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Abstract

A/B test, a simple type of controlled experiment, refers to the statistical procedure of con-
ducting an experiment to compare two treatments applied to test subjects. For example, many
IT companies frequently conduct A/B tests on their users who are connected and form social
networks. Often, the users’ responses could be related to the network connection. In this paper,
we assume that the users, or the test subjects of the experiments, are connected on an undirected
network, and the responses of two connected users are correlated. We include the treatment
assignment, covariate features, and network connection in a conditional autoregressive model.
Based on this model, we propose a design criterion that measures the variance of the estimated
treatment effect and allocate the treatment settings to the test subjects by minimizing the cri-
terion. Since the design criterion depends on an unknown network correlation parameter, we
adopt the locally optimal design method and develop a hybrid optimization approach to ob-
tain the optimal design. Through synthetic and real social network examples, we demonstrate
the value of including network dependence in designing A /B experiments and validate that the
proposed locally optimal design is robust to the choices of parameters.

Keywords: A/B test; Conditional autoregressive model; Controlled experiments; Covariates;
Optimal design.

1 Introduction

A/B or A/B/n test, a simple type of controlled experiment, refers to the procedure of comparing
the outcomes of two or more treatment settings from a finite number of test subjects. In the
literature, controlled experiments have been widely used in agricultural, clinical trials, engineering
and science studies, marketing research, etc (Atkinson and Bailey, 2001). Due to the advent of
Internet technologies, large-scale A/B test has been commonly used by technology companies such
as Amazon, Facebook, LinkedIn, Netflix, etc., to compare different versions of algorithms, web
designs, and other online products and services. For example, Nandy et al. (2020) showed a case
study on the LinkedIn newsfeed, which is a content recommender system with hundreds of millions
of users. A recommender system is referred to as the infrastructure that provides a personalized
recommendation on products or services based on users’ personal information or past behaviors
(Kohavi et al., 2020). The accuracy of the recommender algorithm is crucial to the quality and/or
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profit of these companies. A practical problem is to decide if an innovative update should be made
to the algorithm in use. Therefore, an A/B test (i.e., “A” refers to the updated algorithm and
“B” the current one) is used to make a comparison of the two and make the decision. To make a
robust comparison of the two algorithms, the experiment should last for a certain period to make
sure that users can receive enough exposure to the updated recommender system. The outcome of
each user can be the total time spent on the recommended products/service and the click-through
rate to the recommended products/service.

In its simplest form, the experimenter wants to compare the outcomes of two different treat-
ments, labeled by A and B. A completely randomized design is commonly used, in which the
treatment setting is randomly assigned to different test subjects. The randomization leads to un-
biased estimates of certain estimands, typically, the average treatment (or causal) effect (Rubin,
2005), under minimum assumptions. However, there is still room for improvement in the efficiency
of the A/B test procedure when certain practical challenges are involved. Besides the treatment
setting, many other variables can affect a user’s outcome, including the covariates information and
social network connection of the user. Covariates, such as users’ demographic, educational, finan-
cial information, are usually available to the experimenter and can significantly contribute to the
behaviors and opinions of users. In the aforementioned scenarios, the experimenter also possesses
the network connections of the users. In Section 7, we simulate an A/B experiment for the music
recommender system based on the real dataset collected from the music streaming service Deezer.
The data contains the friendship network of users and their covariates information regarding pref-
erences to different music genres, which should be highly influential to the music recommender
system. Intuitively, the outcomes of two connected users might be correlated to some degree. This
intuition is reflected in the model assumption of the outcome regarding the network structure, and
referred to as the network-correlated outcomes in Basse and Airoldi (2018b). In Section 2 and 3,
we explain in details the assumption on the effects of the network to a user’s outcome.

The rest of the paper is arranged as follows. In Section 2 we highlight some relevant existing
works and point out the differences between the proposed method and the existing ones. Section
3 introduces the regression model including both the covariates and the correlation between users
due to network connections. Based on this model, in Section 4, we propose a locally optimal design
method in which the network correlation parameter is set to be the mean of its prior distribution. In
Section 5, a hybrid approach is proposed to solve the optimization problem to obtain the optimal
design. Through numerical experiments in Section 6 and 7, we demonstrate the benefit of the
proposed approach. We conclude the paper in Section 8 with some discussion of the limitation of
the proposed method and some future research directions.

2 Previous Work and Our Contribution

2.1 Existing Literature

For A/B tests that only involve covariates but not networks, most existing works advocate the
necessity of covariate balancing between the treatment groups (Morgan and Rubin, 2012; Rubin,
2005; Morgan and Rubin, 2015; Bertsimas et al., 2015; Kallus, 2018; Li et al., 2021). For controlled
experiments on networks, both theoretical and methodological works have been developed. See
Gui et al. (2015); Phan and Airoldi (2015); Eckles et al. (2016); Basse and Airoldi (2018a), etc.
Among them, Gui et al. (2015) proposed an estimator of average treatment effect considering the
interference between users on the network and a randomized balance graph partition to assign
treatments to each of the subnetworks. Eckles et al. (2016) used a graph cluster randomization to
reduce the bias of the average treatment effect estimate. Nandy et al. (2020) proposed the strategy



to first apply approximate randomized controlled experiments solved by optimization and then use
importance sampling to correct bias. Although focusing on networks, these works do not consider
covariates.

In causal inference literature, the potential outcome framework is usually used. The average
treatment effect is the target parameter for estimation and inference (Imbens and Rubin, 2015).
Under this setup, many causal inference works do not require any probabilistic model assumption
on the response variable. Alternatively, some recent works on the design for A/B experiments have
operated under specific parametric model assumptions of the response variable, and optimal design
idea is used to propose new design methods. For example, Bhat et al. (2020) developed off-line and
online mathematical programming approaches to solve this optimization problem, the objective
function of which is exactly the Dg-optimal design criterion (Kiefer, 1961; Atkinson and Donev,
1992). In this case, the Dg-optimality criterion minimizes the variance of the treatment effect of
a parametric linear model. Optimal design strategies have also been used under the assumption
of the network-correlated outcome, such as Basse and Airoldi (2018b) and Pokhilko et al. (2019).
Outside the A/B test literature, there have been papers considering the optimal design problem
with dependence between test subjects. For example, Martin (1986) considered the restricted
randomized design when the test subjects are spatially correlated. Parker et al. (2017) and Koutra
(2017) considered the optimal design under linear network effects.

Similar to the aforementioned works, we also opt for the optimal design direction as indicated by
the title of this paper. We argue that although the nonparametric potential outcome framework has
an important theoretical basis, the reasonable model-assisted design approaches are not meritless.
Even in the works based on the potential outcome framework, certain linear model assumptions
are also used in both theoretical and numerical proofs to show the advantages and properties of the
balancing criteria and the design approaches. For example, Morgan and Rubin (2012) assumed an
additive linear model to show how much variance reduction can be obtained by rerandomization
using Mahalanobis distance. Gui et al. (2015) used a linear additive model in terms of treatment
effect, neighboring covariates, and neighboring responses as the rationale to create the sample
estimator of average treatment effect, as well as to simulate data in numerical experiments.

2.2 Differences and New Contributions

In this paper, we develop an optimal design approach for A/B experiments in the presence of
both covariates and network connections. The scope of the paper targets the social networks
of users whose covariates information are influential to their reactions to the treatments. With
a parametric conditional autoregressive (CAR) model that assumes the outcome is the sum of
treatment effect, covariate effects, and correlated residuals for capturing network dependence, we
focus on the estimation of the treatment effect parameter. Based on this model, we develop an
optimal design criterion such that the variance of the estimated treatment effect is minimized. By
design, we mean the assignment of treatment settings to each test subject in the context of this
paper. We focus on the simplest case where the experiment only involves two treatments, A and B.
But the proposed modeling and design method can be extended to the case of multiple treatment
settings, as discussed in Section 8. The design of the treatment settings for multiple experimental
factors is not the focus of this paper.

The resulting design criterion in Section 3 depends on the network structure, the covariates,
and an unknown network correlation parameter, and it can not be simply expressed as a sparse
quadratic function of the design variables, which is different from Pokhilko et al. (2019). Therefore,
the mathematical formulation developed by Pokhilko et al. (2019) is infeasible to solve this new
optimal design problem.



We also assume the common Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1974),
which states that the outcome of a test subject is unaffected by the treatment assignments of any
other subjects. In other words, we do not think there is any direct interference from the neighbors’
treatment settings to the focused test subject’s outcome. This assumption is appropriate for many
applications where users are unawarely participating in the experiments run by the online service
providers. Users’ outcomes can still be correlated due to their network connections and covariates
information.

This non-interference assumption is different from the interference assumption in some existing
works, such as Parker et al. (2017). In Parker et al. (2017), the proposed model includes the
treatment assignments of connected subjects as linear predictors in their model. The experimental
outcome of a subject under this model is affected by the treatment assignments of connected
subjects. Different from this assumption, we assume that the experimental outcomes are correlated
due to the network connection between subjects, which is characterized by the error term of the
CAR model. However, the experimental outcomes are unaffected by the treatment assignments of
connected subjects. Therefore, the proposed model of this paper is not comparable with the one in
Parker et al. (2017) due to the different assumptions. Both can be useful under suitable scenarios
and assumptions.

3 Optimal Design with Network Connection

Consider n test subjects participating in the experiment. For the i-th subject, let z; € {—1,1}
represent the experimental allocation of A or B treatment, z; = (z;1,.. ., zip)T be the p-dimensional
covariates, and y; be the experimental outcome. Assume that the outcome y; is a continuous random
variable. Bhat et al. (2020) models the relationship between y; and the effects of the treatment
and covariates as

yi=x0+ f B+6 for i=1,...,n, (1)

Here 3 € RP*! is the vector of the linear coefficients for f; = (1,2)". We name 0 as the
treatment effect. Note that it is different from the notion of average treatment effect which is
the usual estimand in the potential outcome framework. The model in (1) does not involve the
network and the error terms 0;’s are assumed to be independent and identically distributed (iid)
normal random variables with mean zero and a constant variance ¢?. The purpose of design
allocation is to reduce the variance of the least square estimator, which is unbiased if assumption
(1) stands. According to Bhat et al. (2020), the variance of the least squares estimator 0 from (1)
is var(f) = o%[x" (I, — F(FTF)"'FNa]~!, where = (21,...,2,)", F' = (f1,...,fn) and I,
is the identity matrix of size n. Therefore, the optimal design is obtained by minimizing Var(é),
which is equivalent to

min &' F(F'F)"'F'z (2)

n
st —1<> <1, me{-1,1}"
=1

The constraint —1 < > ;a; < 1 is imposed to make sure that the numbers of test subjects
assigned to 1 and —1 are equal or within the difference of 1, which corresponds to the situation of
even or odd sample size n.

Next, we extend the linear model (1) to the case with the network connection. We require that
the network between subjects is known to the experimenter just like the covariate information.
Assume this network form a simple undirected graph with nodes representing the test subjects. If



two test subjects are connected, there is a single edge between the two corresponding nodes. Such
a network can be represented by an n x n adjacency matrix W, or incidence matrix. Its diagonal
entries are 0’s, whereas off-diagonal entries (i # j) are

3)

1, if node ¢ and node j are adjacent or connected
T
Y 0, otherwise.

Obviously, W is symmetric. We denote the number of adjacent neighbors, or degree, of the i-th
node as m; = 2?21 wij, and m = Y1, m; is twice of the total number of edges in this graph.

To add the network’s influence into the linear additive model (1), we propose the conditional
autoregressive or CAR distribution (Cressie, 1993; Rue and Held, 2005; Banerjee et al., 2014) for
0;’s to represent the network dependence between the connected test subjects. According to the
CAR model,

wiid; o2
(Si‘(sl,...,(51_1,(51'4_1,...,5”NN pzu,f y (4)
A

where o2 is the variance and 0 < p < 1 is a correlation parameter characterizing the strength of
network dependence. Equivalently, § = (J1,...,8,)" follows a multivariate normal distribution

8 ~ MVYN,L(0,02R(p, W)), (5)

where R(p, W) = (D — pW) with D = diag{my,...,m,}. The matrix R(p, W) is positive definite
when 0 < p<landm; >1fori=1,...,n (Ver Hoef et al., 2018). The proof of the equivalence of
(4) and (5) is given by Besag (1974) and illustrated by Pokhilko et al. (2019) under the framework
of network A /B test.

With the CAR model assumption, the outcome y; depends on the network connection for the
i-th subject but does not depend on the treatment allocation of the connected subjects. In this way,
the outcome of the subject is mainly decided by him/herself and the treatment he/she receives.
Since most social networks are built on positive connections between users, we assume the influence
from the network is synergistic to users and thus p is positive. When p = 0, the model assumption
returns to the linear model (1) which does not involve network.

If the network correlation parameter p is known and 0 < p < 1, the variance of the least squares
estimator 6 can be expressed by

. -1
var(f) = o [CCTK.’B] , (6)
where © = (z1,..., xn)T is the treatment assignments for all subjects, and K is an n X n matrix
-1
K = (D—pW)— (D~ pW)F |[F'(D—yW)F| F'(D- W), (7)

with the covariates matrix F' = (fy,..., fa). Here, to make F T (D —pW)F invertible, we require
F to be full-rank, i.e., rank(F') = p+ 1. For the same reason, we do not consider the isolated node
whose degree m; = 0. In Section 7, we explain how to deal with the isolated nodes if they exist.
The optimal design @ minimizes the variance of estimated treatment effect in (6). This optimal
design is also known as a Ds-optimal design in the optimal design literature (Kiefer, 1961; Atkinson
and Donev, 1992). Equivalently, we express the optimal design as the solution of

max T(x,p) =z ' K, (8)

n
st. —1 §in <1, and x € {-1,1}",
i=1



which maximizes the precision (as the inverse of variance) of the estimated treatment effect. Since
T T T T o
e Ke=x' (D—pW)x—x' (D—-pW)F |F' (D —-pW)F| F (D-pW)x, (9)
and ¢ (D — pW)x = m — px' Wz, we have that

T(z,p) = m—Ti(z,p) — To(z, p), (10)

where

Ty(z,p) = px Wa =p Y wijzm;,
i

Ty(z,p) =z (D — pW)F [FT(D — pW)F

1
F'(D - pW)z.

Note that minimizing T'(x, p) would push z; and x; to be assigned with different treatments
whenever w;; = 1. To facilitate the discussion, we name this condition “connection balance”,
meaning that the two connected subjects are assigned with different treatment settings. Intuitively,
this is a meaningful condition since two connected test subjects are usually similar in many aspects
of their background. Thus, the most likely factor contributing to their difference in outcomes is the
treatment setting. This condition is consistent with the optimal design for the A/B test without
covariates in Pokhilko et al. (2019). In the extremely simple and artificial case illustrated later
in Figure 2 in Section 5, such perfect balance can be achieved. For real networks, the connection
balance can only be achieved to a certain degree but rarely perfectly. Also, T>(x, p) can be viewed as
a network re-weighted Mahalanobis distance in Morgan and Rubin (2012), since it can be expressed
by
Ty(z,p) =" (D - pW)FZ,'F ' (D — pW)z,

with ¥,, = F (D —pW)F. Therefore, the objective in (10) contains T (x, p) to achieve connection
balance, and Ts(x, p) to achieve covariate balance. One critical issue is that the optimality criterion
depends on the value of p. In practice, p is an unknown parameter. Next, we are going to discuss
the choice of p.

4 Locally Optimal Design

The optimal design criterion T'(x, p) depends on the network correlation parameter p, which is usu-
ally unknown before experiments. We can use Bayesian optimal design to handle the uncertainty
of the unknown parameters. Using its most common formulation, we should optimize the expec-
tation of the design criterion, i.e., E,[T'(x, p)], with respect to a user-specified prior distribution of
the parameter p. But even with the simple uniform prior for p, the expectation does not have a
tractable form. Many numerical methods, such as quadrature, Quasi-Monte Carlo, Markov Chain
Monte Carlo, etc., have to be used to compute the integration. Please see Ryan et al. (2014),
Ryan et al. (2016), and Drovandi and Tran (2018) for more comprehensive review on the advanced
computational methods on Bayesian optimal designs.

To simplify the computation, we investigate the property of T'(x, p) with respect to p to find
an analytic surrogate of E[T(x, p)]. We first discover the concavity of T'(z, p) with respect to p in
Theorem 1. Based on Jenson’s Inequality, the conclusion in Corollary 1 holds directly. The proof
of Theorem 1 is provided in the Supplement. Based on the two results, we propose to use T'(z, po),
the upper bound of E[T'(x, p)], as the surrogate of the objective to obtain design allocation.



Theorem 1. For p € (0,1), and any given design x, the design criterion T(x,p) is a concave
function with respect to p.

Corollary 1. Given a prior distribution of p, p(p), for p € (0,1), a tight upper bound for E [T (x, p)]
is E [T (x, p)] < T(x, po), where py :=E(p) is the population mean of p based on p(p).

We define the locally optimal design by solving
max T(x, po) (11)

n
st. —1<> 2, <1, and @ € {-1,1}",
i=1

whose objective function is equivalent to the original objective in (10) with p specified as the mean
of the prior distribution. Using a specific pg in the design criterion to obtain the optimal design is
known as the locally optimal design (Chaloner and Verdinelli, 1995).

The quality of the design based on the surrogate problem in (11) can be investigated from
two aspects. First, we provide the analytic gap between T'(x, pg) and E[T(x, p)] and a simulation
example to illustrate the typical range of the gap between the surrogate local design criterion
T(x,po) and the global criterion E[T'(x,p)]. Proposition S1 of the analytic gap and simulation
results in Figure S1 are given in the Supplement.

Next, we investigate whether the surrogate design criterion T'(x, pg) is robust to the choice of
po- To do so, we check of the correlation between any T'(x,pg) and T'(x,p) for a pair of fixed
(po, p) for any randomly generated design @. If the correlation between T'(x, pg) and T'(x,p) is
large and positive, it indicates that a design resulting in large T'(x, po) is also likely to lead to
large T'(x,p). In Proposition S2, we have given the formula to calculate the exact correlation
corg(T'(x, po), T (x, p)) for all the completely randomized design in which x;’s are i.i.d. random
variables and Pr(x; = 1) = Pr(z; = —1) = 0.5. To visualize the correlation, we also provide a
simulated example using a network with 50 nodes and five-dimensional covariates associated with
each node. The edges of the network are generated as independent Bernoulli random variables
with probability 0.08. The covariates are generated as independent random variables taking values
from {—1,1} with equal probabilities. The values of py and p are set to be 0.1, 0.3, 0.5, 0.7, and
0.9 and omit the case when pg = p. For each pair of (pg, p) values, we generate 1000 completely
randomized designs and compute the corresponding T'(x, pg) and T'(x, p) for each design. Figure
1 returns the scatter plot of T'(x, pg) and T'(x, p) for the 1000 completely randomized design for
different (pg, p) values. It shows that T'(x, pg) and T'(x, p) are strongly linearly correlated. Also,
the ezact correlation values based on Proposition S2 ranges from 0.75-0.99 for values of (po, p)
in the simulation. From these results, it is safe to say that the locally optimal design is robust
to the choice of py value. Particularly, for pg = 0.5, the correlation values between T'(x, pg) and
T (x, p) where p = 0.1,0.3,0.7,0.9 are all above 0.9. Therefore, the optimal design obtained based
on pp = 0.5 is the most robust for the model with the true value of p € (0.1,0.9).

Although using the local design criterion T'(x, pg) is a simple solution, the quality of the re-
sulting design can be validated. Simulation examples in Section 6 can further demonstrate that
the performance of the locally optimal design is equally good as the true optimal design in which
parameter p is set to be its true known value.

5 A Hybrid Solution Approach to Obtain Optimal Design

Since the optimal design in (11) is the integer solution of the maximum of a quadratic form,
obtaining the exact solution of such problem is challenging (Belotti et al., 2013; Bhat et al., 2020).
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Figure 1: Scatter plot of T'(x, pg) and T'(x, p) of each pair of (pg, p) with 1000 randomly generated
designs.



According to (10) and (11), the maximization can be converted to minimization of T (z, po) +
Ty (e, po), where

Ti(z, po) = pox' Wa

Ty(z, po) = ' (D — poW)F [FT(D - pOW)F} "FT(D - poW)a,

and
—1
Ty (2, po) + Tola, po) = 2| [pOW (D — poW)F [FT(D - pOW)F} FT(D - poW)| .

The matrix .
poW + (D — poW)F [FT(D - pOW)F] F'(D— pW)

is not necessarily a positive semi-definite matrix. As a result, the minimization problem of T} (x, po)+
Ts(x, po) can not be solved directly as the problem in (2). We develop a hybrid solution approach
to resolve this issue.

Notice that the matrix (D—poW)F [F'(D — poW)F| ' FT (D—poW) in Ty(x, po) is positive
definite, and thus the minimization of T5(x, p) can be solved by an outer-approximation based
branch-and-cut algorithm as in (2). Hence, we reformulate the minimization of 71 (x, po) + T2 (, po)
to be

min T5(x, po) (12)
s.t. Ti(z, po) < g,

n
1< 2 <1, and € {-1,1}",
i=1

which uses the constraint T’ (z, po) < ¢ to control the value of T%(x, pg) to be small enough. Since
po is only a constant multiplier in 7;(x, pp), this constraint can be reduced to ' Wax < ¢, and it
is critical to specify the value of ¢.

The value of & " Wa greatly depends on the number of subjects and the structure of the network.
Therefore, the cap ¢ should be related to a specific network. In Theorem 2, we investigate the
asymptotic behaviors of ' Wz via random allocation with equal probability to decide a viable
way to specify the value of ¢q. Assume that the entire network contains unlimited users with a
deterministic network structure, and the experiments are conducted on a subset of n users from
the entire network. Therefore, the design vector x is the only random component that causes the
stochastic behavior of the statistic ' Wz. The proof of Theorem 2 is provided in the Supplement.

Theorem 2. Consider that x1,...,z, in x are independent and identically distributed random
variables from the discrete distribution with Pr(xz; = 1) = Pr(z; = —1) = 0.5. As n — oo,
T
w
== 5 NO,1),

Vm
d . L .
where — represents convergence in distribution and m = Zij Wij.

Since ' Wa//m asymptotically follows the standard normal distribution, we can specify
the gap ¢ according to the standard normal percentiles. Let z, be the 100a% percentile of the



Figure 2: Visualization of the optimal design allocation. Two treatments are denoted by different
colors. The covariate value 1 or -1 of each subject is labeled in each node.

standard normal distribution. If we specify a smaller value of «, the constraint is more restrictive.
The optimization problem is reformulated as

minz " (D — poW)F [FT(D - pOW)F} "FT(D - poWa (13)

st.x W < VM2,

n
—1<> &<,
=1
xe{-1,1}".

This minimization problem with a positive definite quadratic objective and two-level decision vari-
ables can be solved by off-the-shelf optimization solvers. Note that, the constraint —1 < Y7 | 2; <
1 is inserted to achieve a balanced allocation of two treatments. In terms of implementation, this
constraint usually improves the computation cost since it also reduces the number of feasible solu-
tions. The formulation in (13) changes the minimization of two objective functions T (z, po) and
Ts(x, pp) into the minimization of one and constraining the other, and thus the name of hybrid
solution approach.

We provide an illustration of the proposed design using a simple bipartite network of 20 nodes.
For simplicity, the covariate z; is a one-dimensional vector taking value from {—1,1}. We set the
correlation parameter py as 0.5 and parameter o as 0.001 for the proposed approach in (13). The
locally optimal design is visualized in Figures 2. The simple bipartite network can be divided
into two disjoint sets, and the treatment allocation is orthogonal to the covariate vector, which
achieves perfect balance for the covariate and the network. However, perfect balancing may not
be achievable for general cases, but small values of 77 and 75 can still provide a better-balanced
structure of network connection and covariates, respectively.

We first discuss the choice of v in (13). The hybrid problem in (13) is generally computationally
efficient to solve for networks with 100-5000 nodes. Therefore, it is feasible to obtain designs through
conducting a sensitivity analysis with a series of decreasing « values and stop at the a value when
the change of objective values T'(x,pp) in (11) is small, or the improvement of precision stops
increasing as « decreases. One numerical example is used to demonstrate the performance of the
design with respect to different choices of a’s in Section 6.1.

At last, we remark on the choice of py in this new formulation (13). Like T'(x, pg), the new
objective function Th(x, pp) in (13) is also a quadratic form of x. Therefore, Proposition S2 still
holds for any correlation between Th(x, pg) and T'(x,p) for any pair of (pg,p). The quality of
design with a given pg can be assessed on any possible true value of p using the analytic correlation
between Ts(x, pg) and Ts(x, p) similar to the discussion near the end of Section 4. Particularly, in

10



the special case without any covariates, i.e., F' = 1,,
To(w,p) = (1 — p) o

where m = (myq, ... ,mn)—r with m; be the number of adjacent neighbors of the i-th user. Therefore,
corg(To(x, po), To(x, p)) = 1 for any pg and p. It indicates that there is no loss to replace an
unknown true p with a given pg in this special case.

6 Numerical Study

The purpose of optimal design is to reduce the variance (or equivalently, improve the precision) of
the estimated treatment effect 0 in (1). Since the optimal value of the design criterion can not be
obtained directly, computing the classical measure “design efficiency” is not feasible. Alternatively,
we evaluate the quality of design by computing the percentage of the improvement in precision
compared to the expected precision of random balanced designs.

Proposition 1. Consider a random balanced design x. The marginal distribution of each x; is
Pr(z; =1) = Pr(z; = —1) = 0.5 and Y_;" | z; follows the balance condition, i.e., =1 <> "  a; < 1.
The expected precision of the random balanced design is

E, (a*%TKm) — o 2tr(KCO), (14)

where C' is an n X n matriz with all of the diagonal entries equal to 1 and all of the off-diagonal
entries equal to a fized constant c. The value of ¢ is —(n — 1)™ if n is even and it is —n ™' if n is
odd. Here tr(-) denotes the trace of a matriz. The expectation in (14) is taken with respect to the
probability distribution of x.

The proof of the above proposition is given in the Supplement. For any given design xg, the
percentage of the improvement in precision with respect to the expected precision of the random
balancedized design can be expressed by

o %x) Kxg — Ey (07 %" Ka) tr(KC)
= ol S 1)

For short, we denote this percentage of improvement in precision by PIP(x). According to (7),
the calculation of matrix K involves the network correlation parameter p. Since (15) is used to
evaluate the design xg, naturally, we should use the true value of the network correlation, denoted
by pt, to compute PIP(xg). In the following simulation study, p; is part of the simulation settings.

In Section 6.1, we evaluate the robustness of the proposed design approach to different choices of
« and pg. In Section 6.2, we evaluate the advantages of the optimal design with network connection
under different scenarios. In both subsections, we generate synthetic datasets, where the edges of
the network are independently generated from a Bernoulli distribution with a constant probability,
which is called network density. If there are isolated nodes appear in the generated network,
we connect each of them with a randomly selected neighbor to remove isolation and ensure that
m; > 1in (4). Each node is associated with a p-dimensional covariates whose entries are randomly
generated from {—1,1} with equal probabilities. To stabilize the results, we generate 10 copies of
datasets and report the results in boxplots.
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Figure 3: PIP(x) of the locally optimal designs with p = 10 and network density 0.08.

6.1 Robustness on the Choices of a and p,

In this subsection, we consider two versions of the proposed hybrid design approach.

1. Locally optimal design: the optimal design obtained by solving the optimization problem in
(11). We specify the mean of the prior distribution to be 0.5, i.e., pg = 0.5.

2. True optimal design: the optimal design obtained by maximizing the objective in (8) with
the true network correlation value p;.

We use the hybrid approach in (13) to obtain both the locally and true optimal designs. The
comparison between the locally optimal design and the true optimal design shows the gap of
replacing the true design criterion T'(x, p;) by its practical surrogate T'(x, pg). For both designs,
we use Gurobi (Gurobi Optimization, 2015) to solve the optimization problem, and the run-time is
limited to 500 seconds.

First, we evaluate the performance of the locally optimal design with pg = 0.5 with different
choices of a. In this case, we fix p = 10 and the network density is 0.08. Each boxplot in Figure 3
shows the PIP(x) values of 10 datasets. We can detect a slightly bigger PIP () for smaller « values.
However, this trend diminishes when o = 0.001 and o = 0.0001. Therefore, we set « = 0.001 for
the rest of the paper. As noted earlier, it is computationally efficient to compute the optimal design
and PIP(x) value. In practice, it is possible to obtain the optimal design for a sequence of « values,
and choose the one when further decreasing a does not increase PIP.

The second simulation is to evaluate the robustness of the locally optimal design to the choice
of pp. We fix a = 0.001 and the network density be 0.08. As discussed in Section 4, it is expected
that the difference between the locally optimal design and the true optimal design is small. Figure
4 confirms this. It shows the boxplots of the differences between PIP of the two designs for the
same data. Each boxplot is based on 10 replications. According to Figure 4, the differences are
mostly under 3%. Since the locally optimal design with different py performs similarly to the true
optimal design with p; in terms of PIP, we use the locally optimal design with pg = 0.5 for the rest
of this section.
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6.2 The Advantage of Considering Network Connection

In this subsection, we address the advantage of considering network connection in the design pro-
cedure. First, we comment on the influence of the network on the performance of the proposed
optimal design. Essentially, the proposed locally optimal design aims to maximize T'(x, pg), which
is equal to m — 17 — T5. Recall that m is twice the total number of edges and it increases as
the network expands in the number of nodes n and/or network density. Therefore, for large and
dense network, m can dominate the objective function T'(x, pg). Since the PIP (15) is calculated
based on T'(x, py), the advantage of the proposed optimal design would appear to be marginal.
When n is not large and the network connection is sparse, the advantage of the proposed optimal
design would be more significant. In the following, the locally optimal design is compared with
the optimal design in (2) that does not consider network connections. The latter is obtained using
Gurobi (Gurobi Optimization, 2015) and the run-time is also limited to 500 seconds, the same as
the locally optimal design.

In Figure 5, we compare the locally optimal designs with network and the optimal design without
network under different network densities. For each synthetic dataset, we obtain the two different
optimal designs (i.e., with and without network connection) and obtain their respective PIP values.
The boxplots are PIP values for 10 synthetic datasets under the same p;, n, and network density
setting. The results indicate that by incorporating the network structure, the proposed locally
optimal design significantly outperforms the optimal design without a network connection, and
this advantage is more prominent when network density is lower, the network size n is smaller, and
the true value of correlation p; is larger.

Similarly, in Figure 6, we expand such comparison to more cases of n = 50,100, 500, 1000. In
addition to the PIP in (15), we also include the improvement in T} (z, p) and Ta(x, p) with respect
to the expected T7 and T3 of the random balanced designs. Although for the locally optimal design
with network, PIP value drops from 40% to 5% as n increases from 50 to 1000, the improvements
in 77 and T do not decrease with the network size n. For an instance, the proposed optimal design
for the cases with n = 1000 gives that m ~ 20,000, T} varies from -300 to -20, and T5 varies from 0
to 200. As discussed earlier, the main reason is that m dominates the percentage of improvement

13



network density = 0.04 network density = 0.06 network density = 0.08 network density = 0.1

St e

R R 1

+

0S

-10

Improvement in Precision (%)
u

NPT, L I | T

10 =

-l-***

00k

01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 0.9
True Correlation Parameter

Network No - Yes

Figure 5: The PIP values of optimal designs with and without network with p = 10.

in precision when n is large and/or the network is dense.

7 Case Study

The case study is based on a real dataset from Rozemberczki et al. (2018), which is collected from
the music streaming service (November 2017) with a total number of 47538 users from Hungary.
The dataset contains the information of friendship networks of the users, as well as their covariates
information, representing the users’ preference (recorded by 1 or 0) to 84 distinct music genres.
To decide if the update of the music recommender algorithm improves the baseline algorithm, a
controlled experiment can be conducted, much similar to the application context given in Section
1. The outcome of each user can be the total time the user listening to the recommended music
or a more direct metric commonly used by the company. The estimation of the treatment effect
6 in (1) would reveal which one of the two versions of the recommender algorithm outperforms
the other. Both the social network of users and their covariates are relevant in assessing different
algorithms for music recommender systems. The non-interference assumption is proper for this
case study since we assume the experiment is conducted without users’ awareness.

To evaluate the performance of the proposed design approaches, we repeatedly randomly sample
sub-networks with 2000 and 3000 users from the complete data of 47538 users. Among those, around
half of the users are isolated from other users (i.e., no network connections at all). This number is
large due to the subset sampling of the original complete network. The CAR model does not work
for isolated users, since m; has to be larger than zero. For simplicity, we remove those isolated
users and the size of the remaining networks is approximately 1000 or 2000. In practice, all the
isolated users can still be kept in the experiment and split into two groups via a covariate balancing
measure. The densities of the resulting sub-networks range from 0.001 to 0.002. Although the
complete data contains 84 distinct genres as the covariates, many of them are linearly dependent.
Also, because of subset sampling, many covariates of the subsets become constants. Thus, we keep
the first 20 covariates to remove the potential singularity issue. In the numerical study, we set p
from 5 to 20.

We first compute the PIP values given in (15). For the locally optimal design, we set a = 0.001
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Figure 7: Boxplots of percentages of PIP values of two kinds of optimal designs for case study.

and pg = 0.5. The true correlation parameter p; is varied from 0.1 to 0.9. We include the optimal
design without network connection in (2) for comparison. For each n and p, ten subsets are
randomly sampled from the complete data. The results are shown in Figure 7. The results based on
the real data are different from synthetic datasets in many aspects. For instance, the distributions
of covariates and networks are more complex. Particularly, we compute the proportions of 1’s for
each covariate, and it ranges in [0.05,0.85]. The correlations between different covariates are in
[0.04,0.97], so some of the covariates are highly correlated. Still, the results in Figure 7 show a
similar pattern to the ones from synthetic networks, which indicates that the proposed approach is
effective for real data sets as well, despite the more complicated network structure and covariates
distributions.

Next, we create a pseudo experiment by simulating the outcome data and compare the two
methods empirically. In reality, the network correlation coefficient for different users may not be
the same. Therefore, to generate the outcome data, we set the covariance matrix of the CAR
model to be o2(D — PWP)~! where P is a diagonal matrix with entries VP15 -5y/Pn- The
heterogenous correlation coefficients p1,. .., p, are sampled from the uniform distribution U(0, 1).
We simulate the outcomes from the CAR model in (5) under this covariance structure, and then
fit a CAR model with a single unknown correlation coefficient and estimate the treatment effect
6 in (1). We sample sub-networks with approximately 1000 users and take the first p = 5 or 20
covariates. The true treatment effect 6 and the variance o are specified to be 1. In addition to the
locally optimal design and the optimal design without the network, we also generate 10 random
balanced designs. For each design, we use the simulated outcome to obtain the estimate 0 based on
the CAR model. Repeating this procedure 100 times, we compute the mean squared errors (MSEs)
for each design approach. During each of the 100 times of simulation for each sampled sub-network
and p covariates, we obtain 12 MSEs values (2 optimal designs and 10 random designs) and then
compute the empirical percentiles of the MSEs of two optimal designs respectively from the MSEs
of the 10 random designs. If the empirical percentile of the MSE from an optimal design is smaller
than 0.5, it means that the MSE of the optimal design is superior to more than 50% of the random
designs in terms of reducing the MSE. Notice that the resulting empirical percentiles vary from
different sub-datasets in each simulation. For each p, we generate 25 random sub-datasets. The

16



empirical percentiles of MSEs of the two optimal designs are shown in the boxplots in Figure 8
for all the 25 sub-networks and two p values. The results show that the optimal design without
the network does not outperform the random balanced designs. For the proposed locally optimal
design with the network, the empirical percentiles are mostly below 0.5, which strongly indicates
its advantage over the other two alternatives in terms of reducing MSE.

p=5 p=20

o

~

o
L

Percentiles of MSE
2

o

)

a
L

Nlo Yes Nlo Yés
Network

Figure 8: The percentiles of MSEs of the two optimal design approaches (i.e., with and without
network) based on the MSEs of 10 completely randomized designs.

8 Conclusion

In this paper, we propose a model-based optimal design approach to include both covariates and
network dependence for the experiments of A/B tests. A linear additive model is used to include
the covariates information and the CAR model is used to model the network correlation between
test subjects. A hybrid approach is proposed to solve the optimization problem and construct the
locally optimal design. Both simulation and real data are used to compare the performances of the
proposed locally optimal design with the exact optimal design and other alternative approaches.
The proposed design performances reasonably well compared with other approaches in terms of
variance reduction to random designs. The proposed optimal design relies on the CAR linear
additive model including both covariates information and network correlation. Similarly to all
optimal design approaches, the validity of the model assumption is crucial. Although we have shown
the proposed design has some degree of robustness to the choice of the correlation parameter, if
the experimenter thinks the CAR-based additive model assumption does not apply to the potential
data to be collected, we recommend the rerandomization approaches proposed by Morgan and
Rubin (2012) and Morgan and Rubin (2015) or completely randomized design if the sample size is
sufficiently large.

We would like to point out a few directions for future research. First, this work is limited to
the CAR model assumption and the network is much simpler than real social networks. But the
proposed design approach can be applied to more sophisticated parametric models. For example,
the network can become directional and weighted, which can be specified by the adjacency matrix.
Other than the CAR model, the Spatial Auto-Regressive (SAR) model can be used. The network
correlation parameter p can be different for different subjects as in the pseudo experiment we show
in Section 7. Second, for the extremely large networks, there may be a time or economic cost
to involve as many test subjects as possible. In this case, the optimal design proposed here can
be extended to the optimization problem of simultaneous selection of test subjects and treatment
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assignment. Some computational efficient approximation algorithms need to be adapted to solve
this problem for large networks. Third, the proposed design relies on the observed covariates,
which might be inaccurate depending on the data source. To make the design robust to inaccurate
covariates, we may incorporate the uncertainty of those covariates, and develop a hierarchy model
that can characterize the uncertainty. How to design treatment allocation under this situation
would be an interesting topic. Moreover, it is also important to investigate designs when the
number of treatment settings is more than two, particularly when the experiment involves multiple
factors.
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Supplement: Proofs, Derivations and Extra Example

S1. Proof of Theorem 1

Proof. Because T'(x,p) = m — Ti(x, p) — Ta(x, p), we investigate the derivatives T and T with
respect to p. For 77,

Tl(m7 10) = meW$7

8T1(Cc7p> T 62T1(x7p)
o) =z We, 9,2

To derive the derivatives for Tg, we first mtroduce some notation to shorten the formulas. Let
A:=F"(D—-pW)F, A, := 8p ,and Ay := 8 A Following the calculus of matrix,

=0.

T _ T
A= A- 10A ,\ __  1OFDF —pF WFA_le_lFTWFA_1,
op op
A A1 Al
Ay = 04, _ 9 WFA™! +A*1FTWF8 =2A"'FTWFA'FTWFA~L

dp  Op op
Using the new notation,
Ty(z,p) =" (D — pW)FA'FT (D — pW)x
—a'DFA'F ' Da—2px "WFA'F'Dx+ p’2a " WFA'F "Wz,

Term 1 Term 2 Term 3

The first order derivative of the three terms with respect to p are

Term 1 A1
Oleem 1 T pp94 FT Dz — " DFA,F D
op op
Term 2 A1
glemm 2 "W FA-'F Da + pr WFOA FT D2
dp dp
=2 WFA'F'Dx + px"WFA,F' Dx
-1
E)Tear/?lz)’ — 22 WFA'F Wz + anzTWFagpFTWw

=22 WFA'F "Wz + p’c " WFA F We.

To combine the three derivatives,

T
W =z (D~ pW)FAF' (D - pW)z — 20 WFAT'F ' (D — pW)z

The derivative of T'(x, p) is,

T (x,p) _

5 —x"Wx—2' (D - pW)FAF' (D - pW)zx +2x WFA'F' (D — pW)x
P

- W [In _FA'FT(D - pW)} z
—zT [(D —OW)FA~'FT — In] WFA'FT (D — pW)z

— 2 [In _FA'FT(D - pW)} "w [In ~FA'FT(D - ,OW)] x

21



It is interesting to notice that s := [In —~FA'FT(D - pW)} x can be considered as the residuals
of regression model & = F 3+ v, where v is the vector with mean equal to 0 and covariance matrix
D — pW. By the definition of the adjacency matrix,

8T (x p Z 5555,

w; ;=1

Thus, the sign of 9T (x, p)/0p is uncertain and is possible to be either positive or negative.
Next, we compute the second order derivative of T (x, p) with respect to p.

aQT;;“l TDFag;l F'Dz =2 DFA,F' Dz,

82Tae;;n2 = :cTWFaAplFTDa: +ax ' WFA F'Dzx + pa:TWFagleTDm
=2 WFA F'Dx + px' WFAF " Dz,

82?;“’ =22 WFA'F "Wz + 2prWFa‘3p : F'Wx+2p2 " WFA F W
+p a:TWFag;l F'Wz

=20 WFA'F " Wax+4px' WFA F " Wx + p*c " WFAF We.

Let C:= FA'FTWF. Then

Ty (x, p) T T T T
TQ’ =2z (D - pW)CA'C"(D - pW)z — 42 WFA'C' (D — pW)zx
+2¢ WFA'FTWz

=22 (D - pW)C - WF] A~ [CT(D — W) — FTW] x.

For any p € (0,1), it is apparent that D — pW is the Laplacian matrix of the weighted undirected
graph with the constant weight p for each edge, and it is also clear that D — pW is a positive
definite matrix. We assume F' is a full rank matrix so that the regression model is valid. So A and

A~! are both positive definite. Thus, 82%71533”» >0 and 82%}%”)) < 0 for any p € (0,1). The design

criterion T'(x, p), which is to be maximized, is concave. O

S2. The Gap between E[T(x, p)] and T'(x, py)

We randomly generate a network of size n = 50. For each pair of nodes, an edge will connect the
two with a probability of 1/4 and the existence of the edge is independent of any other random
variables. The covariate z; is generated from a one-dimensional normal distribution N(0,10%) and
z;’s are independent of each other and the network structure. The prior distribution of p is uniform
distribution in [0,1] and py = E(p) = 1/2. We randomly generate 400 completely randomized
designs @; for [ = 1,...,400 and calculate T'(x, po), whose histogram is plotted in the left panel
of Figure S1. For any given design x;, we randomly samples p; for ¢ = 1,...,200 and calculate
T(xy, pi). The mean E[T(x;, p)] is approximated by the sample mean of T'(x;, p;)’s. The histogram
of the gap T'(x;, po) — E[T (x;, p)] for all the random designs is plotted in the right panel of Figure
S1. Based on the two histograms, the gap T'(x, po) — E[T(x, p)] is relatively small compared to
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Figure S1: Histogram of T'(x, po) and the gap T'(x, po) — E[T(x, p)]

the range of T'(x, pg). Thus, it is reasonable to use the surrogate local design criterion T'(x;, po) to
replace E[T'(x, p)] for this simple example.

In more general case, Proposition S1 provides the analytic gap between T'(x, po) and E[T'(x, p)].
Its proof is provided in the Supplement. Proposition S1 also provides two different upper bounds
of the gap. Which one of the two upper bounds is larger depends on the adjacency matrix W and
po- Regrettably, since both the upper bounds are independent of the design x, they are too large to
have any practical guidance, even though they might still be attainable for certain extreme design
x. For the above simulation example, since the skewness of uniform distribution is 0, the two upper
bounds of (19) and (20) are calculated as 902.4 and 650.1, respectively. They are much larger than
the range shown in the histogram in Figure S1. On the other hand, the two upper bounds increase
as the size and density of the network become larger. Therefore, for large and dense networks we
should be more careful applying the locally optimal design.

Proposition S1. The difference between T(x, pg) and E(T(x,p)) is

1 0%Ty (=,
T(a, ) ~ BT, ) = 3 “2 52| va(p) = EO(p - m)), (16)
p=po
where
2 -1

1 %‘f’p) = s WF [FT(D - pOW)F} F'Ws, (17)

2 Op p=po
and s := [In _F(F(D — poW)F)"\FT (D — poW)] . (18)
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An upper bound of the gap T(x, po) — E(T(x, p)) is

AW [Faasvar (p)

max
)\2

T2, po) = E(T(, p)) < min {nhmax(D = po W), 1+ po)m} S5 e o

—E[O(p — p)*],
(19)

where Apin(D — poW) and Apax(D — poW) are the minimum and mazimum eigenvalues of the
Laplacian matriz D — poW , which is positive definite for pg € (0,1), IN(W)|max @S the spectrum
radius of W, and m = >, m;. Based on Theorem 2, an alternative upper bound (20) holds
asymptotically with probability of 100(1 — «)% and « € (0,1),

2 var
T(x, po) — E(T(x, p)) < (m + 2q/m) ;Q(V‘gmj"povif)) —E[O(p - po)*] , (20)

min

where z, = ®1(a) is the upper a quantile of the standard normal distribution.

Lemma S1. Let A be an n X n real symmetric positive definite matriz. For any vector @ € R",
Amin(A)||2|13 < 2T Az < Apax(A)||2||3. The equality holds if x = 0 or A = al,, for a > 0.

Proof. Because A is a real symmetric positive definite matrix, via eigendecomposition, A =
QAQ !, where A = diag{\1,...,\,} is a diagonal matrix of the eigenvalues of A, Q is the
square n X n matrix whose ith column is the eigenvector corresponding to eigenvalue A;. Also,

Q' =Q ' Denotel:=Q'x.

e Az =2'QAQ z =1TAl =) NI},
=1

n

Aumin (IS = Amin(A) Y1 < D Nl < Amax(A) Y 7 = Amax(A) 3
i=1 =1

=1

Here Apax(A) and Apin(A) are the maximum and minimum eigenvalues of A, and since A is
positive definite, Apin(A) > 0. The norm || - ||z is the ly-norm of a vector, and ||I||3 = 11
z'QQ "z = ||z||2. Thus the lemma is proved.

IAN O

Lemma S2. Let A be an n x n real symmetric matriz. For any vector x € R", |z Az|

IA(A)[max |23

Proof. For any real symmetric matrix, based on eigenvalue decomposition, A = QAQ', where
A = diag{)\1,..., A\, } is a diagonal matrix of the eigenvalues of A, and @ is the n x n orthogonal
matrix as above. Denote | := Q' x.

" Az| = & QAQ @ = LT Al = | Y Nl < Y Il < IA(A) lwax 1[5 = IA(A) lma] |23
=1 i=1

Here [A(A)|max = maxj—1,._n |Al;. -

Proof of Proposition S1
Proof. Using Taylor expansion, we have
T (x, p) 1 9*T(z, p)

(p—po) + 5

BT (p— p0)* + O((p — po)*).

p=po

T<x7 p) = T(x7 /00) + 0
p=po

24



Apply expectation on both side of the equaiton with respet the priori p(p), we have

£ 2 £r
E[T(z,p)] = T(x, po) + aTép’p) ~ Elp—pol + % W _E [(0 = p0)?] +E[O((p = p0)*)]
2 £
~Tla)+ 5 o] () +E[O((p - m))].

From the proof of Theorem 1, we have that

82T(m7 p) _ aQTQ(Q?, p)

dp? Op?

Thus we obtain the gap between T'(x, po) and E [T'(z, p)] in (16). Also in proof of Theorem 1,

1 82T2 (:Bv P)

_ T —1T
5 2 =s WFA 'F Ws,

p=po

where
A=F"(D - pyW)F,
5= [In _FA'FT(D - pOW)] z.
From the definition of s, we can see that
s'(D—pW)s=a' [(D — poW) — (D — pgW)FA YF" (D — poW)| x
< a:T(D — poW ).
From Lemma S1, since D — pgW is a real symmetric positive definite matrix as pg € (0, 1),
Amin (D — POw)HSH% < Amax (D — P0W)||37”% = Amax(D — poW)n.

On the other hand, ' (D — poW)z < (1 + pg)m. Thus,

1
2
sl|5 <
H H2 — )\mln(D_pOW)

min{nApax(D — poW), (1 + po)m}.

According to Theorem 2, " Wz //m converges in distribution to the standard normal distribution.
Therefore, with probability of 100(1 — a)%, ' Wx > —z,/m, asymptotically. Here z, is the
upper a quantile of the standard normal distribution, i.e., z, = ® (1 — a). So we can obtain an
asymptotic upper bound,

s' (D —poW)s <ax' (D — poyW)x =x' Dx — pox' W =m — pox' W < m + zqv/m,

which holds with probability of 100(1 — «)%. Consequently, an asymptotic upper bound for ||s||3
is

1
2
s|ly <
H HQ_ )\min(D—p()W/)

with probability of 100(1 — a)%.
It is easy to see that the matrix

(m + Za\/E)

I, — (D — poW)Y?FA-'FT (D — pyW)/?
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is a projection matrix, and thus
s'WFA'F " Ws
—s' W (D — poW) V3D — pyW)'2FA'FT (D — poW)" V(D — pyW)'/?W s
<s'W(D — pyW) " 'Ws < AL (D — pyW)||Wsl||3
DNain(D = poW)[WI3][8]13 = A (D = poW) AW [Facl I3

The first inequality is due to Lemma S2. Here |A\(W)|pmax = ||[W]]2 is the spetrum radius of W.
Combining the previous steps we obtain the upper bound of the gap in (19). O

S3. Proposition S2 and Its Proof

Proposition S2. Let x1,...,x, of x are independent and identically distributed random variables
from the discrete distribution with Pr(z; = 1) = Pr(x; = —1) = 0.5. For any two symmetric and
non-zero n X n matrices A and B, we have that

Zz<3 aZ] bl]

\/EZ<] ij \/ZZ<J ZJ’

where a;j and b;; are the (i,7)-th entries of matrices A and B respectively.

corg(x' Az, x" Bx) = (21)

Consider two n x n symmetric matrices A and B. For random designs, we have that E(z;) = 0,
var(z;) = 1, and cov(z;, ;) = 0 for ¢ # j. Therefore, cov(x) = I,, and

cov(z' Az, x' Bx) = E(z' Azz' Bx) — E(z' Az)E(z' Bx)
—E (xTAmTBx) — tr(A)tr(B)

Note that
x' Azx' Bx = (z' Az) @ (x 'Bz) = (' @ 2")(A® B)(z @ x).
Then
x'Aza'Bx =tr(z' Azz' Bz) =tr((z' ® 2 )(A® B)(z ® x))
—tr(A@B)(zez)(=z' ®z)),
and thus

E(x"Azz' Bz) = E(tr(z| Az Bz)) = tr(A® BE(z @ z)(z' @z )))

We need to derive E((x @ )(x" ® ')). Note that (z @ z)(z' @ ') = (zz') ® (ac:cT) is an
n x n block matrix, and the 7, j-th block is a:za;ja:as—r. The diagonal blocks are E(z?zz") = I,
(E(x}) = 1). If i # j, E(wzjza’) = eiejT + eje; , where e; is the element vector with i-th entry
equal to 1 others 0 and eiejT + eje] is a matrix with (4, j)th and (4,7)th entries equal to 1 and
the rest entries 0. Therefore, the resulting n x n block matrix should have diagonal blocks be an
n x n identity matrix, and the (i, j)-th off-diagonal block be eie;-r + eje;-r. So we can decompose

the block matrix to be

E(x@z)(z' @x'))=I,1I, + Z(eiejT) ® (6z‘€jT +eje))
i#]

=L, @I, + ) (eie])® (eie]) + > (eie]) @ (eje])

i#] i#]
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Then

[(Ae BE(@ o)z’ @)
—tr[(A® B)(I, ® I))] + tr g(A © B)[(eie]) @ (eie] )]| +tr ;(A ® B)|(eie] ) @ (eje] )]
77 i#]
—tr[A® B] + Z tr [(A ® B)[(eje]) ® (eie;)]} + Z tr [(A ® B)[(eie] ) ® (eje] )ﬂ
—tr(A)tr(B) jg: tr [(Aeie}) ® (BeiejT)} + ZtrTZAeiejT) ® (Beje] )]
=tr(A)tr(B) + ;JZ tr [(Aeiey)} tr [(BeiejT)} :
—tr(A)tr(B) + 4§ A;;Bjj,

i<j

where A;; is the ij-th entry of matrix A. Then
cov(z' Az, x' Bx) =4 Z A;jBi;
1<j

Accordingly,
>icj AijBij

Vi A S B,

cor(z' Az, z' Bx) =

S4. Proof of Theorem 2

We first provide a useful Lemma.

Lemma S3. Let X and Y be two random variables taking values from {—1,1}. If cov(X,Y) =0,
then X andY are independent.

Proof. Let U and V be two Bernoulli random variables. We first show that if cov(U, V) = 0, then
U and V are independent.
Notice that
Pr({U = 1}and{V =1}) = Pr(UV =1) = E(UV)

E(U) = Pr(U = 1)

and
E(V)=Pr(V =1).

If cov(U, V) = 0,
Pr({U = 1}and{V = 1}) — Pr(U = 1) Pr(V = 1) = E(UV) — E(U)E(V) = 0.
Similarly, we can show that
Pr({U = 0}and{V = 1}) — Pr(U = 0) Pr(V = 1) = 0,

Pr({U = 0}and{V =0}) — Pr(U =0)Pr(V =0) =0,
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and
Pr({U = 1}and{V =0}) = Pr(U = 1) Pr(V =0) =0,

which demonstrate that U and V are independent.
For X and Y, we have that X = 2U — 1 and Y = 2V — 1. The independence of U and V
indicates the independence of X and Y. Also,

cov(X,Y) = 4cov(U,V).
Thus, the conclusion holds. O

Proof. Recall that w;; = 0 for 7 = 1,...,n. Therefore, we only need to consider the terms w;;x;z;
with ¢ # j. Notice that

cov(zizj, xpxy) = E(zxjryxy) — E(zx;)E(ryxj) =0
for ¢ # 4’ and j # j'. Also,
cov(zizy, zivy) = B(zizjzjy) — E(zz;)E(wzy) = 0

for j # j'. According to Lemma S3, we have that z;x; and z;x; are independent, and x;z; and
xyxy are independent. Thus, w;;x;z;’s with w;; # 0 are i.i.d random variables with mean

E(wijziz;) = E(z;)E(z;) =0,
and variance

var(w;z;x;) = E(m?x?) (E(I‘Zx]))Q =1.

According to the central limit theorem, the conclusion holds. O
S5. Proof of Proposition 1
Proof. Notice that
E (azTK:c> =tr [E (azTKazﬂ =E [tr(mTKw)} =E [tr(Kaz:cT)} = tr [KIE(:B:BT)} .
For completely random design, under the same assumption as in Theorem 2, we have that

E(x;xj) = E(x;)E(x;) =0 for i#j

and E(z2) =1 fori=1,...,n. Thus, E(zz") = I,,.
Now we consider the case where x is a random balanced design. If n is even, we have that

E xizn:xj =0
j=1

since the balanced constraint gives Z" 17 = 0 directly. If n is odd, n = 2h 4 1 with h be a
positive integer. Due to the balance constraint, Y ;" ; 2; = 1 or —1. We have that

E :Uizn:xj :Pr<§:xi:1>E szx] sz—l —|—PI‘<Z:L‘Z— I)E :L'Zzn:
j=1 i=1 —

J=1 =1

n

1

n
1
ij =1 — iE ZT;
Jj=1

n
E Ty = —
j=1

28

IEEE



Note that

n
Z:L’i:l) = Pr (.m:l
=1 ]

Zn:”_l _h+1l R 1
- ) 2m4+1 2h4+1 ]

EI‘Z‘

ij:fl —Pr |z =-1

Jj=1

n n
h h+1
;xﬂ o ;xﬂ oh+1 2h+1

Thus, E (mz > i1 xj) =1/n.
Therefore,

n
E | x; Zazj =14 (n—1)E(z29)
j=1

which gives that

——L_if niseven

E(ziz2) = n-l
(122) {—i if if nisodd

This conclusion holds for E(z;z;) with any i # j. O
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