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Abstract— Human-robot interactions (HRI) can be modeled
as differential games with incomplete information, where each
agent holds private reward parameters. Due to the open
challenge in finding perfect Bayesian equilibria of such games,
existing studies often decouple the belief and physical dy-
namics by iterating between belief update and motion plan-
ning. Importantly, the robot’s reward parameters are often
assumed to be known to the humans, in order to simplify
the computation. We show in this paper that under this
simplification, the robot performs non-empathetic belief update
about the humans’ parameters, which causes high safety risks
in uncontrolled intersection scenarios. In contrast, we propose
a model for empathetic belief update, where the agent updates
the joint probabilities of all agents’ parameter combinations.
The update uses a neural network that approximates the Nash
equilibrial action-values of agents. We compare empathetic
and non-empathetic belief update methods on a two-vehicle
uncontrolled intersection case with short reaction time. Results
show that when both agents are unknowingly aggressive (or
non-aggressive), empathy is necessary for avoiding collisions
when agents have false believes about each others’ parameters.
This paper demonstrates the importance of acknowledging the
incomplete-information nature of HRI.

I. INTRODUCTION

Human-robot interactions (HRI) have become ubiquitous
in the past two decades, with applications in daily assis-
tance, healthcare, manufacturing, transportation and defense.
Since humans and robots may not understand the intents
of each other during interactions, we consider HRI as dif-
ferential general-sum games with incomplete information,
where agents hold private reward parameters. Finding per-
fect Bayesian equilibria (PBE) of such games is an open
challenge [1] due to the entanglement of physical and belief
dynamics, and existing solutions (e.g., structured PBEs) do
not scale well with the dimensionalities of the state, action, or
belief spaces [2], [3]. As a result, most existing HRI studies
resort to simplified optimal control formulations or complete-
information games [4]-[7] for motion planning, and some
use belief update to adapt the planned motion [8]-[11]. While
this approach does not necessarily produce PBEs (due to the
ignorance of belief dynamics during the planning), it is a
tractable attempt at modeling the coupled dynamics of beliefs
and physical states, and is therefore the focus of this paper.
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Fig. 1. (a) Schematics of a two-agent uncontrolled intersection case. d; and
do are positions of agents. (b) Nash equilibrial state trajectories when both
agents know they are non-aggressive. Empathetic (c) and non-empathetic (d)
non-aggressive agents when they have incorrect initial common beliefs that
both are aggressive. Here aggressive means less sensitive to close distances.
Empathetic agents are more likely to avoid collisions due to their better
estimation of others’ reward parameters and choice of the correct policies.
Correct estimation is color coded as purple. Solid and hollow boxes at the
top right corner represent “close-distance” (including collision) states from
the perspectives of the aggressive and non-aggressive agents, respectively.
Bottom left hollow box represents the initial states. Trajectories are mirrored
along the diagonal line due to intrinsic symmetry.

We consider empathy, and the lack of it, as two different
ways of performing belief update: Empathetic agents fol-
low Harsanyi’s assumption [12], i.e., they share the same
common belief about everyone’s parameters, and therefore
acknowledge the fact that others have uncertainty about their
own parameters. In contrast, a non-empathetic agent believes
that everyone else knows its parameters, and therefore holds
its own version of the “common belief”. This difference in
empathy affects the belief dynamics and therefore the state
trajectories and values of all agents.

We note that there is a modeling convenience when consid-
ering agents as non-empathetic (or even non-game-theoretic),
which justifies such simplifications adopted by existing HRI
studies. To understand this, we first note that updating the
belief about an agent relies on the Hamiltonian (action-value)
of that agent. From the perspective of a non-empathetic ego
agent, its fellow agents play complete-information games
with it, and therefore each fellow’s Hamiltonian is a function
of the states and its own parameter. This is also the case
when the fellow agent is non-game-theoretic. To enable
belief update, the Hamiltonian is usually solved offline for



the corresponding complete-information game or the optimal
control problem: For the latter, the closed-loop Hamiltonian
can be found through reinforcement learning in general;
for the former, where closed-loop solutions are hard to
be solved, one could use open-loop Hamiltonian solved
through Pontryagin’s Maximum Principle (PMP) [13] as an
approximation. Since solving such open-loop solutions for
all states can be costly, approximation of the open-loop
Hamiltonian using data-driven approaches is needed [14]. In
comparison, the Hamiltonian of an empathetic agent, due to
its incomplete information, is a function of all agents’ beliefs,
in addition to their states and the agent’s own parameters.
Due to the additional involvement of the belief space, the
computational cost of creating data-driven approximations
of open-loop Hamiltonian becomes even higher.

The convenience of modeling agents as non-empathetic or
even non-game-theoretic leads to the central question of this

paper:
In what interactions does empathy matter?

This paper makes the following contributions towards
answering this question (summary in Fig. 1). (1) We define
an interaction space spanned by the initial system states,
agent parameters, the common belief about the parameters,
and the empathy of agents to systematically evaluate the
potential advantages of empathy. (2) Through a two-vehicle
uncontrolled intersection case, we show that empathy in
parameter estimation leads to significantly better values when
reward parameters and common beliefs are completely wrong
(e.g., everyone being aggressive while believing all to be
nonaggressive). (3) To enable fast parameter estimation and
motion planning, we develop a learning architecture for
approximating Nash equilibrial action-values for given agent
parameters. The approximation model is trained on equilib-
rial interactions solved from the boundary-value problems
(BVPs) following PMP on a meshgrid of the state space.

The rest of the paper is structured as follows: Sec. II
reviews related work. Sec. III elaborates on empathetic and
non-empathetic belief update, motion planning, and data-
driven Hamiltonian approximation. Sec. IV introduces the
case study. We conclude the paper in Sec. V.

II. RELATED WORK

Multi-agent perfect Bayesian equilibrium: A PBE con-
sists of a policy and belief pair that simultaneously satisfies
sequential rationality and belief consistency [15]. It is known
that there does not exist a universal algorithm for computing
PBE due to the interdependence of policies and beliefs [3].
This open challenge is partially addressed recently in [3],
which shows that a subset of PBEs can be computed re-
cursively by solving fixed-point equations for each agent .
Since the fixed-point equations are interdependent on agents’
policies, the algorithm is non-scalable with respect to the
number of agents, time, or the dimensionalities of the action,
state, and belief spaces. Only solutions for two-agent two-
step games have been demonstrated so far [2], [3]. The

inverse problem, i.e., estimation of agent parameters given
PBE demonstrations, has not yet been studied.

Decision modeling: Human decision models in HRI [16]—
[18] follow studies in behavioral economics [19]-[21]. Risk
models are introduced to explain seemingly non-optimal
human actions [6]. Social value orientation is introduced
to explain agents’ courtesy towards others in general-sum
dynamic games [7]. Similar courtesy models have been
discussed in [22], [23]. In this paper we model agents to take
Nash equilibrial actions deterministically without consider-
ing courtesy. We only use noisy rationality to compensate
for modeling errors during belief updates, similar to [11].

Multi-agent inverse reinforcement learning (MIRL):
Parameter estimation (for reward and policy) has been in-
vestigated for single-agent problems [24]-[26]. For dynamic
games, multi-agent inverse reinforcement learning performs
estimation under solution concepts of the game rather than
assuming optimality of individual actions [27], [28]. Along
the same vien, the belief update algorithm introduced in this
paper extends the single-agent framework in [11] to games,
while allowing noisiness of rationality to be estimated along
with the agents’ reward parameters. Compared with [7],
where agents’ parameters are estimated using Stackelberg
equilibrial as a solution concept, this paper considers agents
to take simultaneous actions and are thus Nash equilibrial.

Value approximation: Solutions to Hamilton-Jacobi
equations often have no analytical forms, can be discontinu-
ous, and only exist in a viscosity form [29], [30]. Deep neural
networks (DNN) have recently been shown to be effective at
approximating solutions to Hamilton-Jacobi-Bellman (HJIB)
equations underlying optimal control problems [14] and
Hamilton-Jacobi-Isaac (HJI) equations for two-player zero-
sum games with complete information [31], thanks to the
universal approximation capability of DNNs [32]. In this
paper, we extend this approximation scheme to values of
general-sum complete-information differential games, and
then use the resultant value networks to approximate agents’
Hamiltonian during belief update and motion planning. In
comparison, [7] requires equilibria to be computed by it-
eratively solving the KKT problems during parameter es-
timation, while the proposed value approximation method
allows agents to leverage memorized value gradients, thus
accelerating the estimation.

III. METHODS

This section introduces the belief update and motion
planning algorithms to be used in the case study. We also
elaborate on the approximation of Hamiltonian.

A. Belief update and motion planning

Preliminaries and notations: For generality, we consider
a multi-agent game with N agents. All agents share the same
individual action set U/, state space X, reward parameter set
O, and rationality set A. Together, they share an instan-
taneous reward function f(-,;0) : XN xUN — RN, a
terminal reward function c(+;6) : XN — RY, a dynamical
model h : XN x UV — XN, and a finite time horizon
[0,T]. Let B; :=< A;,0; > be the parameters of agent 4,



where \; € A and 6; € ©. We denote the total parameter
set by B := AN x ©N. ©, A, B, and U are considered
discrete in this study. To reduce notational burden, we use
a single variable a for the set (a1, ...,ay) and define a_; =
(a1y..sy@—1,ai41,...an). E.g., B € B contains parameters
for all agents, 3_, those except for agent i. We denote by
a* the true value of variable a, and a its point estimate.
Lastly, we assume the existence of a prior belief p?(3) of
agent 4, which will be updated as p¥(3) at time step k
with observations D(k) = {(x(t),u(t))}*_,. When agents
are empathetic, they share the same common belief p*(3).

Nash equilibria for a complete-information game: If
0 is known to all and unique Nash equilibria exist, we can
derive the equilibrial Hamiltonian H;(-,-;theta) : XN x
U — R for every agent ¢, which is the value of action wu;
in state x when ego and fellow parameters are 6; and 6_;,
respectively. For the discrete set of joint parameters, O, we
can derive H" := {H(-,-;0)}gco~, which maps OV to the
equilibrial Hamiltonian. E.g., for a two-agent game where
|©| = 2, we have |H?| = 4 pairs of action-values.

Belief update: Given observations D(k) at time step k,
pi.(3) follows a Bayes update:

_ p(u®)x(k); B)pi 1 (B)
ZB/EB p(u(k)[x(k); B)p,_1(B")

where p(ulx;3) = [[,_; np(uilx;B) since actions are
modeled to be drawn independently by agents, and
p(uilx; B) = exp(AsHi(x, us; ‘,9.)) . 2)
Yo exp(NiHi(x,u};0))
Vi =1,..., N. It should be noted that if elements of 3 € B
is mistakenly assigned zero probability, e.g., due to noisy
observations, this mistake will not be fixed by future updates.
To address this, we modify pt(3) as
Pe(8) = (1 — e)pi(B) + epo(B) 3)
before its next Bayes update, where e represents the learning
rate. This allows all 3 combinations to have non-zero proba-
bilities throughout the interaction, provided that the prior pj
is non-zero on B.

Parameter estimation: Recall that the open-loop equi-
librial value of incomplete-information games is defined on
the joint space of the agent’s belief and parameters, and all
agents’ states. To keep the approximation of Hamiltonian
(which relies on the spatial gradient of values) manageable,
we will use point estimates, rather than the distributions
(pi.(8)), for computing the equilibrial values (see Sec. I1I-B).
Specifically, we use

Pi(8) (1)

B(k) = arg max p},(8) )
BeB
for empathetic agent 7, and
B_i(k) = argmax pj.(B_;|5;), (5)
B_,eB_;

for a non-empathetic agent. Different from empathetic
agents, non-empathetic agents may have estimates different
from each other, due to the conditioning on their own
parameters.

Motion planning: If empathetic agents take actions
strictly following the common belief, the interactions will

be solely determined by the prior po(3) independent of the
private parameters of agents. This is inconsistent with real-
world interactions where agents express their own intents.
Therefore, we model empathetic agent ¢ to follow control
policies parameterized by its own parameters and the es-
timates of others, i.e., O = (9;*,94). Similarly, the non-
empathetic agent uses @ = (6,60_;). Each agent then takes
actions deterministically following

u; = arg max H; (X, u;; é) (6)
u; €U
Simulated interactions: Alg. | summarizes the simulation
of an interaction, which is parameterized by the initial states
Xq, the set of agent parameters 3, and the prior belief p,(3).
The simulation outputs the trajectories of states x(k), actions
u(k), beliefs p,(3), and values v(k) of all agents.

Algorithm 1: Multi-agent interaction

input : Xo, /6*7 po(ﬁ)

output: {(x(k),u(k),p,(8),v(k)}I_,
1 set k=0 and x(0) = xo;
2 while £ < T do
3 update p,(8) using Eq. (3) and Eq. (1) ;
4 compute B_i if 7 is empathetic (or B_i if
non-empathetic) using Eq. (4) or Eq. (5);

5 compute wu;(k) from Eq. (6);

6 | compute x(k+ 1) = h(x(k),u(k)) ;
7 k=k+1;

8 end

B. Action-value approximation

In the following, we describe the approaches to solving
boundary value problems (BVPs) resulted from PMP for
differential games and to learning value approximations
based on the BVP solutions.

BVP: Following PMP and for fixed initial states, the
equilibrial states x*(t), actions w*(¢), co-states v} (t) :=
Vi V*(x*,¢;0), and values V*(x*,t;0) for ¢ € [0,T] are
solutions to the following BVP [13]:

X* = h(x*(t),u* (1))

x*(0) = xq

vl = —ViH;(x",u}, v} (t);0)

v (T) = —Vxei (x*(T); 6) 7
u; (t) = argmax H; (x*, u;, v} (t);9),

u; EU
V' (x*,;6) = f(x*,u*;0),
V*(x*,T;0) = ¢(x*(T);0) Vi =1, ..., N,

where H;(X,u;,vi,t;0) = vIhi(x,u;) — fi(x,u;;0) is the
Hamiltonian for agent i. X( is the initial states. Note that
V*(x,t; 0) is parameterized by all agent parameters due to its
implicit dependence on the equilibrial actions u*. We solve
Eq. (7) using a standard BVP solver [33] with case-specific
modifications to be introduced in Sec. IV.

Value approximation: Solving the BVPs for given 6 and
Xo gives us V* and V,V* for all agents along an equilibrial
trajectory starting from Xy and ¢ = 0. Let this set of values



and co-states be D, (X, 0). We then collect the dataset D,, :=
{D,(x,0) | x € &,0 € OV} where Sy is a finite mesh
of XV, This data allows us to build surrogate models for
the equilibrial values: V(-,-;8,w) : XN x [0,T] — R by
solving the following training problem with respect to the
surrogate model parameters w:
min 3 (||V(x,t;e,w) — V|2
Y EVEVV)ED, ®)

+C|IVRV(x, 1 8,w) = VxV7[2)

Here C' balances the matching of values and co-states, and
[|-]| is the l3-norm. To accommodate potential discontinuity
in the values, we model \Y using a deep neural network,
and derive its co-states through auto-differentiation. Eq. (8)
can then be solved using a gradient-based solver for all
combinations of preferences & € ©N. The result is a
set of value functions V := {V(-,0,w)}econ. Alg. 2
summarizes the value approximation procedure.

Algorithm 2: Value approximation
input : S,, N, T
output: {V(-,-:0,w)}gcon
1setD, =0,V =0;
2 for each (x¢,0) € S, x OV do
3 solve Eq. (7) for
Dy (x0,0) = {x*(t),v*(t), V" (X", t; 9)}tE[O,T] 5
D, « D,(x0,0);

solve Eq. (8) for V(, =0, w);
Vo V(a ) 0,1[1);

4
5
6 for each 8 € ©F do
7
8
9

Hamiltonian approximation: We approximate the Hamil-
tonian at time ¢ using V.V as the co-states. Note that we
need to consider time as part of the state since the game has
a finite time horizon.

IV. CASE STUDY

The goal of the case study is to identify interaction settings
where empathetic agents together perform “better” than non-
empathetic ones. In order to perform a thorough study and
due to space limitation, we focus on an uncontrolled inter-
section case and discuss experimental settings, hypotheses
and analyses as follows.

A. Uncontrolled intersection

This case models the interaction between two cars at an
uncontrolled intersection specified in Fig. la. The state of
agent ¢ is defined by the agent’s position d; and its velocity
vt x; = (d;,v;). The individual state space is set as X =
[15,20]m x {18,18}m/s, where the initial velocity is fixed
for visualization purpose and can be extended in future work.
The action of agent ¢ is defined as its acceleration rate, and
the action space as U = [—5,10]m/s?. The instantaneous
reward function is

fi(x,ui; 0) = £ (u;) + f9(x;6;), )
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Fig. 2. (a) Collision loss in (d1,d2) (b) Equilibrial value of one agent
along time when both agents are non-aggressive
where f()(u;) = —u? is a negative effort loss and
fO0)==b  J[ = o1(di0:)oa(dy)  (10)
i,5={(1,2),(2,1)}
models a negative penalty for collision. Here
o1(d,0) = (1 + exp(—v(d — R/2+0W/2)))~}; (11)
o2(d) = (1+exp(y(d— R/2-W/2-L))™";  (12)

b = 10* sets a high loss for collision; v = 10 is a shape
parameter for o, which is designed to recreate a rapid rise
in loss when two cars are in contact; R, L, and W are the
road length, car length, and car width, respectively (Fig. 1a).
6; denotes the aggressiveness (sensitivity to collision) of the
agent. Fig. 2a visualizes f(¢) along d; and ds. The terminal
loss is defined as c¢;(x) = ad;(T) — (v;(T) — vg)?, where
a = 107C is the scaling factor of displacement reward at 7T,
i.e., the agent is rewarded for moving forward and restoring
its initial speed at 7. We adopt a simple dynamical model:

ity | |0 1 d;(t) 0

{ @igtg } B [ 0 0 ] [ v;(t) ] - { 1 ]ui(t)' ()
We set agent parameters © = {1,5} and A = {0.1,0.5} as
common knowledge. Note that §; = 1 and §; = 5 represents
an aggressive and a non-aggressive agent; A\; = 0.1 and \; =
0.5 represents a noisy and less-noisy decision model. We
solve BVPs on Sy, which is a meshgrid of X with an interval
of 0.5m for both d; and ds.

Solving BVPs: BVP solutions for complete-information
differential games are known to be dependent on the initial
guess of state and co-state trajectories [34]. Specific to our
case, it can be shown from Eq. (7) that collision avoiding
behavior can only be derived when numerical integration
over df(°) /dd; can be correctly performed. This integration,
however, is challenging since 0 f(°) /0d; resembles a mixture
of delta functions, and therefore requires dense sampling in
the space of (dy,ds) where the collision happens. To this
end, we predict two time stamps, ¢; and to, respectively
corresponding to (1) when the second car enters and (2)
when the first car leaves the intersection zone. The prediction
is done by assuming that the leading car moves at its initial
velocity and the trailing car takes maximum deceleration. We
then densely sample around #; using {¢; £1.25x 1076k }3%9,.
These time stamps along with the approximated agent actions
provide an initial guess for the system states and co-states.
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Fig. 3a-d demonstrates equilibrial trajectories in the space of
(d1, d2) when both agents are non-aggressive and aggressive.

Approximating values: We notice that there exist abrupt
changes in the value along time and space in the BVP
solutions, due to the high penalty of collision and close calls
(Fig. 2b), i.e., after the two agents pass each other, which in
some cases incurs high loss due to close distances between
the two, the value increases significantly. We found that
conventional fully-connected network architectures cannot
effective learn this unique structure, and therefore propose
the following value network architecture:

V(X? t7 0, U}) = 77f1 (X7 tv Ba ’LU) + (1 - n)fQ(Xv t7 0? ’LU), (14)
where f; and f; follow the same architecture:
fc5-(fcl6-tanh) Xx3-(fc2-tanh), where fcen
represents a fully connected layer with n nodes and tanh
is the hyperbolic tangent activation. 1 is a sigmoid function
that determines whether one of the agents have passed
the intersection zone. Training data are collected from
|Sx| = 121 BVP solutions, and test data from another
36 solutions sampled in X2 (on average 100 nodes per
trajectory). We use ADAM [35] with learning rate 0.01
and the hyperparameter C' = 1, which performed the
best after testing a set of choices. Fig. 3e.f illustrate the
approximated trajectories in (dj,ds) considering complete
information, where actions are chosen by maximizing
the approximated action-values using the resultant value
networks, when both agents are respectively non-aggressive
and aggressive. Some remarks: While value approximation
is not perfect (test relative MAE of 15.64% and 12.17% for

non-aggressive and aggressive cases, whereas the original
neural network design has MAE around 107'% to 1%),
the approximated equilibria are mostly acceptable. We do
face an intrinsic challenge in learning the values when
both agents have the same initial states and are aggressive,
potentially due to a combination of relatively high error
in co-state approximation (83.73% relative MAE) and the
nonuniqueness of equilibria in these scenarios, i.e., either of
the agent can yield or move first.

B. Driving scenarios

An incomplete-information driving scenario is a tuple
s =< Xq,po(B),0",1 > specifying the initial state, prior
belief, true parameters, and estimation types. We pick initial
states from Sy, and parameters (aggressiveness) from ©.
We use a, na, n, In for aggressive, non-aggressive, noisy,
less-noisy, respectively. The prior common belief set Pg:
With the above parameter settings, each element of the prior
belief set Py is a 4-by-4 matrix containing joint probabilities
for all 16 agent parameter combinations. Each dimension of
the matrix follows the order (na,n), (na,ln), (a,n), (a,ln),
e.g., the Ist row and 2nd column of the matrix represents
Pr (81 = (na,n), B2 = (na,ln)). To constrain the scope of
the studies, we assume that agents are mostly rational
(Pr(A1,2 = In) = 0.8), and explore two cases of 0: Everyone
believes that everyone is (1) most likely non-aggressive
(Pr(f12 = na) = 0.8) or (2) most likely aggressive
(Pr(01,2 = a) = 0.8). This reduces Py to {pg®,p}, where
i and pg are the common priors where everyone is believed
to be non-aggressive and aggressive, respectively. Parameter
estimation type: We set £ = {(e,e), (ne,ne)} where e
stands for “empathetic” and ne for “non-empathetic”. Using
Alg. 1 and by setting a time interval of 0.05s, interaction
trajectories can be computed for each driving scenario s. The
resultant values at ¢ = 0 are denoted by v(s). Evaluation
metrics: Lastly, we measure the goodness of empathetic and
non-empathetic estimations using the sum of the individual
values (total value) at t = 0: 9(s) = Efil v;(s). Implemen-
tation: Code is available here. See supplementary video for
animated interactions.
C. Hypotheses

The following hypotheses concerning two driving scenar-
jos s() and s(®) will be tested empirically:
1) Empathy leads to higher total value when agents
are unknowingly aggressive (or non-aggressive): Let
1D = (e,e), 1D = (ne,ne), *V = 03 = (q,a)
(or (na,na)), p(()l) = péZ) = pg® (or pg). There exists
X} C A, such that for all xg € &, (s > v(s?).
2) Empathy leads to higher total value when agents are
knowingly aggressive (or non-aggressive): The same
as Hypothesis 1, except that the common beliefs are
set to be consistent with the truth parameters.
D. Results and analysis
Hypothesis 1 passes the test (Fig. 4), suggesting that being
empathetic leads to less collisions in the intersection case
when initial common belief is wrong. Hypothesis 2 passes
the test (Fig. 5), although results suggest that when the initial
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common belief is consistent with the true parameters, empa-
thy does not play a significant role. Also notice that matching
between belief and parameters help improve the interactions.
To understand how empathy helps, we inspect whether agents
choose the correct policies (among (na,na), (na,a), (a,na),
and (a,a)) at each time step during the interaction following
Alg. 1. Specifically, when agents are non-aggressive, the
correct policy follows 3 = (na,na), vice versa. In Figs. 6
and 7, we color-code the correct (1) and incorrect (0) choices
of policies for both agents. Results show that empathetic
agents tend to choose the correct policies when they are
trailing (Fig. 6). We conjecture that this is due to the fact
that the actions of the leading agent are intrinsically more
effective at signaling, i.e., its lower acceleration suggests that
it does not care much about potential close distances and thus
its high aggressiveness. On the other hand, non-empathetic
agents never choose the correct policies (Fig. 7).

V. CONCLUSIONS

Using an uncontrolled intersection case, we studied the
utility of empathetic belief update in a two-agent incomplete-
information differential game. We showed that empathy
helped agents choose policies that led to higher total values
when agents had common beliefs inconsistent with their true
parameters. While its findings should be tested under a larger
set of driving scenarios (e.g., roundabout and lane changing),
this study provides a methodology for systematically evaluat-
ing the utility of empathy in incomplete-information differen-
tial games. The proposed interaction model can be improved
in the following directions: (1) It is more reasonable to use
beliefs (parameter distributions) rather than point estimates
for motion planning, so that the planned actions take into
account uncertainties of agents. (2) It is possible to improve
Hamiltonian approximation by indirectly approximating the
co-state trajectories, so that knowledge about the system
dynamics and reward functions can be leveraged.

a b
(40) (e, e),®" =(na, na), P, = P§° ( 4’0 (ne, ne), ®" = (na, na), P = P§?
35 35
a a
230 230
~ &
9 9
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20 / 201
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(C) 0" Po=P3 (d) ( ), 0" = ( ), Po =P§
= = ne,ne),® =(a,a),Po=
40 (e, e), (a,a),Po=P§ 6 o =Pg
35 35
230 230
c &
~ ~
9 e
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30 30

d1 (m) d1 (m)

Fig. 5. Interactions when common belief matches with true reward

parameters. (a,b) Knowingly non-aggressive, (c,d) Knowingly aggressive.
(a,c) Empathetic, (b,d) Non-empathetic.

(a)

V1 (e, e), © = (na,na), Po = P§
401(e e) (na,na), Po 8

d1(m)

Fig. 6. Color-coding of the policy choices by empathetic agents, for non-
aggressive (a,b) and aggressive (c,d) scenarios, where 1 (purple) represents
when the policy is consistent with 5*.
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Fig. 7. Color-coding of the policy choices by non-empathetic agents,
for non-aggressive (a,b) and aggressive (c,d) scenarios, where 1 (purple)
represents when the policy is consistent with 3*.
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