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Using simulations and a virtual-spring-based approach, we measure the segregation force,
Ficg, in size-bidisperse sphere mixtures over a range of concentrations, particle size ratios,
and shear rates to develop a semi-empirical model for Fy., that extends its applicability
from the well-studied non-interacting intruders regime to finite-concentration mixtures
where cooperative phenomena occur. The model predicts the concentration below which
the single intruder assumption applies and provides an accurate description of the
pressure partitioning between species.

1. Introduction

Flowing granular materials segregate by particle size, density, or other physical proper-
ties, which is a phenomenon crucial to many industrial and geophysical processes (Ottino
& Khakhar 2000; Ottino & Lueptow 2008; Frey & Church 2009). Despite decades of
research on this topic, fundamental aspects of granular flow-driven segregation remain
elusive, and state-of-the-art continuum segregation models largely rely instead on ad hoc
or configuration-specific closure schemes (Gray 2018; Umbanhowar et al. 2019; Thornton
2021). Recent efforts characterizing forces on single intruder particles in otherwise species-
monodisperse granular flows have advanced our understanding of segregation at the
particle level (Tripathi & Khakhar 2011; Guillard et al. 2016; Jing et al. 2017; van der
Vaart et al. 2018; Staron 2018; Jing et al. 2020) and led to segregation force models
applicable across flow configurations (Guillard et al. 2016; Jing et al. 2021). However, it
is unclear whether or how single intruder results can be applied to granular mixtures
with finite species concentration (Tripathi et al. 2021; Rousseau et al. 2021). More
fundamentally, the mechanisms governing changes in segregation behaviors between
intruder and mixture regimes as the species concentration is varied remain unresolved.

In this paper, we extend the virtual-spring-based “force meter” approach for a single
intruder particle (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020) to
size-bidisperse mixtures of arbitrary species concentration and use it to characterize
the dependence of the segregation force on concentration for various particle size ratios
in controlled, constant-shear-rate flow simulations, see figure 1(a). We find that the
segregation force exhibits a plateau at lower concentrations and changes monotonically

1 Email address for correspondence: r-lueptow@northwestern.edu



2 Y. Duan, L. Jing, P. B. Umbanhowar, J. M. Ottino, and R. M. Lueptow
(a) ‘P() U | _(b) T T T T ]

Q ¢—

t=0 5s 50s

T T T T 1 1 . v

S © ) (d) © 0

Restoring force OFF :

E , OFF .
N z
| N

Sl | .

Restoring force ON ON
0 1 1 1 1 0 0 / 0 /
0 1 2 3 4 5 0 10 10 1
t(s) a

FIGURE 1. (a) Large (4 mm, blue) and small (2 mm, red) particles (¢; = ¢s = 0.5) in a controlled,
constant-shear-rate flow. (b) Scaled restoring force, Fies,i, vs. time for large (blue) and small
(red) particles. Data points sampled at 0.01s intervals; bold curves are averages using a 1s long
sliding window. Horizontal lines are averages from 2s to 5s. (c) Mean center of mass offset
between species, Z; — Zs, remains unchanged from its initial value with reactive restoring forces
opposing segregation. Without restoring forces, large particles rise and small particles sink,
such that Z; — Zs increases. (d-f) Local concentration of large particles away from walls (i.e.,
0.1 < z/H < 0.9) remains unchanged over time when the restoring force is ON, unlike the case
without restoring forces (OFF), where the effects of segregation are clearly evident by ¢ = 50s.

above a critical concentration, indicating a transition from non-interacting intruders
to cooperative phenomena in mixtures, which is reminiscent of previously observed
asymmetric concentration dependence in the segregation flux (van der Vaart et al. 2015;
Jones et al. 2018). We also show that these results can provide closures for connecting
segregation models with continuum-based frameworks for flowing granular mixtures.

2. Simulations and methods

An in-house discrete element method (DEM) code running on CUDA-enabled NVIDIA
GPUs (Isner et al. 2020) is used to simulate a size-bidisperse particle mixture with species
volume concentration ¢;, diameter d;, and density p; = 1g/cm?® (i = [, s for large or small
particles, respectively) sheared in a streamwise () and spanwise (y) periodic domain of
length L = 35d;, width W = 10d;, and height H = 25d; to 50d; (varied as needed) in
the presence of gravity (¢ = 9.81m/s?, in the negative z-direction), see figure 1(a). The
standard linear spring-dashpot model (Cundall & Strack 1979) is used to resolve particle-
particle and particle-wall contacts of spherical particles using a friction coefficient of 0.5, a
restitution coefficient of 0.2, and a binary collision time of 0.15ms. The contact stiffness
number k = k,/Pd ~ 10* (where k,, is the normal contact stiffness, P is the local
pressure, and d = c;d; + csd, is the mean particle diameter) is sufficiently large that
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particle stiffness should have negligible influence on the flow (da Cruz et al. 2005). We
have verified that increasing or decreasing x by an order of magnitude does not affect the
simulation results. Changing bounding walls from smooth to bumpy (randomly attached
particles) does not affect the results. Large (d; = 4 mm) and small particles (d; varied to
adjust the size ratio, d;/ds) have a £10% uniform size distribution to minimize layering
(Staron & Phillips 2014) (increasing the size variation to +20% does not alter our results).
Depending on the size ratio, between 26000 and 150000 particles are included in each
simulation.

A constant shear rate ¥ = U/H varied from 25 to 50 s~! is imposed on the flow by
the combination of the translating upper bounding wall and a streamwise stabilizing
force, Fytabilize,k = Ks(ur —¥21), on each particle k at every simulation time step, where
uy, is the particle streamwise velocity, zp is the vertical particle position, and K is a
gain parameter (Lerner et al. 2012; Clark et al. 2018; Fry et al. 2018; Saitoh & Tighe
2019; Duan et al. 2020; Jing et al. 2020). This stabilizing force reduces the granular
temperature in the streamwise direction but does not affect the rheological behavior (Jing
et al. 2020) or segregation (Jing et al. 2021), and the constant shear rate eliminates
forces associated with shear gradients (Fan & Hill 2011a,b; Guillard et al. 2016; Jing
et al. 2021). An overburden pressure equal to the pressure at a depth of H,, = 20d; (i.e.,
Py = pogH,, where the bulk solid fraction ¢ varies from 0.56 to 0.59 depending on flow
conditions) is applied using a massive flat frictional top wall that is free to move vertically
(fluctuates by +2% or less after an initial rapid dilation of the particles at flow onset) and
moves horizontally at a velocity determined by the constant shear rate velocity profile.
The inertial number, I = 4d\/p/P, varies between 0.06 to 0.26 depending on the flow
conditions, indicating a dense granular flow.

A spring-like vertical restoring force proportional to the difference in the vertical center
of mass positions of the two initially mixed species is applied uniformly to all particles of
each species i at every simulation time step in order to characterize the particle forces.
The restoring force simultaneously suppresses segregation throughout the flow domain
which otherwise would change the local species concentration. This method is inspired by
the virtual-spring-based technique used in single intruder DEM simulations to measure
the segregation force (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020). The
difference here is that the same virtual-spring restoring force is applied to all particles
of each species rather than to just a single intruder particle, allowing us to consider a
wide range of relative concentrations of the two species. This approach resembles that
in a recent study where opposing forces are applied to all particles of each species to
study the interspecies drag (Bancroft & Johnson 2021). Here, the restoring force on each
particle of species i is Fres; = —K,[(Z; — Zj) — (Zi,0 — Z5,0)]/Ni, where the center of mass
of species i is z; = Ziva szk/Zle Vi and Z; 0 = Z;(t = 0), V}, is the volume of particle
k, subscript j indicates the other species, and N; and N are the number of particles
of species ¢ and the total number of particles, respectively. The applied restoring forces
balance, i.e.,

Fres,iNi + Fres,ij = 0; (21)

and the bulk flow behavior (e.g., shear flow, bulk pressure) is unaltered. Similar to
the imposed velocity profiles, we have further confirmed both here and in previous
work (Jing et al. 2021) that the particle restoring forces do not affect either the rheological
characteristics of the flow or kinetic stress fields in the segregation direction.

Figure 1(b) plots the instantaneous restoring force scaled by particle weight, Fres i /m;g,
at 0.01 s intervals for the example case shown in figure 1(a) with d;/ds = 2 and ¢; = ¢, =
0.5. The scaled restoring forces for large (blue) and small (red) particles are equal and
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opposite for ¢; = ¢, = 0.5 due to the force balance, which can be written as ¢;Fyes 1 /mig+
€sFles,s/msg = 0 based on Eq. (2.1), noting that particle mass m; = pV; and species
volume concentration ¢; = N;V;/Vior, where Vi is the total particle volume. The time
average Fes ;/m;g over 1s time windows (bold curve) remains relatively constant 2 s after
flow onset, although small force fluctuations are evident due to the stochastic nature of
granular flows. In addition, varying the uniform shear rate 4, the layer thickness H, or
the gain parameters K, and K, have minimal influence on F,es ;/m;g, indicating that the
restoring force is independent of the details of the flow geometry and control parameters,
and that its effect is uniform through the depth of the particle bed.

To demonstrate the effectiveness of the restoring force in balancing the segregation
force, the center of mass offset between the two species scaled by the large particle
diameter is shown in figure 1(c). Note that (z; — Z5)/d; =~ 0.5 at ¢t = 0, which is close to
the ideal uniformly mixed value of 0 (our dense packing is achieved by placing particles
in a grid pattern and letting them settle under gravity before applying shear, which
results in the slight initial offset between the centers of mass of the two species of 0.5d;).
Without restoring forces, (Z; — Z;)/d; increases with time as the two species segregate
with a constant segregation velocity after an initial dilation of particles (¢ < 0.5 s)
following flow onset at ¢ = 0. The segregation velocity remains nearly constant until the
local particle concentration changes enough to affect the segregation, typically after 20s,
depending on particle properties and flow conditions. In contrast, with the restoring force
ON to reactively balance the segregation force, (z; — Z;)/d; remains near its initial value
of 0.5, corresponding to no segregation.

The effectiveness of the restoring force in maintaining the mixed (unsegregated) state
is also evident in the concentration profiles in figure 1(d-f), where ¢; remains at its
initial value of 0.5 away from the walls (i.e. 0.1 < z/H < 0.9) when the restoring
force is ON. Near the walls ¢; slightly decreases, because small particles can reside
closer to the walls than the large particles. This wall exclusion effect due to particle
size differences does not change the mean center of mass offset between species, z; — Zs.
As a result, the force measurement approach is unaffected. For example, doubling the
layer thickness H significantly decreases the proportion of the flow affected by the walls,
but the measured segregation force differs by less than 5%. With the restoring forces
OFF, segregation occurs throughout the depth of the layer with a local segregation rate
inversely proportional to the square root of depth (Duan et al. 2020). As a result, ¢
deviates from 0.5 with noticeable segregation near the top wall (z/H > 0.7) at t = 55
(figure le) and throughout the layer at ¢t = 50s (figure 1f).

Since Fies i, which is determined as the time-average of the reactive restoring force,
balances the particle segregation force, Fyeg ; and the particle weight, m;g,

Fseg,i =m;g — Fres,i- (22)

Fiegi is always upward, opposing gravity. Since Fies s > 0 (figure 1b), Fyeg s < msg 0O
small particles would sink without the restoring force; likewise, since Fies; < 0, Fieg,i >
myg so large particles would rise without the restoring force. From here on, we scale the
segregation force with the particle weight, Fl = Fieg,i/mig.

3. Results

The first key result of this paper is measurements of the dependence of the segregation
force on concentration for various particle size ratios. Figure 2(a-c) shows examples of
the dimensionless segregation force, F} (symbols) vs. concentration for three size ratios
(di/ds = 1.3, 2, and 3), where the error bars reflect fluctuations of the reactive restoring
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FIGURE 2. (a~c) Scaled particle segregation force FZ = Fieg,i/mig Vvs. species concentration c; for
large (O) and small (A) particles with size ratio d;/ds=1.3 (a), 2 (b), and 3 (c). Error bars are
the standard deviation for the time-average of Fies ;. Dashed and dotted curves are predictions
of the single intruder segregation force model extended to mixtures [Eq. (3.2)]. Solid curves
are fits of Eq. (3.3) using large particle data. Arrows indicate the concentration ¢; crit where F;

deviates from the intruder limit, see text. (d) Fi o from fits of Eq. (3.3) to large (@) and small (A)
particle data. Dashed curve is a single intruder model based on single intruder simulations (Jing
et al. 2020).

force in figure 1(b). Although the error bars are relatively large at low concentrations, F,
clearly plateaus to a maximal (minimal) value approaching the single intruder limit Fi,O
at ¢; = 0 and decreases (increases) monotonically with ¢; for large (small) particles. For
both small and large species, Fi,l =1 (or, equivalently, Fses ; = m;g) in the monodisperse
limit (¢; = 1), since the segregation force exactly offsets the particle weight.

Details of the dependence of F; on ¢ vary with the size ratio, d;/d;. First, consider
figure 2(a) for d;/d; = 1.3 (corresponding to d;/d; = 1.3 and 1/1.3), which shows
that the plateau in F; for both species extends from ¢; = 0 to a critical concentration,
Cierit = 0.3 (defined precisely below). For ¢; < ¢; i, particles of species ¢ interact so
infrequently with each other that the segregation force acting on them is essentially that
for a single intruder particle (i.e., concentration independent). As ¢; increases beyond
Ci,crit, interactions between particles of species ¢ become significant, eventually resulting
in the segregation force approaching the monodisperse limit as ¢; approaches one. The
segregation force plateau extends to higher concentrations (greater than 0.5) as d;/d,;
increases, see figure 2(b,c). Furthermore, ¢ crit > Cs,crit, indicating that large particles
act like intruders at higher concentrations than small particles. For example, for d;/ds = 3
(figure 2¢) the plateau for large particles extends to ¢; criy = 0.6, which is nearly four times
the value of ¢ crit &= 0.15. Results similar to those in figures 2(a-c) are obtained for seven
additional size ratios in the range 1 < d;/ds < 3 considered here.
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The total segregation force across both species for the entire system, which sums to
the total particle weight, can be expressed using Egs. (2.1) and (2.2), as

Fici-f—FjCj = 1. (31)

Noting that ¢; =1 — ¢; and Fj = Fj for ¢; < ¢jait (or, equivalently, ¢; > 1 — ¢j arit),
we can predict F; for mixtures not only in the intruder regime of species i, but also in
the intruder regime of species j,

Fz = { Fi70 . Cj g Ci,crit,
' [1 - Fj70(1 - Ci)] /C’i ciz1-— Cj crit-

Figures 2(a-c) show that the predictions of Eq. (3.2) for both large (dashed curves) and
small particles (dotted curves) match the segregation force data (symbols) in the vicinity
of the concentration extremes when }3'1;70 and Fj,o are based on the intruder-limit values
given in figure 2(d) and determined by fitting the data to Eq. (3.3) as described shortly.
That is, determining Fl,o for ¢; < ¢ ey for large particles (dashed blue horizontal line)
leads to the corresponding prediction for F, at large ¢ (dashed red curve) and likewise for
small particles (dotted red horizontal line and dotted blue curve). This approximation fits
the data well, except in the middle of the concentration range where the initial deviation
of the data from the horizontal line reflects the approximate value of ¢; qit.

(3.2)

Though Eq. (3.2) combined with Fi,O and Fj,O predict F} at the concentration extremes,
a greater challenge is to model Fi in the intermediate transition regime (i.e., ¢; arit < ¢; <
1 — ¢jcrit). Since E is bounded at both ends of the concentration range, we propose a
relation of the form

- Fs 0 Cs
Fl o—1¢a
for large particles, noting that the characteristics of the hyperbolic tangent function, i.e.
lim,, o tanh (¢s/¢;) = 1 and lim,, 1 tanh (¢;/¢;) = 0, satisfy the theoretical constraints
that F} = }%170 at g =0and F; =1 at ¢ = 1. Substituting Eq. (3.3a) into the force
balance of Eq. (3.1) and solving for F, gives

E=1+(Fo-1) tanh( (3.3a)

- > I_Fs 5
Fo=1-(Fp—1)2 tanh (——=25)

(3.30)
Cs Fo—-1a

Equation (3.3b) also satisfies the same constraints at both concentration limits, i.e. E, =
Fs o atc, = 0 and F =latecs =1. Fl o and FS .0 correspond to intruder segregation forces
and can be obtained by fitting Eq. (3.3a) to the data for large particles or, equivalently,
fitting Eq. (3.3b) to the data for small particles with no significant differences in the fit
quality or fit parameter values.

To demonstrate the validity of our simulation and fitting approach, figure 2(d) shows
F} o based on curve fits to Eq. (3.3) for both large (blue circles) and small (red triangles)
particle data. The two data sets match within the uncertainty, demonstrating the robust
nature of the hyperbolic functional form of Eq. (3.3) in characterizing the segregation
force. In addition, the results are comparable to predictions (dashed curve) of a single
intruder model derived from single intruder simulations (Jing et al. 2020), even though
these simulations use different particle properties (i.e., d; = 1 — 40mm, d; = 5mm, and
p = 2.5g/mm3), implement a different contact model (i.e., Hertz contact model with
Young’s modulus of 5x107 Pa and Poison’s ratio 0.4), use a different flow geometry
(inclined chute and uniform shear), and have a slightly lower solid volume fraction
(¢ = 0.55 instead of ¢ = 0.56 — 0.59 here). This validates not only the values we find
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FIGURE 3. (a) Segregation force regimes (shaded areas) dependence on large particle
concentration, ¢;, and size ratio, di/ds. Symbols represent ¢; iy for large (@) and small (A)
particles. Curves are ¢; orit = 0.74[1 — exp(—0.52d;/d;)] (see text). (b) Sheared bed images for
di/ds = 2 [vertical dotted line in (a)] at ¢; intervals of 0.1. For ¢s < ¢s,crit & 0.18 (or, equivalently,
¢ % 0.82) the small particle segregation force equals that on a single small intruder, while for
¢ < clerit = 0.46 the large particle segregation force equals that on a single large intruder.
Intermediate concentrations (0.46 < ¢ < 0.82), where segregation forces are less than for
intruders, are termed mixture-like.

for the segregation force at the single intruder limit, but also our approach for direct
measurement of segregation forces in bidisperse mixtures.

With an accurate model for Fi, i.e. Eq. (3.3), we now define the critical concentration,
Ci,crit, as the concentration at which F’l — 1 deviates by 5% from Fi,o — 1. Based on
260 simulations at different concentrations, size ratios, and shear rates, and fitting the
resulting segregation force data to Eq. (3.3), the dependence of ¢; it for a wide range of
conditions can be determined. The phase diagram in figure 3(a) shows the dependence
of ¢j crit, which describes the limiting concentration below which a particle acts as an
intruder and above which cooperative phenomena between similar particles makes the
system act like a mixture. This is the second key result of this paper.

In figure 3(a), ¢;crit (Symbols) for both large and small particles increases monotoni-
cally with size ratio for the range explored here (1 < d;/ds < 3) and is reasonably well fit
by the expression ¢; iy, = 0.74[1 — exp(—0.52d;/d;)]. The limiting value of ¢; iy = 0.74
for d;/d; > 1 matches the free sifting limit for small particles in a network of randomly
close-packed large particles at ¢max = 0.64, i.e., 1/(2 — ¢max) (Prasad et al. 2017). This
suggests that for ¢; > 0.74 small particles percolate downward through the voids without
significantly affecting the flow of large particles, indicating a possible change in the size
segregation mechanism (Golick & Daniels 2009; Schlick et al. 2015).

In the monodisperse mixture limit (d;/d; = 1), the exponential fit gives ¢; aiy =
0.30, which implies that the corresponding large particle concentration for c et is
¢ = 1 — csait = 0.70, as shown in figure 3(a). Values of ¢; for ¢ it and cs et are
necessarily symmetric about ¢; = 0.5, since the intruder is the same as the surrounding
particles. Intriguingly, ¢; crit = 0.30 is nearly identical to 0.31, the conducting sphere
concentration at which disordered packings of monodisperse conducting and insulating
spheres become globally conductive (i.e., exhibit long range electrical conduction, thereby
exceeding what is known as the “percolation threshold”) (Powell 1979; Ziff & Torquato
2017). Further, the critical concentrations for 1/3 < ds/d; < 1 from this study also match
the percolation thresholds in size-bidisperse mixtures (He & Ekere 2004), suggesting
that the particle segregation force and geometric percolation are related. Anecdotal
support for this picture is provided by figure 3(b), which shows shear flow images for
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d;/ds = 2. In the intruder-like regime for small particles (large ¢;), small particles appear
to contact each other infrequently and only in the voids between large particles, whereas
in the intruder-like regime for large particles (small ¢;), large particles appear to be well-
separated by a continuous phase of small particles on average, and are therefore unlikely
to interact directly with each other. In an attempt to better understand the connection
between the intruder regimes and the percolation limit, the coordination number and
the radial distribution function of each species were evaluated for mixtures with different
size ratios. However, unlike the segregation force, these quantities vary smoothly over
the concentration range, failing to duplicate the plateau and rapid change in Fiez,; near
Cicrit (see Appendix A). Further investigation of the intruder regime transition at ¢; crit
is clearly necessary but is beyond the scope of this paper.

4. Discussion and conclusions

Our results characterizing the segregation force can be applied to continuum descrip-
tions of segregation. Some previous studies assume EFj depends linearly on ¢; to close
the momentum equation (Gray & Thornton 2005; Rousseau et al. 2021). Despite some
success for these continuum models in predicting concentration profiles of equal-volume
mixtures, a linear relation between F; and ¢; does not capture the segregation force
plateau for intruders clearly evident in figure 2(a-c). In addition, the resulting symmetric
form for the species-specific pressure, when coupled with a linear drag model, does not
predict the asymmetric concentration dependence of segregation (i.e., small particles
among mostly large particles segregate faster than wvice versa) (Golick & Daniels 2009;
Gajjar & Gray 2014; Jones et al. 2018). To address the asymmetric segregation flux, F,
has been proposed to be quadratic in ¢; (Gajjar & Gray 2014; Tripathi et al. 2021; Duan
et al. 2021; Trewhela et al. 2021). Although the coefficients in a quadratic model can be
adjusted to minimize the difference between the model and the data, the quadratic form
cannot reproduce the plateau approaching the intruder limit (¢; &~ 0), as will be shown
shortly.

To address these shortcomings in modeling the segregation force within a continuum
model framework, we recast our results (data and model [Eq. (3.3)]) as partial pressures
(normal stresses), i.e., OP;/0z = N;Fseg i/ LW H = n;Fyes ; (Rousseau et al. 2021), where
n; = ¢;¢/V; is the particle number density. Combined with the bulk pressure gradient
OP/0z = ¢pg, the ratio of the pressure contribution of species ¢ to the bulk pressure, or
normal stress fraction, is f; = P;/P = i (Tunuguntla et al. 2017), which, unlike the
standard mixture theory, does not necessarily equal the species volume fraction.

Having measured E} vs. ¢;, we can directly evaluate f; as figure 4(a-c) shows for three
examples at d;/ds = 1.3, 2, and 3. At all concentrations, the pressure partition functions
for large and small particles sum to 1 (i.e., f; + fs = 1), and the curves based on the
segregation force model of Eq. (3.3) match the simulation data. The deviation of the
pressure partitioning for d;/ds # 1 from the linear monodisperse case, f; = ¢; (dotted
line) is evident. Two previously proposed models assuming f; is a weighted function
of particle size, f; = d;c;/ > dic; (Marks et al. 2012), or volume, f; = dic;/ > dic;
(Tunuguntla et al. 2014) have been shown (Tunuguntla et al. 2017) to be significantly
less accurate than the quadratic model of Gajjar and Gray (2014) for the partial kinetic
stress for 1.3 < d;/ds < 1.7 in a free surface flow, but the results for the normal stress are
inconclusive. Basing the normal stress fraction f; on the particle size (Marks et al. 2012)
or volume (Tunuguntla et al. 2014) does not match our uniform shear flow data over the
range of 1.1 < d;/ds < 3 (see Appendix B). The Gajjar and Gray (2014) model, which is
included in figure 4(a-c), can be made to match the f; data by fitting two arbitrary model
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FIGURE 4. (a-c) Ratio of species specific pressure to bulk pressure, f; = P;/P, for different size
ratios. Symbols represent data for large (O) and small (A) particles. Solid curves are predictions

of Eq. (3.3) recast as a pressure ratio, i.e., f; = ¢; F;. Dashed black curves are best fits of the
quadratic Gajjar and Gray (2014) model to the data for each size ratio, d;/ds. Dotted lines
represent the monodisperse case (d;/ds = 1) where f; = ¢;. (d-f) Scaled segregation force from

simulation data (symbols), F} = f;/c;, is well fit over the full ¢; range by Eq. (3.3) (solid curves)
but poorly fit by the quadratic model (black dashed curves) at low ¢;. Data and Eq. (3.3) fits
are reproduced from Fig. 2(a-c).

parameters via a least squares approach. However, when compared to measurements of
F}; in figure 4(d-f), it is evident that Eq. (3.3) better captures the intruder plateau as
c; approaches zero. We further note that the fit parameters for the Gajjar and Gray
(2014) model are not universal, depend on d;/ds, and lack a physical meaning, whereas
Eq. (3.3) depends only on the physically meaningful and measurable single-intruder limit
segregation forces, FLO and FS,O. Thus, the pressure partition function based on Eq. (3.3),
i.e. f; = ¢;F; where F} is determined from Eq. (3.3), shows promise for application to
continuum models of flowing mixtures of bidisperse granular materials (Marks et al.
2012; Tunuguntla et al. 2014; Staron & Phillips 2015; Tripathi et al. 2021; Rousseau
et al. 2021; Trewhela et al. 2021), although further work is necessary to elucidate any
differences between the uniform shear flow studied here and more general free surface
flows.

Our results capture and characterize the concentration dependence of the segregation
force in uniform shear flows, but a word of caution about extensions is in order. Recent
studies indicate that the intruder segregation force Fi,O also depends on the shear
gradient (Fan & Hill 2011a,b; Guillard et al. 2016; Jing et al. 2021). Although the shear
rate gradient-induced component of Fy.g is negligible in most free surface flows (Jing
et al. 2020), further study of the concentration dependence of Fie, in flows where shear
rate gradients matter (e.g., wall driven flows) and for larger size ratios, where free sifting
of small particles alters the segregation, is warranted.
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FIGURE 5. Dependence of coordination number Z; for (a) large and (b) small particles on large
particle concentration for size ratio d;/ds = 2. Z; for large or small particles (solid curve) can
be separated into sames-species (dash-dot) and inter-species (dashed) coordination numbers
depending on the species of the contacting particles.
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Appendix A. Coordination number and radial distribution function

To explore the difference in local structure between intruder and mixture regimes, the
coordination number Z; is plotted as a function of large particle concentration ¢; for
an example case with size ratio d;/ds = 2 in figure 5. Unlike the segregation force, Z;
for both large and small particles varies nearly linearly over the concentration range,
failing to duplicate the plateau and change in segregation force near ¢; ¢ it ~ 0.46 for size
ratio 2. Likewise, Z; for different types of particle interactions is nearly linear in ¢;, with
no indication of abrupt changes in contact behaviour between the intruder and mixture
regimes.

The radial distribution function (RDF), g(r), of large and small particles neighbouring
large particles at the center of the domain are plotted in figure 6. Here large particles
are chosen as reference points because the segregation force plateau extends to higher
concentration. For the example case with d;/ds; = 2, the RDF for both large and small
particles at ¢; = 0.4, 0.5, and 0.6 are almost the same, also indicating no significant
changes in the local structure of neighbouring particles near ¢; c,i¢ ~ 0.46 for d;/ds = 2.

Appendix B. Other models for f;

Previously proposed models assume that f; is a weighted function of particle size, f; =
dici/ > dic; (Marks et al. 2012), or volume, f; = dic;/ > dic; (Tunuguntla et al. 2014).
These approaches do not fit our simulation data for f; [figure 7(a-c)] or F; [figure 7(d-f)]
in uniform shear flows.
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FIGURE 6. Radial distribution functions of (a) large and (b) small particles near ¢; crit ~ 0.5
for d;/ds = 2. Large particles at the center of the domain are used as reference points. Data
are averaged over 200 distinct times at intervals of 0.01 s. Colors represent different mixture
concentrations as indicated in (a).
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FIGURE 7. (a-c) Ratio of species specific pressure to bulk pressure, f; = P;/P, for different
size ratios. Symbols represent data for large (O) and small (A) particles. Solid curves are
predictions of Eq. (3.3) recast as a pressure ratio, i.e., f; = ¢;F;. Thin curves are fi as assumed
in previous studies: f; = dic;/ > dic; (dashed) (Marks et al. 2012) and f; = dic;/ Y dic;
(dash-dot) (Tunuguntla et al. 2014). Dotted lines represent the monodisperse case (d;/ds = 1)
where f; = ¢;. (d-f) The dependence of the scaled segregation force, Fl = fi/ci, on ¢; for various
models compared to simulation data and Eq. (3.3). Data and Eq. (3.3) fits are reproduced from
Fig. 2(a-c).
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