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We demonstrate that the rapidity and robustness of slow contraction in homogenizing and flattening 
the universe found in simulations in which the initial conditions were restricted to non-perturbative 
variations described by a single Fourier mode along only a single spatial direction are in general enhanced
if the initial variations are along two spatial directions, include multiple modes, and thereby have 
reduced symmetry. Particularly significant are shear effects that only become possible when variations 
are allowed along two or more spatial dimensions. Based on the numerical results, we conjecture that 
the counterintuitive enhancement occurs because more degrees of freedom are activated which drive 
spacetime away from an unstable Kasner fixed point and towards the stable Friedmann-Robertson-Walker 
fixed point.
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1. Introduction

Slow contraction has been proposed as a mechanism for ex-
plaining the homogeneity, isotropy and spatial flatness of the uni-
verse [1,2]. During this phase, the contraction is ‘slow’ because the 
Friedmann-Robertson-Walker (FRW) scale factor a(τ ) decreases as 
a small power of FRW time τ ,

a(τ ) ∝ (−τ )1/ε as τ → 0−, (1)

where

ε ≡ 3
2

(

1+ p
̺

)

≫ 3 (2)

is the equation of state, p is the pressure and ̺ is the energy 
density of the dominant stress-energy component. In a bouncing 
or cyclic cosmology based on slow contraction, the evolution con-
nects to the hot expanding universe through a classically-described 
smooth transition (the ‘bounce’) and the conversion of energy driv-
ing slow contraction into hot matter and radiation.

In order for a mechanism to explain why the universe is ho-
mogeneous, isotropic and spatially flat and not otherwise, it must 
pass several tests (see, e.g., Ref. [3]). First, the mechanism must 
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have the property that the relative contribution of small initial in-
homogeneities and anisotropies to the total energy density shrinks 
with time according to the classical cosmological evolution equa-
tions. Second, the smoothing must occur when all quantum fluctu-
ations are included. For example, there should not be a quantum 
runaway that can transform spacetime, even an initially smooth 
spacetime, into a multiverse in which the fraction of spacetime 
that is smoothed is either exponentially small or indeterminate. It 
is straightforward to show with pencil and paper that slow con-
traction passes both of these tests.

The more challenging tests are to determine if the smoothing 
mechanism is robust, meaning effective even when initial condi-
tions correspond to large, non-perturbative deviations from ho-
mogeneity, isotropy and spatial flatness (for simplicity, henceforth 
denoted by ‘variations’); and to determine if the mechanism is 
rapid enough for the smoothing phase to endure long after a flat 
FRW spacetime is reached, sufficient for quantum fluctuations on 
the now-smoothed background to evolve into the density pertur-
bations needed to account for the observed temperature variations 
in the cosmic microwave background and seed the formation of 
large-scale structure. Since the initial deviations from a flat FRW 
spacetime are necessarily non-perturbative, numerical relativity 
techniques adapted to cosmological backgrounds are required to 
perform these tests.

Numerical relativity simulations demand significant computa-

tional resources. Hence, the first studies of robustness and rapidity 
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only considered the simplest settings, i.e., cases in which the initial 
variations of the energy density, curvature and shear were along 
a single spatial direction and described by a single Fourier mode 
[4,5]. The simulations showed that slow contraction exceeded the 
conditions for a rapid and robust smoother for ε � 13. These re-
sults are promising yet not sufficient.

In this paper, we complete the test using simulations that allow 
variations along at least two spatial directions and the inclusion 
of two or more modes along each of those directions. Given the 
inherently non-linear and non-perturbative nature of the evolu-
tion equations, this is essential to address the legitimate concern 
that there could be mode-coupling or multi-dimensional effects 
or other aspects of initial conditions with reduced symmetry that 
inhibit smoothing and flattening which were missed in the ear-
lier simulations. As described below, what we find instead is the 
opposite. The simulations indicate that, in general, the robustness 
and rapidity of slow contraction are enhanced by initial conditions 
with reduced symmetry. We conclude by commenting on why this 
might occur.

2. Numerical scheme and initial conditions

Our simulations solve the full 3+1 dimensional coupled Ein-
stein-scalar field equations beginning from large variations in spa-
tial curvature, matter density and shear along two spatial direc-
tions and track their evolution for several hundreds of e-folds.

The scalar field is introduced as a microphysical source for 
achieving the desired macroscopic equation of state, ε ≫ 3, char-
acteristic of slow contraction. The scalar field φ(�x, t) can vary with 
space and time and evolves along a negative exponential potential 
V (φ) = V0e

φ/m , where V0 < 0. Throughout, we express microphys-

ical quantities in reduced Planck units, 8πGN = 1 with GN being 
Newton’s constant. In the homogeneous limit, the attractor equa-
tion of state ε∗ associated with the scalar field φ is given by 
m = 1/

√
2ε∗ . Large values of ε∗ can be reached with values of m

that are modestly smaller than one; for example, m = 0.1 induces 
a slow contraction phase with ε∗ = 50.

Earlier studies [3–5] based on initial variations along a sin-
gle spatial direction studied the phase space for smoothing for a 
wide range of ε∗ and initial states. The results showed that slow 
contraction exceeds the conditions for rapidity and robustness for 
ε∗ � 13. In order to determine whether the inclusion of varia-
tions along two spatial dimensions and with multiple modes in 
each direction disfavors (or favors) smoothing, our examples use 
the minimal value ε∗ = 13 or m = 0.196.

The numerical scheme for evolving the corresponding sys-
tem of coupled, non-linear partial differential equations is based 
on a Hubble-normalized, orthonormal tetrad formulation of the 
Einstein-scalar field equations which is fully detailed in Ref. [6]. 
For example, we define the scalar field time derivative

W̄ = N
−1∂tφ, (3)

where N = N/� is the scale-invariant generalization of the lapse 
N , and the time coordinate t is given through

et = 1
3
�, (4)

with � = |H−1| being the inverse mean curvature of constant time 
hypersurfaces, such that surfaces of constant time are constant 
mean curvature hypersurfaces.

With Hubble-normalization, the variables tracked in the simu-

lation correspond in the homogeneous limit to the dimensionless 
Friedmann variables, 	i , the fractional contribution of component 
i (matter density, curvature or anisotropy) to H2 in the Friedmann 
constraint, see e.g. Ref. [5]. Note also that the matter contribution 

(	m), which includes the sum of positive kinetic energy density 
and negative potential energy density, and the curvature contri-
bution (	k) can be positive or negative. In addition, employing 
Hubble-normalized variables enables running the simulation for 
many e-folds of contraction of the Hubble radius without reach-
ing the putative singularity or encountering stiff behavior.

To specify the spatial hypersurface with mean curvature �−1
0 at 

some initial time t0 , we adapt the York method [7] commonly used 
in numerical relativity computations: We define the spatial metric 
of the t0-hypersurface to be conformally-flat and freely choose the 
vacuum contribution Z0

ab
(�x, t0) of the conformally rescaled trace-

free extrinsic curvature,

Zab(�x, t0) ≡ ψ6(�x, t0)�̄ab(�x, t0), (5)

which is related to the Hubble-normalized initial shear �̄ab(�x, t0)
through a conformal factor ψ(�x, t0) set by the Hamiltonian con-
straint. The momentum constraint determines the remainder of 
Z
ab

(�x, t0). Our choice of initial geometry enables us to freely spec-
ify the initial field φ(�x, t0) and velocity distributions

W̄ (�x, t0) ≡ ψ−6(�x, t0)Q (�x, t0). (6)

Note that our choice of initial conditions is only restricted by the 
constraint equations of general relativity and the particular bound-
ary conditions used in our simulations.

An example of a divergence-free and trace-less, conformally 
rescaled shear tensor Z0

ab
(�x, t0) is given by

Z0
ab(�x, t0) =







b2+c2 cos y ξ κ1+c1 cos y

ξ b1+a1 cos x κ2+a2 cos x

κ1+c1 cos y κ2+a2 cos x −b1−b2−a1 cos x−c2 cos y






, (7)

where a1, a2, b1, b2, c1, c2, κ1, κ2 are constants and �x = (x, y); in 
considering cases with multimodes, the cosine terms in the ex-
pression for Z0

ab
(�x, t0) can be replaced by a sum of different Fourier

modes with different amplitudes, wavenumbers and phases that 
preserve the divergence and trace. We fix the initial scalar field 
velocity to be

Q (�x, t0) = �0

(

qx cos (mxx+ dx)+ qy cos (my y + dy)+ Q 0

)

, (8)

where Q 0 is the mean value of the initial field velocity and 
qx, qy, mx, my, dx, dy are constant and denote the amplitude, the 
mode number and the phase of the initial velocity. Here we show 
two modes but they can be replaced by a sum of different modes 
when considering cases with multimodes. For both choice Z0

ab
and 

Q , expressing the spatial variation in Fourier modes reflects the 
fact that there are periodic boundary conditions 0 ≤ x, y ≤ 2π with 
0 and 2π identified.

Note that generality is not lost by choosing a conformally flat 
metric or choosing the scalar field to be uniform, φ0 = 0, say, on 
the initial spatial hypersurface. These are simply devices to ensure 
constraint satisfying initial conditions and to simplify the specifi-
cation of the initial conditions. Constraint satisfaction propagates 
forward in time, as required, but conformal flatness and uniform φ
are strongly broken in just a few integration steps.

Two key parameters for determining whether spacetime ulti-
mately converges to the slow contraction, smooth attractor de-
scribed by a flat FRW geometry is the equation of state of the 
attractor solution, ε = ε∗ , and the initial mean field velocity, Q 0

where Q 0 > 0 corresponds to the mean initial velocity along the 
potential V (φ) being downhill. (N.B. In cyclic cosmologies based 
on slow contraction, the field velocity at the beginning of the con-
traction phase is in general downhill and large, see, e.g., Ref. [8]. 
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Fig. 1. The state space orbit for worldlines at (x = 0.9π , y = 1.4π) (though the 
final state does not depend on (x, y) in these examples). Fig. 1(a) shows two test 
cases with homogeneous initial conditions for ε∗ = 13: Q 0 = Q 0∗ = 0 (short dashed 
blue), the critical value for converging to a Kasner-like anisotropic solution (near the 
Kasner circle); and Q 0 = 0.001 (solid red), a slightly downhill initial scalar field ve-
locity, which instead evolves to the flat FRW attractor solution (center of the circle). 
Fig. 1(b) shows three cases with non-uniform initial conditions that evolve to uni-
form spacetimes. The short dashed (blue) trajectory is the result of a simulation 
in which the initial x-dependent non-uniformity is purely along Z23 (a2 = 0.01). 
Even at t = −100, the trajectory remains close the Kasner circle. The red solid tra-
jectory is a simulation with the same initial conditions except for a small added 
y-dependent off-diagonal mode Z13 with (c1 = 0.0001); the example demonstrates 
that even a small shear in two dimensions is sufficient to kick the trajectory away 
from Kasner-like and drive it to the flat FRW attractor solution. The third case 
(dash-dotted, green) is a more general example with larger amplitude initial multi-

mode spatial variations in the initial scalar field velocity and both diagonal and 
non-diagonal shear components. The combination leads to a more complex trajec-
tory that even more rapidly converges to the flat FRW attractor solution.

However, as exemplified below, we also consider cases with up-
hill initial conditions as a method for understanding how and the 
degree as to which slow contraction smooths and flattens space-
time.)

In the case of homogeneous initial conditions, ε∗ and Q 0 are 
the only relevant parameters. For a given ε∗ and uniform ini-
tial field velocity Q (�x, t0) = Q 0 for all �x, there is a critical initial 
value Q ∗

0 such that the universe converges to the slow contrac-
tion attractor solution for Q 0 > Q ∗

0 and converges to a Kasner-
like anisotropic solution for Q ≤ Q ∗

0 . In the first case, both the 
scalar field kinetic and potential energy density rapidly grow to 
dominate, driving the universe towards a spatially flat FRW space-
time with Q (�x, t) → Q attr(ε

∗, t), the attractor solution for the field 
velocity. In the second case, the scalar field potential remains ir-
relevant and the universe approaches a homogeneous anisotropic 
(‘Kasner-like’) phase with a mix of uniform shear and uniform 
scalar field kinetic energy density.

Fig. 1a shows state space orbit plots comparing the evolution 
beginning from homogeneous equations for Q ∗

0 = 0 and a slightly 
positive value, Q 0 = 0.001. The orbit plots enable the visualization 
of the evolution of the shear in the (�̄+, �̄−) plane for a chosen 
spatial point x, where

�̄+ = 1
2

(

�̄11 + �̄22

)

, �̄− = 1

2
√
3

(

�̄11 − �̄22

)

. (9)

The �̄± are normalized so that the unit circle (�̄2
+ + �̄2

− = 1) cor-
responds to the vacuum Kasner solution, as occurs for Q 0 = Q ∗

0 =
0; trajectories that approach 	m = 1 (FRW) converge to the center, 
as occurs for Q 0 = 0.001.

When the special homogeneous initial conditions are replaced 
with non-perturbative, spatially varying initial conditions, the com-

petition remains between the FRW and Kasner-like phases, but 
additional parameters become relevant which lead to other out-
comes. Earlier studies based on numerical relativity codes that 
allow initial conditions with variations along one spatial direction 
only show that the outcome can be purely FRW, purely Kasner-like, 
or a mix with exponentially more proper volume in the FRW phase 
and the remainder in a Kasner-like phase that may be homoge-

neous or an unsmoothed phase that is both spatially and time 
varying with spiking [4,5]. However, for the overwhelming major-

ity of the ε− Q 0 parameter space in which the average initial field 
velocity is downhill directed, the entire spacetime converges to the 
purely FRW slow contraction attractor phase, as desired in bounc-
ing cosmology and cyclic models based on slow contraction [3].

Here the goal is to use a more advanced numerical relativ-
ity code that allows initial conditions with variations along two 
independent spatial directions, reduced symmetry and several vari-
ations along each spatial direction described by a sum of Fourier
modes to study whether rapidity and robustness are reduced or 
enhanced. Our approach is to choose the smallest value of ε∗ that 
smoothed rapidly and robustly enough according to the earlier 
studies (ε∗ = 13); and then to choose the corresponding value of 
Q 0 = Q ∗

0 (which is Q ∗
0 = 0 for this value of ε∗), so that the system 

is (slightly) biased towards not smoothing as far as these parame-

ters are concerned. That is, if the initial conditions were perfectly 
uniform, the spacetime would never evolve to the flat FRW state, 
as the short-dashed trajectory in Fig. 1a shows. Then we add to 
the initial conditions spatial variations that include multiple modes 
and reduced symmetry to see if the spacetime is generally driven 
toward or away from the Kasner-like solution. Note that Q 0 = Q ∗

0

and any variations we add to it are for all �x very distant from the 
slow contraction attractor solution; i.e., the initial conditions are 
in the highly non-perturbative regime far from a stable flat FRW 
phase.

If the spacetime is driven away from the Kasner-like solution 
and towards the flat FRW solution, we can conclude that mul-

tiple modes and/or reduced symmetry do no harm to or even 
enhance the rapidity and robustness of smoothing through slow 
contraction. Similarly, we have also performed tests in which Q 0

is slightly biased towards the FRW attractor solution (Q 0 > Q ∗
0 ). If 

multiple modes and/or reduced symmetry drive the universe away 
from the flat FRW solution, we can conclude that they inhibit ra-
pidity and robustness. In each case, we studied a wide range of 
non-perturbative spatially-varying initial conditions to determine 
what is the generic outcome.

3. Results

We considered rapidity and robustness for three classes of ini-
tial conditions:

Multi-mode variations of the initial scalar field velocity Q (�x, t0)
only. We started with initial conditions involving various combina-

tions of Fourier modes along the x and the y directions for Q (�x, t0)
but no spatial variations in the divergence-free part of the shear 
Z0
ab

(�x, t0). Analogous earlier studies based on a single mode in 
Q (�x, t0) along one spatial direction concluded that the only rele-
vant criterion deciding whether spacetime regions converge to the 
flat FRW slow contraction attractor solution is the degree to which 
the initial value of Q (�x, t) is downhill in the vicinity of �x or uphill; 
see Fig. 3 of Ref. [5].
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Fig. 2. The evolution of the relative contributions of the three energy density components, 	m = matter (blue), 	k = spatial curvature (red) and 	s = shear (green) for initial 
conditions in which the scalar field velocity and most components of Z0

ab
in Eq. (7) are spatially uniform except for an x-dependent Fourier contribution to Z0

23 and Z0
32 with 

a2 = 0.01 combined with a very small amplitude y-dependent contribution to Z0
13 and Z0

31 with c1 = 0.0001. Note that at t = 0 the shear (green) dominates and matter and 
spatial curvature contributions are subdominant and that the universe converges to 	m = 1 flat FRW (and 	s = 	k = 0) by t = −100.

In the new studies, we included two or more different cosine-
like fluctuation modes about Q ∗

0 that create peaks and valleys in 
Q (�x, t0) across the two-dimensional x − y plane. The results are 
the straightforward generalization to two spatial dimensions of 
what was found for initial conditions that only varied along one 
spatial direction. Regions of the x − y plane with Q 0 > Q ∗

0 gener-

ically evolve to the smooth, flat, FRW slow contraction attractor 
phase and regions with Q 0 < Q ∗

0 generically do not. Furthermore, 
in the cases where the outcome is the smooth, flat FRW state, 
there was no detectable effect that the non-linear coupling of mul-

tiple modes and the reduced symmetry of the initial conditions 
had on the rapidity or robustness found in early studies with sim-

pler initial conditions. (In this and the studies described below, 
we verified numerical convergence using the protocols described 
in the appendix of Ref. [6].)

Initial shear variations only. More interesting results were 
found for initial conditions with spatially varying shear character-
ized by Z0

ab
(�x, t0) as given in Eq. (7) but with no perturbations 

of the initial scalar field velocity. Early studies restricted to ini-
tial variations along a single spatial dimension activated a reduced 
set of shear components compared to what is possible in the new 
studies.

As an important instructive example, consider a case where 
the only spatially varying components of the shear Z0

ab
(�x, t0) are 

Z0
23 and Z0

32; they are purely x-dependent and have amplitude 
a2 = 0.01. The remaining coefficients in Eq. (7) are zero except for 
b2 = 1.8, b1 = −0.15, and b3 = −1.65. In this case, the geome-

try approaches and remains close to a Kasner-like state even after 
t = −100 (corresponding to e-folds of contraction of the Hubble 
radius), as indicated by the fact that the corresponding state space 
orbit illustrated in Fig. 1 remains close to the Kasner circle. Note 
that Q 0 = Q ∗

0 = 0 and ε∗ = 13, which slightly biases the outcome 
towards the Kasner-like state. The evolution reaches a uniform 
state with 	s = 0.77, 	m = 0.23 and 	k = 0 at t = −100. The fact 
that the shear dominates and the spatial curvature is zero is sig-
nificant because a burst of non-zero spatial curvature (a chaotic 
mixmaster type ‘bounce’) is needed for the state to change to an-
other Kasner-like state or the flat FRW slow contraction attractor 
state, and the spatial curvature appears to be inactive in this ex-
ample.

Now, a single y-dependent, Fourier mode with a very small am-

plitude (c1 = 0.0001) is added to the off-diagonal components Z0
13

and Z0
31 , a contribution which can only be included in the more 

advanced numerical relativity code that allows variations along 
two spatial directions. The solid line in Fig. 1b is the state space 
orbit, and Fig. 2 shows the initial state of the 	i and representative 
time steps during the evolution.

The two figures each show that the added off-diagonal shear 
component activated by allowing variations along two (or more) 

spatial directions qualitatively changes the outcome despite its 
small amplitude. The spacetime now rapidly evolves to the flat 
FRW slow contraction attractor solution, as can be further verified 
by checking that the equation of state converges to the attractor 
value ε = ε∗ = 13. Increasing the amplitude or including several 
y-dependent Fourier modes to Z0

23 does not change the outcome.

The example shows that including variations along two (or 
more) spatial directions and activating more shear components, 
the rapidity and robustness of smoothing can be dramatically en-
hanced. Conversely, for initial conditions that smooth the flat FRW 
when the initial variations are only along one spatial direction, we 
found no examples where enhancements of the shear along two 
dimensions drove the universe to a Kasner-like state. In the Dis-
cussion, we conjecture why this might occur.

Combinations of initial multi-mode variations in the scalar 
field velocity and shear. The final set of tests was for initial condi-
tions that combine spatial variations with multiple Fourier modes 
in both the scalar field initial velocity distribution and all shear 
components. Even if the effects of the scalar field velocity or shear 
spatial variations alone do not inhibit the rapidity and robust-
ness of smoothing, it is conceivable that non-linear interactions 
when both are included could. However, no such effect was found. 
A representative example with reduced symmetry is b1 = −0.18, 
b2 = 0.12, a1 = 0.23, a2 = 0.27, ã2 = 0.12, c1 = 0.26, c2 = 0.18, 
ξ = 0.02, κ1 = 0.01. κ2 = 0.02, and Z0

23(�x, t0) = Z0
32(�x, t0) = κ1 +

a2cos x + ã2cos3x and Q 0 = 0.3483, qx = 0.1, q̃x = 0.9, qy = 0.11, 
q̃y = 0.08 and Q (�x, t0) = Q 0 + qxcos x + q̃xcos3x + qycos3y +
q̃ycos2x. The dotted line in Fig. 1b shows the state space orbit 
and Fig. 3 shows the initial state of the 	i and representative 
time steps during the evolution. The rapidity of the smoothing (by 
t ≈ −10) is greatly increased compared to the case in Fig. 2 de-

spite the fact that the initial spatial variations include more Fourier
modes in Q (�x, t0) and Z0

ab
(�x, t0), demonstrating that the varia-

tions enhance rapidity.

4. Discussion

Earlier numerical relativity simulations with initial conditions 
entailing a single spatially varying Fourier mode and/or variations 
along a single spatial direction indicated that slow contraction 
is a remarkably robust and rapid smoother, able to homogenize, 
isotropize and flatten large deviations from a flat FRW geometry in 
a matter of a ten or so e-folds of contraction of the Hubble radius 
(and contraction of the scale factor by less than a factor of two). 
A natural question is whether this rapidity and robustness remains 
when many Fourier modes are included and variations along two 
(or more) spatial directions that reduce the symmetry and acti-
vate more shear components are allowed. This study shows that 
the answer is a definitive ‘yes.’
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Fig. 3. The evolution of the relative contributions of the 	i for a representative case with initial conditions that combine multi-mode spatial variations in both the scalar 
field velocity and the components of Z0

ab
in Eq. (7) as detailed in the text.

To conclude, we put forward a conjecture as to why this might 
occur: In earlier studies, we have shown that, if the stress-energy 
is supplied by a canonical scalar field minimally coupled to Ein-
stein gravity and with sufficiently steep negative potential energy 
density,

- during contraction the evolution quickly becomes ultralocal, 
meaning that gradient terms in the evolution equations are 
negligible compared to velocity terms, see Ref. [6];

- in the ultralocal limit the basin of attraction of Kasner-like so-
lutions is small so that for most initial conditions spacetime 
rapidly evolves towards the flat FRW attractor scaling solution, 
see Ref. [5].

Combining both of these results, we conjecture that the more 
degrees of freedom are available for the system to deviate from 
a Kasner-like spacetime, the more initial conditions will evolve 
towards a flat FRW spacetime and away from the Kasner-like 
solution. Or said another way, given that near-Kasner solutions 
are unstable, the more degrees of freedom that are active, the 
more channels that are available to initiate a transition from one 
Kasner-like epoch to the next, increasing the likelihood that even-
tually a transition will land in the basin of attraction of the sta-
ble, smooth FRW state. Our conjecture implies that reducing the 
symmetry assumptions on our initial conditions to include vari-
ations in two (or more) spatial directions and/or allowing more 
modes in each spatial directions enhances the rapidity and ro-
bustness of smoothing, meaning that, typically, more initial con-
ditions will evolve towards a flat FRW spacetime. This is especially 
well illustrated by the examples above. The results significantly 
strengthen the case for slow contraction as being a robust and 
rapid smoother.
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