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a b s t r a c t 

This paper proposes a novel reconstruction approach to compressive spectral imaging (CSI) with panchro- 

matic side information, which is based on the notion of approximate rank-order statistics. To that end, 

we assume that the signal of interest is sufficiently smooth on an unknown graph. When restricted to 

the family of path graphs, we show that the best path is indeed the rank-order path graph induced by 

the signal. That is, the path graph whose edge structure is given by the permutation that sorts the en- 

tries of the signal in ascending order. Our goal is to show that smoothness on rank-order path graphs 

inferred from the rank-order statistics of a co-registered panchromatic signal can be used to find accu- 

rate spectral image estimates from a compressive snapshot of the scene. We derive theoretical properties 

of rank-order path graphs and give illustrative examples of their use in signal recovery from undersam- 

pled measurements. Our approach leads to solutions with a closed-form, found efficiently by iterative 

inversion of highly sparse systems of linear equations. We evaluate our method through an experimental 

demonstration and extensive simulations. Our method performs notably better against a bilateral-filter 

graph model, adapted to the task, and some traditional and state-of-the-art algorithms. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The recovery of a signal from an incomplete or limited num- 

er of linear observations appears in numerous applications, rang- 

ng from medical imaging and seismic exploration to baggage and 

argo inspection in homeland security. Due to the underdeter- 

ined nature of the problem, infinitely many signals may produce 

he same set of observations, and therefore to identify the one that 

s closest to the underlying signal of interest, we need to rely on 

rior knowledge of the signal. The solution to the inverse problem 

s thus the signal that best satisfies the prior knowledge and, si- 

ultaneously, fits the observations to a certain level. 

The premise that most signals have a sparse representation is a 

opular form of prior knowledge. In this setting, the signal of in- 

erest is assumed to be sparse (or compressible) on a pre-specified 

ictionary, and the solution to the inverse problem is given by 

he signal with the sparsest representation that complies with the 
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easurements. Sparsity has motivated the creation of prior models 

uch as block-sparsity and union-of-subspace models, which inte- 

rate additional knowledge about sparsity-pattern disposition, thus 

eading to improved sparsity-based prior models [1] . 

In the last decade, numerous prior models that go beyond spar- 

ity have been proposed. Plug and Play (PnP) prior models, for in- 

tance, exploit the abundance of denoising algorithms by enabling 

heir integration as prior models for general inverse problems [2] . 

ince denoising algorithms are not necessarily cast as an optimiza- 

ion problem with a precise regularization function, PnP-based al- 

orithms may have ill-defined convergence properties, leading to 

he development of regularization by denoising (RED), which aims 

t exploiting denoising priors through an explicit regularization 

unction [3,4] . More recently, there has been interest towards de- 

eloping data-driven prior models, e.g., deep priors [5] . The idea is 

o discover the necessary low-level statistical information from the 

vailable data so as to generate prior models, which require little 

o no human input, and are able to outperform traditional hand- 

rafted priors. 

Due to the advances in the field of graph signal processing 

GSP) [6] , a lot of attention is being devoted recently to develop 

raph-based prior models, leading to notable performance in in- 
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erse problems such as light field super-resolution [7] , blind image 

eblurring [8] , tomographic reconstruction [9] , and medical image 

usion [10] to name a few. This special class of prior models can 

e easily integrated into inverse problems, often invoked by min- 

mizing a differentiable convex objective, referred to as the graph 

aplacian quadratic form. The associated graph is frequently con- 

tructed by defining nearest neighbor relationships among the ele- 

ents of a related complementary signal 1 , weighted by a Gaussian 

ernel with a certain bandwidth parameter. 

To advance on that front, this paper develops a novel graph- 

ased model for compressive spectral imaging (CSI) with panchro- 

atic side information that not only departs from the Gaussian 

ernel approach often used in other applications but also, to the 

est of our knowledge, is the first to exploit the concept of 

moothness on graphs for CSI. In particular, by adopting a signal 

epresentation perspective, we demonstrate that when the graph 

s restricted to the family of path graphs with vertex set V = 

 1 , 2 , . . . , n } , a signal of interest x ∈ R 
n on V is best represented by

he path graph with edge set E ⊂ V ×V given by: 

 = { (r −1 
i 

, r −1 
i +1 

) : i = 1 , . . . , n − 1 } , 
here r −1 = r −1 

1 
r −1 
2 

. . . r −1 
n is the permutation of V that sorts the

ntries of x in ascending order, that is 

 r −1 
1 

≤ x r −1 
2 

≤ . . . ≤ x r −1 
n 

. 

ince the inverse permutation r of r −1 forms the rank-order statis- 

ics of x , the path graph constructed by using r −1 is referred to as

he rank-order path graph induced by x . Since in practice we do not

now the rank-order statistics of the signal to construct the rank- 

rder path graph, we rely on the notion of approximate rank-order 

tatistics. Specifically, we assume there is a mechanism to provide 

pproximate ranks, ˆ r 1 ̂ r 2 . . . ̂  r n in such a way that the induced order 

tatistics of the signal x , that is 

 ˆ r −1 
1 

, x ˆ r −1 
2 

, . . . , x ˆ r −1 
n 

re sufficiently smooth. We note that to understand this deeply, we 

ay need to resort to the theory of concomitants of order statis- 

ics, or equivalently induced order statistics [11,12] , which is out of 

he scope of the paper. 

In addition to providing a theoretical study of rank-order path 

raphs in the context of signal recovery from undersampled linear 

easurements, we show the potential of rank-order path graphs 

o tackle the problem of reconstructing spectral images from com- 

ressive measurements. In imaging spectroscopy, we would like to 

haracterize a scene of interest by sensing large amounts of spatial 

nformation across a multitude of frequency bands. Since the effi- 

ient sensing of all these bands is challenging, compressive spec- 

ral imaging (CSI) was developed to reconstruct a spectral image 

rom a single coded snapshot of the scene [13,14] . However, when 

he scene of interest contains fine spatial details and diverse spec- 

ral content, a single coded snapshot may be insufficient to allow 

ccurate spectral-image estimates, and we can often rely on broad- 

and panchromatic detectors that provide side information to im- 

rove reconstruction quality [15–17] . This poses an ideal scenario 

here the rank-order statistics of the side information can be used 

o construct approximate rank-order path graphs, which are suit- 

ble to regularize the CSI inverse problem. Since the rank-order 

tatistics are a statistical property of scalar data, there may be con- 

ern about their extension to multivariate data. We thus present a 

atural definition of multivariate rank-order statistics, which can 

e used in that setting. 
1 A signal related to the signal of interest, which contains desirable properties 

hat we would like to impose on our signal estimate. 

s

m

r

u

2 
.1. Paper organization 

The remainder of the paper is organized as follows. 

ection 2 states the problem of signal recovery from under- 

ampled linear measurements, and how to solve it based on 

parse representations and smoothness on graphs. Section 3 de- 

nes the concept of rank-order path graphs, states some of their 

roperties, and explains how to use smoothness with respect 

o (approximate) rank-order path graphs to solve the problem. 

ection 4 develops an illustrative example. Section 5 states the 

roblem of CSI with side information, explains some traditional 

pproaches, and develops algorithms to tackle the problem based 

n smoothness on graphs, and in particular rank-order path 

raphs and the bilateral filter graph. Section 6 presents experi- 

ental results with simulated and real data. Section 7 concludes 

he paper. 

. Signal recovery from undersampled linear measurements 

Consider the problem of signal recovery from a limited num- 

er of linear measurements. The goal is to reconstruct an unknown 

ignal of interest x ∈ R 
n from a vector of (noisy) measurements 

 ∈ R 
m such that 

 = A x + e, (2.1) 

here A ∈ R 
m ×n is a sensing matrix with fewer rows than columns, 

.e., m < n , and e is an additive noise term. Since there are infinitely

any signals that comply with the measurements, some form of 

egularity on the feasible set of signals must be imposed to be able 

o recover the original signal [18] . 

Under the assumption that x belongs to the set of s -sparse sig- 

als M s = { x ∈ R 
n , 

∥∥�T x 
∥∥
0 

≤ s } , where s represents the sparsity

evel of a signal on a given dictionary �, an accurate estimate ˆ x of 

he signal x can be obtained by solving the problem [1,18] : 

in 
x ∈ R n 

‖ �T x ‖ 1 s.t. ‖ A x − y ‖ 2 ≤ ε (2.2) 

rovided that A satisfies the null-space property when the noise 

evel ε = 0 or similarly the restricted isometry property (RIP) when 

≥ 0 . In this work, however, we depart from the � 1 -regularization 

roblem and instead propose to reconstruct the signal of interest x 

y solving the problem: 

in 
x ∈ R n 

x T L G x s.t. ‖ A x − y ‖ 2 ≤ ε, (2.3) 

here L G is the graph Laplacian of an undirected graph G . As will

e elaborated, the problem (2.3) suggests that the best solution to 

he underdetermined system of linear Eq. (2.1) is the signal that 

s smoothest with respect to G . Note that the problem (2.3) can 

e viewed from the point of view of signal recovery on graphs 

19] for certain sensing matrices A . In our case, however, the ma- 

rix A does not necessarily perform an operation on the graph. 

he problem (2.3) can instead be regarded as a particular instance 

f kernel-based reconstruction, where L G defines a topology-based 

ernel [20] . 

. Rank-order path graphs 

We now define formally the concept of rank-order path graph 

nd smoothness with respect to a graph. Then, we derive impor- 

ant theoretical results, stated in the form of theorems and propo- 

itions, which can be leveraged to design graph-based smoothness 

odels for signal recovery. Last, we study the problem of signal 

ecovery from undersampled measurements and how to solve it 

sing rank-order path graphs. 



J.F. Florez-Ospina, D.L. Lau, D. Guillot et al. Signal Processing 201 (2022) 108707 

Fig. 1. Illustration of two different path graphs on V = { 1 , 2 , 3 , 4 , 5 } . 
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.1. Graphs, permutations, and rank-order path graphs 

An undirected graph G = (V, E, w ) is a triple, consisting of a ver-

ex set V = { 1 , 2 , . . . , n } , an edge set E ⊂ V ×V , and a nonnegative

eight function w : E �→ [0 , ∞ ) such that w (i, j) = w ( j, i ) > 0 for

i, j) ∈ E, and w (i, j) = 0 for (i, j) / ∈ E. In this work, we assume that

n edge (i, j) is an unordered pair of vertices i, j ∈ V , and graphs

re not allowed to have self-loops, i.e., (i, i ) / ∈ E for any i ∈ V . Also,

hen w is unspecified, we assume the graph is unweighted, or 

quivalently that w (i, j) = 1 for (i, j) ∈ E and zero otherwise. 

The adjacency matrix W G of G is an n × n matrix whose en- 

ries W i j are given by the weight function w (i, j) at the edge

i, j) ∈ V ×V , i.e., W i j = w (i, j) . By definition w (i, j) = w ( j, i ) , and

herefore we have that the adjacency matrix W G is symmetric, i.e., 

 G = W 
T 
G . The degree matrix D G of G is an n × n diagonal matrix

hose diagonal entries D ii are given by 
∑ n 

j=1 w (i, j) . The graph 

aplacian L G ∈ R 
n ×n of G is an n × n matrix whose diagonal entries

 ii are given by 
∑ n 

j=1 w (i, j) and off-diagonal entries L i j are given 

y −w (i, j) , equivalently 

 G = D G − W G . (3.1) 

n important characteristic of the graph Laplacian is that it is sym- 

etric positive semidefinite, thus its eigenvalues are real and non- 

egative. 

A permutation σ of the set V can be defined by (1) a lin- 

ar ordering σ = σ1 σ2 . . . σn −1 σn where σi ∈ V is listed exactly 

nce; (2) a bijective map σ : V �→ V such that σ (1) = σ1 , σ (2) =
2 , . . . , σ (n − 1) = σn −1 , σ (n ) = σn . Sometimes, we may need to

epresent σ as a permutation matrix P ∈ { 0 , 1 } n ×n such that 

 = 

n ∑ 

j=1 

e j e 
T 
σ j 

, 

here e j , j = 1 , . . . , n denote the standard basis. Equivalently, we

an generate P by permuting the rows of the n × n identity matrix 

ccording to σ . 

To simplify notation, let S n be the set of all possible permuta- 

ions of V . 

xample 3.1. Consider the set S 3 of permutations of V = { 1 , 2 , 3 } .
hen S 3 consists of the permutations 123, 132, 213, 231, 312, and 

21. The permutation 231 ∈ S 3 can be written as σ (1) = 2 , σ (2) =
 , σ (3) = 1 , or 
 

0 1 0 
0 0 1 
1 0 0 

] 

. 

xample 3.2. A path graph on the vertex set V = { 1 , 2 , . . . , n } is a
raph G = (V, E) with edge set E ⊂ V ×V given by 

 = { (σ1 , σ2 ) , (σ2 , σ3 ) , . . . , (σn −1 , σn ) } 
here σ is a permutation of V . Fig. 1 shows pictorial representa- 

ions of a pair of path graphs on V = { 1 , 2 , 3 , 4 , 5 } , which are asso-

iated with the permutations 12345 and 13542. 

Further, let L n be the set of possible path graphs on V = 

 1 , . . . , n } . It follows that for G ∈ L n , there exist a permutation

∈ S n such that the edge set E of G is given by { (σi , σi +1 ) } n −1 
i =1 

. 
3 
efinition 3.3. Let x = (x 1 , . . . , x n ) 
T ∈ R 

n be a signal on the ver-

ex set V = { 1 , . . . , n } . The path graph G ∈ L n is said to be the

ank-order path graph induced by x if the permutation r −1 = 

 
−1 
1 

r −1 
2 

. . . r −1 
n ∈ S n associated with the path graph G satisfies: 

 r −1 
1 

≤ x r −1 
2 

≤ . . . ≤ x r −1 
n 

, (3.2) 

here x 
r −1 
i 

denotes the i − th order statistic x (i ) of the entries of x . 

The inverse permutation r of r −1 in S n forms the rank-order 

tatistics of x ; that is, x j has rank r j among the entries of x . To

llustrate the concept, consider the following example. 

xample 3.4. Let x = (0 . 53 , 0 . 25 , 0 . 10 , 0 . 77 , 0 . 42) T be a signal on

he vertex set V = { 1 , . . . , 5 } . Observe that 
 3 = 0 . 10 ≤ x 2 = 0 . 25 ≤ x 5 = 0 . 42 ≤ x 1 = 0 . 53 ≤ x 4 = 0 . 77 . 

hus, we obtain that r −1 = 32514 . The associated path graph is 

herefore G ∈ L 5 with edge set E given by: 

 = { (3 , 2) , (2 , 5) , (5 , 1) , (1 , 4) } . 
lso, note the rank-order statistics of x are given by r = 42153 ∈
 5 , which can be verified to be the inverse permutation of r −1 as

entioned above. 

.2. Smoothness with respect to rank-order path graphs 

Consider a graph G on the vertex set V = { 1 , . . . , n } , and let x ∈
 
n be a signal on V . Then, the smoothness of x with respect to G is

efined by Shuman et al. [21] : 

 �→ x T L G x. (3.3) 

As elaborated in [21] , the smoothness of a graph signal varies 

epending on the underlying graph on which it resides. That is, a 

ignal, which may be considered smooth on a given graph, may 

o longer be smooth on a different graph. In the following theo- 

em, we show that when the underlying graph G is restricted to 

he set of path graphs L n , the path graph on which a signal x is

he smoothest is the rank-order path graph induced by x . 

heorem 3.5. Let x = (x 1 , x 2 , . . . , x n ) 
T ∈ R 

n and let r −1 ∈ S n be a

ermutation such that 

 r −1 
1 

≤ x r −1 
2 

≤ . . . ≤ x r −1 
n 

. (3.4) 

hen the function F (G ) = x T L G x achieves a global minimum on L n at

he graph G 
∗ with edge set E = { (r −1 

i 
, r −1 

i +1 
) } n −1 

i =1 
. 

roof. See Appendix A �

This theorem states the fundamental principle of using rank- 

rder path graphs to regularize inverse problems. As elaborated 

hortly, when we know the rank-order statistics of a signal of inter- 

st, and a few underdetermined linear observations of the signal, 

t is possible to find accurate estimates of a variety of signals using 

moothness with respect to rank-order path graphs. 

Rank-order statistics can naturally be extended to multivariate 

ignals (e.g., spectral images or video). To generalize the concept, 

e rely on the notion of smoothness with respect to a collection 

f signals. More formally, the smoothness of a collection of signals, 

 1 , x 2 , . . . , x L ∈ R 
n with respect to G is given by Kalofolias [22] : 

 �→ tr (X T L G X ) , (3.5) 

here X ∈ R 
n ×L is such that X = (x 1 , x 2 , . . . , x L ) . Note that when

 = 1 , (3.5) reduces to (3.3) . 

By analogy to the case where X consists of only a signal 

 Theorem 3.5 ), we define the multivariate rank-order statistics of X

o be the inverse permutation associated with the path solving the 

roblem: 

in 
G ∈L n 

F (G ) := tr (X T L G X ) . (3.6) 
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Fig. 2. Geometric illustration of underdetermined system of linear equations subject to ordering constraints. Left, the shaded region illustrates the ordering relationship 

between the components of x = (x 1 , x 2 ) 
T , i.e., x 2 ≤ x 1 . Right, the contour lines of the objective function, which favor signals whose induced order statistics are smooth. 
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entries. 
n particular, such a path is a Hamiltonian path of minimal length, 

nd can be found by optimizing over the set of permutations S n as 
tated in the following proposition. 

roposition 3.6. Problem (3.6) can be reformulated as follows: 

in 
G ∈L n 

tr (X T L G X ) = min 
σ∈S n 

n −1 ∑ 

i =1 

‖ x σi 
− x σi +1 

‖ 
2 
2 , (3.7) 

here x σi 
= (x σi 1 

, . . . , x σi L 
) is the σi - th row of X. 

roof. See Appendix B �

.3. Spectral properties of rank-order path graphs 

A smooth signal on the graph G is often described as having 

ow-pass spectrum with respect to the spectral basis of L G . That 

s, most of the signal’s energy is concentrated on the eigenvectors 

ssociated with the smallest eigenvalues. In the case of a (rank- 

rder) path graph, the spectral basis has an explicit form, and 

herefore this can facilitate graph signal processing on the spec- 

ral domain of path graphs. As elaborated in [23,24] , a path graph 
˜  with vertex set V = { 1 , . . . , n } and edge set E = { (i, i + 1) } n −1 

i =1 
has

raph Laplacian L G with eigenvalues ˜ λk ≥ 0 , k = 0 , . . . , n − 1 such

hat 

˜ 
k = 2 − 2 cos ( 

πk 

n 
) , (3.8) 

nd eigenvectors ˜ u k ∈ R 
n , k = 0 , . . . , n − 1 with entries ˜ u jk given by

˜  jk = 

√ 

2 

n 
cos 

(
( j + 

1 
2 
) π

n 
k 

)
, j = 0 , . . . , n − 1 , (3.9) 

here ˜ u 0 , ̃  u 1 , . . . , ̃  u n −1 are also referred to as the DCT-2 basis. 

e note that in the case where k = 0 , the value of ˜ u jk has to

e divided by 
√ 

2 so that the eigenvectors form an orthonor- 

al basis [24] . That is, the first eigenvector ˜ u 0 is given by ˜ u 0 = 

1 √ 

2 
( 
√ 

2 
n , . . . , 

√ 

2 
n ) 

T . More generally, the spectral basis of a rank- 

rder path graph is a permuted version of the DCT-2 basis as 

tated in the following theorem. 

heorem 3.7. As before, let ˜ G ∈ L n be the path graph with edge set 

iven by (1 , 2) , (2 , 3) , . . . , (n − 1 , n ) . Then for any G ∈ L n , its graph
4

aplacian L G is given by 

 G = P 
T L ̃ G P (3.10) 

or some permutation matrix P . As a consequence, the eigenvectors u k 
f L G are given by 

 k = P 
T ˜ u k , (3.11) 

here ˜ u k , k = 0 , . . . , n − 1 are defined in (3.9) . 

roof. See Appendix C . �

.4. Signal recovery using rank-order path graphs 

As mentioned in Section 2 , we would like to recover a signal of 

nterest x ∈ R 
n from a set of noisy measurements y ∈ R 

m obeying

 = A x + e as in (2.1) , by solving the problem (2.3) . In doing so, we

ow assume the graph G to belong to the family of path graphs L n ,

nd in particular the path graph induced by available rank-order 

nformation of the signal of interest. The problem is thus to mini- 

ize x T L G x over the set { x : ‖ A x − y ‖ 2 ≤ ε} . 
At first, it would appear that the rank-statistics of a signal tell 

verything there is to know about x , but there is an abundance of 

ignals with the same rank-order statistics. So, even if we have a 

imited number of observations from the signal, we may still be 

nable to recover an accurate estimate of x . Therefore, in addi- 

ion to suitable rank-order information, the signal of interest has 

o be sufficiently smooth with respect to the given rank-order path 

raph. We illustrate the concept in the following example. 

xample 3.8. Consider the recovery of a two-dimensional signal 

 = (x 1 , x 2 ) 
T from a scalar linear measurement y = A x with A =

2 , 1) . Furthermore, assume that the rank statistics r of x are given

y r = (2 , 1) , so x ∈ M = { x ∈ R 
2 , x 2 ≤ x 1 } . Note that the set { x ∈

 
2 , A x = y } ∩ { x ∈ R 

2 , x 2 ≤ x 1 } , highlighted in blue in Fig. 2 (left),
oes not allow us to distinguish a unique estimate of x . Observe, 

owever, that under the assumption that x is smooth with re- 

pect to the path graph G ∈ L 2 with edge set { (2 , 1) } , it is pos-
ible to identify unique estimates of x by minimizing R (x ) over 

 x ∈ R 
2 , A x = y } ∩ { x ∈ R 

2 , x 2 ≤ x 1 } . Since R (x ) = (x 1 − x 2 ) 
2 de-

reases along y = 2 x 1 + x 2 as the entries of x take similar values

s illustrated by the colored contour lines in Fig. 2 (right), it can be 

aid that R (x ) will favor or prefer signals with smooth reordered 
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Fig. 3. Signal of interest in blue on the left and noisy undersampled measurements on the right. On the right, in red and black, we show the rearrangements of the signal of 

interest when permuting its entries using ̂  r −1 and r −1 , which encode approximate and exact rank-order statistics of the signal. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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.5. Approximate (Multivariate) rank-order statistics 

In practice, the (multivariate) rank-order statistics of a signal of 

nterest have to be estimated from readily available data. A pos- 

ible approach to this problem is to borrow the rank-order statis- 

ics of a related signal that can be inexpensively acquired. In CSI 

ith side information, for instance, the rank-order statistics of a 

anchromatic image can be used as approximate multivariate rank- 

rder statistics of the spectral image of interest. Another possible 

pproach is to estimate the (multivariate) rank-order statistics from 

 collection of noisy estimates of the signal of interest by exploit- 

ng the notion of (multivariate) rank-order statistics in Section 3.2 . 

his problem, however, does not have closed form, and its solu- 

ion can be found as a particular instance of the Traveling Sales- 

an Problem (TSP). 

. Illustrative examples 

We now develop an example of signal recovery from noisy un- 

ersampled linear measurements, where a one-dimensional signal 

ould like to be reconstructed using smoothness with respect to 

ank-order path graphs induced by approximate rank-order infor- 

ation. 

Let x = (x 1 , . . . , x n ) 
T , depicted in blue in Fig. 3 (left), be the sig-

al of interest, and let y = (y 1 , . . . , y m ) , depicted in Fig. 3 (right),

enote a set of noisy undersampled measurements from x such 

hat y = A x + e where A ∈ R 
m ×n is a sensing matrix with entries

rawn from N (0 , SD := 1) , and e ∈ R 
m is a noise term with entries

rawn from N (0 , SD := 0 . 3) . 

The idea is to reconstruct x from y through the program (2.3) , 

here it is assumed that x is the smoothest with respect to a path

raph G ∈ L n whose structure depends on a given permutation as 

xplained in Ex. 3.2 . An important question to ask is: what path 

raph should we use to obtain accurate signal estimates? In this 

xample, we use three different path graphs to show how this se- 

ection affect the reconstruction result. 

The first path graph is constructed based on the permutation 

∈ S n obtained by sorting the temporal position of the samples 

rom smallest to largest. The second graph is constructed based on 

he permutation ˆ r −1 obtained by sorting the elements of a piece- 

ise constant approximation of the original signal in ascending or- 

er. This permutation arranges the elements of the original signal 

epicted in blue in Fig. 3 (left) in approximately ascending order as 

epicted by the signal in red in Fig. 3 (left). The third path graph

s the rank-order path graph induced by the original signal, which 
5 
s based on the permutation r −1 ∈ S n and sorts the entries of the 
riginal signal in ascending order as depicted by the black signal 

n Fig. 3 (left). 

For n = 256 , m = 90 , signal estimates and error signals are

hown in Fig. 4 ; where the extent of the feasible set { x : ‖ A x −
 ‖ 2 ≤ ε} is given by ε = SD 

√ 

m + 

√ 

2 m with SD = 0 . 3 due to the

act that the norm of the error term e is a chi-square random vari-

ble [18] . In the figure, from left to right, we can observe that 

he estimate’s accuracy is best when we have complete knowledge 

f the rank-order statistics of x . However, when we have partial 

nowledge, as illustrated in the center figure, the signal estimate 

ay still be sufficiently accurate depending on the application. To 

un the numerical experiment, we used the CVX convex optimiza- 

ion toolbox [25] . 

In general, the estimation error ‖ ̂ x − x ‖ 2 of a signal estimate ˆ x , 

btained by the program (2.3) , is controlled by the smoothness of 

he signal of interest x with respect to the pre-specified graph G . 

ig. 5 shows the graph spectrum of x on the path graphs induced 

y σ , ˆ r −1 , r −1 . As Theorem 3.5 indicates, x is the smoothest on the

ath graph induced by r −1 , and thus its spectrum is concentrated 

he most at the lowest frequencies as shown in Fig. 5 on the right.

he spectrum of x is not as concentrated on the remaining path 

raphs, but we can notice that partial knowledge of the rank-order 

tatistics may also lead to high energy compaction as shown in 

ig. 5 on the center. 

. Compressive spectral imaging using rank-order path graphs 

We now consider the problem of compressive spectral imaging 

CSI). Here the aim is to reconstruct a spectral image of L bands, 

 1 , X 2 , . . . , X L ∈ R 
n 1 ×n 2 from a single spatio-spectrally coded snap-

hot Y ∈ R 
n 1 ×n 2 + L −1 , captured by a CSI camera, where the relation- 

hip between { X l } L l=1 
and Y is given by 

 ≈ H x, (5.1) 

here y = vec (Y ) , x = ( vec (X 1 ) 
T , . . . , vec (X L ) 

T ) T , and H denotes

 sensing matrix, arising from the discretization of a continu- 

us imaging model. In this work, we assume that the CSI cam- 

ra is a single disperser coded aperture snapshot spectral imag- 

ng (SD-CASSI) system, depicted in the horizontal (or primary 

rm) of the dual-camera compressive spectral imager (DC-CSI) 

n Fig. 6 . At a basic level, a SD-CASSI system encodes a collec- 

ion of L images, captured at different wavelengths, into a sin- 

le snapshot. In doing so, the images are first spatially modulated 

y a wavelength-independent random coded aperture τ , then a 
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Fig. 4. Illustration of signal recovery from undersampled linear measurements using rank-order path graphs, encoding rank-order information of the signal of interest with 

different levels of accuracy. From left to right, we display signal estimates for the cases where there is no, partial, and complete knowledge of the rank-order statistics of the 

signal of interest. 

Fig. 5. Graph spectrum of the signal of interest x (depicted in blue in Fig. 5 ) on three different path graphs. From left to right, the first 64 coefficients of the spectrum of 

x on the temporal-order path graph, an approximate rank-order path graph, and the rank-order path graph induced by x . The matrix P is thus given by the identity matrix, 

the permutation matrix induced by ˆ r −1 , and the permutation matrix induced by r −1 , respectively. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 6. Schematic of single disperser CASSI system with side information. 
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avelength-dependent shift, along the x -axis, is introduced to each 

f the images by the prism, and finally the spatio-spectrally coded 

mages are integrated along the wavelength domain by the focal 

lane array FPA1 [26,27] . 

As mentioned in Section 2 , since (5.1) is underdetermined and 

pproximate, we cannot simply take the inverse of H to obtain x . 

nstead, we search for the spectral image that best describes our 

rior knowledge of the scene, and simultaneously fits the measure- 

ents to a pre-specified noise level. 

In the last decade, numerous approaches to CSI, which use dif- 

erent forms of prior knowledge, have been developed from the 

ost traditional ones based on compressive sensing (CS) to the 

ost recent ones based on deep learning. For a comprehensive re- 

iew on the topic, we refer the reader to the recent signal process- 

ng magazine in snapshot compressive imaging [13,14] . For the pur- 
6 
ose of this paper, we only review state-of-the-art methods related 

o CS. In particular, approaches based on sparse representation and 

otal variation. 

Sparse representation approaches can be formulated as the 

roblem (2.2) , where it is assumed that the spectral image of in- 

erest has the sparsest representation on a given dictionary �. A 

uitable dictionary can be either selected as a pre-specified set of 

unctions, or designed based on signal examples [28] . In our ex- 

eriments, we define � = �2D-W 
� �1D-DCT , where �2D-W 

denotes 

wo-dimensional Symmlet-8 wavelet transform basis, and �1D-DCT 

enotes discrete cosine transform basis [13,29–31] . Hereafter, this 

pproach is referred to as WDCT. 

Similarly, the total variation model for spectral images assumes 

hat the spectral image has minimal total-variation (TV) norm 

 x ‖ TV over the feasible set defined by the measurements. Math- 
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Fig. 7. Spectral and panchromatic images on a two dimensional domain �. The lo- 

cal rank-order information of Z at �k leads to a collection of rank-order paths G k 
on �. The G k ’s are then merged into a single graph G by (5.6) . 
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matically, the reconstruction problem can be formulated as: 

min 
 ∈ R 

n 1 n 2 L 
‖ x ‖ TV s.t. ‖ y − H x ‖ 2 ≤ ε (5.2) 

here ε ≥ 0 is the noise level. There are several ways to define the 

otal variation of a spectral image, but these often result from the 

xtension of the total variation of a scalar image [32] to the case 

f vector (or multichannel) images [26,33,34] . In our experiments, 

 x ‖ TV is given by 
∑ L 

l=1 

∑ 

i, j 

∥∥∇(F l ) i j 
∥∥
2 

where ∇ ≈ ( d 
dx 

, d 
dy 

) T is a 

rst order finite difference approximation of the gradient [33] . It is 

mportant to note that the TV model acts as a baseline model for 

SI. Not only does it exhibit comparable performance with respect 

o recent state-of-the-art methods based on deep learning [35] , but 

t also serves as a good initialization to more elaborate methods 

uch as [36,37] , which exploit non-local similarity and low-rank 

onstraints. 

.1. CSI with side information 

When the scene of interest contains fine spatial details and di- 

erse spectral content, a single CASSI snapshot may not be suffi- 

ient to attain a desirable level of accuracy. As a result, in the last 

ears, several dual-camera systems such the system in Fig. 6 , have 

een proposed [16,17,38] . In this context, in addition to the pri- 

ary arm, snapshot CSI systems contain a side-information cam- 

ra, which captures a panchromatic or color projection of the spec- 

ral image. The extra information can be leveraged to design adap- 

ive sparse representation reconstruction algorithms [39] , leading 

o improved reconstructions. Also note that the relationship be- 

ween the side image Z ∈ R 
n 1 ×n 2 , captured by the focal plane array

PA2, and the spectral image { X l } L l=1 
can be modeled as: 

 ≈ R x, (5.3) 

here z = vec (Z) , x = ( vec (X 1 ) 
T , . . . , vec (X L ) 

T ) T , and R is such that

 = [ s 2 (λ1 ) , . . . , s 2 (λL )] � I , 

here I denotes the n 1 n 2 × n 1 n 2 identity matrix, and s 2 (λl ) de-

otes the spectral sensitivity of the FPA2 at the lth spectral band. 

s a result, we may add an additional constraint, i.e., ‖ z − R x ‖ 2 ≤
˜ , to the feasible set in (2.2), (2.3) , and (5.2) , which is referred to

s using z as a direct measurement of { X l } L l=1 

emark 5.1. In practice, the side information matrix R has to be 

stimated through a calibration process. This supposes an addi- 

ional step that may be troublesome when the primary and sec- 

ndary detectors do not have the same quantum efficiency as 

oted by the seminal work in CSI with side information [16] . In 

ur experiments with simulated data, we study the effects on re- 

onstruction accuracy of including the side information as a direct 
7 
easurement. But, in our experiments with real data, we don’t use 

t as a direct measurement. As will be demonstrated, our approach 

oes not need prior knowledge of the side information matrix R to 

enefit from the side information. 

.2. Spectral image estimation using rank-Order path graphs 

We now address the CSI problem by using smoothness on rank- 

rder path graphs. As mentioned in Section 3 , a signal is the 

moothest on a rank-order path graph induced by the signal itself, 

ut of course, in this setting, we do not know the signal of interest 

 , and we will thus borrow the rank-order statistics from the side 

nformation image z to construct the graph. 

Since the rank-order statistics of z may deviate from those of x , 

t is prudent to address the problem at a local level. This is a fairly

ommon approach in imaging inverse problems [40,41] . In partic- 

lar, we only use sets of local rank-order statistics from z, leading 

o a collection of local rank-order paths on V . To enable such a 

ollection to be used in problem (2.3) , a single graph G on V is

onstructed from the individual rank-order paths on V as follows: 

.2.1. Construction and aggregation of rank-order paths in CSI 

Recall that a spectral image X 1 , X 2 , . . . , X L ∈ R 
n 1 ×n 2 with vector

epresentation x ∈ R 
n 1 n 2 L such that x = ( vec (X 1 ) 

T , . . . , vec (X L ) 
T ) T 

an be assumed to reside on two-dimensional domain given by: 

= { 1 , . . . , n 1 } × { 1 , . . . , n 2 } . 
Given a panchromatic image Z on �, the idea is to construct 

he graph G on � based on the local rank-order statistics of Z as 

ollows. 

Define a collection of overlapping neighborhoods �k indexed by 

 ⊂ � such that � = 

⋃ 

k ∈ S �k . Particularly, in this work, �k is de- 

ned by: 

k = { (i 1 , i 2 ) ∈ � : k 1 ≤ i 1 ≤ k 1 + w 1 − 1 , k 2 ≤ i 2 ≤ k 2 + w 2 − 1 } , 
(5.4) 

here w 1 , w 2 ∈ N \ { 0 } define the size of �k , and S is defined by:

 = { (k 1 , k 2 ) ∈ � : (k 1 , k 2 ) ∈ S 1 × S 2 } , (5.5) 

here S 1 = { 1 + (i − 1) ds 1 } 
√ | S| 
i =1 

, and S 2 = { 1 + (i − 1) ds 2 } 
√ | S| 
i =1 

,

here ds 1 and ds 2 are selected such that adjacent �k ’s are 

verlapped to a certain degree. This is important because the 

ollection of graphs may result disconnected otherwise, causing 

lock artifacts during reconstruction. 

For each �k , perform the following procedure: 

1. Find an ordering of the elements of �k , i.e., �k = { s i } | �k | 
i =1 

such

that the values of Z at �k satisfy: 

Z s 1 ≤ Z s 2 ≤ . . . ≤ Z s | �k |−1 
, 

where Z s i denotes the value of Z indexed by two-dimensional 

coordinate associated with s i . 

2. Construct a graph G k = (�, E k ) on � with edge set E k given by

E k = { (s 1 , s 2 ) , (s 2 , s 3 ) , . . . , (s | �l 
k 
|−1 , s | �l 

k 
| ) } , 

As a last step, the collection of graphs { G k } | S| k =1 
are merged into

 single graph G by means of the following operation: 

 = (�, 

| S| ⋃ 

k =1 

E k ) . (5.6) 
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To shed light on the main elements of the aforementioned 

raph-construction process, Fig. 7 illustrates the spectral and 

anchromatic images residing on � and the construction of rank- 

rder paths on � as in Step 2. It can be observed that the rank-

rder statistics of Z at �k for k ∈ S lead to a collection of rank- 

rder paths on �. 

.2.2. Rank-order paths (ROPs) algorithm for DC-CSI reconstruction 

Given a compressive and panchromatic measurements Y ∈ 

 
n 1 ×n 2 + L −1 and Z ∈ R 

n 1 ×n 2 , acquired through the DC-CSI system 

n Fig. 6 , and provided a matrix model of the imaging system given

y H and R , a spectral image estimate of the scene can be obtained

y measuring the smoothness of the estimate with respect to a 

ollection of rank-order path graphs using the Algorithm 1 . 

lgorithm 1 ROPs. 

1: Input: compressive and side-info measurements Y and Z; pri- 

mary and side-info sensing matrices H and R ; dimensions of 

the spectral image n 1 , n 2 , L ; noise level ε ≥ 0 , and a side-

information flag w _ side ∈ { 0 , 1 } . 
2: Output: spectral image estimate ˆ x . 

3: Initialize S, w 1 , w 2 . 

4: Obtain a graph ˜ G by running the procedure in Sec. 5.2.1 pro- 

vided Z and S, w 1 , w 2 . 

5: if w _ side == 0 then 

6: Set A := H , and y := vec (Y ) . 

7: else 

8: Set A := [ H 
T , R 

T ] T , and y := [ vec (Y ) T , vec (Z) T ] T . 

9: end if 

0: Set ˆ x as the solution to the problem~(2.3) with G s.t. L G := I L �

L ˜ G , A , y , and ε, where I L denotes the identity matrix of size

L × L . 

11: Reshape ˆ x into a spectral image ˆ X 1 , . . . , ˆ X L . 

2: Return { ̂  X l } L l=1 

We note that a side information flag w _ side has been included 

n Algorithm 1 for the sake of completeness. This is because some 

pproaches exploit side information as a direct measurement i.e., 

 _ side := 1 . However, integrating side information by means of 

he side information matrix R may be inconvenient in certain set- 

ings as explained in Section 5.1 . Thus, in our experiments with 

eal data, we use w _ side := 0 . As will be shown with simulated 

ata, this setting does not affect the performance of our algorithm 

ignificantly, but instead the algorithm is able to run about 14 

imes faster than the case where w _ side := 1 . 

In simulations, when ε = 0 , the problem (2.3) can be posed as 

 quadratic program with equality constraints, as follows which re- 

uces to a system of linear equations [42] . Similarly, when ε > 0 ,

here exists α > 0 such that the problem (2.3) can be reformulated 

s a particular instance of Tikhonov regularization [42] . Specifi- 

ally, problem (2.3) can be reduced to the unconstrained program 

in x ‖ y − A x ‖ 2 
2 

+ αx T (I L � L Ḡ ) x , whose solution satisfies: 

A 
T A + α(I L � L ̄G )) x = A 

T y, (5.7) 

here I L denotes an identity matrix of size L × L , and Ḡ denotes the

raph with vertex set � obtained from the side information as in 

tep 4 of Algorithm 1 . The regularization term x T (I L � L Ḡ ) x can be

xpressed as 
∑ L 

l=1 x l L Ḡ x l , where x 1 , . . . , x L form x . The regulariza-

ion term thus encourages spectral images which are sufficiently 

mooth with respect to Ḡ over the set of signals defined by the 

easurements. 

A typical approach to parameter selection is to optimize a cer- 

ain metric, e.g., PSNR, SSIM, or SAM, over the space of parame- 

ers. This approach in practice may not be straightforward because 

e often lack of a reference datacube to compute such metrics. To 
8 
vercome this difficulty, we can rely on simulations with noiseless 

ata using a spectral scene, hopefully with similar spatio-spectral 

haracteristics to that of the scene of interest. In the case of our 

ethod, this would avoid the need to tune a regularization param- 

ter, which may also be troublesome. 

We have noticed that the most influential parameter to select 

n our method is the size of subdomain �k determined by w 1 , w 2 

ven though the degree to which adjacent �k ’s overlap is also rel- 

vant to avoid block artifacts. We suggest the practitioner keep the 

verlap constant, say between 25 and 75 percent, and play with 

he subdomain’s size. Particularly, we assume that w 1 = w 2 and 

otice that the value of w 1 for good reconstructions with simu- 

ated data depends on the size of the spectral scene of interest as 

ell as its spatial content. As will be evident in the experimental 

esults, a scene of size 512 × 512 × 31 may require a larger w 1 than

 scene of size 256 × 256 × 31 . We note that, in our experiments,

he same set of parameters were used for all spectral datacubes 

egardless of their spatio-spectral content. In the experiments with 

eal data, however, the regularization parameter may vary depend- 

ng on the signal. 

.2.3. Bilateral filter graph (BFG) algorithm for DC-CSI reconstruction 

A reasonable question to ask is whether a different graph can 

e used for reconstruction or not. And the answer is yes indeed. 

n general, we need a graph on which the spectral image is suf- 

ciently smooth. Instead of using local rank-ordering information 

rom Z to construct a collection of paths on �, we can exploit, in- 

tead, distance-ordering information from Z by using a collection 

f bilateral-filter (BF) graphs on �. The BF graph arises in the con- 

ext of graph signal processing by interpreting the bilateral filter 

s a kernel-based graph [43] . Although the BF graph is well known 

or image denoising and various computer vision applications, e.g., 

44–47] , presumably such a graph has not been used before for 

ompressive spectral imaging. In the context of our paper, we thus 

ave adapted it to the CSI task to provide a comparison with a dif- 

erent graph-based smoothness model. 

Unlike in Section 5.2.1 , here we set S := �, and define �k =
 (i 1 , i 2 ) ∈ � : max {| i 1 − k 1 | , | i 2 − k 2 |} ≤ r} , where r ∈ N \ { 0 } de-
otes the radius of �k around k ∈ S. This definition of neighbor- 

ood is amenable to the fact that a bilateral filter graph has a star- 

ike network structure, where the center vertex is given by k . 

We now can adapt the graph construction procedure in 

ection 5.2.1 as follows: 

1. Construct a graph G k = (�, E k , w k ) on � with edge set given

by: 

E k = 

⋃ 

l 

{ (k, j) : j � = k ∈ �k } , 

and the weight function w k : � × � �→ [0 , ∞ ) given by: 

w k (i, j) = exp (−‖ i − j‖ 
2 
2 

2 δ2 
s 

) exp (−| Z i − Z j | 2 
2 δ2 

r 

) 

for (i, j) ∈ E k , and w k (i, j) = 0 otherwise, where δs , δr > 0 are

bandwidth parameters, and Z j denote the value of Z at j ∈ �k . 

In our experiments, the bandwidth parameters are set as δs = 

2 r, and δr = mean ({| Z i − Z j | 2 } (i, j) ∈ ⋃ 

k E k 
) . 

As a last step, the collection of graphs { G k } k ∈ S are merged into

 single graph G by means of the following operation: 

 = (V, 
⋃ 

k ∈ S 
E k , w ) , (5.8) 

here the weight function w : 
⋃ 

k E k �→ [0 , ∞ ) is defined by 

 (i, j) = 

∑ 

k w 
(k ) (i, j) 

|{ k ∈ S : w k (i, j) > 0 }| . (5.9) 
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Fig. 8. UDEL hyperspectral image database. RGB renderings of four hyperspectral datacubes (HSDC) used for performance evaluation of the signal recovery algorithms. The 

hyperspectral datacubes HSDC1, HSDC2, HSDC3, and HSDC4 consist of 31 spectral bands of size 2064-by-3088 pixels, ranging from 400 to 700 nm. 
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Fig. 9. Compressive and panchromatic snapshots of the HSDC2 in Fig. 8 , generated 

by simulated sensing matrices of the DCCSI in Fig. 6 . 
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. Experimental results 

We now evaluate the performance of the proposed graph-based 

odel ROPs (described in Section 5.2.2 ) and compare it against the 

forementioned traditional approaches TV and WDCT and a more 

ecent method DeSCI [36] , which are based on sparse represen- 

ation and low-rank minimization. In doing so, we reconstruct a 

ollection of spectral images of various scenes from simulated and 

eal measurements. In the case of simulated measurements, the 

erformance is assessed in terms of the structural similarity index 

SSIM) and the spectral angle mapper (SAM), which measure the 

patial and spectral fidelity of the reconstructed datacubes. In ad- 

ition, we include average reconstruction and graph-construction 

imes (R-TIME and GC-TIME). In the case of real measurements, 

e evaluate the performance of all approaches except the WDCT 

odel due to its inferior performance in simulations. In this con- 

ext, the spatial and spectral fidelity is judged by visual inspection 

f the reconstructed RGB renderings. In addition, we evaluate the 

econstructed spectral signatures at certain locations with respect 

o the reflectance spectra measured by a non-imaging spectrome- 

er, Ocean Optics USB20 0 0+, brought in close proximity with the 

arget location. 

.1. Noiseless simulated measurements 

For simulated data, we considered a total of 20 hyperspec- 

ral image datacubes, consisting of four datacubes from the UDEL 

atabase, captured at our lab and shown in Fig. 8 , eight dat- 

cubes selected at random from Harvard [48] , and eight dat- 

cubes selected at random from ICVL [49] . Specifics about the used 

atabases can be found in the supplementary materials. The goal is 

o reconstruct such datacubes from their compressive and panchro- 

atic snapshots. For convenience, the datacubes were downsam- 

led to the size 512 × 512 × L , where L = 31 represents the number

f frequency bands of a given datacube. 

By assuming the sensing matrices H and R are known, the com- 

ressive and panchromatic images y and z of a datacube can be 

enerated using the forward models (5.1) and (5.3) . As aforemen- 

ioned, H is set as a SD-CASSI matrix with binary random coded 

perture of size 512 × 512 with 50% transmittance, and the spec- 

ral sensitivities of the FPA1 and FPA2 are set to be one for all

avelengths. Fig. 9 shows simulated compressive and panchro- 

atic snapshots of the scene HSDC2 displayed in Fig. 8 . 

Provided the snapshots and sensing matrices, estimates of the 

pectral datacubes were obtained by running the reconstruction al- 

orithms in two regimes. In the first regime, the side information 

ignal z is not considered as a direct measurement, meaning that 

he feasible set of signals, or data-fidelity term, is determined by 

he CASSI’s snapshot y and sensing matrix H , i.e., { x ∈ R 
n 1 n 2 L : H x =

 } . In the second regime, the side information is considered as a 

irect measurement, and thus the feasible set of signals is further 
9 
onstrained as { x ∈ R 
n 1 n 2 L : H x = y, R x = z} . It is important to say

hat, regardless of the regime, the graph-based algorithms always 

ely on statistical properties (i.e., rank-order statistics, or radiomet- 

ic distances) of the side signal z to construct the graphs. 

Table 1 shows the average reconstruction performance of the 

bove mentioned methods ROPs, BFG, TV, WDCT, and DeSCI across 

ifferent datacubes. The best metrics are boldfaced. The column 

 / o indicates that side information is not included as a direct 

easurement in any of the methods, while the column w / in- 

icates the opposite. To reconstruct the datacubes based on the 

V and WDCT models, we used a fast algorithm based on alter- 

ating direction of multipliers, referred to as C-SALSA [50] , and 

he noise level ε, the maximum number of iterations MAXIT, and 

he tolerance TOL were set to 10 −8 , 10 0 0 0, and 10 −6 , respectively.

o reconstruct the datacubes based on the ROPs and BFG models, 

e used the Algorithm 1 in Section 5.2.2 and its adaptation with 

he bilateral-filter graph in Section 5.2.3 . For ROPs, the parame- 

ers of the neighborhood �k were set to w 1 = w 2 = 9 , and adja-

ent �k ’s were set to be at most 50 percent overlapped. For BFG, 

he neighborhood parameter was set to r = 3 . In step 10 of the

lgorithm 1 , the problem (2.3) was solved by a method based on 

onjugate gradients for sparse systems of linear equations, referred 

o as SYMMLQ [51] ; here, TOL and MAXIT were also set to 10 0 0 0,

nd 10 −6 . For DeSCI, we tried our best to provide the DeSCI with a

ood initialization via GAP-TV, and ran the rank-minimization part 

f the algorithm using the default settings. DeSCI was run without 

ide information due to the the time it takes for reconstructions, 

ut obviously we can expect it to improve with side information. 

As indicated by the columns w / o and w / in Table 1 , when

ide information is used as a direct measurement, the reconstruc- 

ion performance of all the methods increases, but this, in turn, 

ncreases the reconstruction complexity, leading to longer recon- 

truction times. In contrast, when side information is not used as 

 direct measurement, the reconstruction performance of all meth- 

ds decreases, but this, in turn, leads to faster reconstruction time. 

owever, note that our approach is able to maintain reconstruction 

ccuracy in both regimes, and therefore we may want to run our 

lgorithm in the first regime, w / o. To illustrate, consider the recon- 
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Fig. 10. Reconstructions from simulated measurements. RGB rendering of the original spectral datacube, and reconstructed RGB renderings obtained by the ROPs, BFG, TV, 

WDCT, and DeSCI models without side information as direct measurement. Also in the figure, original and reconstructed spectral signatures at locations P1, P2, and P3 

displayed on the original RGB image. In the legends, the values in parenthesis are SAM values in degrees; the smaller the better. 

Table 1 

Average performance metrics of our approach based on smoothness on graphs (ROPs and BFG), and two traditional approaches 

based on compressive sensing and low-rank minimization (TV, WDCT, and DeSCI) across different databases UDEL(4), HRVRD(8), 

and ICVL(8), where the number in parenthesis denotes the number of datacubes within each database. The columns w / and 

w / o indicate whether the reconstruction algorithm uses side information or not as a direct measurement of the spectral image 

of interest. Regardless of the column w / and w / o, ROPs and BFG always require the side information image to construct the 

graphs as described in Section 5 . 

ROPs BFG TV WDCT DeSCI 

SIDE INFO w / o w / w / o w / w / o w / w / o w / w / o 

UDEL(4) SSIM 0.96 0.97 0.88 0.95 0.82 0.97 0.76 0.91 0.82 

SAM ( ◦) 12.13 11.53 15.74 13.51 16.58 12.16 20.14 17.39 18.09 

R-TIME (min) 7.65 116.16 245.41 689.00 146.94 408.27 365.48 626.71 1214.01 

GC-TIME (sec) 1.06 1.22 196.15 191.42 - - - - - 

HRVRD(8) SSIM 0.99 0.99 0.93 0.98 0.89 0.98 0.83 0.94 0.89 

SAM ( ◦) 2.91 2.93 3.79 4.00 4.39 3.14 7.82 7.43 5.98 

R-TIME (min) 9.31 126.57 222.81 690.56 156.60 366.20 516.58 641.20 1330.18 

GC-TIME (sec) 1.15 1.12 217.69 193.65 - - - - - 

ICVL(8) SSIM 0.98 0.98 0.89 0.97 0.81 0.98 0.76 0.94 0.81 

SAM ( ◦) 2.35 2.26 3.22 3.02 3.89 2.46 5.39 4.69 4.82 

R-TIME (min) 7.99 107.98 181.10 679.83 150.24 379.94 486.80 772.99 1328.41 

GC-TIME (sec) 1.10 1.07 237.56 204.33 - - - - - 

10 
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Fig. 11. Box plots of SSIM and SAM values of reconstructed spectral images for different noise levels added to the compressive measurements. The higher the SNR, the less 

noisy the measurements. Our method ROPs w / o exhibits significantly higher performance than the comparing approaches over the entire collection of spectral images. 
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Fig. 12. Dual-camera compressive spectral imager. 

Fig. 13. Color images of the spectral scenes of interest. The color images were cap- 

tured by the side-information camera in Fig. 12 under the same illumination condi- 

tions used for the CASSI snapshot. The spectral signatures at the points P1, P2, P3, 

and P4 will be evaluated. 
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tructed RGB renderings in Fig. 10 ; here the reconstructed spectral 

mages were obtained without side information as a direct mea- 

urement. In such a regime, we can observe that our approach still 

roduces spectral image estimates, which preserve spatial details 

nd contain minor spectral distortion as opposed to the traditional 

pproaches. Note that, in the case of our approach, the SSIM value 

n both regimes w / o and w / does not change significantly. This is

ecause the graph-based prior encodes the spatial structure of the 

ide information, and is able to transfer it to the reconstructions 

ithout relying explicitly on the side-information sensing matrix 

 . 

.2. Noisy simulated measurements 

We now consider a more realistic simulated scenario to show 

he performance of our method, ROPs w / o, and the comparing ap- 

roaches, TV w / , and WDCT w / , in the presence of noisy measure-

ents. In doing so, we reconstruct the same collection of spectral 

mages from their compressive snapshots contaminated with ad- 

itive white Gaussian noise. More precisely, let x ∈ R 
(512 2 )31 rep- 

esent a spectral image of interest, then its coded snapshot y ∈ 

 
512(512+31 −1) satisfies y = H x + e , where e is a noise term with en-

ries drawn from a zero-mean Gaussian distribution with standard 

eviation 

D := 

√ 

std (H x ) 2 

10 SNR / 10 
, 

here std (H x ) 2 denotes variance of entries of H x , i.e., clean coded

napshot, and SNR denotes the signal-to-noise ratio in dBs. In our 

xperiment, SNR takes values in the set { 10 , 20 , 30 } . 
Provided z and R as in the previous experiment, TV w / 

nd WDCT w / reconstruct x from y by minimizing ‖ x ‖ TV and
 �T x ‖ 1 respectively over { x : ‖ [ H 

T , R 
T ] T x − [ y T , z T ] T ‖ 2 ≤ ε} . While

ur method, ROPs w / o, reconstructs x from y by minimizing x T L G x

ver { x : ‖ H x − y ‖ 2 ≤ ε} , where the graph G is constructed from z

s in Section 5.2.1 . Unlike in Section 6.1 that we used SYMMLQ to

olve the optimization problem associated with our method, here 

e use the same constrained optimization solver C-SALSA to solve 

ll the optimization problems. We should note that even though 

ur approach can be solved much more efficiently by reformulat- 

ng the problem as an unconstrained problem as will be done in 

he experiments with real measurements, here it is convenient to 

ork with the constrained formulation because the extent of the 

easible set can be defined as ε := SD 

√ 

m + 

√ 

2 m as explained in 

ection 4 , thus avoiding the search for a regularization parameter. 
11 
Fig. 11 summarizes the SSIM and SAM values for different lev- 

ls of noise added to the measurements, where the variability of 

he metrics is due to the number of spectral images considered 

or reconstruction. As indicated by Fig. 11 (left), our method obtains 

SIM values, which are not only higher but less variable than the 

omparing approaches. Similarly, as indicated by Fig. 11 (right), our 

ethod obtains SAM values that are smaller and less variable than 

he comparing methods. The figures thus exhibit that our approach 

roduces consistent spectral image estimates with high spatial fi- 

elity and low spectral distortion across different noise levels for 

arious spectral scenes. 
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Fig. 14. Compressive and panchromatic snapshots of the scenes SCN1, SCN2 as seen by our DCCSI system Fig. 12 . The snapshots of SCN3, and SCN4 can be found in the 

supplementary materials. 

Fig. 15. Reconstructions from real measurements. RGB image of the original scene obtained by a color camera, and reconstructed RGB renderings obtained by the ROPs, BFG, 

TV, and DeSCI models without side information as direct measurement. Also in the figure, reconstructed spectral signatures at a few locations P1, P2, P3, and P4 displayed in 

ORIG. In the legends, the values in parenthesis indicate the accuracy of the reconstruction in terms of the SAM metric in degrees. The average values over the four signatures 

are 15.32 for ROPs, 16.76 for BFG, 20.40 for TV, and 18.77 for DeSCI; the smaller, the better. 
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.3. Real measurements 

For real data, we implemented the dual-camera compressive 

pectral imaging (DC-CSI) system in Fig. 12 whose schematic is dis- 

layed in Fig. 6 . We then configured the DC-CSI system to encode 

1 spectral bands of size 256 × 256 from a scene of interest onto a

ompressive snapshot of size 256 × 286 , and a panchromatic snap- 

hot of size 256 × 256 . The interested reader is referred to the sup-
12 
lementary materials for implementation details of our DC-CSI sys- 

em. Figs. 13 and 14 show the scenes of interest, and some com- 

ressive and panchromatic snapshots as seen by our DC-CSI system 

n Fig. 12 . 

Since the primary and secondary cameras of our DC-CSI sys- 

em have different quantum efficiencies, using side information as 

 direct measurement may not be straightforward as discussed in 

ection 5.1 . Thus, the reconstruction algorithms ROPs, BFG, TV, and 
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Fig. 16. Reconstructions from real measurements. Reconstructed RGB renderings obtained by the ROPs, BFG, TV, and DeSCI models without side information as direct 

measurement. Also in the figure, reconstructed spectral signatures at a few locations P1, P2, P3, and P4 displayed in ORIG. In the legends, the values in parenthesis indicate 

the accuracy of the reconstruction in terms of the SAM value in degrees. The average values over the four signatures are 13.14 for ROPs, 16.44 for BFG, 14.55 for TV, and 

21.04 for DeSCI; the smaller, the better. 
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eSCI were only run in the first regime; side information is not in- 

luded as a direct measurement. That is, the feasible set of signals, 

r data-fidelity term, is determined by { x ∈ R 
n : ‖ ̂  H x − y ‖ 2 ≤ ε} ,

here the CASSI’s sensing matrix ˆ H was estimated by a calibration 

rocedure similar to that proposed in [27] . We should note that, 

n this setting, the graph-based algorithms are expected to pro- 

uce spectral image estimates with better spatial resolution than 

he comparing approaches since they leverage the statistical prop- 

rties of the panchromatic data for reconstruction. 

Color renderings of the scenes (SCN1 and SCN2) and spectral 

ignatures reconstructed by ROPs, BFG, TV, DeSCI can be observed 

n Figs. 15 , and 16 . Unlike the TV, DeSCI, and BFG approaches, the

roposed graph-based approach ROPs produces color images that 

ot only contain as much spatial details as the associated panchro- 

atic images but also display almost as many colors as the color 

mages in Fig. 13 . Even though BFG preserves sharp edges on rel- 

tively large spatial structures, it smooths out small details on the 

cene, leading to piece-wise constant approximations. In contrast, 

OPs preserves better both large and small details. 

In the figures, we can also observe reconstructed and reference 

pectral signatures at four different location P1, P2, P3, and P4. 

or comparison purposes, such signatures have been normalized 
13 
y their total intensity. To clarify, let X 1 (i, j) , X 2 (i, j) , . . . , X L (i, j) be

 spectral signature at location (i, j) ∈ �. The normalized spectral 

ignature is given by 

¯
 l (i, j) = 

X l (i, j) ∑ L 
p=1 X p (i, j) 

, l = 1 , . . . , L. 

n the figure’s legends, the SAM value of the reconstructed signa- 

ure with respect to the reference is displayed in parenthesis for 

ach approach. As suggested by the average SAM value over the 

our spectral signatures, the proposed method ROPs outperforms 

he other methods on average. Specifically, the methods ROPs, BFG, 

V, and DeSCI reach average SAM values of 15.32, 16.76, 20.40, and 

8.77 for SCN1 in Fig. 15 and 13.14, 16.44, 14.55, and 21.04 for 

CN2 in Fig. 16 , respectively. In addition, Figs. 17 and 18 display the

ntensity estimates of the scenes across the spectrum. Although the 

raph-based estimates exhibit high intensity artifacts at the image 

oundaries and so do the comparing approaches, in particular at 

he shorter wavelengths, they perform significantly better than the 

ompeting approaches, which do not exploit structural information 

rom the side information. 

Regarding parameter settings, for all algorithms, we set the pa- 

ameter TOL to 10 −3 . We noticed that the stability of the solutions 
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Fig. 17. Spectral image estimates of the scene SCN 1 in Fig. 13 . We display 30 out of 31 spectral bands of size 256 by 256 obtained by the graph-based approaches ROPs, 

BFG, and the comparing approaches TV, and DeSCI. 
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ay be affected by setting this parameter too small, as we did in 

he simulated data case. For ROPs, the parameters of the neigbor- 

ood �k were set to w 1 = w 2 = 7 , and adjacent �k ’s were set to

e at most 66 percent overlapped. For BFG, the neighborhood pa- 

ameter was set to r = 2 , and the bandwidth parameters were set

o δs = 2 r, and δr / 3 , where δr is set as suggested in Section 5.2.3 .
dditionally, the regularization parameter α in (5.7) was selected 

y a grid search over α > 0 . To that end, we obtained first an es-

imate x α for each α, and recorded the values of the data fidelity 

erm ‖ ̂  H x α − y ‖ 2 
2 
and regularization term x T αL G x α . Last, we selected

s regularization parameter the one at which the curves given 

y (α, 
x T αL G x α

max α(x T αL G x α ) 
) and (α, 

‖ ̂ H x α−y ‖ 2 
2 

max α(‖ ̂ H x α−y ‖ 2 
2 
) 
) intersected; specifi- 

ally, for ROPs α = 2 . 9764 for both SCN1 and SCN2, and for BFG

= 1 . 2743 for both SCN1 and SCN2. For TV, we defined the noise

evel parameter ε > 0 in (5.2) by the same procedure; specifically, 

= 9 . 0418 for SCN1 and ε = 7 . 0330 for SCN2. The DeSCI’s param-

ters were adjusted as in the case of simulated measurements. 

. Discussion 

In this paper, we introduced the concept of rank-order path 

raphs and examined the problem of signal recovery from under- 
14 
ampled linear measurements by using smoothness with respect 

o rank-order path graphs. In particular, we showed the usefulness 

f rank-order path graphs for compressive spectral imaging, and 

emonstrated its advantages over some traditional approaches. De- 

pite having a relatively simple sparse edge structure, rank-order 

ath graphs are capable of capturing structural details in the data, 

eading to efficient graph representations, and fast iterative inver- 

ion. The key idea is that by rearranging the original feature space, 

he complexity of the rearranged space can be captured by using 

undamental graphs, i.e., path graphs. 

We note that all methods have an inherent limitation that may 

ffect their reconstruction accuracy. In particular, the data fidelity 

erm ‖ y − ˆ H x ‖ 2 
2 
is well suited to handle additive Gaussian noise in

 , but in practice, the statistical nature of the noise affecting y is

ar from additive Gaussian. There is non-linear noise due to quan- 

ization and non-uniform illumination of the scene besides signal- 

ependent noise due to the approximate nature of the sensing ma- 

rix. Consequently, we should not have a perfect match between 

ur reconstructed spectral signatures and the reference spectra 

easured by the non-imaging spectrometer. In our experiment, 

owever, some fixes may lead to overall improvements. First, the 

ASSI matrix is derived based on the assumption that the coded 
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Fig. 18. Spectral image estimates of the scene SCN 2 in Fig. 13 . We display 30 out of 31 spectral bands of size 256 by 256 obtained by the graph-based approaches ROPs, 

BFG, and the comparing approaches TV, and DeSCI. 
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perture’s pixel size and detector’s pixel size are the same, and 

his assumption does not hold in our experiment. This is because 

28 × 128 coded aperture pixels map onto 1024 × 1024 detector 

ixels, which degrades the quality of our compressive measure- 

ent. We may thus enhance spectral reconstruction by replacing 

he coded aperture with a higher resolution one. Second, on the 

alibration front, more careful estimation of the shift introduced 

y the prism to the coded aperture on the detector and the use 

f a calibration source, i.e., monochromator and light guide, with a 

ore uniform illumination pattern may also lead to improved re- 

onstructions. 

The fact that a one-dimensional projection (e.g. a panchromatic 

mage) from a high-dimensional object (or a hyperspectral image) 

an be used to rank order its elements smoothly appears to be 

ooted in the theory of manifolds. In our application scenario, we 

ould say that if the hyperspectral image lives close to a low di- 

ensional linear manifold, then the ordering information from the 

anchromatic image is useful to infer a smooth multivariate order- 

ng of the high dimensional vectors (or spectral signatures). We are 

urrently exploring this hypothesis. 

In recent years, the idea of patch ordering has been used as 

 means to regularizing various image restoration problems, e.g, 
15 
52] and some references therein. Specifically, the method by Vaks- 

an et al. [52] builds on the assumption that a patch-based per- 

utation obtained from a noisy image induces a smooth reorder- 

ng of the associated pixels in the original image. Consequently, a 

estored image can be obtained by encouraging image estimates 

ith sparse second derivative along the linear order of the pixels 

nduced by the permutation. A simplified version of their regular- 

zation term is given by: 

 (x ) = ‖ ML G P x ‖ 1 , 

here M denotes a weight diagonal matrix, L G denotes the graph 

aplacian of a path graph G , and P denotes the patch-based per- 

utation matrix inferred from the noisy image. 

In our context, the assumption that the signal of interest is suf- 

ciently smooth with respect to a path graph, leads fundamentally 

o regularization terms of the form: 

 (x ) = ‖ L 1 / 2 
G 

P x ‖ 
2 
2 , 

here G is the path graph with edge set { (i, i + 1) } n 
i =1 

, and P is

omputed from the rank-order statistics of the panchromatic im- 

ge. 
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The result now follows from Lemma Appendix A.1 . �
Even though both regularization terms bear a similarity, not 

nly do they lead to different solutions with different character- 

stics, but our regularization term is simpler to minimize. It is im- 

ortant to say, however, that the work by Vaksman et al. [52] can 

ndeed be instrumental to extend our approach to a broader class 

f compressive spectral imaging (CSI) systems even if we do not 

ave access to a panchromatic side information image. We note 

hat several other CSI systems, e.g., [53–55] , capture compressive 

mages that are co-registered with the spectral image of interest 

nd look almost like a panchromatic image with random coded 

oise. When a co-registered compressive image is available, un- 

ike in SD-CASSI, it may be possible to estimate the rank-order 

nformation of a panchromatic image from the compressive im- 

ge itself. As a result, a suitable set of rank-order path graphs can 

e used for CSI reconstruction without an additional camera. Of 

ourse, the statistics of the noise may deviate quite a lot from 

hose of traditional image restoration problems. Thus, we may 

eed to adapt significantly to the available methods or invent new 

nes. 

If there is, on the other hand, access to a panchromatic im- 

ge, which is aligned to the spectral image of interest, since our 

ethod does not rely on the side information sensing matrix to 

ntegrate such a panchromatic image in the reconstruction process, 

ur method can be easily used to regularize a variety of recent 

pectral imaging systems, e.g., [56–60] , without increasing calibra- 

ion complexity nor adding significant hardware design considera- 

ions. 

Rank-order path graphs could be extended to applications such 

s depth map restoration [61,62] , positron emission tomography 

nhancement [63] , and spectral X-Ray computer tomography re- 

onstruction [64] to name a few, where side information is readily 

vailable. To construct the graphs, however, we should not use rank 

rdering information directly extracted from the side information 

tself. Instead, rank orderings have to consider the geometrical as- 

ects of the multimodal feature space [65–67] . To do so, the notion 

f multivariate rank-order statistics presented in Section 3 can be 

xplored. 

Adaptive compressive spectral imaging architectures may ben- 

fit from the use of rank-order path graphs because not only 

oes its construction take little computational overhead but 

heir edge structure is also highly sparse. To do so, we can 

how that the error accuracy is inversely related to the small- 

st eigenvalue of (A 
T A + α(I L � L Ḡ )) in (5.7) . As a result by al-

owing the coded aperture to modify the distribution of ze- 

os and ones in the matrix A such that the smallest eigen- 

alue is maximized, we may obtain richer spatio-spectrally 

oded measurements and therefore better reconstructions than 

andom coded apertures. As suggested by the recent maga- 

ine in snapshot spectral imaging this is a direction worth 

xploring [14] . 

We conclude by saying that rank-order path graphs have the 

otential to become a valuable asset not only in modern-day com- 

uter vision and computational imaging problems, but also as 

odels to learn efficient graph representations of data. 
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ppendix A. Proof of Theorem 3.5 

The proof of Theorem 3.5 depends on the following lemma. 

emma A.1. Let x = (x 1 , . . . , x n ) 
T ∈ R 

n . Then 

in 
∈S n 

n −1 ∑ 

i =1 

(x σi +1 
− x σi 

) 2 = 

n −1 ∑ 

i =1 

(x r −1 
i +1 

− x r −1 
i 

) 2 , 

here r −1 ∈ S n is such that x r −1 
1 

≤ x 
r −1 
2 

≤ . . . ≤ x 
r −1 
n 
. 

roof. Replacing x = (x 1 , x 2 , . . . , x n ) 
T by (x 

r −1 
1 

, x 
r −1 
2 

, . . . , x 
r −1 
n 

) T , we

ay assume without loss of generality that x 1 ≤ x 2 ≤ · · · ≤ x n . Let 

∈ S n be a permutation of { 1 , . . . , n } such that σ = σ1 σ2 . . . σn , and

 ≤ i ≤ n − 1 . 

Choose σi , σi +1 ∈ { σk } n k =1 
such that x σi 

≤ x σi +1 
. For β ∈ 

 x σi 
, x σi +1 

] , it is easy to see that (x σi +1 
− x σi 

) 2 ≥ (x σi +1 
− β) 2 .

ore generally, let t i +1 := max (σi +1 , σi ) . Since by hypothesis 

 t i +1 
≥ x t i +1 −1 and x t i +1 −1 belongs in the interval formed by 

 σi +1 
, x σi 

, we have that (x σi +1 
− x σi 

) 2 ≥ (x t i +1 
− x t i +1 −1 ) 

2 . Summing

ver i , we conclude that 

 −1 
 

i =1 

(x σi +1 
− x σi 

) 2 ≥
n −1 ∑ 

i =1 

(x t i +1 
− x t i +1 −1 ) 

2 . 

herefore, the left hand side reaches a minimum over S n at the 
ermutation t 1 t 2 . . . t n , which is equivalent to the permutation that 

orts the entries of x in ascending order, i.e., r −1 = r −1 
1 

r −1 
2 

. . . r −1 
n .

his concludes the proof. �

roof of Theorem 3.5.. Recall that for any graph G = (V, E) and

ny vector z = (z 1 , . . . , z n ) 
T ∈ R 

n , we have 

 
T L G z = 

∑ 

(i, j) ∈ E(G ) 

(z i − z j ) 
2 . 

By definition, for G ∈ L n , there is a permutation σ ∈ S n such
hat E = { (σ1 , σ2 ) , (σ2 , σ3 ) , . . . , (σn −1 , σn ) } , and we have x T L G x =
 

(i, j) ∈{ (σk ,σk +1 ) } n −1 
k =1 

(x i − x j ) 
2 = 

∑ n −1 
k =1 

(x σk +1 
− x σk 

) 2 . Thus, 

in 
G ∈L n 

x T L G x = min 
σ∈S n 

n −1 ∑ 

k =1 

(x σk +1 
− x σk 

) 2 . 
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ppendix B. Proof of Proposition 3.6 

The proof of Proposition 3.6 depends on the following lemma. 

emma B.1. Let G = (V, E, W ) be an undirected weighted graph on

 = { 1 , . . . , n } , and let X ∈ R 
n ×L . Then 

r (X T L G X ) = 

∑ 

(i, j) ∈ E 
W i j ‖ x i − x j ‖ 

2 
2 , 

here x i = (x i 1 , x i 2 , . . . , x iL ) denotes the i th row of X. 

roof. Let x l denote the lth column of X . By definition of tr () , we

ave that tr (X T L G X ) = 

∑ L 
l=1 x 

T 
l 
L G x l . Since x 

T 
l 
L G x l can expressed as

 

(i, j) ∈ E W i j (x il − x jl ) 
2 , where x il denotes the i th entry of x l , we ob-

ain tr (X T L G X ) = 

∑ n 
l=1 

∑ 

(i, j) ∈ E W i j (x il − x jl ) 
2 . Interchanging the or- 

er of the summations, we get 

r (X T L G X ) = 

∑ 

(i, j) ∈ E 
W i j 

L ∑ 

l=1 

(x il − x jl ) 
2 = 

∑ 

(i, j) ∈ E 
W i j ‖ x i − x j ‖ 

2 
2 , 

s claimed. �

roof of Proposition 3.6.. Applying Lemma Appendix B.1 , we ob- 

ain 

in 
G ∈L n 

tr (X T L G X ) = min 
G ∈L n 

∑ 

(i, j) ∈ E 
‖ x i − x j ‖ 

2 
2 . 

bserve that each permutation σ = σ1 σ2 . . . σn ∈ S n can be associ- 
ted with a path graph G = (V, E) ∈ L n whose edge set is given by

 = { (σi , σi +1 ) : i = 1 , . . . , m − 1 } . 
herefore, we can optimize over the set of permutations S m in- 

tead of L m , and this completes the proof. �

ppendix C. Proof of Theorem 3.7 

The proof of Theorem 3.7 depends on the following definition 

nd lemma. 

efinition C.1. The graphs G and H are isomorphic if there exist a 

ijective map τ : V (G ) �→ V (H) such that 

i, j) ∈ E(G ) iff (τ (i ) , τ ( j)) ∈ E(H) . 

emma C.2. The graphs G and H are isomorphic if and only if their 

djacency matrices are related by 

 G = P 
T W H P 

or some permutation matrix P . 

roof. See [68] Theorem 4.2.1. �

roof of Theorem 3.7.. By definition, G ∈ L n has edge set E(G )

iven by { (σk , σk +1 ) : k = 1 , . . . , n − 1 } for some permutation σ ∈
 n . Note that the inverse permutation σ−1 of σ can be regarded as 

 bijection from V to V , and satisfies 

i, j) ∈ E(G ) iff (σ−1 (i ) , σ−1 ( j)) ∈ E( ̃  G ) . 

his is because (i, j) can be written as (σk , σk +1 ) for some k ∈
 1 , . . . , n − 1 } , and thus (σ−1 (i ) , σ−1 ( j)) = (k, k + 1) ∈ E( ̃  G ) . There-

ore G and ˜ G are isomorphic. 

By applying Lemma Appendix C.2 with G and ˜ G , we obtain that 

 G = P T W ˜ G P for some permutation matrix P . In particular, P can

e constructed from σ as follows. Recall that P T = P −1 , we thus 

ave that the adjacency matrix W ˜ G of 
˜ G satisfies W ˜ G = PW G P 

T . By

ssumption, the edge set of ˜ G is given by { (k, k + 1) : k = 1 , . . . , n −
17 
 } . So, we have that e T 
k 
W ˜ G e k +1 = e T 

k 
PW G P 

T e k +1 = 1 , where e k de-

otes k th standard basis vector. This shows that P T e k = e σk 
and

 
T e k +1 = e σk +1 

, and we thus obtain 

 
T 
[
e 1 e 2 . . . e n 

]
= 

[
e σ1 

e σ2 
. . . e σn 

]
⇒ P = 

⎡ 

⎢ ⎢ ⎣ 

e T σ1 

e T σ2 

. . . 

e T σn 

⎤ 

⎥ ⎥ ⎦ 

. 

Now, it remains to show the relationship between the graph 

aplacians of ˜ G and G . By definition, L ˜ G = D ˜ G − W ˜ G . So, we have

hat P T L ˜ G P = P T D ˜ G P − W G . The result follows by verifying that the

egree matrix of G is given by P T D ˜ G P . To do so, note that the de-

ree of the vertex σk ∈ V (G ) is e T σk 
D G e σk 

= e T σk 
P T D ˜ G P e σk 

= e T 
k 
D ˜ G e k 

ince P e σk 
= e k . As a consequence, the degree of the vertex σk 

an be computed exactly from e T σk 
P T D ˜ G P e σk 

and this concludes the 

roof. �

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.sigpro.2022.108707 . 
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