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acetonitrile. The results demonstrate acetonitrile as the superior solvent 
for laser operation of the salt. 

Under intense pulsed excitation high-concentration (~10-3 M) solu
tions of the salt in acetonitrile, ethanol and methanol demonstrated 
stimulated emission with accompanied fluorescence lifetime shortening 
and linewidth narrowing, and broadband free-running laser operation 
with minimal feedback. The salt is thus highly promising as a laser dye in 
the blue-green spectral range, with acetonitrile as the optimal solvent. In 
addition, the salt exhibits potential as a contrast agent for two-photon 
fluorescence imaging and microscopy applications, and one-photon 
fluorescence based optical biomedical applications. 
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Fig. 4. Two-photon absorption induced fluorescence spectra (TP) of PyCl in 
acetonitrile (concentration 3.5 × 10-3 M) as a function of 800-nm pump beam 
intensity. Corresponding one-photon absorption induced fluorescence spectrum 
(OP) is shown for comparison. Inset is a plot of log (TP fluorescence intensity) 
vs log (excitation intensity). 
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