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Abstract

The lead optimization phase of drug discovery refines an initial hit molecule for
desired properties, especially potency. Synthesis and experimental testing of the small
perturbations during this refinement can be quite costly and time consuming. Relative
binding free energy (RBFE, also referred to as AAG) methods allow the estimation of
binding free energy changes after small changes to a ligand scaffold. Here we propose
and evaluate a Convolutional Neural Network (CNN) Siamese network for the predic-
tion of RBFE between two bound ligands. We show that our multi-task loss is able
to improve on a previous state-of-the-art Siamese network for RBFE prediction via
increased regularization of the latent space. The Siamese network architecture is well
suited to the prediction of RBFE in comparison to a standard CNN trained on the
same data (Pearson’s R of 0.553 and 0.5, respectively). When evaluated on a left-out
protein family, our CNN Siamese network shows variability in its RBFE predictive per-
formance depending on the protein family being evaluated (Pearson’s R ranging from
-0.44 to0 0.97). RBFE prediction performance can be improved during generalization by
injecting only a few examples (few-shot learning) from the evaluation dataset during

model training.
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Introduction

Lead optimization is an early phase of the drug discovery process that simultaneously op-
timizes a hit molecule for potency, solubility, and other toxicological and pharmaceutical
properties. Small modifications are made to the chemical scaffold of the hit molecule and
tested for their effect on the properties of interest. A collection of such molecules, along
with the initial hit molecule, is termed a congeneric series. Congeneric series developed
within a drug discovery campaign can contain tens to hundreds of compounds,!? with the
synthesis and testing of each chemical modification taking considerable amounts of time and
money. Relative binding free energy (RBFE, also called AAG) methods provide an in silico
alternative to the labor intensive synthesis and experimental testing of each compound in a
congeneric series.

RBFE methods strike a balance between accuracy and throughput. Typical methods
for RBFE determination utilize either molecular dynamics with alchemical perturbations or
thorough sampling of the endpoints of the transformation. Alchemical methods, also called
pathway methods, perturb the bound molecule from one ligand into another using chemical or
alchemical means;® Free Energy Perturbation? (FEP) is one of the most popular alchemical
methods. FEP utilizes explicitly solvated molecular dynamics or Monte Carlo simulations
in which one ligand is alchemically transformed into another ligand. Recent advances in
molecular mechanics force fields, sampling, and reductions in computational cost have en-
couraged the adoption of the FEP approach for the prediction of RBFE in both academia
and industry. These advances have allowed for very high accuracy of FEP approaches, within
about one kcal per mol. However, the current implementations only allow for the calculation
of about four ligand perturbations per day with commonly available computing resources.®
FEP is somewhat limited to a maximum number of changes between ligands, about 10 heavy
atoms, due to the high amount of sampling required for each change of a ligand. However,
with careful consideration, more heavy atoms can be changed between the ligands while

still achieving low errors in predictions.%” Endpoint sampling methods reduce the required



amount of molecular dynamics needed to determine the free energy of the system.® The most
popular methods for determining RBFE with endpoint sampling are molecular mechanics
Poisson-Boltzmann Surface Area (MMPBSA) and molecular mechanics generalized Borne
surface area (MMGBSA). MMBPSA and MMGBSA, developed by Kollman et al.,*!% evalu-
ate the free energy through molecular dynamics simulations of the unbound ligands and the
bound complexes. RBFE is computed via a simple difference of the energetics in each of the
ligand binding modes.! While these methods have reduced computational requirements in
comparison to FEP, their free energy predictions are not as rigorous. This limited through-
put of molecules and low allowance for changes between molecules can prevent medicinal
chemists from fully exploring the optimization space of a lead molecule.

A number of scoring functions have been developed to simultaneously provide low error
and high throughput for absolute binding affinity predictions. 2" These are able to replace
the more thorough and compute intensive simulation based methods for measuring the energy
of the absolute binding affinity. More recently, these scoring functions utilize deep learning
to infer absolute binding affinity directly from the bound protein-ligand complex. 3716 Using
these deep learning absolute binding affinity methods as inspiration, Jiménez-Luna et al.!8
utilize a Siamese Convolutional Neural Network (CNN) architecture to directly determine
the RBFE between two bound protein-ligand complexes. This architecture removes the com-
pounding error of determining the RBFE with the difference in absolute binding free energies
of the two ligands. They showed the potential of their trained neural network in retrospec-
tive lead optimization campaigns with only a small amount of retraining required. Here we
present further expansion on their Siamese network by introducing novel loss function com-
ponents. We evaluate the impact of our loss components as well as the Siamese architecture
on the predictive performance of our models. Generalizability of the RBFE predictions are

examined through both external datasets and clustered protein family cross validation.



Methods

We describe the filtering and usage of the training and evaluation datasets for our RBFE
models. The architecture and training hyperparameters of our CNN Siamese network are
explained. Our CNN Siamese network is compared to state of the art methods for RBFE
prediction on a retrospective lead optimization task and several benchmark datasets. Next,
we investigate the relative importance of the components of our model on a small retrospec-
tive lead optimization task. Finally, we evaluate our model on novel protein families utilizing

a leave-one-family-out cross validation to elucidate the generalizability of our model.

Data

Proper training of a deep learning model for RBFE in a lead optimization setting requires
that we utilize congeneric series with experimentally validated binding affinity measurements.
We therefore utilize the BindingDB 3D Structure Series dataset.!? This dataset was created
by combing the literature for experimental binding affinities of many ligands bound to the
same receptor and finding the crystal structure of at least one of those ligands bound to the
same receptor. The ligands with no known bound structure were computationally docked
to the protein using the Surflex docking software? for template docking with the crystal
ligand. The full dataset encompases 1038 unique receptor structures with an average of 9.61
ligands bound to each receptor structure. We filter the dataset to ensure the binding affinity
measurements are high quality and to enforce comparisons between ligands with identical
measures of potency: 1Csg, Kq, or K;. First the dataset is split into three different groups,
one for each of the measures of potency. A ligand can be in multiple groups if it has binding
affinity measurements for multiple measures of potency. For each split, we strip any greater
than (>) or less than (<) symbols from the binding affinity measurements of every ligand
and use the remaining string as the exact binding affinity value. If a ligand has multiple

measurements for a given measure of potency, we delete the ligand from that measure of



potency split if the range of the measurements is greater than one order of magnitude.
Otherwise we take the median of the multiple measurements. After this filtering, we remove
any ligands that have binding affinity information for a PDBID that has no other ligands with
binding affinity measurements. We then construct congeneric series by creating ordered pairs
of ligands that have the same receptor structure and the same measure of potency (ICs,
Kq,K;). We utilize the log-converted measurements (—log,,(value)), referred to as “pK”,
for each measure of potency. We next define a reference ligand. The reference ligand is
assigned as the ligand with the highest Tanimoto similarity (using the RDKFingerprint from
RDKit?!) to the ligand used for the template docking, usually the ligand in the crystal that
was used for template docking. Our final filtered BindingDB dataset has 1082 congeneric
series, encompassing 943 unique receptor structures with an average of 7.995 ligands per
congeneric series. The average pK range of each congeneric series is 2.023 pK. Histograms of
the number of ligands and the affinity ranges per congeneric series are shown in Figure S1.

We utilize the datasets provided by Mobley et al.,?> Wang et al.”, and Schindler et al.?

1.22 provide

in order to evaluate the generalization performance of our model. Mobley et a
a series of benchmarks datasets for binding free energy prediction. One of their benchmark
sets has experimentally determined AG values for a congeneric series of 8 ligands binding to
the first bromodomain of the BRD4 protein. Wang et al.” provides 8 congeneric series on
different proteins with experimentally validated AG values for benchmarking RBFE predic-
tions. They also released the evaluation statistics of FEP calculations when applied to each
of the congeneric series. Schindler et al.? provide 8 congeneric series with pharmaceutically
relevant targets, all with experimentally measured binding affinities. The congeneric series
in this set contain changes in net charge and the charge distribution of molecules as well as
ring openings and core hopping; all of these are ligand changes that the Wang et al.” dataset
avoids.

The ligands in both the Mobley et al.?? and Wang et al.” benchmark datasets are given

experimental AG, so we must convert them to pK for proper evaluation with our model. We
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Figure 1: Siamese network simultaneously predicts both AAG and AG using the latent
vectors of each input as determined by the shared convolutional architecture. xRotated ig g
rotated view of the same protein-ligand complex as x;.

assume that the ligands bind in a non-competitive manner, generating the following equation
for conversion:

PK = —log;, (e24/F1)

where we set R = 1.98720425864083 x 1073 % and T' = 297 K following the values utilized
in Wang et al.”. The ligands in the Schindler et al.? benchmark dataset are given associated
ICs values, so we simply log convert the values (— log,,(value)) as we did for the BindingDB
dataset.

The evaluation datasets are constructed from all possible pairs of ligands for each recep-

tor.

Model Architecture

1.18 we utilize a Siamese network?® (Figure 1). Siamese net-

Similar to Jiménez-Luna et a
works utilize two arms that share weights and take in two inputs for determining distances

between the inputs, often utilized in object matching or object tracking.?42% Our network



takes as input the bound structures of two ligands bound to the same protein, with each arm
getting a different protein-ligand complex. We use CNNs as the arms of our Siamese network
to learn directly from the 3D information of the bound protein-ligand structure. The bound
protein-ligand 3D structures are voxelized utilizing the libmolgrid python library,?” using
the default channels provided by the library. The inputs are then passed through the main
convolutional architectures employed by GNINA, % Default2018 or Dense, as defined in Fran-
coeur et al.'®. The Default2018 convolutional architecture uses a series of convolutions and
average pooling operations to discern information directly from bound protein-ligand com-
plexes while minimizing computational cost. The Dense convolutional architecture uses a
series of densely connected convolutional blocks?” to enhance the propagation of information
at the cost of increased computation. Both of these convolutional architectures demonstrate
an ability to learn absolute binding affinity directly from the 3D bound structure of the
protein-ligand complex. We remove the final linear layers from both architectures in order
to access the final latent vector of the networks. The difference of the latent vectors of the
two protein-ligand complexes is used to learn a linear mapping to the RBFE (AAG) of the
two inputs. We also utilize the latent vectors of each input before taking the difference to
determine the absolute binding affinity of each input using a fully connected layer.

We train our model using a linear combination of loss components (Figure 1):

ﬁTotal = aﬁAAG + ﬁﬁAG + ’Yﬁrotation + 6£consistency (1)

where «, 8,7,0 € R*. During the training of our model we set « = 10 and 3,7, = 1. Laac
is the mean square error (MSE) of the RBFE prediction. Lag is the MSE of the absolute
binding affinity prediction for both inputs. L otation 18 the MSE of the latent vectors of two
randomly rotated versions of each protein-ligand pair. This component encourages the la-
tent space representation to ignore the rotation of the protein-ligand complex. Leonsistency

is the MSE of the difference between the predicted absolute binding affinities and the pre-



dicted RBFE, to ensure that the model is providing consistent predictions. The Default2018
architecture’s weights are initialized with the Xavier uniform method?®® and the biases are
initialized to zero. The Dense model is initialized with weights and biases learned from its
training described in Francoeur et al.'®. All models are trained using the Adam stochastic
gradient descent optimizer3!' with the default parameters (8; = 0.9, By = 0.999, ¢ = 1x1078).
Models are trained for 1000 epochs with a learning rate of 0.000367 and a scheduler that
reduces the learning rate by a factor of 0.7 whenever the loss plateaus for more than 20
epochs. Data augmentation is achieved by randomly rotating and translating the inputs

with a maximum translation of 2 A from the center of mass of the ligand.

Retrospective lead optimization evaluation

In order to directly compare our trained model to the model developed by Jiménez-Luna
et al.'®, we utilize the additional ligands training set as described in their manuscript. We
train our models on the reference ligand, as described in Data, and a given number of
additional ligands. In the one additional ligands training set, we train on the two ordered
pairs of the reference ligand and one additional ligand. Then, testing is carried out on the
two-permutations between the ligands in the training set and ligands that the model has
not seen, see Figure 2. We construct 25 versions of the training and testing datasets for
each number of additional ligands to allow us to gather statistics about each number of
additional ligands. In the case of the Dense convolutional architecture, we only use five
versions of the training and testing datasets due to the architecture’s heavy computational
cost. Each version of the dataset uses the same reference ligands and randomly chooses

additional ligands to add to the training set for each congeneric series.

External Datasets Evaluation

We evaluate the generalizability of our model when applied to unseen data by training

our Siamese CNN on all of the data available from the BindingDB Docked Congeneric



Series dataset and evaluating on the datasets provided by Mobley et al.,?> Wang et al.” and
Schindler et al.2. Using the model trained on all of the BindingDB data, we can evaluate both
the no-shot and few-shot performance of our model (Figure 2). No-shot performance refers
to evaluations carried out on out-of-distribution examples with no prior knowledge about
them, while the few-shot performance evaluates on out-of-distribution examples with a small
amount of prior knowledge provided to the model about the evaluation distribution. The
no-shot performance of our model is evaluated by training on the entire BindingDB dataset
and predicting on the external test sets with no information about the test sets included
during training. No-shot evaluation emulates the start of lead optimization for a given
target, where no binding information is known about ligands in the congeneric series besides
the lead molecule. The few-shot performance is evaluated utilizing increasing amounts of
data from the test set during the training of the model. Few-shot evaluations show us how
the model would perform later in lead optimization, when we have binding information for
several ligands in our congeneric series. For all few-shot evaluations, the same model from
the no-shot evaluation is used and finetuned. The smallest few-shot evaluation includes one
ligand pair from the external test set included during the training of the model. We finetune
our models by training for three epochs on the combined data of the BindingDB dataset
and the included external test set examples with a learning rate of 0.000367. The data
is stratified during training such that each batch contains equal amounts of data from the
BindingDB set and the external dataset to most closely match the finetuning carried out in
Jiménez-Luna et al. . We evaluate performance when including the two-permutations of up
to seven ligands from the external dataset in the finetuning dataset, see Figure 2. Identical
test sets are used for both no-shot and few-shot learning for each congeneric series. The test
set only includes pairs of ligands where at least one ligand in the pair was not utilized for
the seven external ligands finetuning. We train and evaluate on both orderings of pairs of

ligands.



Ablation Study

We probe the performance of our model in relation to the components of the loss function as
well as the architecture of our model. Using the one additional ligand training and testing
sets, we investigate the average performance of 25 models as we disable aspects of the model.
Since our model utilizes a linear combination of several loss components we can investigate
how each component contributes to test performance. During training, we evaluate RBFE
performance when one of the loss hyperparameters («, 3,7, and 0) is set to zero, keeping all
other aspects of training the same. In order to accurately investigate the performance of the
model when only trained for absolute binding free energy prediction, we set both « and §
to zero during training to disrupt the effects of the consistency loss encouraging the RBFE
prediction to be the difference between the absolute binding free energies.

The contributions of the architecture to the performance of the model are also explored.
The RBFE is dependent on the ordering of the ligands; if the ordering is swapped then the
RBFE is multiplied by -1. Jiménez-Luna et al.!® claim that the latent space subtraction em-
beds this symmetry into the network architecture. We evaluate the utility of the latent space
subtraction by concatenating rather than subtracting the latent spaces of the convolutional
arms of the network. This requires that the fully connected layer of the network that predicts
the RBFE doubles its input size. We further evaluate the importance of the Siamese network
by instead training a CNN that takes in one protein-ligand pair and predicts the absolute
binding free energy. RBFE is computed by subtracting the predicted absolute binding free
energies of two ligands. When utilizing this architecture, we no longer enforce the Laag and
Leonsistency 10ss components. All other aspects of training are kept the same for all ablation
studies.

We calculate the significance of the changes in Pearson’s R, RMSE, and MAE for both
AAG and AG values in relation to our default Siamese network via a two sided T-test. We

account, for multiple hypothesis testing by utilizing a p-value of 0.005 for all of our T-tests.
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Protein Family Generalization Evaluation

Lead optimization requires precise predictions of the RBFE for all possible proteins and
ligands. However, there is often very little experimental measurements of the protein of
interest at the start of lead optimization. The worst case scenario is where there is no
experimental measurements of the protein family of interest to train our RBFE prediction
model. We perform a leave-one-family-out cross validation where we cluster by protein family
to evaluate the model’s performance in the most challenging scenario on an entirely novel
protein target. The Pfam database3? contains protein family annotations of all of the PDB
accessible structures. The protein family annotations are used to label all of the proteins
in the BindingDB dataset, where each protein can have more than one associated protein
family. This provides us with 72 different protein families. Any protein family with fewer
than seven ligands across all of the congeneric series is removed. This leaves us with 60
protein families. We create a test set for each of the protein families and its associated
training set is the entire BindingDB dataset without that protein family. We evaluate the
impact of including information about the left-out protein family by adding left-out ligand
comparisons to the training data. The smallest finetuning includes two ligands from the
left-out protein family; we continue adding two ligands to the training set and stop when six
ligands from the left-out protein family have been added. Models are evaluated on the same
test set regardless of how many ligands were included in training from the left-out protein
family. Evaluations are carried out on all of the remaining ligands when we remove the six
ligands used for the finetuning. Utilizing the trained model, we train for three epochs on the
concatenation of the leave-one-out protein family training split and the added ligands from
the left-out protein family, see Figure 2. No data stratification is used during training of the
cross validation models as we determined that stratification hindered finetuning performance
during our experiments. Only our Default2018 architecture is used for this cross validation

evaluation due to computational constraints.
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Figure 2: The Siamese network model is evaluated in a number of different manners to allow
us to compare to similar methods and investigate the generalizability of our predictions.
The “Retrospective Lead Optimization” follows the evaluation described in Jiménez-Luna
et al. '8, where we incrementally add ligands from each congeneric series to the training set
(filled in shapes) and test on ligand pairs that include one ligand in the training set. The
“External Datasets Evaluation” utilizes a model trained on the entire BindingDB congeneric
series dataset and evaluated on 17 congeneric series from our external datasets in both a
no-shot and few-shot (3 epoch finetuning) manner. The “Leave One Protein Family Out
CV” trains 60 different models, each with different training and testing datasets based on
the left out protein family, in both a no-shot and few-shot manner, where ligand pairs from
the left out protein family are added to the training set.
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Results

Our convolutional Siamese network shows improved performance over the model developed
by Jiménez-Luna et al. '® on the retrospective lead optimization dataset. However, we do not

1. ¥ when evaluating on external

show the same increased performance over Jiménez-Luna et a
datasets. Most of our loss components enhance the performance of our models for RBFE
prediction, especially the Leonsistency cOmponent. Our models show reduced performance when

evaluated on protein families that have never been seen in comparison to our retrospective

lead optimization evaluation.

Enhanced Performance on Retrospective Lead Optimization

Both of our models predictions show higher correlation with the experimental RBFE (AAG)
and lower root mean square error (RMSE) on the RBFE predictions in comparison to the
model developed by Jiménez-Luna et al.'®(Figure 3). The mean absolute error (MAE) of
our models’ predictions show the same trend as the RMSE (Figure S2). Additionally, our
models demonstrate a decreased variance across the 25 versions of the training and test splits.
The models demonstrate a continual increase in performance as they are given more training
information about the congeneric series. We find that the high parameter Dense model
does better with lower amounts of congeneric series comparisons than the lower parameter,
Default2018, model. The difference between the performance of the two CNN architectures

decreases as more information is added to the training set of the models.

External Datasets Evaluation

The RBFE prediction of the model varies widely across the different test sets when no
finetuning is performed. However, with increasing amounts of finetuning we see that the
correlation with experimental affinity increases and the error decreases (Figure 4, S3, S4,5,

S5, S6, S7, S8). Some congeneric series, especially those in the Schindler et al.? dataset,

13



Pearson's R
RMSE (pK)

~&- Jiménez-Luna, et al.
—&— Default2018

0.4 - —§— Dense
1 2 3 4 5 6 1 2 3 4 5 6
Number of Additional Ligands Number of Additional Ligands

Figure 3: Comparison of our models to Jiménez-Luna et al.'® on the additional ligands
dataset. Error bars indicate +1 standard deviation of 25 individual models (only 5 for
Dense).

show almost no improvement when adding more finetuning information. CDK2 shows nearly
perfect correlation and zero error with no finetuning performed, likely due to the high ligand
similarity to the BindingDB dataset (Table S3). A number of congeneric series (TYK2,
PFKB3, SYK, and TNKS2) do not show monotonically increasing RBFE performance as
more data is added to the finetuning dataset. Finetuning does not provide the same amount
of RBFE prediction boost as demonstrated in Jiménez-Luna et al.'® on both the Mobley et

al.?? and Wang et al.” datasets (Figure 4).

Ablation Study

Removing Laag does not significantly decrease the performance of the RBFE predictions
(Table 1), but increases the correlation and reduces the error of the absolute affinity pre-
diction (Table S1). However, removing Lag Or Leonsistency drops the performance of the
RBFE predictions by a considerable margin. The removal of L,oation has little effect on the
performance of the network, indicating that data augmentation may be all that is required

to provide the necessary rotational invariance. When we remove Laag and Leonsistency, the
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Siamese network no longer provides predictions that are correlated with the experimental
affinity values, however, the errors of the predictions are only slightly increased from the
baseline.

Altering the Siamese network architecture does not affect performance as much as re-
moving components of the loss function. If we exchange the latent space subtraction of the
Siamese network for a concatenation, we do not see any change in performance of the model
for RBFE prediction. However, we find that when training the Siamese network with latent
space subtraction on only one ordering of each ligand pair, the network is better able to
comprehend the negation of the AAG when the ligand ordering is reversed (Table S2). This
demonstrates that the latent space subtraction better embeds the symmetry of the AAG
prediction problem in comparison to latent space concatenation. We train a single-arm con-
volutional architecture to predict the absolute affinity values using the same training set (No
Siamese Network in Table 1). The single-arm convolutional architecture’s absolute affinity
predictions are subtracted for pairs of ligands to produce RBFE predictions. The single-arm
convolutional architecture is worse than the CNN Siamese network at both absolute and
relative binding affinity prediction.

Table 1: RBFE performance after ablating different components of the network on the 1
additional ligand set to determine their utility in the full network. Parentheses indicate the
+1 standard deviation of the 25 train/test versions. Bold indicates that it is not significantly
different from the Standard model (p > 0.005).

Ablation Pearson’s R RMSE (pK) MAE (pK)
Standard 0.553(£0.0233)  1.11(0.0309)  0.82(=0.0187)
No Lanac 0.551(£0.0202) 1.12(+0.0248) 0.829(+0.0179)
No Lac 0.459(£0.0238)  1.27(0.0289)  0.945(0.0182)
No Liotation 0.556(+0.0188) 1.11(+0.0233) 0.819(0.0162)
No Lconsistency 0.536(£0.021)  1.14(£0.0356)  0.842(0.0186)
No Laac, Lconsistency _0.0576(£0.136) 1.24(£0.0143)  0.908(=£0.0144)
No Lag, Leonsistency 0.456(£0.0231)  1.28(£0.0319)  0.95(£0.0233)
Concatenation 0.554(£0.0134) 1.11(+0.0223) 0.821(+0.0174)
No Siamese Network 0.5(£0.0347) 1.15(4£0.0362)  0.854(%0.021)

Subtraction, Single-order 0.512(£0.0213)  1.17(£0.0213)  0.877(£0.0151)
Concatentation, Single-order 0.476(+£0.023) 1.21(£0.0253)  0.907(+£0.0182)
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Generalization to new Protein Families

When the Default2018 Siamese network is trained on all of the BindingDB dataset, exclud-
ing the left out protein family, and evaluated on the left out protein family, we find that
the average RBFE prediction correlation across all of the protein families is nearly zero.
(Figure 6). The variance across protein families is quite large, with some protein families
having near perfect predictions and other protein families having extremely poor predictive

performance.
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Figure 6: Average performance on left out protein family for the protein families in the
BindingDB dataset. The predictive power of the model increases as we include information
from the left out test set.

Adding information to the training set about the left out protein family tends to increase
the average correlation and decrease the average error across protein families, (Figure 6 and
S9). However, only adding one pair of ligands from the left out protein family does not seem
to help the performance of the model. We need at least 4 ligands from the protein family
that we are evaluating on to see an increase in our RBFE prediction performance. Adding
ligands from the left out protein family to our training data seems to have a greater impact

on the correlation of the RBFE predictions rather than the error.
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Discussion

Our models show higher correlation with experimental RBFE and lower errors of predic-
tion than the model developed by Jiménez-Luna et al.'® when evaluated on the additional
ligands dataset. We see an increase in model performance as the amount of information
about each congeneric series is increased. Our models do not show diminishing returns as
more ligands are added to the training set, unlike the model developed by Jiménez-Luna

et al. 18

. Our highest parameter CNN architecture, Dense, was able to outperform the lower
parameter Default2018 architecture on the smallest training set. However, the Dense model
is initialized with weights from an absolute binding affinity prediction task that provide the
model with much greater initial knowledge of the problem than a randomly initialized net-
work. When using the Dense architecture with random initialization, the model had lower
RBFE prediction performance than the randomly initialized Default2018 model (results not
shown). The Dense model was unable to train effectively without Ly regularization (weight
decay), likely due to the small amount of data and the large amount of parameters in the
model.

Only some components of the loss function are contributing to the models RBFE predic-
tion performance. The removal of Laag does not have a large impact on model performance
indicating Lag and Leonsistency contribute significantly to the RBFE prediction performance.
However, it is important to note the Leonsistency €ncourages the model to make the AAG pre-
diction identical to the differences in absolute binding affinity predictions which will provide
some notion of AAG loss. The removal of the L,otation component did not significantly change
the performance of the model, which may indicate some isotropic properties of the network
architecture. The latent space structure imposed by the subtraction operation did not result
in improved performance when using both ligand orderings for training. However, training
on only one ordering of ligand pairs demonstrates that latent space subtraction is able to
embed the RBFE ligand ordering symmetry. This symmetry embedding can be learned by

a network using latent space concatenation when using the freely available other orderings
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during training. The Siamese architecture enables understanding of ordering within con-
generic series, which is ignored when only training for absolute affinity prediction. Without
the Siamese architecture, the performance of the model suffers on both relative and abso-
lute binding affinity prediction. This may be due to both the symmetry embedding of the
network architecture and the increased regularization of the latent space that the Siamese
architecture imposes.

The RBFE model has difficulty generalizing to new datasets. We find that our model
does not perform as well as the Siamese network proposed by Jiménez-Luna et al.'® when
evaluated on the external datasets from Mobley et al.?? and Wang et al.”, in most cases.
We find high protein and ligand similarity between the BindingDB Congeneric Series set
and the external datasets from Mobley et al.?? and Wang et al.”. We provide the minimum
protein distance, determined via a global alignment with no parameters and no gap penal-
ties (Biopython.align.globalxx), and highest ligand similarity, determined with RDKit’s
FingerprintSimilarity function in Table S3. BACE has the minimum protein distance
with a protein in the BindingDB dataset and both CDK2 and PTP1B have greater than
95% of their ligands in the BindingDB dataset. This is likely why the correlation and error
on CDK2 are nearly perfect with no finetuning. We would expect similar results for PTP1B
since it shares a nearly identical minimum protein distance and similar percentage of ligands
found in the BindingDB set, but PTP1B has lower correlation and higher error than CDK2
in the no-shot evaluation. Our models do not show the same level of RBFE prediction cor-
relation as Jiménez-Luna et al.'®, however, the RMSE of the predictions is about the same
or less. Correlation is a poor predictor of relative binding affinity performance, due to the
low range of affinities in a congeneric series. "33 If, for instance, each ligand in a congeneric
series has an identical affinity value, then there is no way to measure a predictive Pearson’s R
correlation. Therefore, it is difficult to determine if the model built by Jiménez-Luna et al. *®
demonstrates more generalizability than our models. When we evaluate our Siamese network

on the more difficult Schindler et al.? dataset, we again see much variability in our models
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performance across the different targets. Our model is unable to match the performance
of the FEP+ model in correlation of prediction (Figure 5, S5, and S6) without using the
largest amount of finetuning we explored. Examining the RMSE of the RBFE predictions
shows the Siamese network outperforming the FEP+ method on all of the targets, when all
of the finetuning data is introduced. The lower correlation and lower error are due to our
Siamese network predicting values around the mean of the data. FEP predictions are not
dependent on the labels of the data, since there is no training necessary, and therefore would
eliminate these sort of predictions.

Despite good intra-congeneric series performance, our Siamese network does not gen-
eralize well to new protein families suggesting the approach is best used later in the lead
optimization process. We do show that adding information on the left out protein family
to the training set improves the performance of the RBFE predictions. However, noticeable
improvements would require the experimental binding affinity determination of at least four
ligands for the new protein family.

Work still needs to be done on both absolute and relative binding affinity predictors to
ensure that they are learning robust models of the intermolecular interactions. Future work
should focus on including additional symmetries involved in RBFE in the predictive models,

such as cycle closure. 343

Including the Leonsistency term, focused on the symmetry of the
relative and absolute binding affinity prediction, was able to increase the performance of
our RBFE predictions, therefore including higher order symmetries of the RBFE problem
may enhance the performance of future models. Rotational symmetries of the inputs can
be addressed with SE(3)-equivariant convolutions,?® rather than a rotational loss. Adding
uncertainty quantification3”3° to the predictive model could enable large performance im-

provements with fewer ligands during finetuning by focusing on the ligands with the greatest

uncertainty according to the RBFE model.
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Conclusion

Convolutional Siamese networks are capable of RBFE prediction (Figure 3). We find that
higher capacity CNN models used in the arms of the Siamese network increases the predictive
performance of the model. Our multitask loss is able to boost the performance of the RBFE
prediction in comparison to only calculating a loss on the RBFE (Table 1). This indicates
that RBFE prediction is aided by increased regularization of the CNN latent space. The
latent space subtraction of the Siamese network is able to implicitly embed the reverse
symmetry of the RBFE prediction. However, the reverse symmetry is learnable without
the latent space subtraction when the model is trained on both orderings of ligands for
RBFE prediction. We note that our convolutional Siamese network’s performance is less
consistent when applied to out of distribution examples (Figures 4, 5, 6). The Siamese
network can adapt to out of distribution examples via injection of training examples from
the new distribution through either finetuning or baseline training. Our model can make
RBFE predictions in significantly less time than FEP methods, but requires experimentally
determined free energies of several ligands in a congeneric series to outperform the RBFE
predictions of FEP methods. The convolutional Siamese network provides a faster alternative
to more expensive FEP methods later in lead optimization when affinity information has
been experimentally determined for more ligands in the congeneric series. Improvements
to the RBFE prediction may be found by exploiting other symmetries of RBFE, like cycle
consistency. We provide the source code and data for use at our github repo: www.github.

com/drewnutt/DDG/
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