
Research Article: New Research | Integrative Systems

Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice

<https://doi.org/10.1523/ENEURO.0247-20.2021>

Cite as: eNeuro 2021; 10.1523/ENEURO.0247-20.2021

Received: 9 June 2020

Revised: 2 February 2021

Accepted: 15 February 2021

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2021 Petersen et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1 **Manuscript Title:** Social experience interacts with serotonin to affect functional
2 connectivity in the social behavior network following playback of social vocalizations in
3 mice

4
5 **Abbreviated Title:** Experience and serotonin affect functional connectivity
6
7

8
9 **Authors:** Christopher L. Petersen^{1,2}, Sarah E. D. Davis¹, Bhumi Patel¹, and Laura M.
10 Hurley^{1,2,3}

11
12 ¹Indiana University, Bloomington – Department of Biology
13 ²Indiana University, Bloomington – Center for the Integrative Study of Animal Behavior
14 ³Indiana University, Bloomington – Department of Neuroscience

15
16 **Author Contributions:** CLP and LMH designed research, CLP, SEDD, and BP
17 performed research, CLP analyzed data and wrote the paper, LMH supervised project.
18
19

20 **Corresponding author (Current address):**

21 Christopher L. Petersen, Ph.D.
22 University of Minnesota
23 Department of Neuroscience and Medical Discovery Team on Addiction
24 McGuire Translational Research Facility
25 2001 6th Street, SE
26 Minneapolis, MN 55455
27 chlpete@umn.edu

28
29 **Number of figures:** 6 (plus 2 extended data tables)

30
31 **Number of tables:** 2

32
33 **Number of multimedia:** 0

34
35 **Number of words for abstract:** 233

36
37 **Number of words in significance statement:** 117

38
39 **Number of words for introduction:** 746

40
41 **Number of words for discussion:** 2431

42
43 **Acknowledgements:** The authors wish to thank Jim Powers Ph.D. in the Indiana
44 University Light Microscopy Imaging Center (LMIC) for technical support, Richard Betzel
45 Ph.D. for network advice, Kelly Ronald, Ph.D. and Anna Ingebreton Ph.D. for

46 comments on the original manuscript, and members of the Hurley Lab for helpful
47 discussions.

48
49 **Dedication:** This publication is inspired by and dedicated to the memory of James L.
50 Goodson, Ph.D. (1965 – 2014).

51
52 **Conflict of Interest:** Authors report no conflicts of interest

53
54 **Funding sources:** This work was supported by the National Institute of Health
55 Common Themes in Reproductive Diversity Training Grant (5T32HD049336-12), the
56 Indiana University College of Arts and Sciences, and the Center for the Integrative
57 Study in Animal Behavior (CLP), and NSF grant IOS 1456298 (LMH).

58 **Abstract**

59

60 Past social experience affects the circuitry responsible for producing and
61 interpreting current behaviors. The social behavior network (SBN) is a candidate neural
62 ensemble to investigate the consequences of early-life social isolation. The SBN
63 interprets and produces social behaviors, such as vocalizations, through coordinated
64 patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN
65 is relatively unexplored with respect to murine vocal processing. The serotonergic system
66 is sensitive to past experience and innervates many nodes of the SBN; therefore, we
67 tested whether serotonin signaling interacts with social experience to affect patterns of
68 immediate early gene (cFos) induction in the male SBN following playback of social
69 vocalizations. Male mice were separated into either social housing of 3 mice per cage or
70 into isolated housing at 18 – 24 days postnatal. After 28 – 30 days in housing treatment,
71 mice were parsed into 1 of 3 drug treatment groups: control, fenfluramine (increases
72 available serotonin) or pCPA (depletes available serotonin) and exposed to a 60-minute
73 playback of female broadband vocalizations. Fenfluramine generally increased the
74 number of cFos immunoreactive neurons within the SBN, but effects were more
75 pronounced in socially isolated mice. Despite a generalized increase in cFos
76 immunoreactivity, isolated mice had reduced functional connectivity, clustering, and
77 modularity compared to socially reared mice. These results are analogous to
78 observations of functional dysconnectivity in persons with psychopathologies and
79 suggests that early-life social isolation modulates serotonergic regulation of social
80 networks.

81 **Significance Statement**

82

83 Social isolation and serotonergic signaling each modulate neural functions
84 independently of each other. It is unknown whether these factors interact to affect activity
85 at the level of individual nuclei, and/or functional networks. Using a vocal playback
86 paradigm, we find that acutely increasing or systemically depleting available serotonin
87 increased cFos immunoreactive neurons in the social behavior network (SBN) mice
88 raised in social isolation compared to their socially reared counterparts. We show for the
89 first time that mice raised in social isolation have reduced functional connectivity in the
90 SBN relative to socially reared mice. Importantly, network perturbations were not resolved
91 by drug treatment in isolated mice suggesting that social experience is necessary to
92 facilitate functional relationships in the SBN.

93

94

95 **Introduction**

96

97 The importance of social rearing has been evident since the 1960's and the now-
98 controversial "Harlow monkey experiments," which demonstrated that early-life social
99 isolation deprives macaques of the experiences necessary to develop into functional
100 adults (Harlow et al., 1965). The ability to amicably behave and communicate with
101 conspecifics is important to social cohesion, which in turn affects individual fitness and
102 psychological wellness (Heim and Nemeroff, 2001; Bailey and Moore, 2018). Neural
103 systems have evolved to support social cohesion (Goodson, 2013; Matthews and Tye,
104 2019) such that social interactions may carry positive valence (Goodson and Wang, 2006),

105 and be reinforced by the brain's reward circuitry (Dolen et al., 2013). Early-life social
106 immersion or deprivation may shape the circuits responsible for the appropriate
107 expression of social behaviors.

108

109 One such circuit is the vertebrate social behavior network (SBN). This includes the
110 lateral septum (LS), bed nucleus of the stria terminalis (BNST), medial preoptic area
111 (mPOA), paraventricular (PVN), anterior (AH), and ventromedial (VMH) hypothalamic
112 nuclei, the ventral tegmental area (VTA) and periaqueductal gray (PAG) (Newman, 1999;
113 Goodson, 2005; Goodson and Kingsbury, 2013). Rather than an exhaustive list of regions
114 that facilitate social processes (Rogers-Carter and Christianson, 2019), the SBN is an
115 evolutionarily conserved suite of nuclei responsible for interpreting and generating
116 responses to social stimuli (Goodson, 2005; O'Connell and Hofmann, 2012). SBN nuclei
117 or "nodes" are differentially engaged during specific behaviors (Lin et al., 2011; Lee et al.,
118 2014; Decot et al., 2017; McHenry et al., 2017; Kohl et al., 2018; Tschida et al., 2019);
119 however, coordinated patterns of activity or functional connectivity (Friston, 2011) across
120 the SBN contribute to variation in behavioral output (Goodson, 2005; Goodson and
121 Kabelik, 2009).

122

123 Since the original proposal of the SBN (Newman, 1999), analytical tools have been
124 developed to quantitatively describe functional anatomical networks (Sporns, 2010;
125 Fornito et al., 2016). For example, metrics such as density measure functional
126 connectivity in a given network, whereas the clustering coefficient is an indicator of "small-
127 world" networks which display increased efficacy of communication among regions (Watts

128 and Strogatz, 1998). Community structure/modularity calculates the degree to which
129 nodes assemble into functionally similar clusters (Newman and Girvan, 2004). Functional
130 networks are disrupted in human psychopathologies (Bullmore et al., 1997; van den
131 Heuvel and Sporns, 2019), emphasizing the importance of investigating network-level
132 features in rodent translational models (Van den Heuvel et al., 2016). Network-based
133 analyses in non-traditional model systems describe changes in SBN functional
134 connectivity following presentation of socially salient vocal stimuli (Hoke et al., 2005;
135 Ghahramani et al., 2018); however, no such studies exist in laboratory mice.

136

137 Murine vocalizations are a source of context-dependent information during social
138 interactions (Hanson and Hurley, 2012; Finton et al., 2017; Warren et al., 2018; Sangiamo
139 et al., 2020; Warren et al., 2020). Vocal processing relies on auditory circuitry as well as
140 functionally diverse nuclei such as the SBN. For example, receivers must extract the
141 physical characteristics of vocal signals (e.g., frequency, duration, amplitude, etc.) and
142 interpret them in light of their own experiences and current conditions (Petersen and
143 Hurley, 2017). Investigating whether social isolation disrupts vocal processing in circuits
144 such as the SBN will be important in understanding the mechanisms underlying aberrant
145 behavior in mouse models of communicative and affective disorders (Portfors and Perkel,
146 2014).

147

148 Serotonergic signaling is sensitive to social isolation: socially isolated mice
149 downregulate 5-HT receptor expression in hypothalamic nodes of the SBN (Schiller et al.,
150 2003; Bibancos et al., 2007). As anatomically distinct regions of the dorsal raphe nucleus

151 send serotonergic projections to the SBN (Schwarz et al., 2015; Muzerelle et al., 2016;
152 Beier et al., 2019), serotonin may modulate SBN activity in accordance with an animal's
153 internal state and changes in the external environment (Muzerelle et al., 2016;
154 Niederkofler et al., 2016; Ren et al., 2018). Broadly activating serotonergic pathways
155 affects neural activity markers across a distributed suite of nuclei including the SBN
156 (Giorgi et al., 2017; Grandjean et al., 2019); however, it remains unknown whether social
157 experience interacts with serotonin signaling to affect activity-dependent measures and
158 network-level metrics such as functional connectivity.

159

160 We use immediate early gene (IEG) mapping to test the hypothesis that serotonin
161 signaling interacts with social experience to affect patterns of cFos-ir neurons in the SBN
162 of male mice following presentation of female broadband vocalizations. Increasing
163 available serotonin increased the IEG response in several SBN nodes. This effect was
164 more prominent in socially isolated mice regardless of drug treatment. Despite increases
165 in cFos-ir neurons, network analyses reveal fewer functional relationships within the SBN
166 of socially isolated mice.

167

168 **Materials and methods**

169 *Animal information*

170

171 The [Author University] Institutional Animal Care and Use Committee (Protocol
172 #15-021) approved all of the following experiments. Individual cohorts of male CBA/J mice
173 (*Mus musculus*) from different litters were shipped from Jackson Laboratories (Bar Harbor,

174 ME, USA) and received at 18 – 24 days of age (Fig. 1a). Each cohort was assigned to 1
175 of 3 pharmacological treatment groups: saline (control), fenfluramine, or pCPA (see
176 pharmacological details below). Upon arrival, mice were separated into either social
177 housing of 3 mice per cage or into isolated housing (Fig. 1b). Mice remained in social
178 (SOC) or isolated (ISO) conditions on a 14:10 light/dark cycle with *ad libitum* access to
179 food and water and weekly cage changes for 28 – 30 days prior to vocal playback (Fig.
180 1c – d). ISO mice were physically separated from conspecifics; however, all experimental
181 animals were housed in the same room within our vivarium. While ISO mice were
182 potentially exposed to olfactory, auditory, and/or visual stimuli from neighboring cages,
183 similar conditions did not attenuate the effects of social isolation in other studies (Keesom
184 et al., 2017b; Keesom et al., 2017a; Manouze et al., 2019).

185

186 *Pharmacology*

187

188 pCPA methyl ester hydrochloride (pCPA; 4-Chloro-DL-Phenylalanine methyl ester
189 hydrochloride, Tocris, Minneapolis, MN, USA) was used to deplete systemic serotonin.
190 pCPA is a non-reversible inhibitor of tryptophan hydroxylase (TPH; the rate-limiting
191 enzyme in serotonin synthesis) (Koe et al., 1966). Over the course of 3 – 4 days, pCPA
192 depletes serotonin in brain regions including the hippocampus, striatum, and cortex
193 (Dailly et al., 2006). Conversely, Dexfenfluramine hydrochloride (Fenluramine; (S)-N-
194 Ethyl- α -methyl-3-(trifluoromethyl) benzeneethanamine hydrochloride; Tocris), which
195 releases stores of vesicular serotonin and blocks its reuptake at the synapse (Davis and

196 Faulds, 1996; Rothman and Baumann, 2002), was used to acutely increase levels of
197 available serotonin.

198

199 Fenfluramine (FEN) and pCPA were diluted in 0.9% sterile saline within 3 days of
200 use. pCPA was administered at 200mg/kg in a volume of 5mL/kg; FEN was administered
201 at 100mg/kg in a volume of 5mL/kg (Hanson and Hurley, 2016). Sterile saline (vehicle;
202 10mL/kg) was used for all control injections. Each mouse in SOC cages received the
203 same pharmacological treatment. Injections were administered interperitoneally following
204 brief anesthetization with isoflurane, after which mice were returned to their home cage.
205 Beginning 3 days prior to playback, mice were transferred from housing quarters to the
206 experimental room where they received injections at roughly 24-hour intervals in the
207 morning. Over the course of these 3 days, pCPA mice received pCPA injections while
208 FEN and saline (SAL) mice received equivalent injections of sterile saline (Fig. 1d).
209 Following injections, mice remained in the experimental room for 45 minutes before being
210 returned to the vivarium. This process was designed to habituate mice to injections and
211 being moved between rooms in order to reduce non-specific cFos expression prior to
212 playback trials. On the day of playback, pCPA and SAL mice were injected with sterile
213 saline 45 minutes prior to trials. FEN mice received FEN injections 45 minutes prior to
214 playback (Fig. 1e). For each treatment group $n = 9$ except for SOC-SAL, where $n = 8$.
215 Over the course of injections, ISO-pCPA mice lost a significant amount of weight (paired
216 $t_8 = 2.82$, $p < 0.05$, mean difference $0.43g \pm 0.15g$), but there was no difference between
217 the weights of treatment groups on the day of playback ($p = 0.2$).

218

219 *Playback trials*

220

221 Ninety minutes before playback trials, mice were retrieved from animal quarters
222 and placed in a quiet room. After 45 minutes, the first of three animals received an
223 injection (as above) and was returned to its home cage (Fig. 1e). Forty-five minutes post
224 injection, focal mice were transferred from their home cage to an identical testing cage
225 (12x6x6 inches) with fresh bedding within in a sound attenuation chamber (Coulbourn
226 Habitest, Whitehall, PA, USA) with an ultrasonic speaker (Ultrasonic Dynamic Speaker
227 Vifa, Avisoft Bioacoustics, Glienicke/Nordbahn, Germany) powered by an
228 UltraSoundGate Player 116 (Avisoft Bioacoustics). Trials were monitored with a CCD
229 video camera (30 fps) placed above the test cage, with SuperDVR software (Q-See,
230 Digital Peripheral Solutions Inc.) and a Q-see 4 channel DVR PCI video capture card.
231 Trials were 60 minutes and playback consisted of 14 – 15 naturalistic bursts of 5 female
232 broadband vocalizations (BBVs; Fig. 1f); the final number of BBVs (70-75) represented
233 the average number of BBVs emitted during the study from which they were recorded. All
234 mice were played back the same BBV sound file; omission of the final burst of 5 BBVs
235 was counterbalanced across groups. Following trials, spectrograms of the playback were
236 created in Avisoft, and the number of male-emitted ultrasonic vocalizations were
237 quantified.

238

239 *Playback generation*

240

241 Source BBVs were originally recorded during sociosexual interactions between
242 male and female CBA/J mice. First, spectrograms of sociosexual interactions were
243 generated using Avisoft SASlab Pro software; next, individual female BBVs were located,
244 high-pass filtered to remove any potentially overlapping male ultrasonic vocalizations, and
245 copied into a new playback audio file. We assembled naturalistic bursts of 5 individual
246 BBVs and interspersed 270 seconds of silence between bursts. BBVs were calibrated by
247 matching rms intensity of the playback (as recorded in the testing arena) to the intensity
248 of the originally recorded vocalizations. The same condenser microphone (CM16/CMPA,
249 Avisoft Bioacoustics) with an UltraSoundGate 116Hb sound card (250 kHz sample rate
250 Avisoft Bioacoustics) was used to assess the intensities of the originally recorded
251 vocalizations and the playback.

252

253 In naturalistic social interactions, female BBVs correlate with male-directed
254 aggression (i.e., rejection-like behaviors); as they also emitted during mounting, BBVs
255 are considered to be functionally ambiguous (Finton et al., 2017). Our playback file
256 consisted of BBVs that were acquired during multiple interactions where mounting either
257 did or did not occur. Thus, any potential structural differences in BBVs emitted during
258 different contexts (i.e., mounting vs. rejection) would not shape the overall valence of
259 playback.

260

261 *Immunohistochemistry*

262

263 Playback lasted for 60 minutes, at which point focal animals remained in the sound
264 attenuation chamber for 30 additional minutes to allow for accumulation of the cFos
265 protein (Kovacs, 2008). Ninety minutes following the onset of playback, mice were deeply
266 anesthetized with isoflurane and transcardially perfused with ice-cold Krebs-Henseleit
267 solution (pH 7.2) followed by 50mL of 4% paraformaldehyde in phosphate buffer (PFA).
268 Brains were extracted and post-fixed overnight in PFA, transferred to 30% sucrose in
269 phosphate buffered saline (PBS; pH 7.4) for ~48 hours, and cut into 3 series of 50 μ M
270 sections in the coronal plane using a freezing microtome. Sections were collected
271 throughout the rostral-to-caudal extent of the inferior colliculus (IC; approximately Bregma
272 -5.34mm thru -4.36mm) and starting at the appearance of the median eminence (Bregma
273 -1.94mm) through the bifurcation of the anterior commissure (AC; ~ Bregma +0.38mm).
274 Sections were stored in cryoprotectant solution at -80°C until immunohistochemistry (IHC).
275 Three separate IHC runs counterbalanced across treatment groups were performed as
276 follows.

277

278 Tissue was equilibrated to room temperature; free-floating sections were first
279 sorted in PBS, then washed for 5x5 minutes in PBS, followed by a 1-hour soak in blocking
280 solution: PBS + 10% donkey serum (DS; Millipore, Burlington, MA, USA) and 0.3% Triton-
281 X100 (Tx; Millipore). Sections were incubated for 18 hours at room temperature in rabbit
282 anti-cFos (F7799, Lot:105M4831V; Sigma-Aldrich, St. Louis, MO) diluted 1:2000 in PBS
283 + 5% DS and 0.3% Tx (diluent). Following primary incubation, sections were washed 4x5
284 minutes in PBS + 0.5% DS, and then incubated for 2 hours at room temperature in
285 AlexaFluor donkey anti-rabbit 680 (Life Technologies, Carlsbad, Calif., USA) diluted

286 6:1000 in diluent. Sections were washed 3x10 minutes in PBS, followed by a 30-minute
287 incubation in NeuroTrace™ 500/525 Green Fluorescent Nissl (NT) diluted 1:200 in PBS.
288 Following a final, 10-minute PBS wash, sections were mounted onto chrome alum-
289 subbed slides and cover-slipped with Prolong Gold Antifade Reagent with DAPI (4,6-
290 diamidino-2-phenylindole; Life Technologies) and stored at 4°C until microscopy.

291 *Image acquisition and anatomy*

292

293 All images were collected at 10X with 568nm resolution using a Leica SP8
294 scanning confocal microscope. cFos immunoreactive (-ir) neurons were visualized using
295 a 680nm laser line; DAPI and NT were visualized using 405nm and 490nm laser lines
296 respectively. The intensity of each laser line was identical for all images, and tissue was
297 scanned at 12 separate z planes spaced 2.41uM apart. When >1 confocal image was
298 needed to capture the expanse of a nucleus (LS, mPOA, VMH, PAG) or adjacent nuclei
299 (i.e., PVN and AH), images were automatically merged using Leica Application Suite X
300 software (Leica Microsystems, Wetzlar, Germany). In instances where tissue was
301 damaged, the next available section was used.

302

303 SBN regions were identified based on cytoarchitecture at approximate rostral-
304 caudal levels relative to Bregma as per the mouse brain atlas (Paxinos and Franklin,
305 2004). The LS (Fig. 1G) was collected beginning at the bifurcation of the anterior
306 commissure (ac; Bregma 0.38mm) and continued for three consecutive sections. We
307 captured the medial division of the BNST starting at the level where the bifurcation of AC
308 begins to close (Bregma 0.26mm). BNST (Fig. 1H) was sampled bilaterally in two

309 consecutive sections within boundaries established by the lateral ventricle and the stria
310 terminalis (lateral), the fornix (medial), and ventrally by the anterior commissure.
311 Sampling for mPOA (Fig. 1I) began at the closure of AC (Bregma 0.14mm) and continued
312 for two consecutive sections. PVN was shot at three consecutive sections beginning at
313 the appearance of a triangular cluster of neurons immediately adjacent to the dorsal
314 aspect of the third ventricle (Bregma -0.70mm). We collected AH beginning at the second
315 level of PVN (Fig. 1J; Bregma -0.82mm) and continued for 3 consecutive sections. The
316 final level of AH overlapped with the first section where sampling for VMH began (Bregma
317 -1.22) and continued for 2 – 3 sections (Fig. 1K). PAG (Fig. 1L) was collected for three
318 consecutive sections beginning approximately at Bregma -4.24mm.

319

320 Z stacks for laser lines 405 (DAPI), 490 (NT), and 680 (cFos-ir) were projected
321 using the maximal intensity function in Fiji (National Institute of Health, Bethesda, MD,
322 USA) (Schindelin et al., 2012), and saved as .tif files prior to analysis. A single observer
323 blind to animal identity and treatment group performed all image analyses and microscopy.

324

325 *Cell counting*

326

327 Regions of interest (ROI) were drawn around the boundaries of SBN nodes based
328 on cytoarchitecture (Fig. 1G – L) and saved using the Fiji ROI manager. cFos-ir neurons
329 were quantified using custom macros in ImageJ as follows. First, background was
330 subtracted from cFos images using the rolling ball function with a radius of 50 pixels. ROIs
331 derived from NT images were transferred to the corresponding cFos channel. Using the

332 internal clipboard function, we created a new image containing only the selected ROI.
333 Tsai's moments threshold was applied using Fiji's Auto Threshold plugin v1.17. The
334 thresholded image was then made binary, the watershed function was applied, and the
335 analyze particles function was run thresholding out objects with fewer than 75 pixels and
336 a circularity < 0.15. Cell counts were normalized by multiplying the total number of cFos-
337 ir neurons in each region by 100 divided by the sum of the areas of the ROI(s) from which
338 they were obtained.

339

340 **Statistics**

341 Inferential statistics were performed in JMP Pro® Version 14 (SAS Institute, Inc.
342 Cary, NC, USA) with an $\alpha = 0.05$, or GraphPad Prism version 8 (La Jolla, CA, USA). We
343 used repeated measures multivariate analysis of variance (MANOVA) to test the
344 between-subject effects of housing (SOC vs. ISO) and drug treatment (SAL vs. FEN vs.
345 pCPA) on the within-subjects measure of cFos-ir neurons/ $100\mu\text{m}^2$ across 7 nodes of the
346 SBN. We found main effects of housing and drug treatment, as well as a significant
347 housing-by-drug interaction (see results). We followed MANOVA with a series of linear
348 mixed model analyses with housing and drug treatment as fixed effects to test for group
349 differences in cFos-ir neurons within each SBN node. Our model included IHC run as a
350 random effect to control for potential variation introduced by separate IHC procedures.
351 As SOC mice were housed in groups of 3, we also included cage as a random effect to
352 control for potential within-cage influence on cFos expression. *Post hoc* differences
353 between groups were assessed via independent t tests where applicable.

354

355 Next, we performed pair-wise correlations on the number of cFos-ir neurons to test
356 for functional relationships between SBN nodes within each of our 6 treatment groups. P
357 values obtained from Pearson coefficients were corrected for multiple comparisons using
358 the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli (Benjamini et
359 al., 2006). To test for differences in the distribution of inter-nodal correlations between
360 groups, we performed principal components analysis (PCA) on the covariation matrix
361 derived from these data.

362

363 Network analyses were performed on within-group correlations using Gephi open
364 source network analysis and visualization software version 0.9.2 (Bastian et al., 2009).
365 Functional relationships were visualized as unweighted, undirected graphs using the
366 ForceAtlas2 algorithm, which spatially distributes nodes based on the overall strengths of
367 each node's correlations (Bastian et al., 2009; Jacomy et al., 2014). Graphs were
368 subsequently filtered so that non-significant edges (i.e., correlations $p > 0.05$) were
369 excluded from visualization. The overall relatedness of any given region is indicated not
370 only by its shared edges, but by its position relative to other nodes. In order to
371 quantitatively describe functional relationships among groups, we performed 3 separate
372 graph analyses in Gephi: First, we calculated network density, the number of significant
373 intraregional correlations as a proportion of the total number of possible correlations, for
374 each treatment group. This analysis, a graph-based supplement to our strength of
375 correlation analysis (see results), quantifies the overall functional connectivity of the SBN
376 in each treatment group. Next, for each treatment group we calculated the average
377 clustering coefficient as the likelihood for any pair of a node's functional connected

378 neighbors to be connected to each other (Watts and Strogatz, 1998; Fornito et al., 2016).
379 Finally, we performed community analysis which parses nodes into highly interconnected
380 subgroups which is indicative of functional commonality (Fornito et al., 2016).

381

382 **Results**

383

384 Repeated measures MANOVA found significant effects of housing ($F_{6,36} = 4.45$, p
385 = 0.002) and drug treatment ($F_{12,74} = 5.71$, $p < 0.0001$), as well as a significant housing-
386 by-drug interaction ($F_{12,74} = 3.17$, $p = 0.001$) on number of cFos-ir neurons/100 μm^2 across
387 7 nodes of the SBN. Next, we performed linear mixed model analyses with housing and
388 drug treatment as fixed factors, controlling for random effects of IHC run and cage. Below
389 we report only p values for linear mixed models; a complete summary can be found in
390 Table 1. Arithmetic means for housing and drug treatments are reported in Table 2a and
391 2b respectively. Results from the applicable *post-hoc* comparisons can be found in
392 extended data Figure 2-1.

393

394 Our model detected effects of housing in the BNST ($p = 0.017$), mPOA ($p = 0.018$),
395 PVN ($p = 0.005$), and PAG ($p = 0.021$). ISO mice had higher numbers of cFos-ir neurons
396 in each one of these regions (Tukey's HSD, $p \leq 0.02$). We found significant effects of drug
397 treatment in LS ($p < 0.0001$; Fig 2A), BNST ($p < 0.0001$; Fig 2B), mPOA ($p < 0.0001$; Fig
398 2C), PVN ($p < 0.0001$; Fig 2D), AH ($p = 0.006$; Fig 2E), VMH ($p = 0.0001$; Fig 2F). In each
399 region except for AH, FEN mice had significantly more cFos-ir neurons than both SAL
400 and pCPA mice (Tukey's HSD, $p \leq 0.0007$). In AH, FEN mice had significantly more cFos-

401 ir neurons than pCPA mice (Tukey's HSD, $p = 0.005$), and a trend towards an increase
402 relative to SAL mice (Tukey's HSD, $p = 0.054$). Interestingly, PAG was the only region
403 where our model did not detect a significant effect of drug treatment ($p > 0.4$; Fig 2G).
404 Drug effects were dependent upon housing conditions as indicated by significant
405 interaction terms in LS ($p = 0.018$) and PVN ($p = 0.003$). In LS, the interaction is driven
406 by an increase in cFos-ir neurons in ISO-pCPA compared to the SOC-pCPA mice. In
407 PVN, the interaction is driven by an almost 2-fold increase in cFos-ir neurons in ISO-FEN
408 compared to SOC-FEN mice.

409

410 We found a main effect of housing ($F_{1,47} = 5.97$, $p = 0.02$) and a significant housing-
411 by-drug interaction ($F_{2,47} = 6.03$, $p = 0.005$; data not shown) on the number of ultrasonic
412 vocalizations (USVs) emitted by focal males during playback. The interaction was driven
413 by a significant increase in USV production in ISO-SAL compared to SOC-SAL mice
414 (Tukey's HSD, $p = 0.004$). There were no differences in USV production between SOC
415 and ISO males in either the FEN or pCPA groups ($p > 0.8$). Interestingly, there were no
416 relationship between USV production and cFos-ir within the SBN of any treatment group.

417

418 As the SBN comprises a reciprocally connected anatomical network (Hahn et al.,
419 2019), we tested whether correlations of neural activity markers between nodes (i.e.,
420 functional connectivity) varied between treatment groups. Figure 3 summarizes these
421 data as heatmap matrices based on the Pearson r values of each pairwise correlation. A
422 detailed summary of pairwise correlations of cFos-ir neurons between SBN nodes within
423 each of our 6 treatment groups can be found in extended data figure 3-1. Cursory analysis

424 of the heatmaps suggested that SOC-FEN (Fig 3b) and SOC-pCPA (Fig 3c) had more
425 relatively strong correlations (i.e., more functional connectivity) than all other treatment
426 groups. To test this, we used two-way ANOVAs on the absolute value of Pearson r scores
427 of each treatment group (Tanimizu et al., 2017). We found a main effect of housing ($F_{1,120}$
428 = 6.33, $p = 0.013$; Fig, 3g), where SOC mice had larger Pearson r values than ISO mice
429 (Tukey's HSD, $p = 0.013$). Drug treatment ($F_{2,120} = 2.68$, $p = 0.07$) and housing-by-drug
430 interaction ($F_{2,120} = 2.45$, $p = 0.09$) approached but did not reach statistical significance.

431

432 While we did not find a statistically significant effect of drug treatment on the
433 strength of inter-node correlations, we hypothesized that pharmacologically increasing or
434 systemically depleting available serotonin would differentially affect the distribution of
435 functional relationships. We thus performed PCA on the covariation matrix generated by
436 cFos-ir counts. PC1 had an eigenvector of 543.53 which accounted for over 76% of the
437 variation and contained eigenvalues most strongly loaded by mPOA (0.682) and PVN
438 (0.553; Fig. 3H). We analyzed PC1 scores between groups via 2-way ANOVA and found
439 main effects of housing ($F_{1,41} = 14.11$, $p < 0.001$) and drug treatment ($F_{2,41} = 39.28$, $p <$
440 0.0001; Fig. 3I), but no significant interaction ($F_{2,41} = 2.43$, $p = 0.10$). FEN mice had
441 divergent and significantly different (Tukey's HSD, $p < 0.0001$) PC1 scores from both SAL
442 and FEN mice; Thus, despite having similar overall Pearson r values, the distribution of
443 correlations among SBN nodes was different between drug treatment groups.

444

445 We visualized the distributions of correlations using the ForceAtlas2 algorithm in
446 Gephi, and filtered the resulting graphs to exclude non-significant edges (i.e., correlations

447 $p > 0.05$) from visualization (Bastian et al., 2009; Jacomy et al., 2014). There were visible
448 differences between groups in functional network structure: ISO mice have fewer
449 significant functional relationships than SOC mice, which is indicated by relatively few
450 connections between nodes (Fig. 4A – F). For example, cFos-ir neurons in the PVN of
451 ISO-FEN mice is significantly correlated with AH; thus, PVN shares an edge with only AH
452 (Fig. 4E). Conversely, in SOC-FEN mice the number of cFos-ir neurons in the PVN is
453 significantly correlated with LS, BNST, mPOA, AH, and PAG; thus, PVN shares edges
454 with each of these regions (Fig. 4B). Further, the strength of functional relationships is
455 indicated by the closeness of nodes in space. In SOC-pCPA mice, the significant
456 correlation between cFos-ir in mPOA and BNST is indicated not only by a shared edge,
457 but their relative adjacency (closeness) in space (Fig. 4C). In ISO-pCPA mice, there was
458 a relatively weak, non-significant correlation between cFos-ir in mPOA and BNST which
459 is reflected by a relatively large distance between these nodes in space (Fig. 5f).

460

461 We quantifiably described the network organization of the above graphs by
462 performing three separate graph analyses. First, we quantified the number of significant
463 functional relationships as a proportion of total possible functional relationships (i.e.,
464 functional density) (Fornito et al., 2016). In each of the three SOC treatment groups, there
465 was an over twofold increase in functional density compared to their ISO counterparts
466 (Fig. 4G). While increased density indicates that there is more functional connectivity
467 between regions in SOC mice, this metric tells us little about the nature of these
468 correlations (Bullmore and Sporns, 2009). Importantly, do correlated nodes go on to form
469 a) additional functional relationships, and/or b) larger functional modules?

470 Next, we calculated the clustering coefficient, the average number of connected
471 pairs of a node's connected neighbors of each treatment group. SOC mice had higher
472 clustering coefficients than ISO mice in each treatment group (Fig. 4H). Indeed,
473 regardless of drug treatment, ISO mice had a clustering coefficient of zero; thus, even
474 when ISO mice have significant correlations between nodes, those regions do not in-turn
475 form additional connections with each other. Our final graph analysis assessed
476 modularity/community structure in SOC and ISO mice. In community structure analysis,
477 the smallest number of communities that can be formed is one, indicating a completely
478 connected group; the maximum number of communities is equal to the number of nodes
479 contained in the analysis, and indicates complete functional segregation. We found that
480 ISO mice formed more communities than their socially reared counterparts in each of the
481 drug treatment groups (Fig. 4I). Together, our results support that functional networks are
482 more disconnected in ISO mice.

483

484 **Discussion**

485

486 Individual experience establishes the backdrop upon which current events are
487 interpreted. Early-life social isolation can profoundly affect an animal's behavioral
488 phenotype (Mumtaz et al., 2018), and likely affects how social signals (e.g., vocalizations)
489 are represented in the brain; however, the effects of social isolation on the neural
490 response to rodent vocalizations are relatively unexplored. We tested whether social
491 experience interacts with serotonin signaling to affect IEG expression in the male SBN
492 following playback of female BBVs. Fenfluramine robustly increased the number of cFos-

493 ir neurons across all nodes of the SBN except PAG. Housing treatment also affected IEG
494 induction: ISO mice had more cFos-ir neurons in several nodes of the SBN than SOC
495 mice. Despite a generalized increase in cFos-ir, ISO mice had lower functional
496 connectivity among regions than SOC mice. Indeed, functional density, clustering, and
497 community structure remained relatively low in SOC mice despite pharmacological
498 changes in available serotonin. Importantly, drug treatment had little effect on graph
499 analyses in ISO mice and facilitated network measures in SOC mice.

500

501 *Social experience interacts with serotonin signaling to affect neural responses in the SBN*

502

503 IEG mapping has established that early-life stressors alter neural activity markers
504 at the level of individual SBN nodes. Chronic social subjugation decreased cFos
505 expression in the LS, PVN, and PAG following open-arm exposure in male mice
506 (Singewald et al., 2009). In rats, post-weaning social isolation increased both aggression
507 and cFos-ir neurons in the BNST and PVN (but not LS or PAG) following a resident-
508 intruder paradigm (Toth et al., 2012). Despite structural interconnectedness, we found
509 that changes in the cFos response in the SBN of ISO mice was not global: BNST, mPOA,
510 PVN, VMH, and PAG had increased cFos-ir neurons, whereas LS and AH did not.
511 Interestingly, the direction (i.e., an increase) of the cFos response was similar in each
512 region affected in ISO mice.

513

514 The effects of housing on cFos-ir neurons were modulated by drug treatment.
515 Similar to previous studies (Li and Rowland, 1993), we found that fenfluramine increased

516 cFos-ir neurons in all nodes of the SBN except for PAG. However, the effects of
517 fenfluramine were not homogenous across housing treatments: cFos-ir neurons were
518 increased to a greater extent in the PVN and mPOA of ISO-FEN compared to SOC-FEN
519 mice (Fig 3C – D). Conversely, we found no difference in cFos-ir in the PVN of pCPA
520 mice regardless of social experience, an observation consistent with previous studies in
521 rats (Harbuz et al., 1993; Conde et al., 1998). Serotonin affects neural activity through a
522 combination of excitatory and inhibitory serotonin receptor (5-HT₂) subtypes (Barnes and
523 Sharp, 1999), and 5-HT₂ expression patterns are sensitive to social isolation (Schiller et
524 al., 2003; Bibancos et al., 2007); thus, the net effect of serotonergic manipulations is likely
525 driven by complex excitatory and inhibitory interactions within and between each node of
526 the SBN. Importantly, the increase in cFos-ir neurons was not observed exclusively in
527 ISO-FEN mice: ISO-pCPA mice had more cFos-ir neurons in LS, BNST, mPOA, and PAG
528 than SOC-pCPA mice.

529

530 Together, we found heterogenous effects of both pharmacology and housing
531 conditions on the number of cFos-ir neurons within nodes of the SBN. An *a priori*
532 assumption is that the SBN is a structurally interconnected network within which the
533 patterns of functional connectivity are indicative of behavioral context (Newman, 1999;
534 Goodson, 2005; Goodson and Kabelik, 2009). We therefore tested whether functional
535 network measures differed within the SBN of SOC or ISO mice.

536

537 *Social experience affects functional connectivity in the SBN*

538

539 The term functional connectivity, defined as “statistical dependencies among
540 remote neurophysiological events” (Friston, 2011), has been used extensively in human
541 fMRI studies to describe activity patterns in resting and pathological states. This statistical
542 phenomenon appears to be a crucial component to adaptive social processes across
543 multiple species, including humans (Lynall et al., 2010). Immediate early gene mapping
544 in non-traditional vertebrate model systems demonstrates functional connectivity
545 between neuromodulatory systems/circuits (including the SBN) during vocal-acoustic
546 processing in fishes (Petersen et al., 2013; Ghahramani et al., 2018) and frogs (Hoke et
547 al., 2005), as well as prosocial and aggressive behavior in fishes (Weitekamp and
548 Hofmann, 2017; Butler et al., 2018) and lizards (Kabelik et al., 2018). In male prairie voles
549 (*Microtus ochrogaster*), oxytocin receptor antagonists reduce functional connectivity
550 within the SBN and attenuate partner preference behavior (Johnson et al., 2015). In mice,
551 Tanimizu et al. (2017) demonstrated that functional connectivity between memory-
552 associated regions (including nodes of the SBN) was increased following a social learning
553 task. Finally, different clusters of functional relationships in the SBN are observed in
554 subordinate mice who maintain their beta status compared to those who ascend through
555 the social hierarchy (Williamson et al., 2019).

556

557 We found that functional connectivity was decreased in ISO relative to SOC mice
558 following playback of female BBVs. Importantly, these results were not due to a global
559 increase in IE induction as ISO mice tended to have more cFos-ir neurons than SOC
560 mice. That functional connectivity is disrupted in the SBN of ISO mice represents an
561 important foundation from which to develop models of how variation in functional network

562 architecture relates to variation in aberrant behavioral (Keesom et al., 2017b; Manouze
563 et al., 2019) and neural phenotypes (Keesom et al., 2017a; Keesom et al., 2018) following
564 early-life social stress.

565

566 We further analyzed patterns of functional connectivity by PCA and found that FEN
567 mice had positive average PC1 scores, whereas SAL and pCPA mice had negative
568 values (Fig. 4i). Thus, variation in the distribution of functional relationships differs
569 following acutely increasing (i.e., with FEN) or systemically depleting (i.e., with pCPA)
570 serotonin. Interestingly, the general direction of these relationships was consistent *within*
571 drug treatment regardless of housing conditions. Therefore, while overall functional
572 connectivity may be preferentially modulated by social experience, serotonin signaling
573 drives variation in the nodes that are functionally coupled. However, the extent to which
574 the effects of social experience and serotonin signaling are independent of each other
575 remains unknown.

576

577 *Individual nodes disproportionately affect functional connectivity*

578

579 PCA revealed that individual nodes disproportionately affect variation in functional
580 connectivity. We found that eigenvectors within PC1 were most heavily loaded by mPOA
581 and PVN. As mPOA and PVN underlie different functions, they may also drive variation
582 in circuit-level metrics in different manners. mPOA has increased IEG induction following
583 playback of social vocalizations in frogs and songbirds (Hoke et al., 2005; Maney et al.,
584 2008); in mice, mPOA is a crucial site for affective-olfactory integration (Dhungel et al.,

585 2011; McHenry et al., 2017), and activity in mPOA coincides with sociosexual
586 investigation and facilitates mounting behavior (Wei et al., 2018). As the behavioral
587 response to vocal signals (i.e., BBVs) is modulated by olfactory stimuli (Grimsley et al.,
588 2013; Seagraves et al., 2016; Ronald et al., 2020), mPOA is in a functional anatomical
589 position to integrate multisensory stimuli and effect circuit-level responses to vocal signals
590 (Kohl et al., 2018). However, to our knowledge no studies have directly investigated
591 mPOA involvement in rodent vocal processing.

592

593 We found that the number of cFos-ir neurons in the PVN is not only increased in
594 ISO mice, but contributes a significant amount of variation to functional relationships
595 within the SBN. Within the PVN, dysregulation of corticotropin-releasing factor (CRF)
596 neurons which modulate the hypothalamic-pituitary-adrenal axis contributes to
597 cardiovascular disease and impaired immune function in animal models of chronic social
598 isolation as well as in persons with early-life social trauma (Heim and Nemeroff, 2001;
599 McEwen, 2003; Cacioppo et al., 2015). Further, chemically heterogeneous PVN neurons
600 underly different suites of behaviors: activating CRF neurons in PVN drives conditioned
601 place aversion (Kim et al., 2019), whereas activating oxytocin neurons drives pup retrieval
602 behavior in response to ultrasonic vocalizations (Marlin et al., 2015). Elucidating the
603 chemical phenotypes and projection profiles of isolation-sensitive neurons in the PVN
604 (and SBN in general) will be crucial to understanding the mechanisms through which
605 different nodes affect functional relationships within the SBN.

606

607 *Network measures are lower in ISO relative to SOC mice*

608 Variation in functional relationships includes reduced functional connectivity in ISO
609 mice. Further, we found decreased network density and clustering in ISO mice, which is
610 consistent with observations that similar reductions are observed in persons with
611 schizophrenia (Lynall et al., 2010) and depression (Wise et al., 2017). Similarly, functional
612 dysconnectivity within the SBN may provide a partial mechanism for decreased social
613 competence observed in mice raised in social isolation (Keesom et al., 2017b).
614 Investigating the mechanisms that drive variation in functional dysconnectivity will
615 contribute to a better understanding of the diverse array of physiological and behavioral
616 consequences observed in animals following social isolation and other early-life stressors
617 (Heim and Nemeroff, 2001; Mumtaz et al., 2018). As neither FEN nor pCPA were
618 sufficient to facilitate an increase in network measures in ISO mice, it is critically important
619 to consider variation in an individual's contextual state (i.e., social history, physiological
620 condition, pathological severity, etc.,) when designing experiments and interpreting the
621 results of psychoactive reagents on animal or human subjects (Bartz et al., 2011).

622

623 Technical considerations

624

625 This study does not directly compare the cFos response in the SBN following
626 playback of BBVs to a non-social acoustic stimulus (i.e., pure tones) or a silent condition.
627 Playback of social vocalizations is sufficient to increase the cFos expression relative to
628 tones in the PAG of rats (Ouda et al., 2016), and relative to ambient environmental
629 noise in multiple SBN nodes in the midshipman fish (*Porichthys notatus*) (Petersen et al.,
630 2013; Ghahramani et al., 2018). However, a lack of playback in the current study would

631 not necessarily be a behaviorally neutral condition, given that silence could have a very
632 different significance for socially housed versus isolated males. Likewise, mouse vocal
633 signals encompass a wide range of frequencies and nonlinear structures (Holy and Guo
634 2005; Lupanova and Egorova 2015; Grimsley et al. 2016; Finton et al. 2017, Niemczura
635 et al. 2020) and some commonly used 'control' sounds can evoke behavioral responses
636 similar to call playback (Hood et al. in preparation). In comparison to silence or other non-
637 vocal sounds, playback of BBVs is a condition with a behavioral salience that is relatively
638 well-understood. BBVs correspond to fewer male mounts of females in observational
639 studies (Finton et al. 2017). Playback of BBVs alters the number of USVs as well as the
640 numbers of males making USVs (Ronald et al. 2020; Niemczura et al. 2020; Hood et al.
641 in preparation). BBVs are therefore suppressive to some types of social behaviors,
642 creating a defined behavioral context in the current study. However, we are unable to
643 determine whether the observed cFos response in the SBN of SOC and ISO mice is
644 selective for BBVs (Maney et al., 2006; Maney et al., 2008), whether functional
645 connectivity is an emergent response to socially salient stimuli (Hoke et al., 2005;
646 Ghahramani et al., 2018), or as a potential confound from a novel testing environment
647 (VanElzakker et al., 2008) or as a direct result of social isolation in SOC animals
648 (Matthews et al. 2016). Further studies are needed to directly test how the SBN responds
649 to social vocalizations, and to probe the consequences of variation in functional
650 connectivity in the production of murine social behaviors.

651

652 IEG mapping is limited in that there is no direct relationship with the production of
653 action potentials and the presence of IEG products (including cFos) (Clayton, 2000;

654 Kovacs, 2008). Despite its wide use as a proxy for neural activation, the cFos protein is
655 a transcription factor; one interpretation of our data is that instead of an increase in neural
656 activity *per se*, we are observing an increased potential for neuroplasticity in ISO mice.
657 Further, using cFos-ir as a putative marker for neural activity limits our temporal resolution
658 to the entire 60-minute trial. It is therefore impossible to make causal or directional
659 statements pertaining to functional connectivity. We make no assumption that functional
660 relationships imply structural connectivity, or vice versa. For example, a subset of mPOA
661 neurons monosynaptically project to PVN (Kohl et al., 2018); however, the particular
662 neurons that connect mPOA and PVN might not be similarly engaged in our paradigm.

663

664 Importantly, because the presence of cFos-ir is an indicator of past neural activity,
665 it may be robust to action potentials that otherwise habituate over the course of a repeated
666 stimulus i.e., auditory playback. For example, whereas neurons in the inferior colliculus
667 (IC) decrease spike rate following repeated presentation of auditory stimuli (Pérez-
668 González et al., 2005), cFos-ir neurons are detectable in the IC following 90-minute
669 playbacks of pure-tone stimuli (D'Alessandro and Harrison, 2014). Further, repeated
670 presentation of ultrasonic distress calls increases cFos-ir within auditory and limbic
671 structures in the rat (Ouda et al., 2016). We find it unlikely that the potential for SBN
672 neurons to adapt to repeated playback of BBVs influenced our results. cFos takes
673 approximately 30 minutes to reach detectable changes in expression, and the half-life of
674 the cFos protein is approximately 45 minutes (Kovacs, 2008). The mice used in this study
675 were at least 180 minutes removed from being transferred to the lab and 135 minutes

676 removed from injections; we would expect cFos induction brought on by these aspects of
677 our experimental design to be negligible.

678

679 Systemic pharmacological manipulations likely drive “off-target” effects such that
680 activity markers are influenced not only by serotonin signaling within the SBN, but via
681 direct or polysynaptic modulation of inputs into the SBN. Extrinsic to the SBN, depleting
682 systemic serotonin reduces synaptic densities in the cortex of rats (Chen et al. 1994) and
683 changes glutamate receptor distribution in the amygdala (Tran et al. 2013). Interestingly,
684 functional connectivity/density, clustering, and community structure remain relatively high
685 in SOC-FEN and SOC-pCPA mice despite potential “off-target” pharmacological and
686 physiological effects (Otchy et al., 2015) resulting from chronically depleting or acutely
687 increasing available serotonin. Manipulating site-specific serotonergic inputs into the SBN
688 will be crucial to untangling the effects of individual nodes on network-level functionality
689 (Ren et al., 2018). Importantly, network measures were also increased in SOC-SAL
690 relative to ISO-SAL mice suggesting the importance of social experience in the ability to
691 form functional relationships in the SBN.

692

693 **Conclusion**

694

695 Fenfluramine and social isolation each broadly increased cFos-ir within individual
696 nodes of the SBN following payback of social vocalizations. Importantly, by extending our
697 analyses from individual nodes to the network level, we found that functional connectivity,
698 clustering, and community structure within the SBN was highly dependent on social

699 experience, whereas patterns of functional connectivity (i.e., which nodes formed
700 functional relationships) were driven more by pharmacological manipulations. Our
701 findings suggest the hypothesis that functional dysconnectivity may underlie
702 psychopathological phenotypes that arise from social isolation and reinforces the
703 importance to move beyond functional analyses limited to individual nodes. We highlight
704 the importance of how laboratory housing conditions (SOC vs. ISO) can affect functional
705 neuroanatomical processes in rodents.

706 References

707
708 Bailey NW, Moore AJ (2018) Evolutionary Consequences of Social Isolation. *Trends in*
709 *ecology & evolution*.
710 Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. *Neuropharmacology* 38:1083-1152.
711 Bartz JA, Zaki J, Bolger N, Ochsner KN (2011) Social effects of oxytocin in humans:
712 context and person matter. *Trends in cognitive sciences* 15:301-309.
713 Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring
714 and manipulating networks. In: *Third international AAAI conference on weblogs*
715 and social media.
716 Beier KT, Gao XJ, Xie S, DeLoach KE, Malenka RC, Luo L (2019) Topological
717 Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic
718 Dissection of Input-Output Relations. *Cell reports* 26:159-167. e156.
719 Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that
720 control the false discovery rate. *Biometrika* 93:491-507.
721 Bibancos T, Jardim D, Aneas I, Chiavegatto S (2007) Social isolation and expression of
722 serotonergic neurotransmission-related genes in several brain areas of male
723 mice. *Genes, Brain and Behavior* 6:529-539.
724 Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of
725 structural and functional systems. *Nature Reviews Neuroscience* 10:186.
726 Bullmore E, Frangou S, Murray R (1997) The dysplastic net hypothesis: an integration
727 of developmental and dysconnectivity theories of schizophrenia. *Schizophrenia*
728 *research* 28:143-156.
729 Butler JM, Whitlow SM, Roberts DA, Maruska KP (2018) Neural and behavioural
730 correlates of repeated social defeat. *Scientific reports* 8:6818.
731 Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW (2015) The neuroendocrinology of
732 social isolation. *Annual review of psychology* 66:733-767.
733 Chen, Ling, et al. "PCPA reduces both monoaminergic afferents and nonmonoaminergic
734 synapses in the cerebral cortex." *Neuroscience research* 19.1 (1994): 111-115.
735 Clayton DF (2000) The genomic action potential. *Neurobiology of learning and memory*
736 74:185-216.
737 Conde G, Renshaw D, Lightman S, Harbuz M (1998) Serotonin depletion does not alter
738 lipopolysaccharide-induced activation of the rat paraventricular nucleus. *Journal of*
739 *endocrinology* 156:245-252.
740 D'Alessandro LM, Harrison RV (2014) Excitatory and inhibitory tonotopic bands in
741 chinchilla inferior colliculus revealed by c-fos immuno-labeling. *Hearing research*
742 316:122-128.
743 Dally E, Chenu F, Petit-Demoulière B, Bourin M (2006) Specificity and efficacy of
744 noradrenaline, serotonin depletion in discrete brain areas of Swiss mice by
745 neurotoxins. *Journal of neuroscience methods* 150:111-115.
746 Davis R, Faulds D (1996) Dexfenfluramine. *Drugs* 52:696-724.
747 Decot HK, Namboodiri VM, Gao W, McHenry JA, Jennings JH, Lee S-H, Kantak PA,
748 Kao Y-CJ, Das M, Witten IBJN (2017) Coordination of brain-wide activity
749 dynamics by dopaminergic neurons. 42:615.
750

751 Dhungel S, Urakawa S, Kondo Y, Sakuma Y (2011) Olfactory preference in the male rat
752 depends on multiple chemosensory inputs converging on the preoptic area.
753 Hormones and behavior 59:193-199.

754 Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires
755 coordinated activity of nucleus accumbens oxytocin and serotonin. Nature
756 501:179-184.

757 Finton CJ, Keesom SM, Hood KE, Hurley LM (2017) What's in a squeak? Female vocal
758 signals predict the sexual behaviour of male house mice during courtship. Animal
759 Behaviour 126:163-175.

760 Fornito A, Zalesky A, Bullmore E (2016) Fundamentals of brain network analysis:
761 Academic Press.

762 Friston K (2011) Functional and effective connectivity: a review. Brain connectivity 1:13-
763 36.

764 Ghahramani ZN, Timothy M, Varughese J, Sisneros JA, Forlano PM (2018)
765 Dopaminergic neurons are preferentially responsive to advertisement calls and
766 co-active with social behavior network nuclei in sneaker male midshipman fish.
767 Brain research 1701:177-188.

768 Giorgi A, Migliarini S, Galbusera A, Maddaloni G, Mereu M, Margiani G, Gritti M, Landi
769 S, Trovato F, Bertozzi SM (2017) Brain-wide mapping of endogenous
770 serotonergic transmission via chemogenetic fMRI. Cell reports 21:910-918.

771 Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and
772 variations. Hormones and Behavior 48:11-22.

773 Goodson JL (2013) Deconstructing sociality, social evolution and relevant nonapeptide
774 functions. Psychoneuroendocrinology 38:465-478.

775 Goodson JL, Wang Y (2006) Valence-sensitive neurons exhibit divergent functional
776 profiles in gregarious and asocial species. Proceedings of the National Academy
777 of Sciences of the United States of America 103:17013-17017.

778 Goodson JL, Kabelik D (2009) Dynamic limbic networks and social diversity in
779 vertebrates: from neural context to neuromodulatory patterning. Frontiers in
780 neuroendocrinology 30:429-441.

781 Goodson JL, Kingsbury MA (2013) What's in a name? Considerations of homologies
782 and nomenclature for vertebrate social behavior networks. Horm Behav 64:103-
783 112.

784 Grandjean J, Corcoba A, Kahn MC, Upton AL, Deneris ES, Seifritz E, Helmchen F,
785 Mann EO, Rudin M, Saab BJ (2019) A brain-wide functional map of the
786 serotonergic responses to acute stress and fluoxetine. Nature communications
787 10:350.

788 Grimsley JM, Hazlett EG, Wenstrup JJ (2013) Coding the meaning of sounds:
789 contextual modulation of auditory responses in the basolateral amygdala. The
790 Journal of neuroscience : the official journal of the Society for Neuroscience
791 33:17538-17548.

792 Hahn JD, Sporns O, Watts AG, Swanson LWJPotNAoS (2019) Macroscale intrinsic
793 network architecture of the hypothalamus.201819448.

794 Hanson J, Hurley L (2016) Serotonin, Estrus, and Social Context Influence c-Fos
795 Immunoreactivity in the Inferior Colliculus. Behavioral neuroscience.

796 Hanson JL, Hurley LM (2012) Female presence and estrous state influence mouse
797 ultrasonic courtship vocalizations. *PLoS one* 7:e40782.

798 Harbuz MS, Chalmers J, De Souza L, Lightman SL (1993) Stress-induced activation of
799 CRF and c-fos mRNAs in the paraventricular nucleus are not affected by
800 serotonin depletion. *Brain research* 609:167-173.

801 Harlow HF, Dodsworth RO, Harlow MK (1965) Total social isolation in monkeys.
802 *Proceedings of the National Academy of Sciences of the United States of
803 America* 54:90.

804 Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood
805 and anxiety disorders: preclinical and clinical studies. *Biological psychiatry*
806 49:1023-1039.

807 Hoke KL, Ryan MJ, Wilczynski W (2005) Social cues shift functional connectivity in the
808 hypothalamus. *Proceedings of the National Academy of Sciences of the United
809 States of America* 102:10712-10717.

810 Holy, T. E., Guo, Z. (2005). Ultrasonic songs of male mice. *PLoS Biol*, 3(12), e386.

811 Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph
812 layout algorithm for handy network visualization designed for the Gephi software.
813 *J PLoS one* 9:e98679.

814 Johnson ZV, Walum H, Jamal YA, Xiao Y, Keebaugh AC, Inoue K, Young LJ (2015)
815 Central oxytocin receptors mediate mating-induced partner preferences and
816 enhance correlated activation across forebrain nuclei in male prairie voles. *Horm
817 Behav* 79:8-17.

818 Kabelik D, Weitekamp CA, Choudhury SC, Hartline JT, Smith AN, Hofmann HAJH,
819 behavior (2018) Neural activity in the social decision-making network of the
820 brown anole during reproductive and agonistic encounters. 106:178-188.

821 Keesom SM, Sloss BG, Erbowor-Becksen Z, Hurley LM (2017a) Social experience
822 alters socially induced serotonergic fluctuations in the inferior colliculus. *Journal
823 of neurophysiology*.

824 Keesom SM, Finton CJ, Sell GL, Hurley LM (2017b) Early-Life Social Isolation
825 Influences Mouse Ultrasonic Vocalizations during Male-Male Social Encounters.
826 *PLoS one* 12:e0169705.

827 Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM (2018) Social isolation
828 reduces serotonergic fiber density in the inferior colliculus of female, but not
829 male, mice. *Brain research* 1694:94-103.

830 Kim J, Lee S, Fang Y-Y, Shin A, Park S, Hashikawa K, Bhat S, Kim D, Sohn J-W, Lin D
831 (2019) Rapid, biphasic CRF neuronal responses encode positive and negative
832 valence. *Nature neuroscience* 22:576-585.

833 Koe BK, Weissman AJJoP, Therapeutics E (1966) p-Chlorophenylalanine: a specific
834 depletor of brain serotonin. 154:499-516.

835 Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V,
836 Miyamishi K, Zweifel LS, Luo L, Uchida N, Catherine Dulac (2018) Functional
837 circuit architecture underlying parental behaviour. *Nature* 556:326.

838 Kovacs KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond.
839 *Journal of neuroendocrinology* 20:665-672.

840 Lee H, Kim DW, Remedios R, Anthony TE, Chang A, Madisen L, Zeng H, Anderson DJ
841 (2014) Scalable control of mounting and attack by Esr1+ neurons in the
842 ventromedial hypothalamus. *Nature* 509:627-632.

843 Li B-H, Rowland NE (1993) Dexfenfluramine induces Fos-like immunoreactivity in
844 discrete brain regions in rats. *Brain research bulletin* 31:43-48.

845 Lin D, Boyle MP, Dollar P, Lee H, Lein E, Perona P, Anderson DJ (2011) Functional
846 identification of an aggression locus in the mouse hypothalamus. *Nature*
847 470:221.

848 Lukanova, A. S., & Egorova, M. A. (2015). Vocalization of sex partners in the house
849 mouse (*Mus musculus*). *Journal of Evolutionary Biochemistry and Physiology*,
850 51(4), 324-331.

851 Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E
852 (2010) Functional connectivity and brain networks in schizophrenia. *Journal of*
853 *Neuroscience* 30:9477-9487.

854 Maney DL, Cho E, Goode CT (2006) Estrogen-dependent selectivity of genomic
855 responses to birdsong. *The European journal of neuroscience* 23:1523-1529.

856 Maney DL, Goode CT, Lange HS, Sanford SE, Solomon BL (2008) Estradiol modulates
857 neural responses to song in a seasonal songbird. *The Journal of comparative*
858 *neurology* 511:173-186.

859 Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M'hamed S, Benoliel J-J, Becker C,
860 Bernard C (2019) Effects of single cage housing on stress, cognitive, and seizure
861 parameters in the rat and mouse pilocarpine models of epilepsy. *Eneuro* 6.

862 Marlin BJ, Mitre M, D'amour JA, Chao MV, Froemke RC (2015) Oxytocin enables
863 maternal behaviour by balancing cortical inhibition. *Nature*.

864 Matthews, G. A., Nieh, E. H., Vander Weele, C. M., Halbert, S. A., Pradhan, R. V.,
865 Yosafat, A. S., ... & Tye, K. M. (2016). Dorsal raphe dopamine neurons represent
866 the experience of social isolation. *Cell*, 164(4), 617-631.

867 Matthews GA, Tye KM (2019) Neural mechanisms of social homeostasis. *Annals of the*
868 *New York Academy of Sciences*.

869 McEwen BS (2003) Early life influences on life-long patterns of behavior and health.
870 *Mental retardation and developmental disabilities research reviews* 9:149-154.

871 McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA,
872 Budygin EA, Rubinow DR, Stuber GD (2017) Hormonal gain control of a medial
873 preoptic area social reward circuit. *Nature neuroscience* 20:449.

874 Mumtaz F, Khan MI, Zubair M, Dehpour AR (2018) Neurobiology and consequences of
875 social isolation stress in animal model—A comprehensive review. *Biomedicine &*
876 *Pharmacotherapy* 105:1205-1222.

877 Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016)
878 Conditional anterograde tracing reveals distinct targeting of individual serotonin
879 cell groups (B5–B9) to the forebrain and brainstem. *Brain Structure and Function*
880 221:535-561.

881 Newman ME, Girvan M (2004) Finding and evaluating community structure in networks.
882 *Physical review E* 69:026113.

883 Newman SW (1999) The medial extended amygdala in male reproductive behavior. A
884 node in the mammalian social behavior network. *Annals of the New York*
885 *Academy of Sciences* 877:242-257.

886 Niederkofler V, Asher TE, Okaty BW, Rood BD, Narayan A, Hwa LS, Beck SG, Miczek
887 KA, Dymecki SM (2016) Identification of Serotonergic Neuronal Modules that
888 Affect Aggressive Behavior. *Cell reports* 17:1934-1949.

889 Niemczura, A. C., Grimsley, J. M., Kim, C., Alkhawaga, A., Poth, A., Carvalho, A., &
890 Wenstrup, J. J. (2020). Physiological and Behavioral Responses to Vocalization
891 Playback in Mice. *Frontiers in Behavioral Neuroscience*, 14.

892 O'Connell LA, Hofmann HA (2012) Evolution of a vertebrate social decision-making
893 network. *Science* 336:1154-1157.

894 Otchy TM, Wolff SB, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SM, Olveczky
895 BP (2015) Acute off-target effects of neural circuit manipulations. *Nature*
896 528:358-363.

897 Ouda L, Jilek M, Syka J (2016) Expression of c-Fos in rat auditory and limbic systems
898 following 22-kHz calls. *Behavioural brain research* 308:196-204.

899 Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates: Gulf
900 Professional Publishing.

901 Pérez-González D, Malmierca MS, Covey E (2005) Novelty detector neurons in the
902 mammalian auditory midbrain. *European Journal of Neuroscience* 22:2879-2885.

903 Petersen CL, Hurley LM (2017) Putting it in Context: Linking Auditory Processing with
904 Social Behavior Circuits in the Vertebrate Brain. *Integrative and comparative
905 biology*.

906 Petersen CL, Timothy M, Kim DS, Bhandiwad AA, Mohr RA, Sisneros JA, Forlano PM
907 (2013) Exposure to advertisement calls of reproductive competitors activates
908 vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish,
909 *Porichthys notatus*. *PloS one* 8:e70474.

910 Portfors CV, Perkel DJ (2014) The role of ultrasonic vocalizations in mouse
911 communication. *Current opinion in neurobiology* 28:115-120.

912 Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran
913 C, Pun A, Sun Y (2018) Anatomically defined and functionally distinct dorsal
914 raphe serotonin sub-systems. *Cell* 175:472-487. e420.

915 Rogers-Carter MM, Christianson JP (2019) An insular view of the social decision-
916 making network. *Neuroscience & Biobehavioral Reviews*.

917 Ronald KL, Zhang X, Morrison MV, Miller R, Hurley LM (2020) Male mice adjust
918 courtship behavior in response to female multimodal signals. *PloS one*
919 15:e0229302.

920 Rothman RB, Baumann MH (2002) Serotonin releasing agents: neurochemical,
921 therapeutic and adverse effects. *Pharmacology Biochemistry Behavior* 71:825-
922 836.

923 Sangiamo DT, Warren MR, Neunuebel JP (2020) Ultrasonic signals associated with
924 different types of social behavior of mice. *Nature neuroscience* 23:411-422.

925 Schiller L, Jähkel M, Kretzschmar M, Brust P, Oehler J (2003) Autoradiographic
926 analyses of 5-HT1A and 5-HT2A receptors after social isolation in mice. *Brain
927 research* 980:169-178.

928 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
929 Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for
930 biological-image analysis. *Nature methods* 9:676.

931 Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J,
932 Ibanes S, Malenka RC, Kremer EJ (2015) Viral-genetic tracing of the input-output
933 organization of a central noradrenaline circuit. *Nature* 524:88-92.

934 Seagraves KM, Arthur BJ, Egnor SR (2016) Evidence for an audience effect in mice:
935 male social partners alter the male vocal response to female cues. *Journal of
936 Experimental Biology* 219:1437-1448.

937 Singewald G, Nguyen N, Neumann I, Singewald N, Reber S (2009) Effect of chronic
938 psychosocial stress-induced by subordinate colony (CSC) housing on brain
939 neuronal activity patterns in mice. *Stress* 12:58-69.

940 Sporns O (2010) Networks of the Brain: MIT press.

941 Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S (2017) Functional
942 connectivity of multiple brain regions required for the consolidation of social
943 recognition memory. *Journal of Neuroscience* 37:4103-4116.

944 Toth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012) The neural background of
945 hyper-emotional aggression induced by post-weaning social isolation.
946 *Behavioural brain research* 233:120-129.

947 Tran, L., Lasher, B. K., Young, K. A., & Keele, N. B. (2013). Depletion of serotonin in the
948 basolateral amygdala elevates glutamate receptors and facilitates fear-
949 potentiated startle. *Translational psychiatry*, 3(9), e298-e298.

950

951 Tschida K, Michael V, Takatoh J, Han B-X, Zhao S, Sakurai K, Mooney R, Wang F
952 (2019) A specialized neural circuit gates social vocalizations in the mouse.
953 *Neuron* 103:459-472. e454.

954 VanElzakker, M., Fevurly, R. D., Breindel, T., & Spencer, R. L. (2008) Environmental
955 novelty is
956 associated with a selective increase in Fos expression in the output elements of
957 the hippocampal formation and the perirhinal cortex. *Learning & Memory*, 15(12),
958 899-908.

959 van den Heuvel MP, Sporns O (2019) A cross-disorder connectome landscape of brain
960 dysconnectivity. *Nature reviews neuroscience* 20:435-446.

961 Van den Heuvel MP, Bullmore ET, Sporns O (2016) Comparative connectomics. *Trends
962 in cognitive sciences* 20:345-361.

963 Warren M, Clein R, Spurrier M, Roth E, Neunuebel J (2020) Ultrashort-range, high-
964 frequency communication by female mice shapes social interactions. *Scientific
965 reports* 10:1-14.

966 Warren MR, Spurrier MS, Roth ED, Neunuebel JP (2018) Sex differences in vocal
967 communication of freely interacting adult mice depend upon behavioral context.
968 *PLoS one* 13:e0204527.

969 Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. *Nature*
970 393:440.

971 Wei Y-C, Wang S-R, Jiao Z-L, Zhang W, Lin J-K, Li X-Y, Li S-S, Zhang X, Xu X-H
972 (2018) Medial preoptic area in mice is capable of mediating sexually dimorphic
973 behaviors regardless of gender. *Nature communications* 9:279.

974 Weitekamp CA, Hofmann HA (2017) Neuromolecular correlates of cooperation and
975 conflict during territory defense in a cichlid fish. *Hormones and behavior* 89:145-
976 156.

977 Williamson CM, Klein IS, Lee W, Curley JP (2019) Immediate early gene activation
978 throughout the brain is associated with dynamic changes in social context. *Social*
979 *neuroscience* 14:253-265.

980 Wise T, Marwood L, Perkins A, Herane-Vives A, Joules R, Lythgoe D, Luh W, Williams
981 S, Young A, Cleare A (2017) Instability of default mode network connectivity in
982 major depression: a two-sample confirmation study. *Translational psychiatry*
983 7:e1105-e1105.

984

985

986 Figure legends:

987

988 **Figure 1:** Experimental design: playback paradigm and neuroanatomy. **A.** Male CBA/J
989 mice arrived from Jackson Laboratories (Bar Harbor, ME) at 18 – 24 days postnatal, and
990 were immediately separated into social (3 per cage) or isolated (1 per cage) housing (**B**).
991 **C.** mice remained in their respective housing conditions for 28 – 30 days. **D.** Saline (SAL)
992 and fenfluramine (FEN) mice received saline injections for 3 days prior to playback; mice
993 in the pCPA group received pCPA injections on these days. **E.** Forty-five minutes prior to
994 playback trials, mice in the SAL and pCPA group received saline injections whereas FEN
995 mice received fenfluramine. **F.** Playback trials were 60 minutes and consisted of 14 – 15
996 bursts of 5 female broadband vocalizations (BBVs). **G – L:** Representative inverse
997 fluorescent 10X photomicrographs showing 7 nodes of the SBN: **G.** *Lateral septum* (LS);
998 **H.** *Bed nucleus of the stria terminalis* (BNST); **I.** *Medial preoptic area* (mPOA); **J.**
999 *Paraventricular nucleus* (PVN) and *anterior nucleus* (AH) of the hypothalamus; **K.**
1000 *ventromedial nucleus of the hypothalamus* (VMH); **L.** *Periaqueductal grey* (PAG).
1001 Additional abbreviations: anterior commissure (ac); lateral ventricle (lv); third ventricle (3v).
1002 Scale bar = 1mm (G), 500 μ m (H – L).

1003

1004 **Figure 2:** Summary linear mixed model analysis of cFos-ir within nodes of the SBN. **A –**
1005 **G.** All data are represented as arithmetic mean \pm SEM between socially housed mice
1006 (green), and socially isolated mice (magenta). Asterisks represent main effects of drug
1007 treatment, ** p < 0.001, *** p < 0.0001. Letters indicate post-hoc differences (independent
1008 t test, p values corrected for multiple comparisons) in the case of housing by drug

1009 interaction. **H – I**. Representative photomicrographs in mPOA (H) and PVN (I) showing
1010 the effects of fenfluramine on cFos-ir in socially reared (H1/I1) or socially isolated (H2/I2)
1011 mice. Neurotrace (NT; blue), cFos-ir (magenta), scale bar = 250 μ m. Please see extended
1012 data figure 2-1 for a complete summary of *post hoc* analyses for linear mixed models
1013 performed within each SBN region.

1014

1015 **Figure 3.** Correlated patterns of cFos-ir are dependent on social experience. **A – F**.
1016 Heatmap matrices represent pairwise correlations between cFos-ir neurons with SBN
1017 nodes (boxes); colors indicate Pearson correlation coefficients. White boxes are self-
1018 correlations ($r = 1$); data are mirrored above and below the diagonal. **G**. Comparison
1019 between the absolute value of Pearson correlation coefficients between groups. Data are
1020 represented as mean \pm SEM; letters indicate post-hoc differences (independent t test, p
1021 values corrected for multiple comparisons). **H**. Results of principal components analysis
1022 on covariation matrix derived from A – F. **I**. Distribution of PC1 scores between groups;
1023 data are represented as mean \pm SEM. Please see extended data figure 3-1 for a complete
1024 summary of pairwise correlation statistics.

1025

1026 **Figure 4:** Correlated patterns of activity form different functional networks between
1027 treatment groups. **A – F**. Individual nodes are represented as green (SOC) or magenta
1028 (ISO) circles. The spatial distribution of nodes is determined by their individual strengths
1029 of correlation (Jacomy et al. 2014). Lines (edges) connecting nodes are indicative of
1030 statistically significant Pearson r values ($p < 0.05$); non-significant edges ($p > 0.05$) are
1031 excluded from graphs. **G – I**: Network measures vary between SOC and ISO mice. **G**.

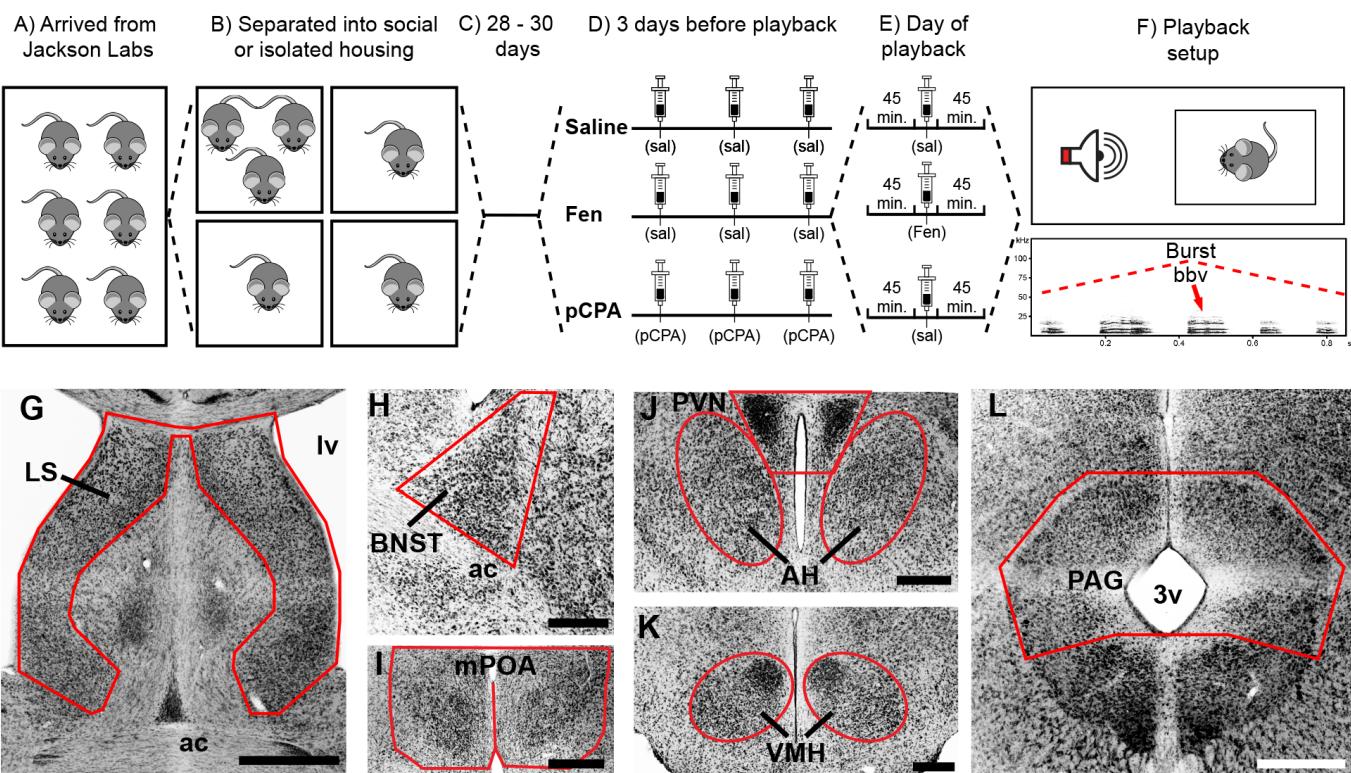
1032 SOC mice (green) have denser functional networks than ISO mice (magenta). **H.** SOC
1033 mice have higher clustering coefficients than ISO mice, whose clustering coefficient is
1034 zero in each drug treatment group. **I.** SOC mice formed fewer thus more densely
1035 populated functional communities than ISO mice.

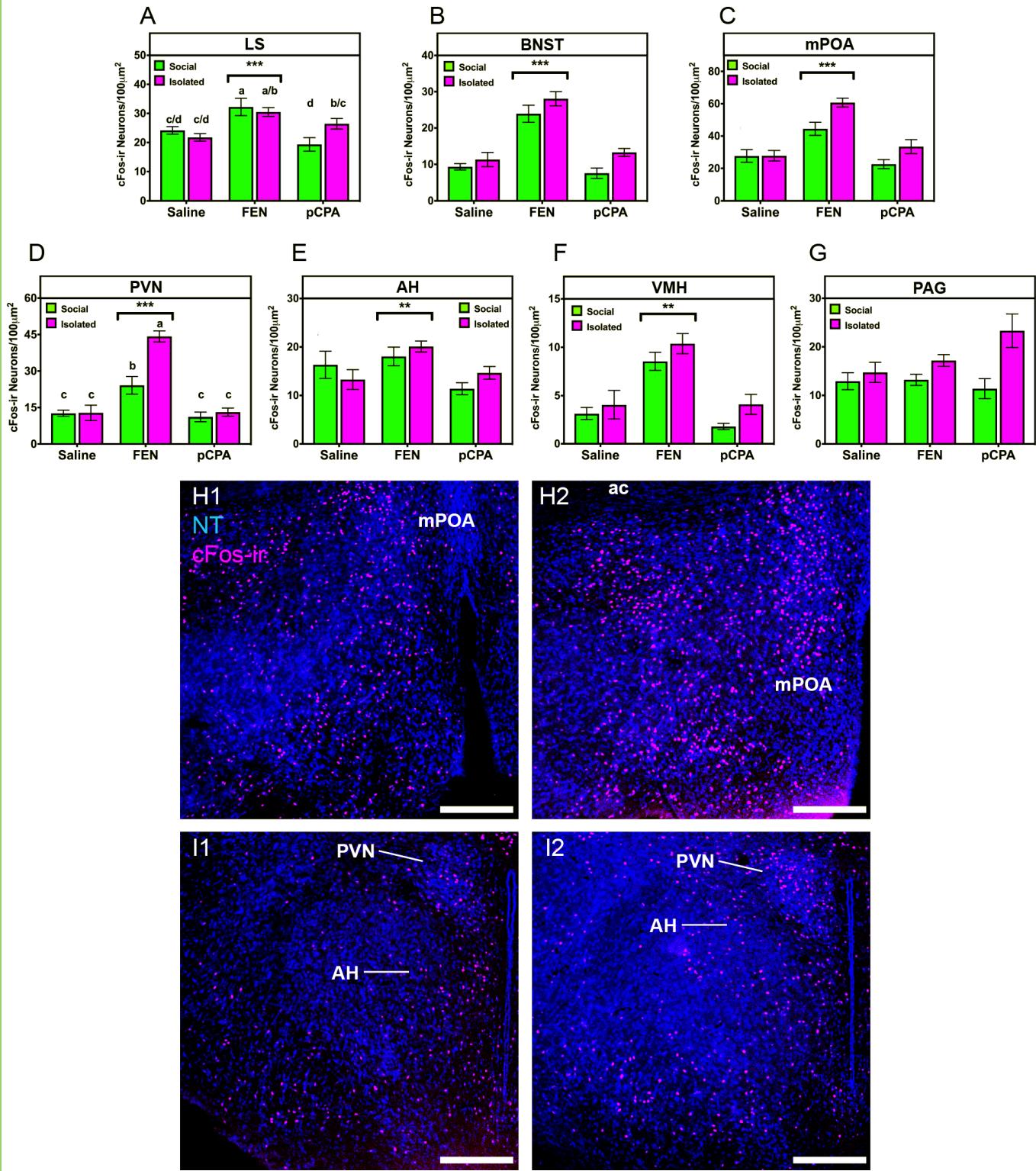
1036

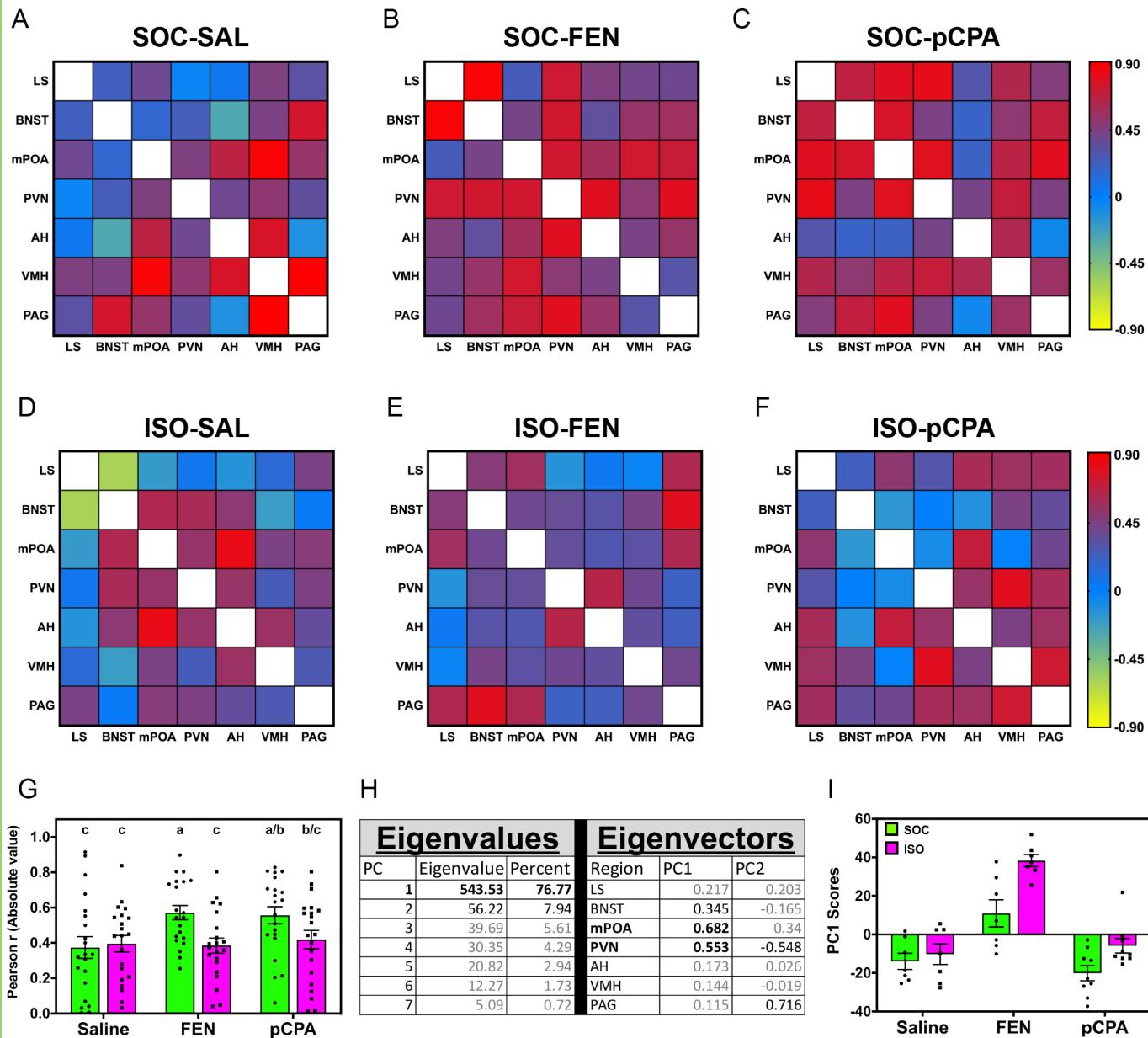
1037 **Table 1:** Summary of mixed linear models. Statistically significant main effects and
1038 interactions indicated with asterisks: * p < 0.05, ** p < 0.01, *** p < 0.001.

1039

1040 **Table 2:** Summary of group means with housing (a) and drug (b) treatments. Values
1041 expressed as arithmetic means \pm SEM. Statistically significant differences group means
1042 indicated with asterisks: * p < 0.05, ** p < 0.01, *** p < 0.001. P values corrected for
1043 multiple comparisons (Benjamini, et al 2006).


1044


1045 **Extended Data Figure 3-1:** Summary of pairwise correlation statistics describing the
1046 relationship between cFos-ir neurons within SBN nodes.


1047

1048 **Extended Data Figure 2-1:** Complete summary of *post hoc* analyses for linear mixed
1049 models performed within each SBN region.

1050

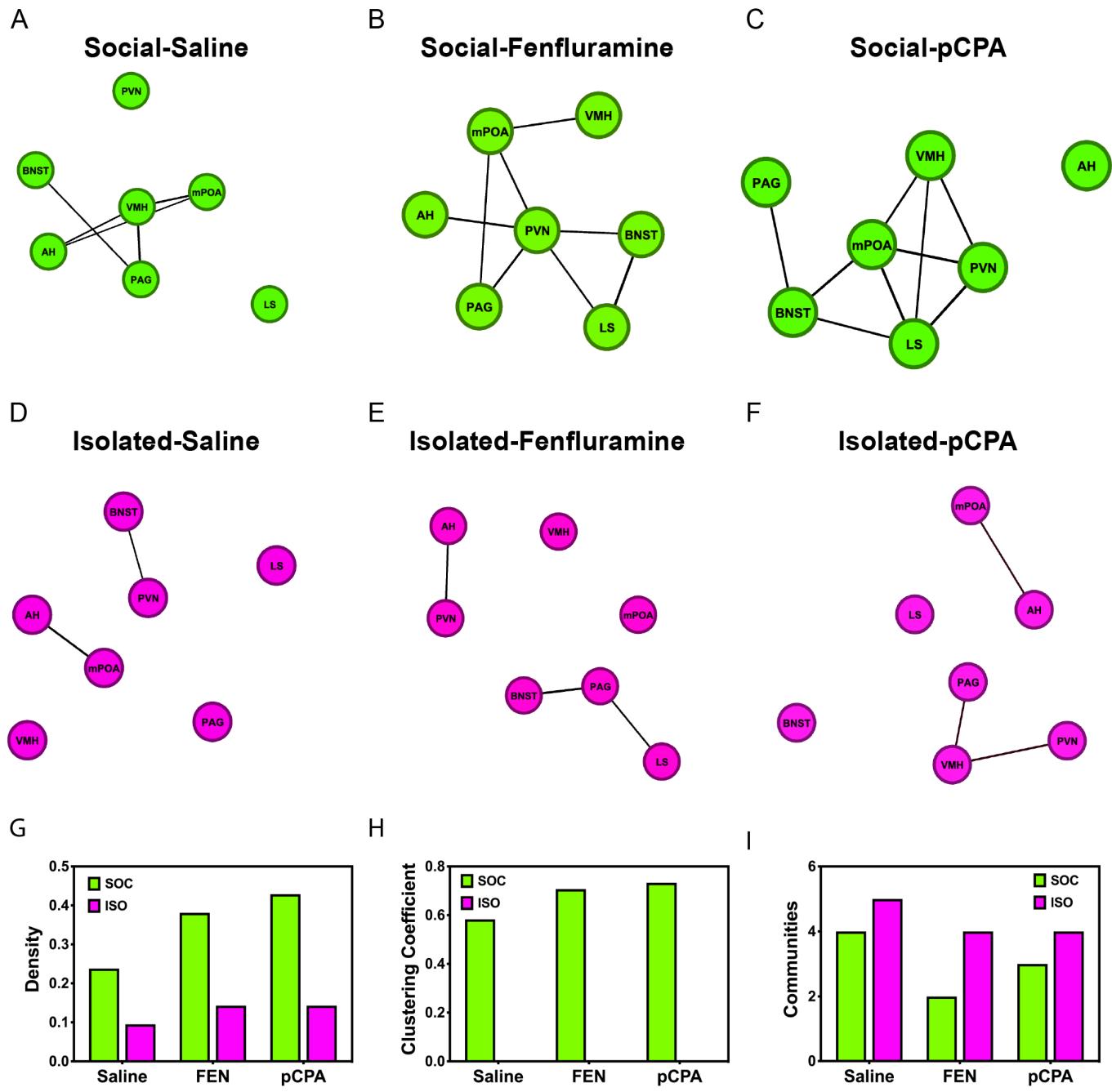


Table 1: Summary of linear mixed models assessing within-node effects of housing and drug treatment

Lateral Septum (LS)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 22.8	0.28	0.60	Cage number	-4.18	4.95	-13.89	5.53	0.40	
Drug	2, 22.8	15.98	<.0001***	IHC Run	7.83	9.45	-10.70	26.36	0.41	
Housing*Drug	2, 22.8	4.84	0.02*	Residual	33.51	8.33	21.73	58.40		
Bed Nucleus of the Stria Terminalis (BNST)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 14.5	7.23	0.02*	Cage number	3.15	6.84	-10.25	16.55	0.65	
Drug	2, 14.5	52.63	<.0001***	IHC Run	2.80	4.31	-5.64	11.24	0.52	
Housing*Drug	2, 14.5	0.49	0.62	Residual	20.98	6.70	12.23	44.13		
Meidal Preoptic Area (mPOA)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 20.5	6.67	0.02*	Cage number	57.24	24.33	9.56	104.93	0.02*	
Drug	2, 20.5	25.34	<.0001***	IHC Run	34.86	40.78	-45.08	114.80	0.39	
Housing*Drug	2, 20.5	1.96	0.17	Residual	28.66	10.54	15.59	69.15		
Paraventricular Nucleus of the Hypothalamus (PVN)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 19.1	10.12	0.005**	Cage number	21.13	12.54	-3.44	45.70	0.09	
Drug	2, 19.1	40.99	<.0001***	IHC Run	13.95	17.01	-19.39	47.29	0.41	
Housing*Drug	2, 19.1	8.25	0.003**	Residual	25.61	8.42	14.71	55.33		
Anterior Nucleus of the Hypothalamus (AH)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 21.2	0.18	0.67	Cage number	0.11	4.80	-9.29	9.51	0.98	
Drug	2, 21.2	6.60	0.001**	IHC Run	4.92	6.33	-7.48	17.32	0.44	
Housing*Drug	2, 21.2	1.91	0.17	Residual	24.55	6.49	15.53	44.58		
Ventromedial Nucleus of the Hypothalamus (VMH)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 21.5	2.52	0.13	Cage number	7.18	2.50	2.28	12.08	0.004**	
Drug	2, 21.5	14.47	<.0001***	IHC Run	0.49	1.01	-1.48	2.46	0.63	
Housing*Drug	2, 21.5	0.06	0.94	Residual	1.48	0.56	0.79	3.68		
Periaqueductal Gray (PAG)										
Source	DF	F	P	Variance Component	Estimate	Std Error	95% Lower	95% Upper	P	
Housing	1, 22.5	6.11	0.02*	Cage number	32.71	11.90	9.39	56.04	0.01**	
Drug	2, 22.5	0.91	0.42	IHC Run	5.48	8.02	-10.24	21.21	0.49	
Housing*Drug	2, 22.5	1.45	0.26	Residual	10.71	3.87	5.88	25.36		

Asterisks indicate statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2a: Summary of arithmetic group means of cFos-ir neuron within housing treatments \pm standard error

Housing	LS	BNST	mPOA	PVN	AH	VMH	PAG
Social	25.25 \pm 3.8	13.6 \pm 5.2	31.58 \pm 6.6	15.97 \pm 4.1	15.24 \pm 2.0	4.48 \pm 2.1	12.50 \pm 0.6
Isolated	26.23 \pm 2.5	17.56 \pm 5.3*	40.65 \pm 10.2*	23.39 \pm 10.4**	16.00 \pm 2.1	6.17 \pm 2.1	18.42 \pm 2.6*

Table 2b: Summary of arithmetic group means of cFos-ir neurons within drug treatments \pm standard error

Drug treatment	LS	BNST	mPOA	PVN	AH	VMH	PAG
Saline	22.95 \pm 1.2	10.32 \pm 1.0	27.73 \pm 0.1	12.71 \pm 1.1	14.79 \pm 1.5	3.587 \pm 0.5	13.83 \pm 0.9
Fenfluramine	31.36 \pm 0.9**	26.0 \pm 2.1***	52.59 \pm 8.1***	34.2 \pm 10.0***	19.06 \pm 1.0*	9.458 \pm 0.9***	15.2 \pm 2.0
pCPA	22.9 \pm 3.6	10.42 \pm 2.9	28.02 \pm 5.4	12.13 \pm 1.0	13.02 \pm 1.6	2.933 \pm 1.2	17.35 \pm 6.0

Values are expressed as mean \pm SEM; statistically significant post hoc differences indicated by asterisks: * p < 0.05, ** p < 0.01, *** p < 0.001

Complete posthoc comparisons can be found in extended data Figure 2-1