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Abstract

When dealing with longitudinal data, linear mixed-effects models (LMMs) are often used by
researchers. However, LMMs are not always the most adequate models, especially if we
expect a nonlinear relationship between the outcome and a continuous covariate. To allow
for more flexibility, we propose the use of a semiparametric mixed-effects model to evaluate
the overall treatment effect on the hemodynamic responses during bone graft healing and
build a prediction model for the healing process. The model relies on a closed-form expecta-
tion—maximization algorithm, where the unknown nonlinear function is estimated using a
Lasso-type procedure. Using this model, we were able to estimate the effect of time for indi-
vidual mice in each group in a nonparametric fashion and the effect of the treatment while
accounting for correlation between observations due to the repeated measurements. The
treatment effect was found to be statistically significant, with the autograft group having
higher total hemoglobin concentration than the allograft group.

Introduction

Critical-sized bone defects are those that cannot heal without intervention. Each year, more
than 2.2 million bone grafting procedures are performed worldwide for treating critical-sized
bone defects [1, 2]. The gold standard treatment is to implant allograft harvested from cadavers
to the defect site. However, such allograft is devitalized to prevent immune response therefore
leading to a high long-term failure rate [3, 4]. Animal models including mice are widely used
for developing and evaluating new treatments to enhance allograft healing. For example, a
hydrogel-based tissue-engineered periosteum delivering stem cells to the allograft was found
to enhance allograft healing in a mouse model [5, 6]. Vascularization, the development of
blood vessels, is widely measured for evaluating the bone healing in these studies [7-9], since
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vascularization is regarded as a precursor of bone formation [8, 10, 11]. In animal studies, vas-
culatures in the bone are measured using contrast agent-mediated micro-computed tomogra-
phy (micro-CT) [5, 6, 12]. This procedure is terminal thus making the longitudinal
vascularization monitoring of an individual mouse impossible. Therefore, a non-terminal in
vivo technique is needed for frequent longitudinal monitoring of the bone vascularization.

Previously, we applied spatial frequency domain imaging (SFDI) for measuring the amount
and the quality of vascularization, in particular, total hemoglobin concentration (THC) and
blood oxygen saturation (StO,) in a mouse femoral model [13]. SFDI is a non-invasive imaging
technique where near-infrared (NIR) light is employed to quantify THC and StO, [14, 15]. In
that study, mice with two types of femoral grafts, autograft and allograft, were measured longi-
tudinally from one day before injury to day 44 post-injury. Different from allograft, autograft
is harvested from the same injured mouse without devitalization. Therefore, autograft is
regarded to have a better vascularization and healing potential [5, 6, 16—-18]. However, the
detailed temporal trend of the vascularization was not readily available, partially due to the
lack of noninvasive monitoring tools. To find out the optimal time points for monitoring, we
first performed daily SFDI measurement in the first two weeks. The measurement frequency
decreased to twice a week after week 2 based on the observation that mice started to develop
resistance to anesthesia. When analyzing the data, we excluded the data in the first week due to
signal contamination caused by the sutures covering the wound site. All these adaptations in
measurement frequency and data analysis resulted in uneven time points in the longitudinal
data.

To account for the repeated measurements from the same mouse in the longitudinal moni-
toring, the data were analyzed using a linear mixed-effects model (LMM). LMMs are used to
describe the relationship between the response (e.g., THC or S$tO,) and a set of predictors (e.g.,
time) that are clustered according to one or more classification factors, and hence are ideal to
analyze repeated measures data. They assume a linear relationship between the response and
the predictors, which, however, might over-simplify the relationship. In our study, the physio-
logical changes of THC or StO, during the bone healing are usually nonlinear. Therefore, in
the previous analysis [13], the time indicator was treated as a categorical variable to give more
flexibility. By fitting a LMM, a significant treatment effect was detected for THC between the
two graft types [13]. However, this approach has several limitations. First, the linearity assump-
tion is too stringent and not desirable in many situations as people might expect a nonlinear
relationship between the response and predictors. Second, by treating the time indicator as a
categorical variable, the LMM allows an arbitrary pattern of temporal changes. However, it is
unable to make predictions at a time point different than those categorical time points (e.g.,
one cannot make prediction at day 2 or 3, which is not part of the time points when data were
collected). Moreover, a LMM is not suitable for datasets with a large number of time points
when the number of subjects is small [19], e.g., time series data. Given these reasons, we need a
mixed-effects model that can estimate both treatment effect and the nonlinear pattern of tem-
poral effects.

In this study, we propose the use of a semiparametric mixed-effects model (SMM) [20, 21],
which is the the state of art in longitudinal data modeling, for the analysis of the longitudinal
vascularization data during mouse femoral graft healing described in [13]. Our aim is to evalu-
ate the overall treatment effect and build a prediction model for the healing process. By fitting
a SMM, we are able to (1) test if there exists a significant overall treatment effect; (2) estimate
the effect size of treatment; (3) model the relationship between the total hemoglobin concen-
tration and treatment over time; (4) model the nonlinear pattern of the temporal effects; (5)
make prediction at any arbitrary time point during the healing process. An additional advan-
tage of SMM is that varying time points are allowed, e.g., due to adaptation made to
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accommodate the development of anesthesia resistance, etc. Last but not least, a SMM could
also enable researchers to identify the earliest time point that begins to show a group differ-
ence. As discussed later in the Results section, we could choose Day 7 for rTHC and be confi-
dent the overall treatment effects would be sustained throughout the following time period.

In SMM, the longitudinal response can be considered as a function of time, where time is
treated as a continuous variable. The model fitting is more data-driven and has no restriction
on the shape of the fitted model. By doing that, a nonlinear relationship is allowed between the
longitudinal response and predictors. The second advantage is that prediction can be made at
any time since time is continuous. Third, the model works well in the situation where there are
a large number of time points with only a few observations or even only one observation at a
time.

The rest of the paper is organized as follows. We will describe the data and the SMM in the
next section. The results using SMM will be then presented. The paper will be concluded with
a discussion at the end.

Materials and methods
Data description

SEDI data from our previous study [13] are presented in Fig 1. The hemodynamic observations
(THC and St0,) of each group from the longitudinal SFDI measurements are shown. Graft
THC and StO, were extracted from two-dimensional SFDI images of the mouse hindlimb at
each day, by taking the mean within a rectangular region of interest (ROI). The ROI was
defined over the mid-diaphysis, which is the location of the implanted graft. The hemody-
namic observations of the allografts and autografts are shown on the left and right column of
Fig 1, respectively. Qualitatively speaking, the autograft group exhibits higher THC than the
allograft group in the later stage of the healing (e.g., approximately after 3 weeks). The StO, of
both groups fluctuates around the value of 40% during the healing process.

Semiparametric mixed-effects model

To account for the repeated measurements of each mouse, a SMM was used to model the lon-
gitudinal response variables with random intercepts. We used the total hemoglobin concentra-
tion (THC) as the example in this section, and similar models could be fitted for other
response variables. The SMM is defined as follows:

THC = B, + g +f,(t) + ¢ +¢,

where ¢ is the time (in days), g is the graft type (0 for allograft and 1 for autograft), ¢ is the ran-
dom intercept for individual subjects, and ¢ is the random noise. The intercept f, indicates the
overall mean of THC, B, is the regression coefficients of g, and f,(t) belongs to the space of
polynomials and represents the nonparametric part of the model which captures the effect of
time for each mouse in each group. The function f, is unknown and needs to be estimated.

As a comparison, the LMM is given by:

THC =B, + g+ Pt +Bst-g+ ¢+

where the time related part Bt + Bt - g = (B, + B5g) - t is the counterpart of f,(f) in SMM. It is
easy to see that LMM assumes a linear time trend, i.e., (8, + B3g) - t, while f,(t) is the nonlinear
function of time in SMM. In other words, the SMM models the joint effects of time and group
through f(t), the LMM captures the effects using two linear terms 3t + Bt - g. The latter has
some limitations that we can circumvent using a SMM, as discussed in the introduction.
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Fig 1. Temporal changes of graft hemodynamic parameters in individual mouse are grouped based on parameter and graft. (a) THC of the allograft group; (b)
THC of the autograft group; (c) StO, of the allograft group; (d) StO, of the autograft group. The error bar indicates the standard deviation of the quantity (THC or
StO,) within the region of interest.

https://doi.org/10.1371/journal.pone.0265471.9001

Estimation of SMM

The parameters of the SMM are estimated using a penalized expectation-maximization (EM)

algorithm proposed by [22], where at each iteration of the EM algorithm the parameters are
estimated jointly. A penalty term is used to estimate a Lasso (least absolute shrinkage and

selection operator)-type estimator [23] of f,, the estimate of ¢ is obtained in the M-step of the

algorithm, and the coefficients 3, and f3; are estimated using least-squares based on the esti-

mates of f, = FA and ¢.

Let N be the number of mice with #n; observations each, and n = ZL n. Aset{yy, ..., yal
of potential basis functions is provided to the algorithm, and the Lasso procedure will
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automatically select the basis functions. At iteration / + 1, A can be updated as

2M
M"Y = arg min|| THC — B — f"g — Fh — ¢""V|[" 4+ 26> 77, ([,
k=1

F, 0
F =
0 F
is a block matrix, Fy = (yi(t;))k,i; with £;; only corresponding to times of mouse receiving
allograft, similarly F; = (y(t;))x.;; with ¢; only corresponding to times of mouse receiving

autograft, r,, = ||¥]|,n/7 log 2M/n is a penalty term, y > 0 is the tuning parameter and
||lpk|| 121 12— lpk( 1])

The function f, is finally estimated as

where

M

Z MWy, if g =0,

(h+1) _
s "
h+1 .
M+k Y, if g=1

k=1

The tuning parameter y controls the smoothness of f,, where a larger value of y will induce
more A coefficients to be set to zero, which will result in a smoother curve. In our analysis, the
set of basis functions is given by cubic splines, Fourier bases, power functions and Haar

functions.
The two parameters ¢"* and ¢+ are estimated following the two steps of the EM
algorithm:
o E-step:
W (h)
¢! = = Z/ (THC — ")
0%
WD = G20 (77 4 )"
where Z = diag(Z,, . . ., Zy) with Z; a vector of n; ones, 1 () / o'2 ‘™ and W is the condi-

tional variance of ¢.

o M-step:

o2

h+1 _ [de (h+41) . — n(h)
n,6>"
PR YIRS wiecs

i=1 j=1

Z| =

g2+ —

=

where E = Y — ¢") — FA"

The fixed effects 8 = (B,, 1) are estimated using least-squares applied on THC — FA"*V —
¢, by solving X' X"V = X' (THC — FA"* — 1), with X the design matrix with first
column a vector of ones, and second column g.
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We refer to [22] for details on how to derive the formulas. Some considerations for the tun-
ing parameter y are given in [24], and the authors proved that for y > 2 the estimator of f, satis-
fies an oracle inequality. However, since ¥ also influences the stability of the EM algorithm,
their recommendation is then to choose a y value that is close to 2, which makes the EM algo-
rithm more stable.

Results
Choice of

Effects of ¥ on the significance of . The model estimation depends on the value of the
tuning parameter y. We therefore examined the effects of y by plotting the coefficient S, of the
group effect g vs. y on a grid between 0 and 2, with increments of 0.05, shown in Fig 2 for THC
and in Fig 3 for rTHC. In both figures, the choice of y has an impact on the value and signifi-

cance of §,. For THC (Fig 2), when y = 0 or 0.05, the estimated group effect coefficient is insig-
nificant (p-value > 0.05); while ¥ > 0.1 makes the estimated group coefficient significant. For
rTHC (Fig 3), the y value does not affect the statistical significance of the group coefficient—as

long as y > 0, p | is always significant with p < 0.05. In both cases, the estimated regression
coefficient is zero when y = 0. However, y = 0 is not a reasonable choice since the estimate of
f¢(t) will be the group mean at each time point, and there is then no information left to be
explained by the group coefficient.

T
D 4-
O
=
()
O
o p-value < 0.05
O- -
>
(@]
—
(@)]
Y
(@]
L2
]
£
k7
L

O_

0 0.25 0.5 1 15 2

v

Fig 2. Estimated group coefficient 8, vs. y for THC. The group coefficient j, is estimated at different y values. Any coefficients above the red line are statistically
significant with p < 0.05, the red line crosses the curve at the point (y = 0.3, §, = 2.9).

https://doi.org/10.1371/journal.pone.0265471.9002
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Fig 3. Estimated group coefficient f; vs. y for rTHC. The group coefficient f3, is estimated at different y values. Any coefficients above the red line are statistically
significant, the red line crosses the curve at the point (y = 0.05, §, = 0.11).

https://doi.org/10.1371/journal.pone.0265471.g003

We observed similar patterns for the response variable StO,. The choice of y has an impact
on the value of regression coefficients, but does not affect much on the statistical significance.
We therefore omit the plots for StO, and rStO,.

Effects of y on the smoothness of f,(f). In Fig 4 we plotted the estimated THC trajectories
for both treatment groups using a SMM with different values of y. There is a clear trade-off
between fitting the data adequately and getting a smooth curve. We can see thaty =0 and y =
2 do not appear to be good candidates, since one follows every small variation of the data and
the other one is almost a straight line. We then chose a value of y that was able to capture the
variations of the data while remaining smooth, our choice is y = 0.5. For the rest of the analysis
the results will be based on this value.

Results for THC

THC. The allograft group and autograft group appear to have different trends. They both
show an initial increase, but after this initial increase only the autograft group keeps on
increasing, while the allograft group seems to roughly fluctuate around the same value of 145
uM. A formal test for a difference between the two groups can be performed during the least-
squares step of the algorithm. The results are presented in Table 1, the intercept corresponds
to the estimated THC mean of the allograft group after subtracting the effect of time in each
group, and the effect associated to the repeated measurements of each mouse. The group effect
is statistically significant when using y = 0.5, however some choices of y can make the
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Fig 4. Estimated THC by SMM (red curve) for the allograft group (left) and the autograft group (right) with different values of y. Black
curves are observed THC trajectories. a) SMM estimates using y = 0, b) SMM estimates using y = 0.5, ¢) SMM estimates using y = 2.

https://doi.org/10.1371/journal.pone.0265471.9004
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Table 1. The estimate of group effect in the SMM for THC and rTHC at y = 0.5.

Outcome Reg. Coeff. Estimate Std. Error t value Pr(> [t|)

THC (Intercept) 143.40 1.13 126.86 <107'
Group 4.10 1.61 2.55 0.01

rTHC (Intercept) 1.24 0.01 118.41 <107'¢
Group 0.16 0.01 10.58 <107

https://doi.org/10.1371/journal.pone.0265471.t001

coefficient not statistically significant with a p-value close to 0.05 but slightly larger. It is then
not clear if there is truly a difference between the two groups for THC. It can be seen from Fig
5(a) as well that the difference between the two estimated trajectories of the two treatments is
not obvious until toward the end of the study.

rTHC. From Fig 4, we can see that the pre-surgery THC value of the autograft group is
lower than the allograft group. To account for the variation among individuals the same analy-
sis is performed using a relative THC (rTHC), for each mouse the THC values are normalized
by their pre-surgery THC values. The estimated rTHC trajectories for both groups using y =
0.5 are shown in Fig 5. From Fig 5, we see that the difference between the two groups is even
more noticeable than when using THC and the difference begins as early as Day 7. As a result,
the group effect is greater and highly significant. In Table 1, the estimated mean of the allograft
group is 143.40 uM and 147.50 uM for the autograft group, which corresponds to a 2.86%
increase. The effect from Table 1 suggests that the estimated relative mean of the autograft
group is now 12.9% greater than the estimated relative mean of the allograft group.

Results for StO,

The same method is applied to the variable StO,, which is the blood oxygen saturation of the
graft and the surrounding soft tissues. In Fig 6, the groups appear to be similar in their trends,
the main difference is at 30 days where the allograft group shows a larger decrease than the
autograft group. Table 2 suggests that the difference is not statistically significant. The same

2.1-
A A
A /N
200- — sl
i AL
/ Iy
1.8 T
/ i ! \\
175- '
S Group %) Group
E == allograft E 1. == allograft
150- = autograft = = autograft
1.2-
125+
100- . . . , 0.9- l ] . . ]
0 10 20 30 40 0 10 20 30 40
time (days) time (days)

Fig 5. (a) Estimated THC trajectories over time by SMM (thick curves) for the allograft group (red) and the autograft group (blue) at ¥ = 0.5. The dashed curves
are the observed THC trajectories of individual mice in each group. (b) Estimated rTHC trajectories over time by SMM (thick curves) for the allograft group (red)
and the autograft group (blue) at y = 0.5. The dashed curves are the observed rTHC trajectories of individual mice in each group.

https://doi.org/10.1371/journal.pone.0265471.9005
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Fig 6. (a) Estimated StO, trajectories over time by SMM (thick curves) for the allograft group (red) and the autograft group (blue) at y = 0.5. The dashed curves are
the observed StO, trajectories of individual mice in each group. (b) Estimated rStO, trajectories over time by SMM (thick curves) for the allograft group (red) and
the autograft group (blue) at ¥ = 0.5. The dashed curves are the observed rStO, trajectories of individual mice in each group.

https://doi.org/10.1371/journal.pone.0265471.9006

analysis is performed on the relative StO, (rStO,), using y = 0.5. We see similar trends for both
groups in Fig 6, and in Table 2 the difference is still not statistically significant.

Discussion

In this study, we applied SMM for analyzing the hemodynamic data from a longitudinal
mouse bone healing monitoring. Significant difference of the longitudinal THC was found
between the autograft and allograft groups. However, no significant difference of StO, was
found between two groups. The result is consistent with that from the previous LMM method
and agrees with the physiological expectation. Even though both the LMM and SMM indicated
a significant treatment effect for this particular dataset, SMM is more versatile and advanta-
geous than LMM. Instead of treating the time as a categorical variable, the SMM allows nonlin-
ear relationships between the hemodynamic observation and the time. The continuous time in
the model also allows prediction of the hemodynamic changes within the period of monitor-
ing. In pre-clinical and clinical research, missing time points are common due to physiological,
technical, or scheduling limitations. The SMM could help estimating the hemodynamic
parameters at the missing time points.

One of the caveats of SMM is the complexity of the method, leading to difficulty in imple-
mentation. This may potentially impact the wide-spread usage of this particular method. How-
ever, the ability to handle non-linearity of the dataset in longitudinal analysis could greatly
relax the stringent linearity assumption by the LMM method.

Table 2. The estimate of group effect in the SMM for StO, and rStO, at y = 0.5.

Outcome Reg. Coeff.

StO, (Intercept)
Group

rStO, (Intercept)
Group

https://doi.org/10.1371/journal.pone.0265471.t1002

Estimate Std. Error t value Pr(> [t])
0.41 0.004 106.02 <2x107'¢
0.01 0.005 1.78 0.08
1.04 0.01 104.69 <2x107%¢
0.02 0.01 1.41 0.16
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Another limitation of SMM is the determination of the tuning parameter y. In the paper of
[22], the authors recommended some value larger than 2 but as close as 2. In our limited
numerical experiments, we found such a value is not a good choice and leads to an overly
smoothing result (see Fig 4). Our experience is to tune y over a grid between 0 and 2 and select
a value that gives a balance of model fitting adequacy and smoothness. Of course, it is of great
interest to develop a criterion that can be used to determine the optimal value automatically
and objectively, which will be studied in the near future.

The third limitation of SMM is that it cannot account for the heteroscedasticity. It is shown
in Fig 1(b) and 1(c) that the variation gets larger over time (the variation is fairly stable in (a)
and (d)), while SMM assumes a constant variance, which is a limitation. We are not aware of
any model that can take into account the heteroscedasticity while fulfilling all of our goals.
Extending the current model by incorporating heteroscedasticity is out of the scope of this
paper but will be considered in future research.

Last but not least, SMM is prone to overfitting due to the model complexity. The discovered
nonlinear pattern could be the pattern of noises and might not be applicable outside the sam-
ple. Our findings would be tested using new observations in future studies.

In summary, the advantages of the SMM model makes it suitable for a broader range of bio-
medical applications. The SMM can be used in various longitudinal studies with different
monitoring techniques and/or biological systems. For example, analysis of the longitudinal
blood flow measured by diffuse correlation technique could evaluate the healing in bone injury
[16-18] or the efficacy of chemotherapeutic drugs in breast cancer [25]. The monitoring tech-
niques could be any spectroscopy or imaging techniques as long as they can provide longitudi-
nal data.
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