction, we outline the rest
of the paper, and give a brief summary of our main results.

After a more general discussion of the gradient expan-
sion in Sec. II, in Secs. II B, II C and II D we describe the
perfect fluid, BDNK and truncated MIS systems we
consider here, respectively. Beyond demonstrating stable
evolution of the BDNK equations, one goal is to compare
evolution of identical initial data using these three different
theories for a select set of problems, and identifying in what
regimes they agree. For the dissipative schemes we also
investigate some self-consistent diagnostic measures
(described in Sec. VI) to check whether the state has
evolved to a regime where the results should not be trusted,
even if there is no breakdown or other apparent issue with
the numerical solution. For simplicity in this first study we
restrict to a conformal fluid, and planar symmetry in
Minkowski spacetime (i.e., (1 + 1)D evolution), and in
Sec. III give the explicit form of the three sets of equations
we will solve numerically. In Sec. IV we describe the

'For the nonrelativistic Navier-Stokes equations similar rea-
soning holds. Another difficulty in that case is the dissipative
terms make the equations parabolic, which can impose severe
time-stepping restrictions for stable evolution; methods have been
developed to alleviate this, such as those shown in [31].

numerical methods we employ. For concreteness, we will
choose parameters of the test problems to mimic conditions
relevant to heavy ion collisions; we discuss this and the
units we use in Sec. V.

We present results in Sec. VII, one for an initially static
fluid with a Gaussian distribution for the energy density, the
second a standard shock tube problem with discontinuous
initial data, and the third smooth initial data transitioning
between an upstream supersonic flow and a downstream
subsonic flow.

For the Gaussian initial data, the perfect fluid eventually
develops shocks, while for BDNK and MIS with non-zero
viscosity the fluid variables remain smooth for the length of
the simulations. The dissipative schemes show similar
results for low viscosity, but begin to differ at high
viscosity. In that regime the BDNK solutions develop
regions where the weak energy condition is violated, as
expected when the gradient terms in the stress energy tensor
become large [25]. Interestingly, though the resultant
solutions then are markedly different from the correspond-
ing MIS solutions, or between two BDNK solutions
obtained with different hydrodynamic frames (all having
started with identical initial data), these ‘“nonhydrody-
namic” features decay away exponentially, and the solu-
tions soon closely resemble each other again. This is
reminiscent of so-called universal attractor behavior found
to be present in beyond-ideal theories modeling Bjorken
flow [32,33] (a flow that seems to describe the leading
order phase of expansion of a quark-gluon plasma formed
in an ultrarelativistic heavy ion collision).

For the shock tube test, similar energy condition viola-
tions occur near the initial time, but soon afterward, both
for MIS and BDNK, the evolution approaches a state that
looks like a smoothed version of the perfect fluid case,
with the diagnostics suggesting the dissipative corrections
have become small from the perspective of the gradient
expansion.

Regarding shockwaves in viscous hydrodynamics, as
mentioned above, there are theorems that in MIS-type
relativistic theories solutions do not exist for sufficiently
strong (high Mach number) shocks, even in a weak sense.
This is disconcerting, and considered by some a significant
shortcoming of such theories [18,19,22]. However, the
nature of the proofs are more suggestive of a failure of
hyperbolicity than some intrinsic inadequacy of relativistic
dissipative hydrodynamics: the limiting upstream velocity
above which shock solutions cease to exist is precisely
when the largest upstream characteristic speed of the
system becomes zero in the observer’s reference frame.”
For such supersonic flows, information about the down-
stream state cannot be propagated upstream, arguing for the

*The characteristic speeds of the PDEs governing beyond-ideal
hydrodynamic theories generally do not coincide with the sound
speed of the fluid.
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presence of discontinuities in the flow at the shock front.
This is what happens with the Euler equations, and sensible
weak-form solutions can be derived there, giving the
Rankine-Hugoniot jump conditions. For the Newtonian
Navier-Stokes equations, discontinuities are not inevitable,
as the equations are parabolic and information can always
be propagated upstream regardless of the flow speed;
intuition suggests the dissipative terms should smooth
out the shock front, and this is confirmed by numerical
solution, even though in some cases shock properties do not
match experiments very well (see e.g., [34]). It would be a
curious circumstance if viscosity failed to “work™ in this
sense in relativity, but would be acceptable if weak form
solutions still existed; that they do not for MIS-type
theories is a much more severe problem, for, as mentioned,
it implies failure of the Cauchy problem and subsequent
loss of predictability.

As we demonstrate here, for the shockwave test case
similar problems can be present within BDNK theories.
However, we also show that this is tied to the choice of
hydrodynamic frame, and we can choose one where the
trends indicate arbitrarily strong shocks can be smoothly
resolved. This is consistent with the above theorems
[18,19] in that the “good” frames for resolving shocks
are those where the maximum characteristic speed is the
speed of light (or larger). This is also consistent with the
work of Freistithler and Temple [22], who demanded
existence of arbitrarily strong shock solutions as a defining
criterion for the class of first-order relativistic theories they
proposed. In doing so, they had to abandon the restriction
that entropy production is positive along all gradients, but
found that violations of the second law actually do not
occur along shock profiles. We similarly observe positive
entropy production along shocks, though given that we are
using a conformal fluid (there is a simple one-to-one
relationship between entropy density s and energy density
€), and the shock smoothly transitions between flows which
asymptotically approach the corresponding perfect fluid
states (by conservation of stress-energy), this is somewhat
of a trivial conclusion in our case. That is not to suggest that
sufficiently far out of equilibrium regimes do not exist
where BDNK theories could show violation of the sec-
ond law. However, one could view such pathological
evolution as a “feature” of these theories, providing an
additional diagnostic—similar to the weak energy condi-
tion violation—to tell when the fluid is outside the realm
where only first-order dissipative corrections are adequate
to describe its dynamics.

As we completed this work, a paper by Freistiihler [35]
appeared on the archive that proves some results related to
strong shocks within the BDNK system, and likewise
seems consistent with the above discussion. In the results
below we will mention where the particular examples we
present fall within the characterization of the BDNK frames
introduced in [35].

We conclude in Sec. VIII with a discussion of potential
follow up work. We leave the explicit form of the primitive
variable recovery and numerical algorithm for our BDNK
scheme to Appendixes A and B respectively, a listing of the
steady state equations relevant to the shockwave problem to
Appendix C, and some convergence tests to Appendix D.

II. THE GRADIENT EXPANSION

In this section we begin by reviewing hydrodynamics
from the perspective of a gradient expansion. Then in
Sec. I A we describe simplifications that result for a
conformal fluid, followed by details specific to the zer-
oth, first and second-order theories we consider here in
Secs. II B, I C and II D respectively.

Relativistic fluid models are typically defined in terms of
two conserved currents: the stress-energy tensor 7?, which
arises as a result of spacetime translation invariance, and a
U(1) conserved current J¢, coming from the local con-
servation of the number of particles (baryons) [1,36]. These
currents are functions of a set of hydrodynamic variables:
the energy density ¢, the baryon number density #, isotropic
rest-frame pressure P, the flow four-velocity u“, chemical
potential u, temperature 7, etc., that define the macroscopic
state of the fluid. The corresponding conservation laws are

V, 7% =0 (1)
V,J¢ =0, (2)

where V, is the covariant derivative compatible with the
spacetime metric g,,, which we take to have the “mostly
plus” signature (—+-++). This gives d+ 1 equations
constraining the dynamics of 7% and J¢, where d is the
dimension of the spacetime (we consider d = 4 here). A
defining feature of hydrodynamics is that these d + 1
equations are assumed to be sufficient to predict the unique
evolution of the state of the fluid from given initial data.
This is only possible because not all the hydrodynamic
variables are independent; the additional constraints needed
to close the system come from the thermodynamic equation
of state, which characterizes microphysical properties of
the particular fluid under consideration. That further
implies there is freedom in choosing a subset of these as
independent variables that will be explicitly solved for; in
the description below we will mainly use ¢, n, and u“ (this
is a common choice for astrophysical applications).

For fluids in local thermodynamic equilibrium, or when
dissipative effects are negligible, 7%’ and J¢ are simply
algebraic functions of the hydrodynamic variables, and the
interpretation of these variables is unambiguous. Outside of
equilibrium, however, this is no longer true. Nevertheless, it
is conventional to assume that 7%, J¢ may be still be
parametrized by the hydrodynamic variables provided the
fluid is sufficiently close to equilibrium, though one must
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now also consider combinations of the hydrodynamic
variables and their derivatives. In particular, near equilib-
rium one assumes one can express the conserved currents in
terms of a gradient expansion

ab __ ab ab a
T = T(o) + T(l) + T(z) +

where the zeroth-order terms T%’), J‘(ZO) are the equilibrium

case considered previously. At first order, T?l”), J ’(‘]) depend

linearly on first derivatives of the variables, i.e., V¢u?, Ve
and V?n. At second order and above, one counts higher
order gradients and products of lower order gradients on the
same footing; for example, both V¢V?¢ and (Vé)(VPe¢)
would appear in the second-order contribution to the stress-

energy tensor, T&h) .

It is impractical to work with 7%, J¢ in (3) up to high
order in gradients,3 so we will always truncate them at some
order k. In these truncated expressions, following the
notation of [30], we will use the subscript k& (without
parentheses) to define a quantity computed up to and
including kth order gradients, e.g.,

T =T+ T+ + T, (4)
where the terms with subscript (k) (with parentheses)
denote a term entirely at kth order. It will be useful to

also define the dissipative corrections to the stress-energy
tensor and particle current:

T =T + i’ (5)
T =g+ & (6)

which include all gradient corrections to the equilibrium
stress-energy tensor and particle current, e.g., 7’ =
T+ +TR.

At this point it is possible to define 797, J¢ by writing
them as linear combinations of all possible gradient terms
of the hydrodynamic variables {¢, n, u®} up to kth order. As
k increases, however, the number of possible terms grow
rapidly and the need for a bookkeeping system becomes
apparent. It is conventional to begin by decomposing
T4 J¢ in terms of u“, which is taken to be timelike,
u.u® = —1. Then, without loss of generality [1]

Tab:Euaub+7)Aab+(Qaub+Qbua)+/]’ab (7)

J* = Nus + J°, (8)

3And in fact, the series likely has a zero radius of convergence
at infinite order [37-40].

where &, P, N are scalars; Q¢, J¢ are vectors transverse to
u® (ie., u, 0% = u,J* = 0); 7 is a symmetric transverse
traceless tensor (1,7 %" = g,,7° = 0); and the symmetric
tensor

Aah = gab + uauh (9)

projects onto the space transverse to the fluid velocity
(A% =0). In terms of T?,J% these quantities are
defined by

1
= AT
P=goq Bl

‘-7(1 — Aac‘]C’ Tah

E=u.u T,

N =—u.Je,

Qa = _AacudTCd
= Ttab), (10)

The angle brackets are shorthand for

1
xlab) — 3 (AacAbdxcd + AacAbdXdC

2
— mAabAcdxcd> , (1 1)

which gives the transverse traceless part of a general rank-
two tensor X (u, X = g, X(b) = ().

Specifying a fluid theory at order k amounts to replacing
(10) with a set of constitutive relations defining
{E Py, Q4 T, Ny, T4} in terms of the hydrodynamic
variables {e,n,u®}, the spacetime metric ¢’, and their
gradients up to order k.

A. Conformal fluids

Before writing down the constitutive relations at zeroth,
first, and second order—corresponding to the relativistic
Euler, BDNK, and MIS equations respectively—we will
restrict our attention to a fluid with an underlying con-
formal symmetry (g,,7* = 0) and no conserved baryon
current (J* = 0). These assumptions yield a significant
simplification to the stress-energy tensor at higher orders of
the gradient expansion, and allow us to more easily
make contact with established results from the relativistic
heavy ion collision community, which often uses a vis-
cous conformal fluid as a toy model for quark-gluon
plasma4 (QGP).

A straightforward calculation shows that tracelessness of
the perfect fluid 747 (see (12) below) requires the equation
of state relating the fluid pressure P to the energy density €
to be P =¢/3 (for d =4). This result also implies that
€ = €yT*, where T is the temperature and ¢, is a dimen-
sionful constant whose value should be derived from the
thermodynamics of the substance being modeled.

4Though QGP is often far from conformal in heavy-ion
collisions [41], quantum chromodynamics (QCD) is nearly
conformal at sufficiently high temperatures [42].
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A simple example of a conformal fluid is a gas of free,
massless particles, such as a free photon gas, or a perfect
fluid with the so-called ultrarelativistic equation of state
[43] P = ("= 1)e with " = 4/3.

B. Zeroth-order hydrodynamics: Relativistic
Euler equations

Since we are considering a conformal fluid with no
conserved particle number n, {e, u®} are the only hydro-
dynamic variables that will appear in the constitutive
relations. Using the velocity decomposition for T% (7),
one sees that the hydrodynamic variables alone cannot form
a transverse vector or a transverse traceless tensor, so
Q® = T = (0. We are left with only the scalars &, P, each
of which must be a function of e. An observer comoving
with a fluid will see a rest frame energy density ¢ and
isotropic pressure P (= €/3), requiring £ =€ and P = P
in (7). Thus

ab
()

= euu® + PA, (12)
which is the stress-energy tensor for a perfect (ideal) fluid.
Combining (12) with (1) yields the relativistic Euler
equations, which govern the time evolution of an inviscid
fluid in local thermodynamic equilibrium.

C. First-order hydrodynamics: Relativistic
Navier-Stokes equations

1. First-order constitutive relations

At first order in the gradient expansion, one must now
incorporate derivatives of the hydrodynamic variables into
the constitutive relations defining &£, P, 9%, 7“", replacing
(10). For a conformal fluid without a conserved baryon
number n, the only allowed first-order terms are the scalars
V. u¢, uV e, the transverse vectors AV e, u’V u“, and
the shear tensor 6*” = V{@y?). One can then show that the
following are the complete set of linear combinations of
these terms that arise at first order [2]

51:€+A1

3
A = X uvV.e + yV.u¢
4e

32c?
Qf = et AV e + AuV u°
4e
T4b = —2n06, (13)

where P, = £,/3 comes from the requirement that 7% be
trace free, and c2 = dP/de = 1/3 is the square of the
sound speed for a conformal fluid. The coefficients y, 4,
are gradient-free functions of the hydrodynamic variables,
and will be discussed in detail in the next subsection.

Before moving on, it will be useful to define the
dissipative correction tensor at first order, n‘fh (5) corre-
sponding to (13):

A =1t

ab

A

|+ ene+ oty 7. (14

In summary, 7% up to first order is defined by inserting
(13) into (7), or equivalently by inserting (12) and
(13)—(14) into (5).

2. First-order transport coefficients

The coefficients y, 4, 1 are often referred to as transport
coefficients, and their particular functional forms depend
both on the choice of hydrodynamic frame, and physical
properties of the underlying microscopic theory to which
the fluid model is a long-wavelength approximation. The
coefficients y, A are not usually named, but in this case
control the size of gradient corrections to the energy density
(A, « y)and heat flow (Qf « 1) respectively.5 The remain-
ing coefficient, #, is the shear viscosity and determines the
extent to which the fluid responds to trace-free gradients in
the flow velocity u® (79" « nV{“u”)). The fluid’s response
to the trace of the velocity gradient (V. u¢) determines its
reaction to expansion or contraction, and can appear in
various parts of the dissipative correction tensor; its
contribution to the isotropic (trace) part can be thought
of as a contribution to the fluid pressure, and is called the
bulk viscosity with coefficient {. The fact that a conformal
fluid’s stress-energy tensor is trace free implies that { = 0,
which is why ¢ does not appear in (13).

Here we adopt the following 3-parameter (79, g, x0)
family of transport coefficients,

= 1063/4,

n = noe’/*, x =yt (15)

where 77, is a free parameter that largely determines the
amount of dissipation in the fluid, and 4, y, are constants
controlling the hydrodynamic frame. In [25], existence and
uniqueness of solutions, causality, and linear stability about
equilibrium were proven provided the transport coefficients
obey the following constraints: 5y > 0, yo = a;ny, and
Ao > %, with a; > 4. Here we take 5, > 0 and consider

two choices of hydrodynamic frame

In [36] the coefficients 4, y are replaced with relaxation times
70, Te» Tp. The requirement that 7, = 0 for a conformal fluid
forces zp = %, and comparison of the tensor in [25] with that of

[36] implies 7, = % and 7, = 3,
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251y 257
A: ()“0’)(0)_< 30a 20>7
25ny 257
B: o) = (5. 5). (16)

which can be shown to satisfy the above constraints.®

In the characterization of [35], frame A is strictly causal,
with maximum characteristic speeds less than 1, while
frame B is sharply causal with maximum characteristic
speeds equal to the speed of light (explicit expressions for
the characteristic speeds are given in Sec. VII C 2).

Combining (15), (13), and (7) or equivalently (12)—(15)
and (5) gives T¢” up to first order; inserting 7% into
(1) yields the causal, stable relativistic Navier-Stokes
equations.

D. Second-order hydrodynamics:
Miiller-Israel-Stewart theory

As mentioned in the introduction, an alternative
approach to the unphysical Eckart and Landau-Lifshitz
theories was developed by Miiller [7] and Israel and
Stewart [9] in the 1960s—1970s, long before it was known
that the choice of hydrodynamic frame was the cause of the
pathologies at first order. In the so-called Miiller-Israel-
Stewart (MIS) formalism, one begins by computing 7¢” up
to second order in gradients of the hydrodynamic variables,
at which point one writes the second-order stress-energy
tensor as [cf. (5)]

T$ = Tt + s, (17)
The MIS approach differs from that of the BDNK equa-
tions, however, in that at first order MIS takes the Landau
frame rather than one of the causal, stable frames:

ab __ ab
T = T(1)|/1=;(=

0+T<“2b) :nff’LqLTé), (18)
where we have defined the shorthand
mh = T(“lb)h:)(:() =T = 250" (19)
for the Landau frame first-order dissipative correction ¢’ ,
which comes from taking the 1 = y = 0 case of (13)—(14).
The MIS formalism corrects the pathologies from using
the Landau frame by manipulating the second-order terms
in the definition of z$°. Writing this definition in compact
form, namely showing only ﬂ?i and one key second-order

term while pushing the others into the second-order tensor
1%, one has

®The Eckart and Landau-Lifshitz theories instead choose
¥ =0 and A=y =0, respectively [1]; as mentioned in the
introduction, these choices lead to acausal equations of motion
with unstable equilibrium states.

b = ﬂ?bL + cou'“V o) 4 T (20)
= 7 = SV (2e) 4 Ul T
+ I4b. (21)

Going from Eq. (20) to (21) above we have replaced ¢ in
(20) with —2576“? in (21), adding necessary terms to the
latter equation to keep them equal. The first step to arrive at
the MIS equations is to replace —2n6*? = 4% (19) with

75" in (21). Recalling our notation that 75" = T{{) + T3,
ab

here, since T(1) = —2n6°?, this introduces an error that is
the gradient of a second-order term, hence is of third order
and negligible. Performing the replacement, renaming
7, = ¢o/(2n), moving the V.5 term into a new tensor of
second-order terms /4%, and rearranging, we find [42]

1
c ab a a a
ulev a5 ) = . ( l.bL —n§P) + 14°. (22)

pa

This is an advection-type equation for ﬂgb with source term
that (ignoring 74%) drives the solution toward #¢ on a
timescale determined by the relaxation time transport
coefficient 7,. The final step in the MIS approach is to
now consider ﬂg” as new, independent degrees of freedom,
with (22) becoming their evolution equation, and using (17)
verbatim in the conservation equation (1).

The convenience of having another set of evolution
equations (22) comes at the cost of second-order terms, of
which there are a great number. In (22) these terms are
hidden in 7¢%, and each acquires a corresponding transport
coefficient which must be computed separately using some
microscopic theory of the substance being modeled. Since
we are here only interested in first-order dissipative effects
on fluid dynamics, we drop 1¢b; this is sometimes called
“truncated” MIS theory, though for brevity in Sec. III and
beyond will not write “truncated” unless the distinction is
important. Dropping ¢” violates conformal symmetry [42],
so our comparisons between BDNK and MIS evolutions
presented later are more to illustrate how these two theories
provide dissipation in beyond-ideal hydrodynamics, rather
than to serve as a comparison between two models of the
same hypothetical underlying microscopic theory. Were we
to include terms to retain conformal symmetry in MIS, the
two theories would still not be identical at first order even
taking frame transformations into account, and it is not
straightforward to envision how a quantitative “apples-to-
apples” comparison could be made; we plan to investigate
this issue in more detail in future work.

Over the nearly sixty years of its existence, a lot has
come to be understood about MIS theory, both in general
and as it pertains to the study of the QGP. For a more
complete treatment of second-order dissipative hydrody-
namics see the review [2]; for a thorough treatment of
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conformal second-order terms (BRSSS formalism) see
[42]; a general discussion of hyperbolic conformal theories
of divergence form can be found in [44]; and for a
derivation from the Boltzmann equation (DNMR formal-
ism) see [45,46].

Much has also been learned about the mathematical
properties of the MIS equations of motion, though the
added complexity of working at second order has stymied
the derivation of some results which are already known for
the more recently developed first-order theories. As was
mentioned in Sec. II C, the BDNK equations are stable,
causal, consistent with the second law of thermodynamics,
strongly hyperbolic, and well-posed with appropriate con-
straints on the transport coefficients [25,36]. For MIS on
the other hand, the known properties are slightly weaker.
The MIS equations are stable at the linear level, which in
turn implies causal propagation [10]; they are consistent
with the second law of thermodynamics by construction
[9]; they have been shown to be well-posed in the case
where 7% does not include heat conduction or particle
diffusion [47]; and they have only been proven to be
hyperbolic when all dissipative effects but bulk viscosity
are neglected [48]. Nonlinear proofs of stability, causality,
local well-posedness, and hyperbolicity do not yet exist for
the general case in (3 + 1)D.

I11. DISSIPATIVE FLUIDS IN SLAB-SYMMETRIC
4D MINKOWSKI SPACETIME

This work is meant to be a first study of the nonlinear
dynamics of the BDNK equations, and to compare those
solutions with ones obtained using an MIS-based code;
to that end, we will focus entirely on the behavior of the
fluid and neglect spacetime curvature, specializing
to 4D Minkowski spacetime. Furthermore, to simplify
the numerics we will use Cartesian coordinates x¢ =
(1, x, y,z)T, and will restrict ourselves to systems which
only vary in ¢, x (“slab” or “planar” symmetry).

In slab-symmetric 4D Minkowski spacetime, the fluid
four-velocity may be written

u® = (W, Ww,0,0)7, (23)

where W = (1 — v?)~!/2 is the Lorentz factor of the flow.
The two nontrivial hydrodynamic variables are then e(z, x)
and v(t,x), and only the 7z, x components of (1) are
nontrivial, 9.7 = 0,9,T* = 0. Using the decomposition
(5), one may write these equations as

0=T{y + (Tf) + & + () (24)
0= T + (T%) + i + (7 (25)

where the k =0 case corresponds to the perfect fluid
equations of motion (relativistic Euler equations), k = 1 the

BDNK equations, and k =2 the MIS equations. In the
equations above and for the remainder of this work, an
overdot represents the time derivative of a quantity d,, and a
prime denotes a spatial derivative 0,.

The following three subsections define the terms
in (24)—(25), giving the relativistic Euler equations
(Sec. Il A), BDNK equations (Sec. III B) and MIS equa-
tions (Sec. III C).

A. Relativistic Euler equations

In slab-symmetric 4D Minkowski spacetime, the com-
ponents of T‘(lé’) are

Ty =t=(e+P)W - P (26)
Ty =S=v(t+P) (27)
T = Sv+ P, (28)

where we have defined the shorthand z, S for TEB), TE’(;),
respectively, following [43,49,50]. At zeroth order, (26)-
(28) complete the equations of motion (24)—(25), as
zeroth-order hydrodynamics has no dissipative correction
(ngb = 0) by definition. Hence the nontrivial equations of
motion for the perfect fluid are

0=i+8 (29)

0=S+ (Sv+P). (30)

B. BDNK equations

At first order, the constitutive relations defining 7¢° take
the form

73)(0
A =gan

A
0] = 4;/4 W2(vé + €') + Age* W (i + 1)

W(é + ve') + yoe/*W3 (vi + 1)

4
T = —§n0€3/4W5(1)1'J—|—U’) (31)

where the requirement that Qf be transverse implies
Q) = vQ}, and the requirement that 7¢” is transverse
and traceless implies 7 =vT ¥ =vT} =v>T7". Inserting
the definitions (31) into (14) gives the components of fr‘l‘b:

1
= §W2(3 +02)A; +2Wo QO + v? T
4
= ngv.Al + W +0*) O + vTH
1
P :§W2(1 +30%) A, +2Wo Q% + TF, (32)
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which may be combined with the zeroth-order stress-
energy tensor components (26)—(28) to complete the
equations of motion (24)—(25), yielding

0=1+8 47+ (=)

0=3S+ (Sv+P) + %+ (z1). (33)

C. MIS equations
Since ng” is defined to be symmetric, transverse to u“,
and traceless, we have the identities [42]
il = vak = ony! = v?as (34)
As aresult, evolving 73" is sufficient to constrain the whole

tensor’ ngb , and we will only need the xx component of
(22), which is

1
' +o(m) =g (arL — m57)

+ 2W2urs o + 2W s, (35)
where the Landau frame first-order dissipative correction is
my'p = T7* from (31). The equations of motion for the MIS
system are then (35) to evolve 73, and the two nontrivial
components of the stress-energy conservation equation:

0=t+S + il + (a&) (36)
0=2S+(Sv+P) + a5+ (z3*). (37)

IV. NUMERICAL METHODS

A. Conservative schemes for ideal hydrodynamics

The ultimate goal when writing down a fluid model is to
determine the time evolution of the hydrodynamic varia-
bles. With this in mind, a naive way to formulate a
numerical method to solve (1) at zeroth order in gradients
(ideal hydrodynamics) would be to treat it as a set of
evolution equations for e, v explicitly, e.g., the 7, x
components of VHTS” =0, (29)—(30), would be written

¢=F(v,€,v,¢e,0)

v =G(é, €, v, €,0), (38)
for some nonlinear functions F, G. One would then solve a
discretization of the coupled nonlinear PDEs (38) to evolve
e, v forward in time.

A naive scheme of the form (38) should work in principle
as long as the solutions are smooth. However, solutions to

7 . - C e 1.
Only 73" is needed as long as ﬁ;y , 5" are initialized to zero, as
is the case here.

the relativistic Euler equations (1), (26)—(28), are not
generically smooth, as discontinuities in €, v (shockwaves)
can form dynamically [51,52]. In these cases the physical
solution is given not by direct solution of the PDEs (38)—
as derivative terms ¢’, v’ diverge—but instead by solution to
the weak formulation of the equations [53].

To resolve shocks in ideal hydrodynamics, instead of
(38) one writes (26)—(28) in so called flux conservative
form

0 0
—¢I+@fm =y,

T (39)

where the vector ¢ is populated with conservative varia-
bles, f1; is the ith component of a vector of fluxes (with i
restricted to spatial indices), y is a vector of sources, and
each is a function of the primitive variables p (in this case,
p = (e,v)T). This approach is specialized to conservation
laws, and allows one to apply special methods rooted in the
weak formulation of the equations to handle the spatial
derivative term, Jf ;/Ox', when discontinuities are present.
Among these methods are artificial viscosity techniques,
which smooth shocks until they no longer destabilize the
numerical scheme, and high-resolution shock-capturing
(HRSC) methods, which use the characteristic structure
across a discontinuity to derive a discretization for f that is
stable across it. For a detailed summary of these methods,
see for example the reviews of Marti and Miiller [49], Font
[54], and LeVeque’s book [55].

Note that it is typically unfeasible and sometimes
impossible to analytically solve for the primitive variables
p as explicit functions of the conservative variables ¢; hence
the flux f|; and the source term y are generically written as
functions of both ¢ and p. Since a solution to (39) only
provides updated values of ¢, it becomes necessary to
compute p from the updated variables ¢ in order to perform
the next time evolution step. This process of computing
p(q), sometimes called primitive variable recovery, often
involves solving a system of coupled nonlinear algebraic
equations and occurs many times within a time step. For
this reason it is often the most time consuming part of the
numerical scheme; fortunately a number of algorithms have
been discovered for the standard sets of conservative and
primitive variables, and the computational cost is usually
not prohibitive [49].

B. Conservative formulations for the relativistic Euler,
BDNK, and MIS equations

In this subsection we will cast the zeroth-order relativ-
istic Euler, first-order BDNK, and second-order MIS
equations into conservative form (39).

1. Zeroth order: relativistic Euler equations

Starting at zeroth order, comparing the relativistic Euler
equations (29)—(30) with (39), we can see that
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T S
qPF — (S>’ fPF: <Sv+P)’ l[/PF =0. (40)

It turns out that the high degree of symmetry in the
conformal fluid 74" allows one to do the primitive variable
recovery analytically, and one finds p(g) to be [43]

€=—7+ V4r* - 35?
3S
= . 41
v 3t+e (41)

2. First order: BDNK equations

Since T’ is first order in gradients, the BDNK equa-
tions (24)—(25) are second order PDEs. Hence, as men-
tioned in the Introduction, one would expect to have to
adapt numerical methods to this structure, rather than being
able to use methods devised for the Euler equations (which
contain only first derivatives). If one wants to keep the
equations in conservation-law form, one can do so by
performing a first order reduction in time, and instead
taking the primitive variables to be pV = (¢, 4)7. The
BDNK equations then take the form (39) with

ﬂ.ll .
g = (ﬂ,lx> IYS=fPEfr wYS=—¢"F, (42)
1

where

SR

which appears with k = 1 in (42). For simplicity we do not
include in the conservative system the “trivial” evolution
equations de/dt = ¢ and dv/dt = ¥ that are used to update
e, v (if one did, (e,v) would be added to the vector of
conservative variables, and their corresponding flux and
source terms would be (0,0) and (¢, ) respectively).

For the BDNK system, the conservative variables are
linear functions of the primitive variables, and it is
straightforward to solve for pV5(¢"5) analytically; the
results are lengthy and not particularly illuminating, so
we list them in Appendix A.

3. Second order: MIS equations

For the MIS formalism, one is able to use the additional
evolution equation for 73" (35) to evolve all of the first and
second-order terms from 7T4”. It is not a conservation law,
and may be solved using standard methods.

The presence of (35) allows us to use (24)—(25) to evolve
7, S as in the perfect fluid case, and accordingly allows us to
cast (24)—(25) in conservative form (39) with the same set
of conservative variables, hence the same p(q) primitive
variable recovery scheme (41). The full set of terms are

7'7'.11‘
gMIS = gPF | fMIS —gPF | pr oy MIS — _ (ﬂi) . (44)
2

with 2 = (z2f, 7)7, (43).

C. Discretization

We use a finite volume approach to discretize the fluid
equations of motion, dividing the domain into cells of area
AxAt bounded by [x;_1 /5, X;11/2) in space and [¢", 7"*!] in
time. Continuum fields describing the fluid C are then
replaced with their cell averages C}. For all of the
simulations performed here, we divide the spatial domain
into N cells, with N — 1 =27 to 2!2, and use a Courant
factor A = At/Ax = 0.1. For the smooth Gaussian test
problem we use a periodic domain (identifying cell 0 with
cell N — 1), and no boundary conditions are needed. For the
other two tests, at the spatial boundaries of the domain, the
outermost two cells at eachend (i = 0,1, N —2, N — 1) are
designated ghost cells, whose values are not evolved using
the discretized PDEs, but are instead copied from the
nearest nonghost cell. Explicitly, at time level n we copy
the value Cj into Cjj, CY|, and Cy_; into Cy_,,Ch_,.
Convergence tests are described in Appendix D.

1. Zeroth order: Relativistic Euler equations

We discretize the relativistic Euler equations using the
method of lines, following [43,50]. Specifically, we evolve
in time using Heun’s method (an explicit second-order
Runge-Kutta-type scheme) [50,55,56]. Writing (39) as
g =w —f =H(q), Heun’s method updates g in two
steps via

qn«H — qn + Al‘H(qn)

At
¢ =q"+ = H(g") +H@G"")] (45)
To discretize the flux term f’, we use the Roe approxi-
mate Riemann solver [57] along with the minmod slope
limiter [43].

2. First order: BDNK equations

Shock-capturing methods were developed for the rela-
tivistic Euler system because the equations are known to
possess physical, discontinuous shock solutions [53]. As
discussed in the introduction, it is unclear whether solutions
with discontinuities in the hydrodynamic variables can be
made sense of for the BDNK or MIS equations. Even if
such solutions are mathematically sensible, their infinite
gradients would make them untrustworthy from the per-
spective of the gradient expansion. However, since we are
ultimately interested in applications where sharp transitions
may develop over scales too small to resolve, it would
behoove us to use methods that can deal with such effective
discontinuities. With that in mind, we use a simple scheme
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that is able to evolve the kind of discontinuous initial data
used in our shock tube test, at least if the discontinuity and/
or viscosity is not too large.

For large jumps or large viscosity—the region of
parameter space where the gradient expansion should break
down—our numerical method fails.® In addition, since we
have based our algorithm on a conservative form of the
equations adapted to their principal structure (Sec. IV B 2),
it does not work with exactly zero viscosity (and in practice
neither for viscosity so small that the primitive variable
recovery (Al1)-(A2) becomes dominated by round-off
error, as those expressions have a 0/0 form in the limit
n — 0). If being able to run with exactly zero viscosity is
important for a BDNK scheme, then a different set of
variables and solution algorithm would be required (for
example, one more akin to that used for the MIS equations
described in the following subsection).

As with the Euler equations (Sec. IV C 1), we use Heun’s
method to evolve ¢ forward in time. We also compute the
perfect fluid contribution f*7 to the flux term VS = fFF +
f7 as with the Euler equations, namely using the Roe flux
with minmod limiter. The main difference for the BDNK
equations then is how we deal with the viscous part f7 of
the flux. For this, we effectively treat it as a source term,
discretizing the spatial derivative (f7)’ using standard
centered, second-order-accurate finite difference stencils.
Regarding that, it is crucial to note that of the two
components of the flux f7 = (z'*, z1*)7, only the first is
a conservative variable ¢ being dynamically evolved. For
the second component z{* then, we need to replace it with
its definition (13), (14), which contains derivative terms
such as ¢, v'. Thus, the gradient of the corresponding flux
term contains second spatial derivatives, that we also
discretize using a standard centered second-order-accurate
finite difference stencil. Note that we do not need to use
mixed space-time difference operators, as our primitive
variables are p = (¢, ¥)7, i.e., in the gradient of the flux
term it is simply their spatial derivatives that appear. For the
sake of clarity, we provide a detailed list of the actions
performed during one time evolution step of our BDNK
numerical algorithm in Appendix B.

When evolving discontinuous initial data, at early times
we find adding Kreiss-Oliger style dissipation [58] helps in
achieving stable evolution. Specifically, during both the
predictor and corrector step of the time integration we

*0ur algorithm also breaks down in the typical problematic
regimes experienced by many relativistic hydrodynamic codes,
e.g., flow velocities approaching the speed of light, or very low
densities. To help distinguish those failures from ones that may be
associated with viscosity, one can monitor the series of tests (see
Sec. VI) designed to indicate whether one is evolving outside of
the regime of validity of the gradient expansion.

For smooth initial data, even the perfect fluid flux can be
computed with finite differences—using the Roe flux is only
necessary at early times for the shock tube test.

apply this artificial dissipation to #{* and z{* with ampli-
tude coefficient ago ~ 0.1. Kreiss-Oliger dissipation is
unnecessary for evolutions starting from smooth initial
data, and ceases to be necessary shortly after physical
dissipation smooths the shock in cases with discontinuous
initial data.

3. Second order: MIS equations

For the MIS equations, we discretize the 73" evolution
equation (35) using a simple first-order upwind scheme
[59,60]. Explicitly, we write the advection operator as

n G =CL, n 0
: iTa o Vi=
(0, + v0,)C~ C+ Lo, (46)
Ui lT Ui < 0,

where the time evolution of C is again performed using
Heun’s method, and all remaining spatial derivatives out-
side the advection operator (such as v') are handled with
centered, second-order-accurate finite differences.

For the conservation law (39) we again use Heun’s
method for the time evolution. We also follow the BDNK
approach by splitting the flux into a perfect fluid piece and
a dissipative piece, using a Roe solver and finite differences
for (f7F)" and (f3)', respectively. MIS differs from BDNK
though in that (f7)" only requires first differences of v and
75 (34).

We handle the source term y™!S (44) in the same way as
[56], using a backward time difference C &~ (C? — C?~1)/ At
in the predictor step of Heun’s method (computing g in (45)).
In the corrector step we use the advanced time level from the
predictor step, C ~ (C!*! — C?)/At.

V. PHYSICAL REGIME OF INTEREST

We adopt natural units, which means that a quantity with
SI units kg®m’s is written (E)* /=7 n/*7cF=22 where E is
an energy unit (e.g. GeV, J, etc.) and the factors of 72, ¢ may
be ignored once one sets the fundamental constants
¢ =h=ky = 1. As a result of conformal symmetry, the
choice of energy unit in this case fixes an overall energy
scale, but does not meaningfully alter the dynamics.10 With
this in mind, for the remainder of this work we (arbitrarily)
choose to measure energies in GeV.

We derive intuition from the phenomenology of heavy-
ion collisions to make our choice for 7, which determines
the amount of viscosity in the solution. QGP viscosities
have been measured to be within about 10% of the so-called

"For example, consider the effect of a change in units £ —
E' = JE on the spacetime evolution of the system, 7%?(x“). The
transformation takes 7% — 2*T9 and x* — 1~'x%; the latter is a
symmetry of the stress-energy tensor due to conformal invari-
ance, and hence the net effect of £ — E’ is just the constant
rescaling 79 (x*) — A*T“®(x“). Another way to see this is to
notice that A cancels from the equations of motion, (1).
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KSS bound [61] which gives the predicted minimum ratio
of shear viscosity # to entropy density s for any fluid [62]:

’,Imin 1
=—. 47
s ¥ (47)

We can compute the value of our free parameter 7, required
to reach the KSS bound using (15) and the entropy density
for a conformal fluid [25]

e+ P
s = ,
T
giving
1/4
min __ 60_ .
0 3r

For a QGP the ratio €/T* = ¢, ~ 10 [63,64]. In our results
below, we consider fluids with ¢y = 10, and viscosities
ranging between the KSS bound 7/s = (4z)~' and
n/s =20- (4r)7".

Despite nearly saturating the KSS lower bound for
entropy-normalized viscosity 7/s, the QGP has a high
viscosity # by everyday standards, which is then compen-
sated for by a correspondingly high entropy density s. In SI
units, the QGP viscosity is roughly # ~ 10'2 Pa-s [65],
nearly 10'3 times that for water at STP, despite the fact that
water’s entropy-normalized viscosity is many times larger,
n/s ~380- (4z)~! [62].

The convergence of the gradient expansion is determined
entirely by the size of gradients (such as ¢”) and transport
coefficients (such as 7), not by normalized quantities like
n/s. Since the QGP has a large shear viscosity # and has
variation on scales of order fm, both the transport coef-
ficients and gradients in the expansion (3) are relatively
large. Hence, if the BDNK and MIS equations can
accurately model the dynamics of the QGP, it would be
reasonable to expect similar success in regimes where the
transport coefficients and gradients are smaller, as is often
the case in astrophysics. One example would be oscillations
in an isolated, cold neutron star: neutron star cores are
predicted to have viscosities a factor of ~10° times larger
[66] than the QGP, but variation on scales of km, making
gradients at least a factor of ~10'® smaller. Following a
binary neutron star merger [12], if the remnant does not
promptly collapse to a black hole, a differentially rotating
star would form with much smaller lengthscale variations
and higher temperatures (due to shock heating from the
collision, reaching ~10 MeV, which compares to
~150 MeV for the QGP [12,67,68]). However, these
conditions are likely still well within the regime of validity
of the BDNK and MIS equations (unlike the QGP-inspired
examples we show below, where already at 20 times the

KSS bound we see, for example, violations of the weak
energy condition in BDNK evolutions).

For the MIS system, in addition to the viscosity n we
have another degree of freedom: the relaxation time z,.
Using holographic arguments, [42] finds it to be

2-In2  (2-In2)ey”
7 S WV

(48)

For the sake of simplicity, we follow [59,60] in setting it to
be a constant,' specifically 7, = 0.3 GeV~! unless other-
wise stated. The chosen value is somewhat smaller than if
we were to use (48) for the Gaussian and shock tube test we
show below, which have a maximum energy density ¢ =
0.4 GeV* (implying 7, ~0.47 GeV~!). The shockwave
test has e larger by a factor of a few. On the other hand,
here we are actually not interested in treating 7, as an
additional, physical transport coefficient; rather, it is a
device to drive the independent tensor 74” toward the first-
order dissipative tensor 4% (see (22) with /4> = 0) that
contains the physics we are interested in modeling. Thus,
we want 7, to be small enough that it does not affect the
results, but not so small as to require prohibitively small
time steps for stable numerical evolution; 7, = 0.3 GeV~!
is a good choice in that regard. Varying 7, by factor of a few
causes negligible differences in the results for most of the
cases studied below, the exception being in far from
equilibrium scenarios, where for the sake of illustration
we also present an example with 7, = 30 GeV~!.

VI. MONITORING CONVERGENCE
OF THE GRADIENT EXPANSION

The BDNK and MIS theories described here are only
well justified modeling dissipative hydrodynamics in
regimes where the gradient expansion (3) converges.
Though we are unable to make claims about the conver-
gence or divergence of the gradient series for the nonlinear
numerical solutions presented here,'” one expects that a
truncation at order k+ 1 should be reliable when its
contribution to the stress-energy tensor is smaller than
the contribution at order k. As such we compute the
quantity |T€’1) / TE’O)| for the BDNK and MIS solutions,
taking 77}, = x{ for the former and T}, = z{, = v’z{},
for the latter. In regions where |7 /T; |
expect higher order terms to be important, and the first-
order results to no longer be trustworthy.

The authors of [36] also suggest checking that
the weak energy condition remains satisfied, namely

> 1, one would

~

llThough it is not an issue for our purposes, it is important
to note that choosing 7, to be constant violates conformal
symmetry [42]—see Sec. IID.

"2Such claims can be made for highly symmetric flows—see
[37-40,69].
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X, X,T% >0 V X% with X _X¢ = —1, as its violation may
indicate entry into a regime in which (3) no longer
converges. Along these lines we monitor two choices for
X¢4: the fluid four velocity u® and the simulation reference
frame four velocity (0/0¢)“. For the BDNK system we also
check if |A;/e|, (13)—(14), approaches or exceeds unity.

VII. RESULTS

In this section we discuss numerical solutions to the
relativistic Euler, BDNK, and MIS equations for three
distinct sets of initial data: (A) a smooth, initially stationary
profile, (B) a discontinuous (shock tube) setup, and (C) a
smooth transition from a supersonic flow at the left
boundary to subsonic flow at the right boundary. In all
cases, this amounts to particular choices of ¢(z = 0, x) and
v(t = 0, x). For the Euler equations, that completes speci-
fication of the initial data.

For the BDNK equations, we additionally need to
specify 7z{(r=0,x) and #{*(t=0,x) (or equivalently
é(t=0,x) and 9(t =0, x) from (Al)), and for the MIS
equations 73*(f = 0,x). In all cases for BDNK we set
a'(t =0) = z"(r =0) =0, and for MIS z**(t = 0) = 0.
For the MIS equations this always results in the initial
evolution being identical to the perfect fluid at t = 0. For
the BDNK equations this will only be so if v(r = 0,x) = 0,
as is the case for tests (A) and (B), though not so for the
shockwave test (C) (if desired one can always choose é(t =
0,x) and ©(t = 0, x) to be equal to that of the perfect fluid,
but for (C) we are more interested in understanding the
nature of strong shock solutions within BDNK than
comparing to the perfect fluid evolution).

A. Smooth, stationary initial data

We first consider the evolution of data that is initially
stationary v(f = 0,x) =0, and has a smooth Gaussian
profile in the energy density

e(t=0,x) = Ae™/"" 4+ 6. (49)

For a concrete example we choose the amplitude A =
0.4 GeV*, width w = 25 GeV~!, and background energy
density § = 0.1 GeV*. Figure 1 shows a snapshot of e(z, x)
at t =47 GeV~!, run with three values of the viscosity
n/s ={0,1,3} - (4z)~!. The viscous evolutions in this
figure were produced with the BDNK equations using
frame A (16), but look identical (at the scale of the figure)
to the corresponding cases evolved with the MIS equations.
By the time shown in the figure, the initial Gaussian profile
in € has split into two clumps that are propagating away
from each other. One can clearly see from the figure that
viscosity acts to smooth sharp features in the energy density
profile (and similarly in the velocity profiles that develop).
Despite the fact that the flow velocities are initialized
to zero, the outer edges of the perfect fluid profile
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FIG. 1. Qualitative effect of viscosity on the evolution of

smooth initial data for 7/s={0,1,3}-(4x)"" at t=47GeV~!,
computed using the relativistic Euler equations (29)—(30) for
n = 0, and the BDNK equations (31)—(33) for the viscous cases
(MIS solutions for these would appear identical—see Fig. 2). As
expected, viscosity smooths the profile in ¢ compared to the
perfect fluid case. Also evident is the steepening of the leading
feature of each pulse, which for the perfect fluid case forms a step
function discontinuity at x ~ 438 GeV~! (discontinuities do not
form for the two viscous cases).

dynamically become supersonic, and a step function dis-
continuity can be seen at x ~ =38 GeV~!; discontinuities
do not form in the viscous cases with this initial data.

In Fig. 2 we compare solutions of the BDNK (frame A)
and MIS equations (blue lines and red dots, respectively)
with a sufficiently large viscosity /s = 20 - (4z)~! (right
panel) that they show markedly different evolution (for
reference, in the left and center panels we also show the two
viscous cases from Fig. 1, though this snapshot is at a
slightly earlier time). With time, the BDNK case splits into
four clumps in e rather than two. The MIS solution still
splits into two clumps, though at the time shown in Fig. 2 it
is in the midst of doing so; it eventually settles to a state
qualitatively similar to the lower viscosity cases shown in
the left and center panels.

The qualitative change in behavior of the BDNK
evolution evident in the rightmost panel of Fig. 2 leads
one to question if the high viscosity has pushed the system
outside of the regime of convergence of the gradient
expansion (or at least outside of where only first-order
corrections are adequate). The diagnostics (see Sec. VI)
shown in Fig. 3 for this case seem to confirm this suspicion,
as the BDNK solution (blue lines) violates the weak energy
condition (top panel) and has |T{} | > |T; [ (bottom panel)
at certain locations in the flow.

Interestingly, the MIS solution for the same initial data
and viscosity shows no indication (Fig. 3, dashed red line),
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FIG. 2. Comparison of solutions for the 7t component of the stress-energy tensor, 7", obtained with the BDNK theory (frame A (16))
and MIS theory, in lines and dots respectively, at t = 35 GeV~! for viscosities /s = {1,3,20} - (4z)~" from left to right. Note that at
the two lower viscosities, the solutions are qualitatively identical for the BDNK and MIS equations. In the highest viscosity case
(rightmost panel) BDNK theory gives a qualitatively different solution from MIS and the lower viscosity solutions, instead forming
multiple maxima, developing sharp features, and even changing sign (the MIS solution shown is in the process of splitting into two
clumps, as in the lower-viscosity cases). There is evidence that this solution lies outside of the regime of validity of the gradient
expansion at first order—see Fig. 3. Note that to avoid clutter the MIS points are a sparse sampling of the actual resolution of the

simulation.

via the same diagnostics, that one may be in a regime
outside the validity of first-order dissipative hydrodynam-
ics. This occurs because the truncated MIS evolution
equation for #3* (35) only includes the Landau frame
first-order correction, which has gradients of v but not ¢, the
latter being much more relevant for this particular evolu-
tion. In general, these terms would appear at second order,
and would likely dominate the evolution and give signifi-
cantly different results from the case shown in Fig. 3. This
suggests the diagnostics we have considered here are not
effective to judge whether one can trust the results of the
truncated MIS evolution, and instead one should monitor
the magnitude of second-order terms that were dropped.13

As discussed above and illustrated in Figs. 2-3, with
large dissipative terms the BDNK vs MIS evolutions
become starkly different soon after evolution begins, and
as judged by the BDNK diagnostics are well outside the
regime of near-equilibrium hydrodynamics. Remarkably
though, after their initial growth, the large gradients in
BDNK decay quite rapidly, returning to solutions that are
very similar to those obtained with MIS, and show no
distinctive features left over from this far from equilibrium
phase—see Fig. 4 for later time snapshots, and also a
comparison between evolutions beginning with different
amplitude initial data. This is reminiscent of so-called
universal attractor behavior observed in solutions of various

n the literature (e.g., [42,70]) it is common to use the zeroth-
order equations of motion to simplify the terms at second order
and above. For example, in [42] the second-order terms are
expressed entirely in terms of v, eliminating gradients of e
(though they use T  e'/* as a variable rather than €). In these
cases, one would need to monitor that the zeroth-order EOM are
being satisfied to O(V) in order to justify using them to replace e
gradient terms.

beyond-ideal theories applied to Bjorken flow [32,33].
There, essentially arbitrary initial data (within the class
relevant to the highly symmetric Bjorken flow) quickly
approaches a hydrodynamic attractor solution via the decay
of nonhydrodynamic modes present in the dissipative
theories. Though we have not performed any mode analysis
in our simulations, this qualitatively seems to describe what
happens here as well; for example, in Fig. 5 we plot norms
of #' for the runs depicted in Fig. 4, showing an initial fast
exponential decay, followed by a slower power-law
decay.]4 Presumably the exponential phase is the decay
of the nonhydrodynamic modes, which for BDNK could be
explained (mathematically) as coming from the second-
order nature of the PDEs. Similar behavior should also be
present in the MIS evolution, where the nonhydrodynamic
modes can be associated with the treatment of 7%’ as an
independent tensor. This indeed seems to the case, though
to make it more evident one needs to increase the relaxation
time parameter 7,—see Fig. 6.

B. Discontinuous initial data

A standard test for fluid codes is the so-called shock tube
problem: an initially static configuration, but with different
constant energy densities (and pressures) to the left and
right of a fictitious membrane separating these states (at
x = 0 here), that is “removed” at t = 0. As discussed
earlier, such initial data is mathematically justifiable for the
Euler equations, and by extension then the MIS equations

“Incidentally, Fig. 5 also makes it clear that despite the initial
data having 7%®(t = 0) = 0, and hence by definition will have the
same evolution as the ideal fluid case precisely at # = 0, this still
constitutes a far-from-ideal initial condition; i.e., we are simply
starting at a zero-crossing of z%”, which also occurs periodically
at later times due to our periodic domain.
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FIG. 3. Comparison between the BDNK solution (solid blue

line) and MIS solution (dashed red line) for the /s = 20 - (4z)~!
case from the rightmost panel of Fig. 2. The top panel shows that the
BDNK solution violates the weak energy condition, u,u, T < 0,
atx = £23 GeV~!, while the MIS solution has u,u, 7% > 0 at all
times during the simulation. Bottom panel: comparison of the
BDNK and MIS solutions for the quantity |77}, /T | The BDNK
solution (solid blue line) has |TE’1) / TZ)>| > 1 at the same place

where the weak energy condition is violated. The MIS solution
(dashed red line) stays below 1 throughout the simulation.

100 — A=0.1
— A=0.05
A=0.01
’%g 10—2 -
&
—
1074 -
|
0 1000
t (GeV™)
FIG. 5. Decay rate of the spatial integral of |z''| over the

simulation domain as a function of time—a proxy for the total
effect of dissipation on the solution—for the three BDNK (frame
B) cases at 77/s = 20 - (4z)~" shown in Fig. 4. At early times
when in the far from equilibrium phase, where e¢ develops four
peaks, the dissipative correction decays exponentially. The end of
the exponential phase coincides with these peaks being essen-
tially completely smoothed out, and then there is a transition to a
slower power-law decay (the oscillatory features are introduced
by the periodic boundary conditions). At these later times, BDNK
(in both frames A and B) and MIS solutions are in good
agreement, despite the qualitative disagreement at earlier times
(as can be seen in the right panel of Fig. 2, for example).

considering #3* to truly be an independent degree of
freedom, but it is unclear whether similar justification
could be made for the BDNK equations. Nevertheless,
we compare such evolutions for the three different theories
in this section. Specifically, for our step function disconti-
nuity in € we choose:

t=235GeV! t =93 GeV! t =537 GeV !
0.2 - L — A=01
. — A=0.05
o N _
| . \7 A =001
w . - ~ ~
—l< /\-_/ \A J\ ﬂ,
0.0 N
—40 40 —8&0 &0 —160 160
z (GeV™h

FIG. 4. Behavior of smooth BDNK (frame B) solutions passing through the “far from equilibrium” phase, as a function of Gaussian
amplitude A [cf. (49)] for5/s = 20 - (4x)~". To aid comparison, what is plotted is the energy density minus the initial background value,
(e — 8), then scaled by 1/A; this is done so that all curves overlap at # = 0. In all cases, the solution forms a structure with four peaks;
these peaks decay at a rate proportional to their amplitude, and the solution eventually settles to one with only two propagating maxima
(within the periodic domain). The late-time solutions for these sets of initial data are very similar between BDNK and MIS.
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FIG. 6. Behavior of smooth MIS solutions for 77/s = 20 - (4z)~! as a function of the relaxation time 7, along with the perfect fluid
solution 7 = 0 (equivalent in this case to the limit 7, — o0). The two cases with finite 7, eventually approach a common solution, which

agrees with that from the BDNK equations.

x<0

0.4 GeV*
- x>0 (50)

0.1 GeV*

The qualitative behavior of these solutions is shown in
Fig. 7, again for the relativistic Euler equations (17/s = 0)
and the BDNK equations (7/s = {1,3} - (4x)~!) using
frame A, where once again the MIS solutions at these
viscosities are nearly identical. In all cases, three regions
form: a backward-propagating rarefaction region, a for-
ward-propagating shock front, and a plateau connecting the
two regions. Dissipation in the BDNK solution smooths out
the rarefaction region and the shock front, while in the
perfect fluid solution the latter remains discontinuous.

0.4

IS BIS »lI]
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€ (GeV?)

0.2

0.1} |
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FIG. 7. Qualitative effect of viscosity on the evolution of
discontinuous initial data for n/s = {0,1,3} - (4z)~! at t =
35 GeV~! (BDNK equations, frame A). Once again, viscosity
smooths out the entire profile, including both the rarefaction fan
(here at x =~ —60 GeV~!) and the forward-propagating shock
front (here at x ~ 100 GeV ™).

Despite the smoothing, all features propagate at essentially
the same speeds.

In Fig. 8 we show a comparison between the BDNK and
MIS solutions for this initial data, similar to Fig. 2. As in the
smooth data comparison, we find that the BDNK and MIS
solutions are effectively identical for /s = {1,3} - (4z)~L.

It is important to note that for discontinuous initial data,
our BDNK evolution becomes “increasingly numerically
unstable” with resolution. By this we mean, as we increase
resolution, more ad hoc numerical “tricks” are needed to
evolve without a crash at ¢+ = O; these are, as described in
Sec. IV C?2, treating the perfect fluid flux with a Roe
scheme, and adding increasing amounts of Kreiss-Oliger
dissipation. With the initial data in (50), going beyond N =
2048 + 1 our current algorithm fails. At lower resolutions,
we also do not see convergence about (x =0,7=0),
though soon afterward the solutions begin to converge
(see Appendix D). In that sense then the solutions shown in
Fig. 8 can be considered valid approximate solutions to the
BDNK and MIS equations, though (in particular for
BDNK) we cannot claim they have evolved from a
discontinuity at = 0. On the other hand, given the close
similarity between the BDNK and MIS solutions, and that
these seem to approach the perfect fluid case as viscosity
decreases, suggests a smooth (convergent) approximation
to step function initial data would approach this solution in
the limit for BDNK, even if the exact limiting case is not
well defined (and of course, regardless, as the limit is taken
beyond some point one would expect to violate the
assumptions of the gradient expansion).

C. Supersonic (shock) initial data

1. Shockwaves in the relativistic Euler equations

As mentioned earlier, a well-known property of the
inviscid equations is that flows which are initially smooth
and subsonic can evolve to a state with discontinuities.
While the formation of these discontinuities is nontrivial
and not yet fully understood [51,52], it is simpler to see
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FIG. 8. Comparison between the BDNK (frame A; blue lines) and MIS solutions (red dots) evolved from discontinuous initial data,
here at t = 35 GeV~!, for /s = {1,3} - (4z)~'. As in Fig. 2, to avoid clutter the MIS points are a sparse sampling of the actual

resolution of the simulation.

why they persist once formed (beyond the intuition that
without viscosity there is no mechanism to smooth them
out). This comes from considering the characteristics of the
PDEs, which for the relativistic Euler equations with
conformal fluid equation of state, evaluated in the rest
frame v = 0 of the fluid, are

1

RE

RE— fo =4 —. (51)
V3

This tells us that a supersonic flow (defined by |v| > c¢;)
moves faster than the equations can propagate information,
namely at cRF relative to v. A shockwave is a discontinuity
that propagates supersonically, hence there is no way that
the structure of the subsonic region ahead of a shockwave
can inform the structure of the supersonic region behind the
shockwave, and the discontinuity must persist.

The Euler equations thus describe a physical shockwave
as a step function discontinuity bridging the upstream and
downstream states. By asserting that this jump in the fluid
state satisfies the weak formulation of the conservation law
(39), one arrives at the Rankine-Hugoniot conditions, one
of which gives the propagation speed u, of the shock front

_ f[1] (XL) - f[l](xR)
q (xz) - (I[l](xR) '

(52)

U

Here, the shock is propagating in the x (i = 1) direction,
and the components of the flux and state vectors f[;; and
q[i), respectively, are evaluated just to the left (x;) and the
right (xz) of the shock front.

In the following subsection we will study propagating
shockwaves separating two asymptotic perfect fluid states,
€1,V atx - —oo and €g, vg at x — +oo. In the rest frame

of these shocks, the steady-state solution is time-indepen-
dent, and the relativistic Euler, BDNK, and MIS PDEs
reduce to coupled ODEs. Without time dependence, the
Euler equations (29)—(30) become §' = 0, (Sv + P)' =0,
which have nontrivial solutions given by

€1,V XSO
€), vlx) = ep,vp x>0
R> YR
91)%—1
€p — € —————
RPh3(1—02)
1
-, 53
Ur 30, ( )

These are the Rankine-Hugoniot conditions boosted to
the reference frame where u, = 0. Hence, considering a
flow to the right (v > 0), after specifying ¢;, v;, the full
solution is determined for all x, with a step function jump
connecting the two asymptotic states at x — F-o0. Note that
restricting to right-moving shockwaves v; > 0, nontrivial
(€, # €g, vy # vg) solutions do exist for 0 < v, < 1/v/3;
however, for 1/3 < v; < 1/+/3 they violate the second law
of thermodynamics (the right state has less entropy density
than the left), and for v; < 1/3 the right state is super-
luminal and has negative energy density. Thus right-moving
physical shockwaves only exist for v, > 1/1/3.

Since we are considering a shockwave joining two
asymptotic equilibrium states, the solutions for viscous
fluids, considered in the next section, should be well
approximated by (53) outside a finite region around the
shockwave itself (or said another way, the viscous solutions
will replace what is a step function solution of the Euler
equations with a smooth transition between the same
asymptotic end states).
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2. Shockwaves in viscous fluids

One is forced to accept discontinuous shockwave sol-
utions to the relativistic Euler equations because all
shockwaves propagate faster than the characteristic speeds
of the equations. This behavior is not shared by the BDNK
and MIS equations, as they have a larger number of
characteristic speeds, some of which are greater than the
fluid sound speed. This allows for the possibility that these
theories can possess continuous shock solutions. Such
solutions have been investigated for certain MIS-type
theories, where they were found to exist only so long as
the upstream flow velocity is less than the maximum
characteristic speed of the system [18,19].

Guided by these results, we apply similar reasoning to
the two viscous theories considered here. The first step is to
compute the characteristic speeds of the PDEs we evolve.
For the BDNK equations the result is (again for simplicity
expressed in the rest frame » = 0 of the fluid):

(BDNK _ i\/)(0(2’10 +40) = 2v/moxo (o (o + 4o) + 45)
l 3ako
(54)

Notice that this expression depends on all the first-order
transport coefficient parameters, which, crucially, depend
on the hydrodynamic frame. For frame A (16), (54)
evaluates to

[31 +21/134
BPNKA — 4 — +0.32,40.85.  (55)

That the maximum speed is less than the speed of light
implies (and as we show empirically is true, and also
recently proven in [35] in an independent work), that
arbitrarily strong, smooth shock solutions do not exist
within this frame. This inspired us to consider frame B (16),
where we chose the frame parameters specifically so that
the maximum speed is equal to the speed of light (this is not
the unique choice, but is a particularly simple example):

1

R te (56)

Performing the same calculation for the truncated MIS
equations, one finds (again with v = 0)

1 47]063/4
MIS — =t 7
¢ 0, \/3 + (Ge 1 37, (57)

One can think of the zero-speed mode as being associated
with the transport equation for z3* (35), and the other two
giving the characteristic speeds of the fluid variables.
Notice that, in contrast to the BDNK characteristics above,
the nonzero speeds do depend on the state of the system,
which underlies the claims [18,19] that MIS-type theories
do not allow strong shock solutions in all situations;

i.e., one can always find some state where the maximum
characteristic speeds are less than 1 (in (57) for sufficiently
large €, for example). In contrast, it is easy to choose values
for 7, such that the characteristic speeds are superluminal,
and in fact, that is the case for the shockwave examples
discussed below when using MIS, as well as most other
cases presented here using 7, = 0.3 GeV~'. However, with
these, and all other examples we have looked at, the
solutions do not seem to exhibit any problematic behavior;
i.e., the equations “merely” happen to have characteristic-
cones that lie outside the light cone. In particular, near
equilibrium, localized perturbations in the fluid still propa-
gate at the sound speed, and when far from equilibrium, the
dynamics, though much more complicated as illustrated in
Fig. 6, still do not seem to show superluminal propagation
of prominent features, nor flow velocities that become
superluminal. Thus it is unclear under what circumstances a
superluminal characteristic structure leads to violation of
causality in the problematic sense of the phrase. For a
detailed analysis of this issue for the wider class of MIS
theories, see [47,71].

To numerically explore shockwave solutions, for initial
data we choose the following smooth transition between
two chosen asymptotic states (e;,v; > 1/4/3) and

(€r,vg < 1/\/5)1

e(x,1=0) :@ [erf(j}) + 1] tep

w(x,t=0) = w {1 - erf(%ﬂ g (58)

where erf(x/w) is the Gaussian error function."” For the
examples shown here we set w = 10, freely choose
€. vy > 1/+/3, and then compute g, v using the perfect
fluid jump conditions (53).

We find that, evolving with the BDNK equations, all
members of the family of initial data (58) we studied
converge to smooth, steady-state shock profiles as long as
vy is less than the maximum characteristic speed of the
particular frame (which for frame B (56) includes all
cases up to the largest velocities our code can generically
handle). The typical evolution for such a case begins with a
transient “blob” of fluid forming around the transition, that
then propagates off to the right, after which the fluid
relaxes to the steady-state profile. ' For frame A (55), when

*One can show that this set of initial data approaches a step
function jump in state at x = 0 in the limit w — 0" using the
identity [72] lim,,_o+erf(%) = 20@(x) — 1, where the step function
O(x>0)=1and O(x <0)=0.

'°If one does not choose the right state conditions to match the
perfect fluid ones (53), the transient feature that propagates to the
right is correspondingly larger, and the solution can settle to a
steady state where the shock front is moving in the simulation
reference frame. Boosting to the rest frame of this shock front
then gives a solution that does satisfy (53) asymptotically.
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vy 2 0.85, some time after evolution begins a high fre-
quency instability develops near the left side of the shock
transition—see Fig. 9, where we also show the same case
obtained with frame B for comparison.

Since our code develops other numerical problems when
flow speeds are larger than » ~ 0.9, it is reasonable to
question whether we can indeed claim that the BDNK
equations allow smooth shockwaves for arbitrarily large
upwind speeds (note that the recent proof [35] of failure of
existence of sufficiently strong shock solutions in strictly
causal frames, as frame A, does not prove that in sharply
causal frames, as frame B, that all shocks must have smooth
profiles). To give further evidence for this claim, we note
that the steady state solutions we evolve to in the dynamical
code match, to within truncation error, the “exact” sta-
tionary profiles one can obtain by integrating the ODEs
governing the corresponding time-independent limit of the
BDNK equations (listed in Appendix C). Moreover, these

” t =58 GeV!
0.8F
Ao = Zng
=06k
04 - | | | | |
t =312 GeV!
0.8F
Ao = Zng
=06k N=102 X0 = 2o
— N = 2049
— N = 4097
04 L | | | | |
—40  —20 0 20 40
z (GeVh

FIG. 9. BDNK evolution of supersonic shock initial data (58)
withe; = 1, v, = 0.87, and e, vy given by the perfect fluid jump
conditions (53). The top panel was obtained using frame A (16),
which has a maximum rest-frame characteristic speed (55) less
than v; . This results in an instability that causes the code to crash
soon after the time depicted. The inset focuses in on where the
instability first develops. Overlaid are the results from three
different resolution runs; the higher resolutions (darker curves)
crash sooner, indicative of a high frequency numerical instability.
Also evident on the top (main) panel near the right edge is the
transient “blob” mentioned in the text, which is an artifact of
the initial data not matching the stationary shock profile between
the two chosen end states. The bottom panel is the same initial data
obtained with frame B that has a maximum characteristic speed
equal to the speed of light (56). No instability occurs, and a steady
state is reached (notice the much later time stamp, in particular
long after the transient blob has propagated off the domain).

ODE:s have singularities (not coincidentally) at exactly the
points where the flow velocity crosses a characteristic
speed of the system. Also, from the ODEs one can estimate
that the characteristic width of the transition from left-to-
right asymptotic states, when a solution exists, scales as
~(1 —v?)'/%; hence, the steepening of the shock profile
with strength v; is largely frame independent, and a
discontinuity only forms in the limit »; — 1 (though above
some value of v; before 1, the gradients in the transition
region will become large enough that one would not trust
the first-order theory to give an accurate description of the
shock profile there). To illustrate, in Fig. 10, we show a
solution to the ODEs for v; = 0.9999, as well as plots of
the diagnostics vetting the first-order description.

1.00
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.
> -
—
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£ 05) =~
_ 1100 =
0.0 !
-1 0 1
z (GeV
FIG. 10. Shockwave solution to the steady-state BDNK

equations (C1)—~(C2) in frame B (16), with »; = 0.9999,
€; = 1. Top panel: solution in v (black) alongside that in €
(blue), the latter on a log scale because ez — oo as v; — 1. Note
that these solutions are qualitatively similar to those for smaller
vy (see Fig. 9 for example), except for the differences in scale.
Bottom panel: measures of the gradient expansion convergence
|T)(‘f) / TZ‘(’)“)\ (black) and the weak energy condition u,u, T (blue)
for the same solution. Notice that the former exceeds unity in the
central transition region, implying the solution is outside the
regime of validity of the gradient expansion here (the less
relativistic the shock the smaller the maximum of \T’{ﬁ / T’(‘(’,‘)|
becomes; for example, it is about an order of magnitude smaller
for the case shown in Fig. 9). The weak energy condition is not
violated anywhere.
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For the MIS equations we evolved the same set of cases
as with the BDNK examples; all MIS evolutions had
maximum characteristic speeds greater than 1 throughout
the domain, and reached similar, stable steady-states.

VIII. CONCLUSION

We have performed a first numerical study of a class of
causal, stable, first-order relativistic hydrodynamic theories
recently developed by Bemfica, Disconzi, Noronha [25]
and Kovtun [26]. The results are encouraging in that for
smooth initial data, with small to moderate viscosity, the
results agree with those obtained by a code based on the
Miiller-Israel-Stewart formalism commonly used today
when dissipative effects are important in a relativistic
setting. The latter requires appealing to second-order
effects to circumvent problems that arise when traditional
(Eckart or Landau-Lifshitz) hydrodynamic frames are
adopted. Though this approach works, it is reassuring
and could prove more useful in certain situations that
one can instead self-consistently and stably remain within
the realm of first-order hydrodynamics if the corresponding
dissipative effects are adequate to model the problem
at hand.

Regarding larger viscosities, an appealing feature of the
first-order theories is they offer simple diagnostics that can
be used to judge whether a given flow is adequately
described by first-order only dissipative effects (in contrast
to the truncated-MIS evolutions considered here, which
would have required computation of dropped second-order
terms to realize that the solutions were outside of the
regime of validity, from the perspective of a gradient
expansion). However, for the cases we explored, even
when starting with initial data with large gradients (far from
equilibrium), the evolution quickly carried the system back
to the hydrodynamic (small-gradient) regime, and—quite
remarkably—did so in a manner that seemed to erase all
signs of the nonhydrodynamic behavior in the flow that
developed at early times. This is similar to universal
attractor behavior found in Bjorken-like flows [32,33],
though here in cases with less symmetry.

Our results on strong shockwave solutions, consistent
with the recent work [35], also suggests that arbitrarily
strong, smooth shocks are generically allowed in the first-
order relativistic theories, if an appropriate class of hydro-
dynamic frames are employed. This is another possible
advantage over MIS-type theories, which do not share this
feature [18,19]. On the other hand, this might simply
suggest that the question of the existence of smooth, strong
shock solutions in second-order theories needs to be
reconsidered after restoring full freedom to choose the
hydrodynamic frame.

Regarding discontinuous initial data, though (as dis-
cussed at length earlier in the paper) it is not clear such data
is well-posed within BDNK theory, nevertheless, when our
scheme can stably evolve past ¢ = 0, the late time solutions

agree well with corresponding MIS solutions, giving
smoothed versions of the solutions found in the perfect
fluid limit (as one would intuitively expect).

There are numerous avenues for follow up work. Within
scenarios where symmetries can reduce the problem to
(1 4+ 1)D PDEs, as here, a couple of such directions are to
go beyond conformal fluids, and to include gravity in a
spherically symmetric setting. Relaxing symmetries, it
would be interesting to attempt to tackle essentially all
applications mentioned in the introduction where relativ-
istic, first-order dissipative effects need to be modeled.
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APPENDIX A: BDNK PRIMITIVE
VARIABLE RECOVERY

For the BDNK equations (39), (42), we recover the
primitive variables p¥S = (¢, 7)” from the conservative
variables ¢V = (zf, z%*)T analytically via

2
& = =2 (¢'(v* (2040 + 6100 + Aao) = 340000)

+ 2200"e(v* (o = 419) = 3%0))
_4alle!* (320 + v (4o + 3 + 4xo))

KW
+ 4”’1)(”51/4(3(2/10 + xo) + ”2()(0 — 4np)) (A1)
KW
_ 3¢'20(v* = 3)xo
N 4AKW*e
3gv(aiv? + il = 27 v) = 3y (2 (v* + 3) — 4xllv)
+ Kw3€3/4
200 (2n0(20v” + 3x0) + 40(v* = 3)x0) (A2)
K

where we have defined the shorthand

= —92ax0 + dov* (419 — x0) + 6V x0 (210 + Ao).
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The equations above are regular as long as e >0,
€ (—1, 1); for both frames (16) considered here the only
physical root of K (with |v| < 1) is 575 = 0.

APPENDIX B: DETAILED DESCRIPTION
OF THE BDNK ALGORITHM

We advance the solution forward in time using Heun’s
method (45): beginning from time " when the state of the
fluid (7¢%) is completely known, we first evolve to a
predictor level 7'*! before updating to the advanced time
"1 = " + At. Henceforth we will denote quantities at the
known level with an upper index n, quantities at the
predictor level with a bar and index n + 1, and quantities
at the advanced level with index n 4 1 and no bar, e.g., we
evolve " — el — el

We do this by solving four equations: (A1) for ¢; (A2) for
v; and the two components of the conservation law (39)—
(40), (42)—(43) for #!, z{*. The actions performed for each
time integration step of this algorithm are as follows.

(1) Given e, v, ', z}* are known at 1", compute (7**)"

from its definition (31)—(32).

(2) Compute €", 9" using (A1), (A2) respectively. These
quantities may be used immediately to compute
et ot eg., @t =€ + Are".

(3) Use the two components of the conservation law
(39)-(40), (42)—(43) to compute (z)" ", ()",
respectively. o

(4) Tnsert &', 51 (7)™ (z)"™ in (A1), (A2) to

’n+1’ l')n+l'

compute €

(5) Compute €', v"*! using the second step of (45).
For example, ¢ would be evolved via €' =
"+ 4 (e 4 e,

(6) Solve for ()", (z%*)"*! using the conservation
law (39)—(40), (42)—(43) with values at the known
level " and the predictor level 7! via the second
step of (45).

In steps 3 and 6 above, we optionally use the Roe flux to
compute f*F (42) (otherwise we use finite differences), and
optionally apply Kreiss-Oliger dissipation to g5 (42).

APPENDIX C: BDNK STEADY-STATE ODEs

If one restricts to time-independent (steady-state) sol-
utions, all time derivative terms vanish and the PDEs
describing stress-energy conservation reduce to coupled
ODEs. The structure of (1) further implies (in planar
symmetry in Minkowski spacetime) that the remaining
equations are total x derivatives of the form 8XTX” =0,
which may be trivially integrated to yield 7% = C;, T =
C, for real constants C;, C,. For the perfect fluid, the
steady-state equations are S = C,Sv+ P = C,, with a
trivial solution e, v = constant and a nontrivial solution
describing a shockwave given by the Rankine-Hugoniot
conditions (53).

For BDNK theory (31)—(33), the equations after the
trivial integral are coupled nonlinear ODEs; these ODEs
may be rearranged to yield

- —4e/4/1=92
T Soro(v=e) (=) (v=c3) (1<)
X (C1 (410 =x0) +v(Co(—4n0+340 +4x0)
+320*(Cy+€) =3C0(2 +x0) —€(410+20)))

(1)
BDNK, Gaussian 1D

4W

1 ! !
MIS, Gaussian ID

A NN IV IIPrre
/\/W\/'\/\-‘

1 | |
52 BDNK, discontinuous 1D
& 4k
]' | |
MIS, discontinuous 1D
4
! 0 2IO 4IO
t (GeVh
N =513 — N =1025 =— N =2049
FIG. 11. Convergence plots Qy(f) for the BDNK (frame A) and

MIS solutions for the case #/s = (4z)~! for an independent
(leapfrog) discretization of the ¢ component of (1). In order of
increasing darkness, the lines correspond to N = 513, 1025,
2049. The top two panels correspond to cases with Gaussian
initial data (49), and show the expected trend to convergence as
resolution is increased (in particular, for the BDNK equations this
should be second order, Qy(7) ~ 4, and for the MIS equations
somewhere between first and second order, Qy() ~2-4, de-
pending on how significant the first order advection term is in the
solution). The bottom two panels correspond to the discontinuous
shock tube initial data (50), and do not show convergence near
t =0 as measured by Qy(7); as discussed in the text, this is
expected, and once viscosity smooths out the discontinuity we do
see return to convergence.
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and

) _(1 _ 1}2)3/26_3/4

v =
NMoxo(v —¢1)(v—2)(v—c3) (v —¢4)
X (9C1 vy — 3v*(Cy (Ao + 4x0) + A0€)
+3C1v(240 + x0) + Ao(e = 3C3)),

(C2)

where ¢; with i € {1,2,3,4} are the four characteristic
speeds from (54). Notice that the equations share the same
denominator, which becomes singular when the flow
velocity crosses any of ¢;. Thus, as discussed in detail in
Sec. VIIC, a judicious choice of frame is required to be
able to represent all steady state solutions of interest, which
in a dynamical setting seems to translate to the well-
posedness of the corresponding initial value problem near
such states.

APPENDIX D: CONVERGENCE TESTS

For all of the runs performed here, we check for both the
correctness of our results and convergence by monitoring
the rate Qy(¢) at which an independent residual of the
evolution equations [typically the ¢ component of (1)]
converges to zero; specifically

B ”L2hu2hH
L

On(1) , (D1)

where L'u" denotes the discretization of the residual

operator L acting on a PDE solution u« evolved on a mesh
with grid spacing h = (Xpax — Xmin)/(N = 1), and ||]|
denotes any vector norm; here we use the 1-norm. The
convergence factor (D1) divides the discrete residual of a
solution computed with grid spacing 2/ by that computed
at spacing h, and for smooth solutions can be shown to

asymptote to Q — 2" in the continuum limit 2 — O for a
convergent numerical scheme with truncation error O(h").
For all three of the systems of PDEs considered here—
the relativistic Euler, BDNK, and MIS equations—all of the
discrete elements in the algorithm are second-order accu-
rate, with two exceptions: first is that the perfect fluid part
of the flux fF¥, as a result of the slope limiter, converges at
second order only in regions where the solution is smooth,
elsewhere it is first order; the other is in the MIS 3"
evolution equation (35), which uses a first-order upwind
discretization for the advection operator (46).

As a result—see Fig. 11 for examples—we find that
On(7) tends to 4 with increasing resolution for the
relativistic Euler and BDNK equations at times when the
solution is smooth. For MIS solutions, though strictly
speaking in the limit & — O the first-order term should
dominate, at the resolutions considered here (N from
128 + 1 to 2048 + 1) we see somewhere between first
(Qn(t) ~2) and second order (Qy(t) ~4) convergence.
For solutions about discontinuities (D1) is not justified, and
we do not expect (and do not see) convergence by this
measure. For the Euler equations, we have checked that we
do converge to solutions about shock fronts that are
consistent with the Rankine-Hugoniot conditions (52).
As discussed in the main text, for the BDNK and MIS
equations we have not found situations where discontinu-
ities dynamically form, and so the only examples we
looked at are the shock tube tests where we put them in
by hand at + = 0, whether that is justifiable in a weak-sense,
as they are for the Euler equations, or not. Though at least
the way the code “resolves” these discontinuities, once
some dissipation with evolution has occurred, is consistent
with energy-momentum conservation, in particular in that
the resulting smooth shock fronts have the same propaga-
tion speeds and asymptotics as in the perfect fluid limit.
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