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ABSTRACT. This paper concerns with the asymptotic behavior of complete non-compact convex
curves embedded in R? under the a-curve shortening flow for exponents o > % We show that any
such curve having in addition its two ends asymptotic to two parallel lines, converges under a-curve
shortening flow to the unique translating soliton whose ends are asymptotic to the same parallel
lines. This is a new result even in the standard case a = 1, and we prove for all exponents up to
the critical case a > %

1. INTRODUCTION

Given a positive constant «, we say that a one-parameter family of immersions X : N x [0, 7] —
R? is a convex complete solution of the a-curve shortening flow (a-CSF in abbreviation) if each
image M; = X (N x {t}) is a smooth convex complete curve and the following holds

(1.1) %X(p,t) = i%(p.t) n(p,t)

where %(p,t) is the curvature of My at X (p,t), and n(p,t) is the unit normal vector pointing the
convex hull of M;. Throughout the paper, if we need a distinction in the parametrizations of the
curvature, we use & = R(p,t) for the parametrization as in (1.1) and we use k = k(6,t), where 0
denotes the angle between n(p,t) and e;.

In 1984 [15], Gage showed that the CSF (o = 1) makes closed convex curves circular by showing
the isoperimetric ratio of the solution curve converges to that of round circle provided the solution
exists until its enclosed area becomes zero. Jointly with Hamilton, they established the improved
result [16] that the solution exists until it shrinks to a point and smoothly converges to round circle
after rescaling. Namely, closed convex solutions converge to shrinking solitons.

Regarding complete non-compact solutions, Ecker and Huisken [12] proved that asymptotically
conical n-dimensional entire graphs in R"*! which evolve by the mean curvature flow (a higher
dimensional analogue to the CSF) converge to ezpanding solitons after rescaling.

In this paper, we study the convergence of the CSF to translating solitons. Our main result
states as follows:

Theorem 1.1. Assume that My is a strictly convex smooth non-compact complete curve embedded
in R?, and that its two ends are asymptotic to two parallel lines. Then, for given o > % the unique
strictly convex complete solution of the a-CSF converges, ast — 0o, locally smoothly to the unique
translating soliton of the a-CSF which is asymptotic to the two lines.
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In the classical case a = 1, the translating solitons are the Grim Reaper curves which are
homothetic to the curve I' = {(x1, —logcosz1) : 1 € (=5, 5)} up to rotation. Thus, the Grim
Reaper curves have two ends asymptotic to two parallel lines.

On the other hand, by the result in [5] a convex complete graph My over an open interval I C R
(either bounded or unbounded) remains as a convex complete graph M; over I under the CSF for
the all time. Therefore, the initial graph My must be defined over a bounded interval in order
to converge to a Grim Reaper curve. Namely, for the convergence to a Grim Reaper curve it is
necessary to assume that the two ends of M, are asymptotic to two parallel lines.

However, it was revealed by Calabi in [4] that translating solitons to the %—CSF are the parabola
I = {(x1,22) : 21 € R} up to affine transforms. Namely, a translating soliton to the %—CSF is
not contained in a strip. Therefore, an initial graph My must be an entire graph to converge to a
parabola. Naturally, the two cases @« = 1 and « = % would expect different types of proofs for the
convergence to translating solutions.

In this work, we concentrate on the range of exponents o > %, due to the result of Urbas [21] that
translating solitons to the a-Gauss curvature flow (a-GCF) with a > % are contained in cylinders
while those with 0 < a < % are entire graphs. We recall that the GCF is also a higher dimensional
analogue to the CSF.

We treat the a-CSF with o < 1 as a fast diffusion type equation and Proposition 3.2, the
asymptotic property of the ends of M;, follows from this consideration. Then, the condition o > %
yields a sharp lower bound of curvature decay which is needed to prove convergence of solutions to
the translating solitons.

However, we will also derive upper bounds for the curvature and its derivatives for o > % which
are independent from the shape of the ends of M;. This a = % = ﬁ is also a critical exponent
which is due to the fact that in this case the equation is invariant under affine transformations.
By the work [4] of Calabi, the shrinkers, expanders, and translators to the %H—GCF are ellipsoids,
hyperboloids, and paraboloids, respectively. Namely, the %JFQ—GCF has infinitely many different
solitons, but they all are equivalent up to affine transformations.

Recently, Andrews-Guan-Ni [1] showed the convergence of closed solutions of the a-GCF to
shrinking solitons for o > n%rz’ and Brendle-Choi-Daskalopoulos [3] obtained the uniqueness of
closed shrinkers for a > n%rz In this regard, the upper bounds for the curvature and its derivatives
for a > % in this paper could be helpful in studying the convergence of entire graph solutions to

the translating solitons for % <a< %

Remark 1.2 (Local convergence). In Theorem 1.1, the term ”"locally smoothly converges” indicates
that, for instance, if the two ends for the initial curve Mj are asymptotic to {z; = —1} and
{z1 = 1} then after translating the solution as {M; — h(t) ez} so that it contains the origin, it
smoothly converges to the soliton on [—1 4 6,1 — ] x R, for every small § > 0. For more details,
see the theorem 2.3.

Remark 1.3 (Uniqueness of the limit). Given a complete convex CSF solution M; defined in a slab
region, and any sequence t; — 400, then the sequence of flows M} =: M;_, — zip(t;), where xip(¢)
denotes the tip of M;,, sub-converges to an eternal solution. By applying the Harnack inequality one
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can then show that the limiting eternal solution is a Grim Reaper. See Hamilton [18], Polden [20],
Altschuler-Grayson [2]. Our result shows that the limit is uniquely determined by the asymptotic
slab.

Remark 1.4 (Translating solitons of a > 1 contain flat lines). Given o > 1, the C! convex trans-
lating solitons have two half lines and the solitons are not of C* class. See [21]. For example,
given o > 1 there exists a convex even function f : [—1,1] — R such that

e f is smooth strictly convex on (—1,1), and |Df|(z1) — +o0 as |z1| — 1,
o I':={(£1,22) : x2 > f(1)} U{(x1, f(z1)) : |x1| < 1} is a translating soliton to the a-CSF.

In the higher dimensional case of the GCF, the evolution of surfaces with flat sides has been
studied as a free-boundary problem which is also motivated from the wearing precess of stones
[14, 17, 9, 10]. In particular the works [9, 10], treat the GCF as a slow diffusion of a similar nature
as that appearing in the the Porous medium equation. Similarly, the a-CSF with a > 1 sufficiently
large is a slow diffusion equation. This can be seen from the evolution equation the speed k® which
given in (2.14). Thus, in this case too one may consider weakly convex initial data with flat lines
and study its evolution. However, in this work we consider only strictly convex and complete initial
data and we show that the solution converges to a weakly convex C' translator with flat lines.

In addition, it was recently discovered in [6] that translating solitons to the GCF in R3 have
flat sides if their asymptotic cylinders at infinity have flat sides. Namely, translating solitons to
nonlinear flows may have flat sides, arising from slow diffusion at infinity.

Discussion on the Proof: The key idea of the paper is to utilize the monotonicity of the functional

a+1)?2
J(ty = Lo / (k)2 — ()0,
o
Such a functional was used in [11] for the classification of closed convex ancient solutions to the
CSF. Note that on a closed convex solution the function & is 2w-periodic and one can simply obtain
0;J < 0 by integration by parts. However, in our non-compact case boundary terms appear after
we integrate by parts (see Proposition 2.1). Heuristically, we have
2(a+1)2 i o=r
Aat 1) (- a/ RO (R )ap 10120 + (7)o (x)r) )
0

0=0

(67

The most challenging part of our proof is to show that the boundary terms vanish. For that it
is crucial to derive local derivative estimates on the speed k% in (see Section 3). We then combine
these estimates which we then combined with our Hélder estimate for K (see in Section 2). Notice
that even if the curvature x(-,0) of the initial data does not converge to zero at infinity (i.e. as
6 — 0 or § — 7), Theorem 2.9 shows that K decays in a sufficient Hélder norm at the two boundary
points after some finite time.

The derivative decay estimates in Section 3 are conducted in Euclidean space by using an extrinsic
cut-off function up to the critical exponent o > % Note that the local estimate does not depend
on the global structure, asymptotic lines. Hence, the local estimates are naturally obtained up to
a > % In the critical case a = %, one would need to introduce an affine-invariant cut-off function.



4 BEOMJUN CHOI, KYEONGSU CHOI, AND PANAGIOTA DASKALOPOULOS

To apply the derivative estimate with the arclength parameter s, we have to use the change of
variable 0s; = k Jy. Therefore, we need to derive a lower bound for k. We do so by considering the
flow as a fast diffusion equation. Then, for a > % we obtain the required lower bound in Theorem
3.5.

In the last section, we show (by utilizing our estimates in previous sections) that J(¢) converges
to zero as time tends to infinity on each compact interval in (0,7). Thus, s, — “ converges to
zero in L%-sense (see in Lemma 4.4). We then conclude the convergence of K%(6,t) to ¢ sin@ in the
Che-topology, for some ¢ > 0 depending on the width of the smallest slab region which encloses our
solution. This yields Theorem 2.3. Finally, Theorem 2.3 combined with Proposition 2.1 implies
our main result Theorem 1.1.

2. PRELIMINARIES AND CURVATURE ESTIMATES

We begin by defining the following notation. We denote by N; the normal image of M; at a
given instant ¢, namely:

(2.1) N; :={n € S': nis an inward unit normal vector to M;}
and denote by S(n,t) : Ny — R the support function
(2.2) S(n,t) := sup (—n, X).

XeM;

In the next Proposition we gather some basic properties of any solution M; to the a-CSF which
satisfies the assumptions of Theorem 1.1 and sketch its proof for the reader’s convenience.

Proposition 2.1. Assume that My is a strictly convex smooth non-compact complete curve embed-
ded in R? such that its two ends are asymptotic to the two lines {x; = +1}, as xa — +oo. Then,
the a-CSF (a > 0) has a unique convex complete solution My existing for all time t € [0,400).
Moreover, each My is a graph over (—1,1) with Ny = {(n, e3) > 0}.

Proof. First, by the strict convexity and the completeness of My, Ny is open in S and we easily
see that M is a convex graph over (—1,1).

Next, we claim that a complete convex solution M; (if it exists) remains as a graph for a short
time t € [0,7]. We consider closed circular solutions

Th = {z € R?: (1/2)°* = |z — (0,h)|*"! + (a + 1)t} for h € R.

Since the convex hull of M, contains FS‘ for h > 1, the convex hull of M; contains F? for h > 1.
Let T be the singular time of I'}. Then, the convex hull of M; contains I'} for ¢ € [0,T] for h > 1.
This implies Ny N {(n,e2) < 0} = ¢ for ¢t € [0,T]. M, is strictly convex by the strong maximum
principle and hence again N; is open in S'. Therefore, Ny N {(n,e3) < 0} = ¢. i.e. it is a graph.

The all time existence of complete convex graph solutions is given in [5]. Moreover, it was also
shown in [5] that the domain of every graphical solution is fixed over time. Therefore, each M, is
a convex complete graph over (—1,1). Since M; is a complete convex graph over (—1, 1), it follows
that Ny = {(n,e3) > 0}.

Finally, let us sketch the proof of the uniqueness assertion of the proposition. Let M; and M;
be two solutions with the same initial data My = My. We may assume that the convex hull of M
contains the origin. Consider, for € € (0,1) the rescaled solution M, := (1— 6)M(1_€)—(1+a)t. Then,

each M, is a graph over (—1+¢€,1 — €) and the convex hull of My contains M. Thus, the convex
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hull of M; contains Mt by the comparison principle. Passing € | 0, we conclude that the convex
hull of M; contains M;. Similarly, the convex hull of M; contains M;, yielding that the solution is
unique. ]

Lemma 2.2. Assume that M is a complete graph of a smooth strictly convex function defined on
(—1, 1) which implies that for any unit vector n satisfying (n,es) > 0, there exists a point X (n) € M
such that n is the inner unit normal at X(n) € M. Then, we have S(n) := supxcp(—n, X) =
(—n, X (n)) and
lim S(n)=1.
n—=+eq
Proof. We will only show that lim,_,., S(n) = 1, as the other limit follows similarly. Let X (n) :=
(x1(n),z2(n)). If 1(n) is sufficiently close to —1, we have za(n) > 0, 0 < (n,e;) < 1. Thus, since
(n,e2) > 0 we have
limsup S(n) = limsup(—n, X(n)) = limsup —z1(n) (n,e1) — xa(n) (n,ez) < 1.
n—ej n—ei n—ei

Now, we assume that there exists a sequence of unit vectors n; such that (n;,es) > 0, lim; oo n; =
e1, and S(n;) < 1—e for some € > 0. We denote by L; the tangent line to M at X (n;). We observe
that there exists the closed half plane E; C R? such that 0F; || L;, L; C E;, and —(1 —€) n; € 0F;.
Then, we have M C F; and lim; ,o E; = {1 > —1 4 €}. To be more precise, for every X’ =
(z),24) € R? with 2} < —1+¢, X' ¢ E; for large i. This contradicts the condition that M is a
graph over (—1,1). O

After scaling and rotating our initial data My, Proposition 2.1 implies that we only need to prove
the following result instead of Theorem 1.1.

Theorem 2.3 (Local convergence to solitons). Let My be a strictly convexr smooth non-compact
complete curve embedded in R? such that its two ends are asymptotic to the two lines {x1 = +1},
as xg — +o00. For any a > 1/2, let My, t € (0,+00) be the unique solution of the a-CSF with the
initial data My and denote by f: (—1,1) x [0, +00) — R the graphical parametrization of M;.
Then, the gradient fr(x,t) converges to fl,(z) in C3[(—1,1)] as t — 400, where the graph of the
function fu(x) = fox f1.(s)ds is the translating soliton to the a-CSF moving in ey direction whose

two ends are asymptotic to {1 = +1}.

2.1. Parametrization of a convex curve by its normal vector. Let M C R? be a strictly
convex C? curve which is the boundary of a convex body M c R2. We denote by n the normal
vector at X = (r1,22) € M and 6 € [0,27) the angle between n and e;. This parametrization was
used in Gage-Hamilton [16]. Note that a convez curve is completely determined by the curvature
function parametrized by 6, namely x(6), up to a translation.

Recall the well known facts that the arc-length parameter s satisfies k = ?, thus
S

90X _9X0s 19X
00  9s 00 Kk Os

and
0X

T, . T )
o = <cos(9 - 5),s1n(9 - 5)) = (sinf, — cos 0)
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yielding

(2.3) X(61) — X(80) = </: %d&,/: —%dQ) .

As mentioned earlier, J. Urbas [21] showed that for exponents a > 1/2, all the translators of
the a-GCF (which includes the n = 1 case of the a-CSF) are enclosed inside a cylinder. Moreover,
M) is a translating soliton of the a-CSF moving in e direction with the speed ¢ > 0 if and only if
kY = (n,ces) = ¢ sinf. Let us observe next that this fact and (2.3) give a short proof of Urbas’s
result when n = 1.

Proposition 2.4. For a > 1/2, there exists a strictly convex function fq : (—1,1) — R such that
lim |f/(z)] = +oo and the graph of f, is a translating soliton to the a-CSF. fo is unique up to

|z|—1
addition by a constant. Moreover,

1
lim |fo(x)] =400 ifae(z,1], and lim |fo(zx)]|=C<+oc0 ifa>1.
|z|—1 2 |z|—1

For a € (0,1/2], translating solitons are entire graphs on R.

Proof. Given a > 1, we define the positive finite constant m(a) by

(2.4) mia) = ( /0 i Sijf/gydy)“.

If we fix a point X (%) = (z},22)(%) = (0,0), the equation £*(6) = m(c) sin § defines a translating

soliton of the a-CSF by (2.3). Namely, 2, : (0,7) — R for i = 1,2 by

0 0

zl(9) = m(a)_é/ (siny)l_édy, z2(9) = —m(a)_E/ (siny)_é cos y dy.
w/2 w/2

Note that we have z2 > 0, 21 € (—1,1), éir%xl 0) = -1, elim z!(#) = 1. The graph of (zl,z2)
— -7

« «

could be written as a graph of a function f, on (—1,1). All the other properties of f, can be
checked directly from z%,. Note the the speed m(«) is fixed, as we have fixed the size of the interval
I := (—1,1) over which our translator f, is defined. For a € (0,1/2], m(a) = oo implies every
soliton has to be an entire graph. O

2.2. Evolution equations. We first recall well-known equations for the normal vector n(p,t), the
speed R%(p,t) and the extrinsic distance |X(p,t)|, where all are considered with respect to the
geometric parametrization which defines the flow in (1.1), in particular d5 and Js5 denote as usual
the first and second order derivatives with respect to arc-length parameter s. The base point of
this arc-length could be any point, but we choose an orientation of this parameter s in such a way
that % = K.

Evolution of the normal:

(2.5) on =—VEY = —ak® '5;0; or equivalently 9,0 = ak* 'R,
Evolution of the speed K :

(2.6) (0 — aR* 1 05s)R™ = a B2,
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Evolution of the curvature k:
(2.7) Ry = OgsR™ + ROT2.
Evolution of the extrinsic distance:

(2.8) (9 — aR*10,,)| X2 = 208 (=1 + (a~! — 1)(X,n) R).

Next, we will compute the evolution of the derivatives of the speed k* by differentiating equation
(2.6). Before this, let us note that the parameter s is not a fixed coordinate and changes with respect
to time. In fact,

9_ 1 9 02 _ 9 _ dgn 9
ds V911 oz’ Otds  Osot 2g11+/911 011

and hence the commutator satisfies

0 ? | a1 0
= RO —.
otds  0s0t 0s

To simplify the notation we set u := &%, and express equation equation (2.6) as

(2.9)

(210) Ut = aul_éuss + Oéu2+é = O[ul_é (Uss + U1+§)

Differentiating (2.10) while using the commutator identity (2.9), we obtain the following evolution
equations for the higher order derivatives of u:

(2.11) Orug = Osuy + uHéus = aul_éﬁfsus + (a— l)u_%ususs +2(a+1) usuHé
and
815“55 = atasus = asatus + UlJréuss

_1 _1 _1 1 -1
(2.12) = au' o (Ugs)ss + 2(a — DU @ ugtges + (o — 1u” o u, + (a — Du e utugg

1
+2(a+1)(1+ E)uéug + (2a + 3)ul+iu85.

For a smooth strictly convex solution, 6(p,t) is a smooth invertible function. Thus, for a fixed
¢’ in the image of 6(p,t) for a time interval ¢t € I, we may define a curve vy (t) for ¢ € I so that
O(vg: (t),t) = 0. Let us parametrize the curvature % by (6,t) as follows

"i(97 t) = R(’}/g(t), t)
We will often abuse the notation and continue to use x(n,t) = k(6,t), for n = (cos#,sinf). Let
us next derive the evolution equation of x(6,t). Note that

. 0
O =0+ 0g, where 3 = o (s(r0(0).

On the other hand, since 0(vg(t),t) is constant in ¢ we have

d ‘ B | -
0= EG(V@/(t),t) = /Z}(’YG/(t),t) Yor + aglﬁ} (")/9/ (t),t) thus g = —aRgik 2‘

Hence

(2.13) Otk = Of — aR®2R?



8 BEOMJUN CHOI, KYEONGSU CHOI, AND PANAGIOTA DASKALOPOULOS

and use 0s = k Jy to conclude that

Ok = (K™)ss + KOT2 — ar® 2K2
= ak gy + afa — 1)k KE + kT2

K2 ((ﬁa)gg + Ha)

which also implies the equation
(2.14) B (KY) = a(k®)Fa (k%) + K°).

The derivation of equation (2.14) is well known, however we included it here for the reader’s
convenience. Sometimes, it is useful to define p := k! which we call the pressure function
following the terminology of the porous medium and fast-diffusion equations. The evolution of
p(60,1) is given by

(2.15) Op = o ppgy — s + (a+1)p*.

a+1
2.3. Harnack Estimates. We need a following pointwise Harnack estimate in (6,¢) variables
derived from Li-Yau-Hamilton differential Harnack estimate which appears in [18] and [7] for the
mean curvature flow and the a-Gauss curvature flow, respectively.

Proposition 2.5 (Harnack Estimate). Let M; be a smoothly strictly convex solution of the a-CSF.
Then, the curvature k(0,t) satisfies

1 K
a+1t
implying for 0 < t1 < to the inequality

o — aQ?—gR—,a > 1 1
I k2 R 1+a1t
Since
Ok = Ok — R 2R2
this directly implies the proposition. O

2.4. Curvature Upper and Lower bounds. The goal of this section is to prove Proposition
2.7, which gives global upper bounds on the speed k% for ¢ > 0 and local (in ) lower bounds on
the speed k® for large times. We first show a simple lemma which says that the support functions
of convex surfaces are ordered if one surface contains the other.

Lemma 2.6. Suppose M, and My are convex hypersurfaces in R™1 and the convex hull of M,
contains Ma. Then, their support functions S;(n) = sup,ep, (—n,x) satisfy Si1(n) > Sa(n).

Proof. We denote by E; C R? the convex hull of M;. Then, we have So = sup (—n, z) = sup (—n, )
xeM; rel;
by the convexity. Hence, Fo C E; implies the desired result. g
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Proposition 2.7. Let M; be a solution of the a-CSF as in Proposition 2.1. Then, given ty > 0,
we have

lim  sup k%(n,s)=0 and k%(n,t) < C
n—+e; 86[t,t+3]

for all n e N ={(n,e2) >0} and t>ty, where the constant C' depends on ty and M.
In addition, for each 6 € (0, 15), there is a large T > 0 and c(8) > 0 such that

£%(n,t) = ¢(9)
whenever (n,ez) > 6 and t > T. The constants T and c(§) may depend on My and §.

Proof. We begin by observing that the support function S(n,t) of a solution M; of the a-CSF
(defined by (2.2)) satisfies 9,S(n,t) = —k*(n,t).
Therefore, the Harnack inequality 2.5 and the above observation yield

T+1
c(to) k%(n,7) < / k%(n,s)ds = S(n,7) —S(n,7+1) < S(n,t) — S(n,t+4),

forT € [t,t+3] and t >ty > 0. Since lim S(n,t) = lim S(n,t+4) =1 by Lemma 2.2, we have

n—=+eq n—=+eq
the first desired result

lim sup k%(n,7)=0.
n—=El reft,t43]

Given a € (3, 1], we denote by M, the translator Mo = {(z, fa(z)) : || < 1}, where f, is given
in Proposition 2.4. For a € (1, o0], we define M, by

Mo = {(a1, fale)) :or] <1} U{(EL22) 2 > lim fu(y)).

Let us fix a small ¢y € (0,1/10). Then depending on My, there is L > 0 so that the convex hull of

~ 1
contains initial surface My and
_ 1
Ma = W Ma + L€2

is contained in the convex hull of M. Then, M := M+ (1—eg) mt ez and M := M+ (1+€y) mt e;
are solutions of the a-CSF, where m = m(a) is the positive constant given in (2.4).

Let us denote S, and S, by the support functions of the outer barrier Mt‘” and the inner barrier
M¢, respectively. Thus 8;S% = —(1 + eg)m (n, es), and ;5% = —(1 — €g)m (n, ez). Moreover, if
K = sup{S(n,0) : (n,e2) > 0}, we have

(216)  0.<8%u,t) = 5%(n,t) < 2AL+comt) (n,ez) + (= iowa T 10)1/")[(

for all (n,t) € N x (0,00). Let us set M := ( 1/a> from now on.

1 o 1
(1—60)1/0‘ (1+60)
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Next, by the comparison principle and Lemma 2.6, S¢ < § < Se for all (n,t) € N x (0,00).
Now, if k%(ng,t9) = C then by the Harnack estimate, k*(ng,t) > nC for t € [to,4to] and some
n=n(a) € (0,1). By (2.16),

(2.17) 0<8—8%< 8- 8§¥<2L+emt)+ MK
on (n,t) € N x (0,00) and hence using that 9;S = —k“, we obtain

B B 4to

(2.18) 0 < S(ng,4to) — S*(no,4to) = S(no, to) — S*(no, to) + 9 (S — 5%)(no, t)dt
. to

<2(L +egmito) + MK + (—nC + (1 + eg) m) 3to.
Now we observe that there is a constant C(to) such that C' > Cy(tp) makes last line negative. i.e.

contradiction. It is also clear that such a C(tp) can be made uniformly bounded as tg — oco. This
proves the uniform curvature upper bound

k% (n,t) < C(to, My).

We suppose next that £%(no,ty) = ¢, for some (ng,ez) > & with § € (0, 45). By the Harnack

estimate, K*(ng,t) < c6 Tra for t € [0to, to]. Similar computation yields

N ~ to .
0 S Sa(no,to) — S(no,to) = Sa(n(), 5t0) — S(no, (5t0) + 8t(Sa - S)(no,t)dt
dto

< 2(L + ¢gmdty) + MK + (cdfl%ato — (1 —eg)m (ng,e2)(1 — 5)250)

1 a 1
(since 0 < €9, 6 < 1/10) < 2L+ gémtg + MK + (05_1+_Q - %mé)to

<2L+ MK + (cé_l%a - %mé)to.
Now, we set T' = 4(md) (2L + MK + 1). Then, for to > T we must have
c6 THa > imcS
in order to satisfy the inequality above. We conclude that
k% (ng,tp) = ¢ > im(SHl%a = ¢(9)
completing the proof of the last claim of our proposition. O

2.5. Barrier Construction. Based on our uniform curvature bound given in Proposition 2.7 and
the fact that limg_,g k = 0, the following barrier shows that the modulus of continuity of k(6,t) at
0 =0is x(0,t) = O(k' 7€), for every e >0 and t > t; > 1.
Lemma 2.8. For every ty > 0 with typ < min(3, H%), there is Ag > 0 such that for every A > Ay,
the function defined by ’
30 t

hs := Asin/? <7> 4+ onbe (0, g

is a viscosity supersolution of (2.14) for all 0 < 6 < dg(to, A).

), t € (0, o]
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Proof. Set

w(f,t) = Ago(H,t)t/S where (6,t) := sin(%a).
Then, for ¢ € (0, %t) and 0 < t < tg, we compute

wp = A3 cos(30t71)
and
wee = A (1 —3/t) 9372 cos?(30t1) — A (3/t) /?

= A =3/t 52— A5 = A(1=3/t) 572 —w.

Therefore,
awta (wee + w) — a A% (1-— 3/t)<p%t—2_

On the other hand, expressing w/A = exp ((t/3)log ¢), we have

1
Ot _ —(pt/3< — (30t ) cot(30t™1) + log <p>

A 3
> _%@t/3 + %@2321#28027%{/10%90
1 2041, 9 1 2041, 4 3a
— 3a .
=737 37 (6 — (1+ a)t)e
1 3 2a+1
> ——(1 + —) 372&72.
=3V T 6o+ e/ ”

Combining the two inequalities, yields

1_._; A[(3 ) 1+l 3 ) 2cx+1t_2
wy—aw Ta(wgg+w) > —|(-—1)3aAdTe =1 - —————— ) 3a .
! (wos +w) 2 |\ 6-(1+Dyre/”

6
Hence, for ty < min(3, H—l), there is € = €(tp, ) > 0 such that
(0%
A 1\ 2
wy — awHé(w(;g +w) > 3 [eA1+l - —)go%t’?
€

This proves there exists Ag(tp, ) > 0 and €p(tp, ) > 0 such that if A > A,
(2.19) wy — aw' T (wgg + w) > egp T T2 >0

holds on 6 € (0, %) and t € (0,%).

For the next step, we set hs := w + § for a small constant § > 0 and to simplify the notation
we drop the index § from h for the rest of the proof, denoting h := hs. Then for 6 € (0, §t) and
0 <t < tp, we compute

he — ahHé(hgg +h) = (w — aw'ta (wgg + w)) — a(hHé — wHé) wey — a(hﬂé — w2+é).
Observe that, by Taylor’s Theorem, we have
1 1
—a(hE = w'E ) wgp — a(hE —w) = —a(8(1+ ) weg + 52+ )i )
e a

> —§(a + Dwawgs — 6(2a + 1) (w + ) Ta
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where we used that w ,W < w+3d and wgy < 0, w > 0. Hence, using (2.19) we obtain

he — ahlTa a(hgg + h) = (wt - awHE(wgg +w)) — (hHa —w'ta o )wgg — a(h 2+3 fw2+é)

> 60()023;:11&—2 —§(a+ 1)wiw99 —0(2a+1)(w+9) +3
> (eocp%t_Q —0(2a + 1)w1+%)
+6( = (a+ Dwawgg + (2 + 1) (w' o — (w+ 6)'Fa))

2041, o atly

> (egp 3o —0(2a + 1)A1+ago 50 1)

+0(—(a+ 1)wewgy — (20 + 1)(1 + é)é(w +6)%)

2a+1t 2

> (e — 6(2a + l)Ale ) 3a

+5[—(a + Dwawgg — (2a + 1)(1 + é)é(w +5)§).

Moreover, using the earlier calculation of wgg and t > ty, we have
3 3 a 3
_w%wé > (A(t_ — 1)903 2) > Al+a (t_ _ 1)9013%1572 > Alts (t_ . 1).
0 0 0

The last two inequalities imply that there is small a §9 = dg(€g, A, tp) = do(A,to) such that, for
0 < <y,

hy — ah'a (hgg +h) >0 holds on 6 € (0, %t), t € (0, ).
This completes the proof. ]

This barrier gives the following, important for our purposes, curvature decay estimate at the two
boundary points 8 = 0, 7:

Theorem 2.9 (Curvature decay). For a > 1/2 and t > 3, we have
k4 (0,1), k¥(m —0,t) < C’(Mo,oz)0§ on 0 € (0,m).

Proof. For a > 1, note we have 2 < min(3
statement holds at ¢t = t; + 2.

Setting tg = 2, let Ag = Ap(tp) be the constant given in Lemma 2.8. By Proposition 2.7 we can
choose a constant A > max{ Ao, sup;>1 supge(o,r) £*(0,1)}, so that

,#). It suffices to show for any fixed t; > 1 the

Uy (0,t) == k*(0,t1 +t) < A+ 6 = ws(tn/6,t)
for t € (0,2] and 6 € (0,7), where ws = Asin®/? (39> + § as given in Lemma 2.8. Moreover,
Proposition 2.7 implies that there exists a small constant ¢(¢1,d) such that
K*(0,t1 +1t) < <ws(0,t)
holds for 0 < 6 < c(t1,6) and t € (0,2]. Let us denote to = 8. Then, t € (0,t] satisfies

0 € (0,%%) C (0,27) = (0,¢). Thus,
n“(&,tl + t) <6< w5(9,t1 + t),
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holds for ¢t € (0,t3] and 6 € (0,F). Hence, by the comparison principle k(6,1 +t) < ws(6, 1 +t)
holds for 6 € (0,%7) and ¢ € (0,2], which implies s*(0,¢1 + 2) < ws(6,t1 + 2) for 6 € (0,7/3).
Passing § to zero in the last inequality, the following holds for 6 € (0,7/3)

30 30
k*(0,t1+2) < A sin5" (t1 n 2) <A sin%(i) <Co3
where the constant C' depends on My and «. This concludes the proof of our theorem. O

3. DECAY ESTIMATES (POINTWISE CURVATURE DERIVATIVE ESTIMATES)

In this section we will use the curvature decay estimate at the boundary points § = 0, 7 proven in
Theorem 2.9 to obtain decay estimates for the first and the second order derivative at the boundary
points § = 0, 7 for u := K*. As a consequence we will obtain the estimate in Theorem 3.5 which will
allow us to control the boundary terms when we prove our convergence result in the next section.
We begin with a first order derivative decay estimate. Throughout this section we will assume that
M, is a solution of the a-CSF as in Proposition 2.1. We will only use the geometric parametrization
in terms of arclength, i.e. we will assume that u = u(s,t) = K%(s,t). Here and in what follows
B, := {x € R?||z| < r} denotes the Euclidean extrinsic ball of radius r.

Proposition 3.1. Suppose 0 < uw := K* < L on By fort > 0. Then for every g > 0 with
B < min(1,a 1), we have

sl < CL+£72) 0P on By
for some C = C(«, 8, L).

Proof. Let n be a cut-off function with compact support, and denote by [ the term
_1
DU = atn - aul > UssT]

which is defined on the support of 7. Consider the continuous function w := t>n?u2u=2% with a
fixed constant 8 > 0 satisfying the condition of the theorem. Then, on the set {w > 0}

ow 1 n @ n Orug _ﬁ%u’ Osw _ 0sm N OsUg _ﬁasu.

2w n Usg U

2wt n Ug

We differentiate the second equation above again

2 2 2 2
Ossw Wy Mss ns OsslUs Ugg OssU U

B _ 85 _ _S
2w 2uw?  n 772+ U u2 B u +Bu2'

Combining (2.10), (2.11), and the equations above yields

1
at—w ot &Y +aul~a w :1 + tn 4 aul—in_3 4 (a — Du" sugug + (2a + 2ugu'ta
2w 2w w2t ny n? Us
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Given T > 0, we assume that w attains its nonzero maximum at (pg,to) for ¢ € [0,7]. Then, at
the maximum point we have w(pg, tp) > 0, and thus ¢y > 0 and the following holds

1 0O
0< - v+ (2o +2— Ba)uHé + aul_él,
0 n
where
1\ u n?  u? u?
I = (1 _ _) Uss | Ms | Yss _ s
al u o n? + u? u?
Moreover, since ws = 0 at the maximum point (po, tg), the following hold
Uss  UslUss  Us (LUs  Ts\ ug Us T)s ’LL2 2U u? Us Ts
Do _olw _Bofpl_D)_ph Dol Lm_gh T gptl
u U Ug u U n u u n u? n? u n

Substituting these derivatives in I and using the condition 5 < a and Young’s inequality, we obtain
by direct calculation that at the maximum point (pg,to)

:—B(——B) Z (1_1+25)“57Z;§—é(——5)—+0”3

for some C' = C(«, 8) > 0. This implies that there exist C' > 0 and ¢ > 0 which depend on « and

B such that, at (po, to),

2 2 1 0O 2
(3.1) gul=als = g ls ,28-1-3 < —+4+ =y (2a+2— Boz)ul"ré + C’ul_én—‘;.
n n

u? u2p to

Next, we define the cut-off function 7 by
n= (1 - |X(p7t)‘2)+7
and observe that we have |ns| < 2, |(X,n)| <|X| <1 and

(3.2) Onl = [0 — au' =5 o

- ]aul—é@ +2(1 — o Hus (X, n))’ < Cul3,
for some C' = C(a L). Since to <T,0<n <1 and |ns| <2, at the point (pg,ty) we have
2515 2 < O (Tul* a2 4 w2 AT 4 2T < OTH 1T,

Here ¢’ = C'(a, B, L) > 0 and this is possible because 8 < min(a~!,1). At any point (p,T),

2
u; o _ w(po,to) / -1
u;Bn STSC(l-l-T ).

Therefore, replacing T' by t yields the desired result. O

Proposition 3.2. For a € (0,1), for each t > 0,

2a(1
liminf | X|? &7 = liminf | X |? wal > 2a(l+ae)
| X | =00 | X |—o0 11—«

t.

Here, | X| = |X(p,t)| is the extrinsic distance from the origin. More generally, this is uniform in t
for all compact time interval which is away from t = 0. In other words, for 0 < 71 < 72 < 0 and
€ > 0, there is R > 0 such that
2a(1
Xt o (pt) > 220E )

l—«

t—e¢
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for all (p,t) with t € [T, 7] and | X (p,t)| > R.

Proof. We will follow the idea and the proof of [19] Theorem 2.4, where the same inequality is
shown for a solution of the Euclidean fast diffusion equation w; = Aw®. Recall that the curvature
i satisfies the equation &; = (k%)ss + £*T2. Since here we are on a Riemannian manifold (though

it’s 1D) and the metric is changing with respect to time, we need to modify the proof.
Let us define the constant b by b~! := w and consider then function U : R x (0,00) — R
defined by
U(x,t) = 7o (1 + blaf?t~51) .

Then, it can be directly checked that
2 S PPN 9, 2 1
Up(,t) = pa Ut ) = £ (=2 + bl 1)

are solutions of the 1D fast diffusion equation f; = (f“)., for all parameters p > 0.

Case 1: Assume first that our solution of the a-CSF is smooth for ¢ > 0 and has the positive
and bounded curvature 0 < k* < L. Pick a point p € N. Then the intrinsic distance function
sp(q,t) = disty() (p,q) > 0 is smooth away from p for t > 0. Moreover, ds = \/g11dx implies that

8 ;ds = _2;;;%911dx = —k*Tlds. Thus, for a curve v : [0,1] — M which joins p to g, we have

a 1
Esp(q,t) :/ —ROTYS () |dT > /—I{',a|d9| > —Lm.
0
Define U, : M x (0,00) — R by
Uu(Q7 t) = UH(Sp(qv t) + Lﬂ-tv t) = Uu(gp(Q> t)a t)v gp(qv t) = Sp(Qa t) + Lﬂ-t
One can easily check using the chain rule and the fact that 0;5, = 0;sp + L7 > 0 and 0,U, < 0,

that
OtUu = 8t§p6;rUu + OtUu < 8tUﬂ = (Uﬁé);mc = (U;j)ss-

ie. OU,— (Ug) ss < 0 away from the non-smooth point p. From this point, we can follow the proof

of Theorem 2.4 [19] using these barriers Uu~ Let us choose two different points pi, p2 € N such
that s,(p;,0) = 1. For a fixed T' > 0, let’s denote § = §(T") > 0 by

0= %z 1,51,11512[0 ] Api ).
We can find small g > 0 such that
Uulg,t) <6 when0<t<T,ge M)\ Byo)(1,p)-
This is possible because

Un(a:t) = Up(Sp(q. 1), 1) < Up(sp(q,0), 1) < Up(1,1).
>

Recall that &; = (R®)gs + ROT2
Lemma 3.4 [19]),

(K*)ss. Since U,(q,0) = 0, by the comparison principle (c.f.

Uu(g.t) < i(g,t) for 0<t<T,q€M\ Byo)(Lp).
The proof of Lemma 3.4 [19] uses the Kato’s inequality
A(fT) > (Af)T in distribution sense.



16 BEOMJUN CHOI, KYEONGSU CHOI, AND PANAGIOTA DASKALOPOULOS

At each fixed time slice and thus fixed metric, this is again true in our (1D) Riemannian case. Thus
the proof actually works in our setting, thus the comparison principle holds. Therefore, comparing
with our barrier U, yields that for each 0 <7 < 70 < T and € > 0, there is R > 0 such that

20,0 R (0,1) 2 520, ) Ui (0, t) = (07") — e
holds, for all (¢,t) with ¢ € [ry, 2] and 5,(¢q,t) > R. Also, observe

S t t) + Lut
Sp(q7 ) — SP(Q) )+ d — 1

[ X(q,1)] | X (q,1)]
uniformly for ¢ € [0, 7] as |X(g,t)| — oo. This follows from the fact that M; is convex, it is located
between to two parallel lines, it is asymptotic to these parallel lines and | X (p,t) — X (p,0)| < Lt. We
can choose T' > 0 arbitrary large and repeat the same argument to conclude that the proposition
holds, under the extra assumption that 0 < &* < L.

Case 2: For a general solution of the a-CSF which is not smooth up to t = 0 or does not satisfy
the curvature bound 0 < &* < L, we may apply the previous proof on t € [1,00), for small fixed
7 > 0 and conclude that for 0 < 7 < 1 < 79 < 00 and € > 0, there is R > 0 such that

I X(p, )R (p,t) > b7t —7) — €

for all (p,t) with t € [11, 7] and | X (p,t)| > R. We may chose 7 small enough so that b=17 < €/2,
finishing the proof. O

In the range of exponents a € (0,1) we have the following global and somewhat improved
estimate than Proposition 3.1.

Proposition 3.3. For a fized o € (0,1), suppose 0 < u := k> < L, fort > 0. Then, there ezists
some C = C(a, L, My) such that

1
lus| < C(1+ %) u? (1+3)
holds for t > 0.

Proof. Given T and 7 with 0 < 7 < T, we set w := (t — 7)%n?u2u=2" for t € (7, T] with the fixed
exponent [ := %(1 + é) and a smooth cut off function 1. We are going to choose 7 in a different way
to use the asymptotic bound in Proposition 3.2. Let us fix a usual cut off function ¢ : [0,00) — R
such that

0<&E<1, £=1on(0,1/2], supp&cC[0,1], 0<-¢, || <C.

Define n(p,t) := ¢ ('X(}g’t”) for R > 1. Then the following holds by direct computation.

Claim 3.1.
1—1

_1 u o«
n < — On =0 — au' "= ssn§0< 2 +1)

for some C = C(a, L, My).
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Proof of Claim 3.1. We begin by observing that 0| X| = 53‘;' = <‘§| 0sX) implying |0s| X|| < 1,

2
thus n? = (%5’) < R72C yields the first estimate. Next, by the chain rule and (2.8), we

compute
!

O = (8 — aul=2 0y ) = & (9, aul—éass)|X| - aul—ai(a 1 X))

R
/ _ ~a Ogs X2 s X 2 "
R aul~a 2|1 X| 4(]1 X [2)3/2
_ o1 (OX)? -1+ (a7t - DRE(X n) ¢
o (R IX| ~ XD )
11 21¢1(|1X 1
Note that since since ¢'(|X|/R) = 0 for |X|/R < 3, we have %m < wm <CR™.
Therefore, & = ua, |€"| < C and (X,n) < |X| yield
1-1 / 1-1 '
u o 1_l_§ <X,7’L> U |£|
D77§C'R2 +(1-—a)u ak= X] <C 2 —|—(1—a)uf
By using u < L, R > 1, |¢'| < C, we obtain the second estimate in the claim. O

We will now continue with the proof of the proposition. Assume that a nonzero maximum of
w(p,t) on t € [1,T] is obtained at (po, to) with o € (7,7T]. Since the proof of Proposition 3.1 does
not make use of the specific n until (3.1), except that it has a compact support, we may use the
calculation in (3.1) and combine it with the above claim to conclude that at the point (po,to) we
have

2 2 1—L1 11
1-Lus U 1 Crua 141 Cu'~a
=0 S +o (G 1) o YRR

u ~tg—1 1
for some C = C(a, L, Mp). Therefore, multiplying the last inequality by (to — 7)?n(po,t0)? and
using0 < tg—7<tc <T,n<1,p:= % (1—1—%) yield that for ¢ € [7,T] and |z| < R/2 the following
holds
u? 2 1-1

u
f— )2 = w(pt) < to) := —=n*(to — 2<CT<1 T t>
u25( T) w(p,t) < w(po,to) w2l (to—=7)" = * +SUP§:712:'50 B2 )

where C' = C(a, L, My) but independent of R > 0 and 7 > 0.

Now, we apply Proposition 3.2 with 7y =7, 7o =T, € = O‘(Ha)

some Ry > 0 such that \X|2u§71 > (1+a)t for | X|(p, t0) > Ro Combining this with the above
estimate yields that for R > Ry

1__
t t 1-—
sup (p7 O)tO < 0 < «

up < .
Ro<|X|<R Rr? Ro<|X|<R ]X]Qué‘l(p, to) ~ all+a)
We conclude that if ¢t € [7,T] and |z| < R/2 with R > Ry then we have
2
1256 (t—7)2< C’T(l +T+ KTR_2>, where K = sup ul_é(p, to).
U lz|(p,to)<Ro

to, which implies that there exists
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Passing 7 — 0 and R — +oo and then setting t = T', we finally obtain the bound

2
uS
u?p

which holds for all T > 0. By replacing T" by ¢, we have the desired result. O

T?<CT*(1+T7Y),

Proposition 3.4. Let o € [%,oo) be fized. If |us| < Ku® for some 3 € (0, é) and L > supp, u for
t >0, then for every e € (0, min(1, 3)) we have

|ugs| < C(1 47 1/2) B2 0=¢ o By
with some C = C(a, B,¢, K, L).
Proof. Let us define v := u*=#(us + 2Ku?) = u! “Pu, + 2Ku. Note that
Ku<v<3Ku.
Claim 3.2. There is C' = C'(«, 3, K) > 0 such that

|(0y — aul_éass)v\

_1
aul a

< C’(|vs|u5_1 +ou?2 4 UU%)

and

1

[(Op — aulfaé)ss)vsl
1—1
«@

< Cl(‘vs‘(|vss| + |7;_s|)uﬁ1 + |US|(’UJ2572+U%) +v(u2f3 +uﬁfl+% _i_uSBfS)).

ou |vs]

Since a proof of this claim is long, let us postpone it for the end of this proposition and assume it is
true. Define w := v20™27¢n? for some 0 < v < 1 to be determined later, where n = (1—|X (p, t)|)%.

Then, on the support {w > 0} we have
Ow _ 1, Om , Ows 0w

0 0 0 0
R L L B and = 2 S o

2w t n Vg v w n Vg v
and
85511) wg _ Tss 7]2 assts Ugs Uss U?,
oz o 2T B Tt et M e R
2w 2w i n Vg F v v
Suppose that a nonzero maximum of w on ¢ € [0,7] is attained at (po, o). At this point,
Oyw _1 05w 11 w?
0< 22 _ g JssW 1 Ws
T 2w " "2
1 1 1
1 _1/(0f—au a0 O — aul"a Dy )v 0y — aul"adg)v
(33) :——I—aul <( t — ss)nss+( t i ss) s ( t — ss) )
to au an au” aUg U~ av
Us v n
Since ws = 0 at the maximum (py, ty), we have
2 2 2 2 2 2 2
Vss Vg Ns 2\ Us s s Us ’Y(l B ’Y) Vs Ns
= =24 = = (= =422 2y=——<———~ 24 (=
2 T2 T (7+7)U2+n2 Ll 2 2 O
and by using v < 1
Gl _ |yt ) [vsl | Imsl
Vs v n v n
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Also, recall (3.2). Then (3.3) together with the Claim, (3.2) and the last two estimates above yield

_1 _1
0< 1 +oaul—n (Q i (9 — au' "= 95 )| I (9 — au'~a8y4)0| 11 —9) U_z + 077_3)
o aulfé\vsl aul"av 2 0? n?
< 1 +Cula (1 + @uﬁfl + @uﬁfl +u2P 24 ya
to nowv n
1
4+ Y (2P + uf~113a +u35—3)+7l_s> ay(l—v)u' a0}
|vs] 2 2 v?
n
2 1-1 9
< 1 L Oule (1 L2 4 d L(um LB 3y o 77_5) Cay(l =) u ey
~ o U |vs Uk 4 v’

2
s

2 -1
<= +Cu1’é(1 4282 4 Y383 n 77_3) _ ay(l—9y)u " av
n ’Us’ 7]2 4 v2

for some C' = C(a, 8,7, K, L), where the dependence of C' on L takes place in the last inequality
for the first time. We conclude that at the maximum point (pg, tp) the following holds

1
(since f < — < 3)
a

2
<C (— A (g Yees gy 77—;))
to n |vs] n
Using this estimate we now conclude that

2
) — Vs 1-1) 1_1 2(1-7) 42 2
wip.to) = (Sl Jur 0 iy

1 2
< C(toué—an + 12220 (5 + % + 261 4 %ui"(ﬁ—l)))
S

< C’(Tul“'é_27 + T2 (201 4 4 2B-7) 4 7u3(5_7)T3) (since v < 3Ku).

|Us|t077
If we choose our v € (0,1) by v := min(1, 5) — ¢, thenl—i—é—Q’y, 1—v,8—v>0asy<1and
v < B <i. Thus

2 3

with C' = C(a, B, ¢, K, L). By considering the two cases w(po,to) > T2 and < T?, we finally obtain
the bound
w(po,to) < CT*(1+T7)

implying that at any point (p,7T), we have
[vs]
wuY
Note that vs = u'Pugs + (1 — B)u=Pu2 + 2Kus. Hence, |us| < Ku” leads to

2(p, t) 1
? < - /2 .
cC+T177?)

n< Ry = @Ry
v

“1_/8|u85| _ |uss|n
uY _u’Y_(l_ﬁ)

u_ﬁug + |us]
¥

<Ca+TVH4+cC <O +T7Y?).

We replace T by t. Then, u?~(1=F) = ¢min(8:28-1)=¢ yiclds the proposition.
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Proof of Claim 3.2. During the proof of the claim we will frequently use the inequalities
Ku<v<3Ku and |u5|§KuB

and we will denote by C' various constants which depend on «, 5 and K.
Since

(0 — au' ™55 )v = us (0 — aulfaass)ulfﬁ + ulfﬁ(at — au! "0 )us — 20ul"a (ulfﬁ)s(us)s
+2K(0; — ozulfaﬁss)u
to show the first inequality in the claim, it is enough the terms on the right hand side by
Cul~= (|vs|uﬂ_1 +ou?P? 4 vu%> < Cul~= (|U3‘uﬂ_1 +u?P 4 U%H).
We begin with observing
(3.4) vs = ut Pugs + (1 — BuPu? + 2Ku,
and thus |us| < Ku? and Ku < v yield
(3.5) lugs| < uP o) + Culu? + CuP L ug| < C(jugu? 1 4+ u2P71).
Therefore,

|(0r — aul=%ss)ul

(3.6) -

o 2] {1 4451442
au

also implying that

(0 — au' =05 )ut =P 50 — autT04)u
17295 — (1 _ ,B)usu B — £E]
au a au e

(3.7) < C(\us\uﬁ* 201y u%“).

S

—a(l - B)(—B)uPul

In addition, using (3.5) we have

UI—B ‘(at - auliaass)

1
1-3

‘ususs|

(3.8) ual < 18

+ u%‘us‘) < C’<|Us|uﬁ—1 281 4 u%'H)
au

and
(P )us)s] = (1= BuPugues] < Cluss| < C (o +u271).

Combining the above inequalities yieds the first estimate in the claim.
Next, by using (3.4) we compute
(0 — aul_éﬁss)vs =2K(0; — aul_éﬁss)us
+ g5 (0 — aul aﬁss) =5 _ 2aqu!~ E( ) g(uss)s + ut (0 — aulfé&;s)uss
+(1-7) (uz(at - aulfaass) - 20u 7é(u75) (u?)s + uP (9, — au' a@ss) )
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To show the second inequality in the claim, we bound the seven terms above by Cu'~a H where

H = (|vss\ F st + o (WP + ultE A £ B2 a4 u%—l)
|[vss| | [vs] B—1 28—2 2 23 f—14+2 33-3
2 (Josl (2 + 50w+ sl (072 4 ) 0@ 40P 0?0 ).
S
The inequality (3.8) implies that the first term is bounded
‘(6t - auliaass)us|

1
1-3

< CH.
ou

To proceed, we observe
(3.9) u*5<]vslu571 + u2571) (|vs|uﬁf1 +u?fl 4 u%“) < CH.
Hence, by using (3.5) and (3.7) we estimate the second term,

[uss (0 — aut =045 )ut |

T
aul~a

<CH.

Now, we differentiate (3.4) again so that we have

Vs = U P+ 3(1 = BYu Pugtigs + (1 — B)(—B)u b + 2K .
Thus, by using (3.5) we have

[tsss| =P " vgs — 3(1 — B)uPuguss — (1 — B)(—B)u " Pud + 2K u,
(3.10) §u5_1|vss| + Cu5_1|u35] +Cu?f~? < CH.
Hence, we can bound the third term, as follows

(! P)s ()] < CuPlusugss| < Clugss| < CH.
We recall (2.12) to estimate the fourth term
lu' =P (0 — au'~0,s)
aul_é

This combined with (3.5), (3.9), and 3.10 yields

’ul_ﬂ(at - aul_aass)uss‘
1—1
«

2

too < Cul’ﬂ<7‘ususss‘ + sy 7u§]1;$s| a4 u%|uss\>.
u u u

< Clugss| + CuPta + Cu=P |ug (\uss] +u?fl 4 u%“) < CH.
au

The fifth term is

1
5 (0 — aul_Eass)u*B
S

(0 — aul_iﬁss)u

aul—a

= (=Buju — B+ Byu" g

aul—e

Therefore, by using (3.6) we have
1

u? (9 — a2 955 )u"|

s

|(0 — aulfiass)td

ulfa

< CuP1 + Cu?P—2 < CH.

aulfa

The sixth term is bounded by (3.5)
(™) s(u2)s| = | = 2Bu™" Puduss| < CH.

s
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The last seventh term
1
(0 — aul_Eass)
aul—a

|(at - auliéass)us‘

ul—a

_1
uP (9 — au'™a 8y )u Us 2u—ﬁugs

T = 2usu_’3
aur ¢

<C + CuPul,.

By using (3.8) and (3.9) we can estimate the first term above

_1
’(at - aul O‘ass)us|
ul—a

< Cuf! (]vs|uﬁ_1 +u?P 4 u%“)
=Cu? <u26_1> (]vs]uﬁ_l +u? 4 u%H) < CH.

Moreover, (3.5) and (3.9) show u Pu2, < CH. We conclude from the above discussion that all
seven terms on (0 — aul_éass)vs are bounded by Cul=s H , finishing the proof of the claim. [

O

We are finally ready to give the proof of our main estimate which will be used in the next section
to control the boundary terms. Note that while most of our previous estimates hold for a > 0 or
a > 1/3, for our estimate below « > 1/2 is required.

Theorem 3.5. Assume that My, t € [0,400) is a solution of the a-CSF with o« > 1/2 and the
initial data My satisfying the assumptions of Proposition 2.1. Then there exists € = e(a) > 0 so
that

[(B*)s(B¥)e] _ |us w

€
= = L1/ < C(to,Mo)u , fO?“t > 1p.

Proof. By equation (2.6), u := R“ satisfies

UgUt _1 _1 UsUss
= ugou' " (ugs + u1+2/“) ue = a ——= 4 auu’.
ul/a uafl

By Proposition 2.7, we have a uniform upper bound on u for ¢ > tg > 0 which combined with
Proposition 3.1 yields desired bound for the second term. We will next take care the first term.

First, suppose « € [1,00). Combining Proposition 3.1 and 3.4 together with our curvature bound
(which is assumed in Proposition 3.4), implies that for € € (0, é),

lususs| < C(a, e, Mo,to)u%_l_E for t>1tg >0,

where we have used that for a € [1,00), min(1/a,2/a — 1) = 2o~ — 1.
When « € (1/3,1), then min(1/,2/a — 1) = 1/, thus Proposition 3.3, 3.4 and our curvature
bound imply that for for 0 < e < 1,

1_
lustiss| < C(a, e, Mo, to) utta e,
Since % -1<1+ é iff a > %, we obtain the desired result for every a > % O

Corollary 3.6. Under the same conditions as in Theorem 3.5 and for any o > 1/2, there is
€' (o) > 0 such that

[(%)g(K%)s] < Clto, Mo)(K¥)S fort > to.
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Proof. By (2.13) and Theorem 3.5,

NI o - R 3
|(I€a)9(ﬁa)t| — |( ) ||(Ha)t —Oé2li2a 3,{§| < C((Iﬁa)e—f- (( ) ) >

— =2
K
In addition, for any o > 1/3, Propositions 3.1 and 3.3 imply that there is €’(«) > 0 such that

((Ra)s)?) < C(Ra)e"

1%2

4. CONVERGENCE TO TRANSLATOR

In this final section, we prove our convergence result Theorem 2.3 from which Theorem 1.1 also
follows. The main step in our proof is Lemma 4.4 which follows from our decay estimates in the
previous section and an appropriate use of the following entropy.

Definition 4.1. For a strictly convex solution to the a-CSF, we define
P G2 Vel
JE(t) == —Qz (k)2 — (k%)% db

which can be also expressed in terms of the pressure function p := k!

T—E€ 2 1 2 o
f@:/ LG )

2
pa+1 a

, as

Also, set
J(t) :== lim J¢(¢) € (—o0, 0]
e—0

and this is well defined due to curvature upper bound in Proposition 2.7.

Assume that M, ¢ € [0,400) is a solution of the a-CSF which satisfies the assumptions of
Theorem 2.3. We first observe that J(t) is bounded on [tg, +00), for all ¢ty > 0.

Lemma 4.2. For a > 1, J(t) < C(to, My) < oo fort >ty > 0.

Proof. By the evolution of p = k**! given in (2.15), we have

T—€ T—€ _ 2 2
a—l—l/ Dt dG_a+1/ pﬁpoe—l D5 _|_(oz—|—1) pa%lde
€ « €

a+1 a1 \O=m—c
=—J(t) + < a+l )
(t) A
a—1
Note that petipy = (o + 1)k?¥ 2ks = (aaﬁ% and this is uniformly bounded for ¢ > ¢, when
u«
a > % in view of Proposition 3.1. In addition, the Harnarck inequality in Proposition 2.5 implies,
_ a—1
(4.2) - B Pyt <
pa+t P t

and therefore

T—€ m—e a—1 T a—1
/ _p;g/ i wg/“ do.
€ pa_+1 € 3 0 t
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This integrand is uniformly bounded for & > 1 and t > t3. Combining the above shows that
Je(t) < C(to, Mp) < oo, which implies the desired result. O

Proposition 4.3. Suppose a > 1. For 0 < t; <ty < oo, we have
2 1 2 to ™
J(ta) — J(t) = _Ha+ 1) / / KO (k) gg+K)? dOdt.
« t

Proof. Since everything is smooth and bounded on [e, m — €] X [t1, t2], we have

%Jf(t) = ((1;_—21)2 /;6 (2(ﬂa)9(f€a)w - Q(RO‘)(HQ)t> dg
— _2(0‘;; 1’ /;_E Kt(l:;a)t do + (2(62[;21)2(%“)9(%&)022_6
(4:3) _ /6”_6 —2(04(; 1)? /;?a o + (2(04;;1)2(#)6(&%0 Zj:e
KON [T e () ).

In view of Theorem 3.5, Theorem 2.9, and Lemma 4.2, for « > 1 we can take ¢ — 0 and monotone
convergence theorem implies the result. O

In the case o € (1/2,1), we cannot not show that the entropy is finite, so we avoid using the
global entropy defined on [0, 7] and approach differently. Our decay estimate is sufficient to carry
out this, as we see in the lemma below.

Lemma 4.4. Assume that a > 1/2. For fixed 7 > 0 and 6 > 0, we have
t+1  pm—6
/ / O‘+1 (K 99+/<;)d9dt—>0 as t — oo.
Proof. Tt suffices to prove that for every e > 0, there exist 6 € (0,6) and o > 0 such that

t+71 T—0
/ / (e 99+n) dodt < e for t>t.

In view of (4.3), for 0 < § < § and t > tg > 0, we have

i a+1 a2 5 5 1 e e’ a f=m—0
/ / (K%)g0 + K2 dOd = ( (750 = P+ ) + E/t (s0(s)),
First, we control the boundary terms using Theorem 2.9 and Corollary 3.6

t+T1 T—
| / ((n%w)t)@ i ‘5dt] < sup [(5%)p(5))(3,8) +7 sup [(k%)g(k):)(x — 8,1)
t tElto,7] te(to,7]
< 27 C(tg,6, My) with C(to, 8, M) — 0 as 6 — 0.

Thus, for given € > 0 and tg > 0, there exists dy such that if 0 < § < 6y and t > t,

| /t - <<ﬂ“)e(ﬁa)t)zzg_5dtl <e

To finish the proof of the lemma it suffices to prove the following claim.
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Claim 4.1. For every € > 0, there exists 69 > 0 such that for each 0 < § < 6o we can find
to = to(6) > 0 such that

)| <e  fort>t.

Proof of Claim 4.1. We prove the upper and lower bound separately. The proof of the upper bound
uses (4.1) i.e. we bound J%(t) in terms of the integral term and boundary term in (4.1). To bound
the integral term, we use (4.2), the curvature lower bound for o € (1/2,1), and the curvature upper
bound for a > 1 (both shown in Proposition 2.7) to obtain

T—0 T—9 a—1
1 1
/ OH; pt d0</ OH; n dd — 0 as t— oo.
5 « pa+1 5 (6

a—1
To bound the boundary term, we note that pa+ipy = (o + 1)x>* 2 ky = (a + 1) and 1 -1 <1

1
I
U«
for a > % Therefore, Proposition 3.1 and Theorem 2.9 imply that for any given ¢ > 0 and tg > 0,
_ a—1 O=m—95
there exists dg such that if 0 < § < §y and t > £y we have ‘ (aH potl pg) ‘ < €. This completes
the proof of the upper bound.

For the lower bound, we will use the 1-dim optimal Poincaré inequality, namely the bound

which holds for every smooth function f with f(§) = f(m — ) = 0. The equality holds for properly
scaled sine functions. To apply it for our case, recall that

o 5 =48 )
and set U(0,t) := k*(0,t) and —L(0,t) := W(H—S)—FU(S, t) (note that we distinguish the
notation of U(Q,t) = k%(0,t) from u(n,t) := R*(n,t) which uses the geometric parametrization).
Since (U + L)(0) = (U + L)(m — 6) = 0, the Poincaré inequality above combined with Young’s

inequality imply

0 3/6 ((U+L)g - (ﬂ_Tr%)Q(UJrL)Q) df
_ /;5 (vi - ﬁw - ﬁﬁ 42Uy Ly — %UL) d6
< /;_5 (v3 - ﬁw - ﬁ[ﬂ
* 3525% 252%3 * (:Tg;y * 28(77:3_L 225)2) 40

T—6
_ 2 K ™ 2
_/S 77_25(U9 U)+25(L9+ _25L)d.9
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We conclude that
T

5 +1)2 79 (a+1)2?7m—267 [™°
JO(t ::L/ U2 —U)do > — L3 _L%)do.
®) 2 5 (Ua )b > 2 T 20 J5 ( 9+7r—2(5 )

To estimate the last integral above we observe that by Theorem 2.9, we have |L| and |Ly| <

C(M)8%/3 on [6, 7 — 6] for all § € (0,%) and ¢ > 3. Hence, we have

« «

JO(t) > —C(My, ) 62571 = —C(Mp, @) 53
which gives the bound from below. This completes the proof of the claim. ]

O

We are now in position to give the proof of our main convergence result, Theorem 2.3. We have
already observed in section 2 that Theorem 1.1 follows from Theorem 2.3.

Proof of Theorem 2.3. Recall U(0,t) := k*(,t) solves the equation

(4.4) U = OéUH_é(Ueg +U) on (0,7) x (0,00).

For a given time sequence t; — oo, we define the sequence of solutions U i0,t) = UO,t+ t;).
By Proposition 2.7, the sequence {U'} is locally uniformly bounded from above and below in
spacetime and ¢ > 1. That is, for any compact spacetime region, there is ig > 1 such that {U’};>;,
is uniformly bounded from above and below by positive numbers. This implies that equation (4.4)
is uniformly parabolic for U = U*, i > ig and therefore parabolic regularity theory implies that we
have locally uniform control on derivatives of the u; of all orders. By the Arzela-Ascoli theorem,
we can find a subsequence, still denoted by U*, such that U* — U uniformly on compact sets but
also

Ut = U in Cpy.((0,00) x (—00,00)).

Then, the Lemma 4.4 implies that Upg + U = 0, thus 6,U = 0. In addition, Proposition 2.7 and
Theorem 2.9 give U > 0 and 61?11% Ug) = 6%im U(#) = 0. Hence, we have
— —T

U(9) = csinf

for some constant ¢ > 0. We will next show that ¢ = m(«), where m(«) is given by (2.4). For this,
it suffices to show that

(4.5) U(r/2,t) == k% (1/2,t) = m(a), as t — 00.

Proof of (4.5): Let’s suppose first that liminf; ,, U(7/2,t) < m(a). Then in view of the curvature
lower bound in Proposition 2.7, there is a sequence t; — oo such that U(6,t;) — m/siné locally
smoothly on (0,7) for some m’ € (0,m(c)). Let (z1(6,t),z2(6,t)) be the position vector of our
solution M, parametrized by 6. For small € > 0, this convergence and (2.3) imply that we have, for
I (9, t),

T—€ d¢inf T—E€
(4.6)  zi(r—et) — z1(6,t) :/ %d@e (m')l/a/ (sin6)!~5d0  ast— oco.

€ R Y €
Recall the assumptions of Theorem 2.3 and Proposition 2.1 which imply that M, is a graph on
(—1,1), an interval of length 2. In view of (2.4) and m’ < m(«), we can find a small e(m’) > 0
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depending on m’ and a large to(e,m’) > 0 depending on €, m’ such that z1 (7 — €, tg) — x1 (€, tg) > 2.
This gives a contradiction. Therefore,

(4.7) litrgiorolf U(r/2,t) > m(a).

Next, suppose limsup,_, ., U(7/2,t) > m(a) and hence there is a sequence t; — oo such that
U(r/2,t;) > (1 4 4e)m(«), for some ¢ > 0. In view of the Harnack estimate Proposition 2.5,
there is c(e) > 0 such that U(w/2,t) > (1 + 3¢)m(a) for ¢ € [t;, (1 + ¢)t;]. Meanwhile, the
inequality (4.7) implies that there is ¢ > 0 such that U(7/2,t) > (1 — ce) m(«) for ¢t > t. Note that
Oyxa(m/2,t) = k*(m/2,t) and therefore,

(1+0)t,
2o(7/2, (1 + ¢) ) = wa (/2. 1;) +/ KO ()2, 7) dr

> [(1 — ce) m(a) t; — Cl+ (1 + 3¢) (ct;) m(c)
— m() (1 n ffc) (1+c)t;—C.

On the other hand, we can put a translating soliton of speed m(a) (1 + 16_4:(:) above My and inside
{|z1] < 1 — 6}, for some d(¢,¢) > 0 depending on €, ¢ at the initial time ¢ = 0. Then, by the
comparison principle

ce
1+c¢
which contradicts the previous inequality for ¢; > 1. This completes the proof of (4.5).

2o(m/2, (1 + &) t:) < m(a) <1+ )(1+c) ti+C

We have just seen that the sequence U® smoothly converges to U = m(a) sinf on compact sets
along arbitrary sequence. Thus, U(-,t) — U in C{2((0,7)) as t — oo. From the convergence
(4.6) with m’ = m(«) and Proposition 2.1, it is easy to see x1(mw/2,t), the x; coordinate of the
tip, converges to 0 as ¢ — oo. Then (2.3), Proposition 2.4 and the convergence of x(6,t) to

(m(a) sin 0) e yield our desired convergence of the graphical function stated in Theorem 2.3.
This completes the proof of Theorem 2.3.
O
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