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ABSTRACT

This paper proposes a novel reconstruction approach to compressive spectral imaging (CSI) with panchro-
matic side information, which is based on the notion of approximate rank-order statistics. To that end,
we assume that the signal of interest is sufficiently smooth on an unknown graph. When restricted to
the family of path graphs, we show that the best path is indeed the rank-order path graph induced by
the signal. That is, the path graph whose edge structure is given by the permutation that sorts the en-
tries of the signal in ascending order. Our goal is to show that smoothness on rank-order path graphs
inferred from the rank-order statistics of a co-registered panchromatic signal can be used to find accu-
rate spectral image estimates from a compressive snapshot of the scene. We derive theoretical properties
of rank-order path graphs and give illustrative examples of their use in signal recovery from undersam-
pled measurements. Our approach leads to solutions with a closed-form, found efficiently by iterative
inversion of highly sparse systems of linear equations. We evaluate our method through an experimental
demonstration and extensive simulations. Our method performs notably better against a bilateral-filter
graph model, adapted to the task, and some traditional and state-of-the-art algorithms.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The recovery of a signal from an incomplete or limited num-
ber of linear observations appears in numerous applications, rang-
ing from medical imaging and seismic exploration to baggage and
cargo inspection in homeland security. Due to the underdeter-
mined nature of the problem, infinitely many signals may produce
the same set of observations, and therefore to identify the one that
is closest to the underlying signal of interest, we need to rely on
prior knowledge of the signal. The solution to the inverse problem
is thus the signal that best satisfies the prior knowledge and, si-
multaneously, fits the observations to a certain level.

The premise that most signals have a sparse representation is a
popular form of prior knowledge. In this setting, the signal of in-
terest is assumed to be sparse (or compressible) on a pre-specified
dictionary, and the solution to the inverse problem is given by
the signal with the sparsest representation that complies with the
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measurements. Sparsity has motivated the creation of prior models
such as block-sparsity and union-of-subspace models, which inte-
grate additional knowledge about sparsity-pattern disposition, thus
leading to improved sparsity-based prior models [1].

In the last decade, numerous prior models that go beyond spar-
sity have been proposed. Plug and Play (PnP) prior models, for in-
stance, exploit the abundance of denoising algorithms by enabling
their integration as prior models for general inverse problems [2].
Since denoising algorithms are not necessarily cast as an optimiza-
tion problem with a precise regularization function, PnP-based al-
gorithms may have ill-defined convergence properties, leading to
the development of regularization by denoising (RED), which aims
at exploiting denoising priors through an explicit regularization
function [3,4]. More recently, there has been interest towards de-
veloping data-driven prior models, e.g., deep priors [5]. The idea is
to discover the necessary low-level statistical information from the
available data so as to generate prior models, which require little
to no human input, and are able to outperform traditional hand-
crafted priors.

Due to the advances in the field of graph signal processing
(GSP) [6], a lot of attention is being devoted recently to develop
graph-based prior models, leading to notable performance in in-
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verse problems such as light field super-resolution [7], blind image
deblurring [8], tomographic reconstruction [9], and medical image
fusion [10] to name a few. This special class of prior models can
be easily integrated into inverse problems, often invoked by min-
imizing a differentiable convex objective, referred to as the graph
Laplacian quadratic form. The associated graph is frequently con-
structed by defining nearest neighbor relationships among the ele-
ments of a related complementary signal', weighted by a Gaussian
kernel with a certain bandwidth parameter.

To advance on that front, this paper develops a novel graph-
based model for compressive spectral imaging (CSI) with panchro-
matic side information that not only departs from the Gaussian
kernel approach often used in other applications but also, to the
best of our knowledge, is the first to exploit the concept of
smoothness on graphs for CSI. In particular, by adopting a signal
representation perspective, we demonstrate that when the graph
is restricted to the family of path graphs with vertex set V =
{1,2,...,n}, a signal of interest x e R" on V is best represented by
the path graph with edge set E c V x V given by:

E:{(r{l,rl.f]) ti=1,...,n—1},

1,-1

where r~1 =r71r;1 . rp! is the permutation of V that sorts the
entries of x in ascending order, that is

1

X <X =

—1 <X,
n=n =

=X
Since the inverse permutation r of r~1 forms the rank-order statis-
tics of x, the path graph constructed by using r~! is referred to as
the rank-order path graph induced by x. Since in practice we do not
know the rank-order statistics of the signal to construct the rank-
order path graph, we rely on the notion of approximate rank-order
statistics. Specifically, we assume there is a mechanism to provide
approximate ranks, 17, ...#, in such a way that the induced order
statistics of the signal x, that is

Xffl R sz—l PN Xﬁl
are sufficiently smooth. We note that to understand this deeply, we
may need to resort to the theory of concomitants of order statis-
tics, or equivalently induced order statistics [11,12], which is out of
the scope of the paper.

In addition to providing a theoretical study of rank-order path
graphs in the context of signal recovery from undersampled linear
measurements, we show the potential of rank-order path graphs
to tackle the problem of reconstructing spectral images from com-
pressive measurements. In imaging spectroscopy, we would like to
characterize a scene of interest by sensing large amounts of spatial
information across a multitude of frequency bands. Since the effi-
cient sensing of all these bands is challenging, compressive spec-
tral imaging (CSI) was developed to reconstruct a spectral image
from a single coded snapshot of the scene [13,14]. However, when
the scene of interest contains fine spatial details and diverse spec-
tral content, a single coded snapshot may be insufficient to allow
accurate spectral-image estimates, and we can often rely on broad-
band panchromatic detectors that provide side information to im-
prove reconstruction quality [15-17]. This poses an ideal scenario
where the rank-order statistics of the side information can be used
to construct approximate rank-order path graphs, which are suit-
able to regularize the CSI inverse problem. Since the rank-order
statistics are a statistical property of scalar data, there may be con-
cern about their extension to multivariate data. We thus present a
natural definition of multivariate rank-order statistics, which can
be used in that setting.

1 A signal related to the signal of interest, which contains desirable properties
that we would like to impose on our signal estimate.
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1.1. Paper organization

The remainder of the paper is organized as follows.
Section 2 states the problem of signal recovery from under-
sampled linear measurements, and how to solve it based on
sparse representations and smoothness on graphs. Section 3 de-
fines the concept of rank-order path graphs, states some of their
properties, and explains how to use smoothness with respect
to (approximate) rank-order path graphs to solve the problem.
Section 4 develops an illustrative example. Section 5 states the
problem of CSI with side information, explains some traditional
approaches, and develops algorithms to tackle the problem based
on smoothness on graphs, and in particular rank-order path
graphs and the bilateral filter graph. Section 6 presents experi-
mental results with simulated and real data. Section 7 concludes
the paper.

2. Signal recovery from undersampled linear measurements

Consider the problem of signal recovery from a limited num-
ber of linear measurements. The goal is to reconstruct an unknown
signal of interest x ¢ R" from a vector of (noisy) measurements
y € R™ such that

y=Ax+e, (21)

where A € R™" js a sensing matrix with fewer rows than columns,
i.e, m < n, and e is an additive noise term. Since there are infinitely
many signals that comply with the measurements, some form of
regularity on the feasible set of signals must be imposed to be able
to recover the original signal [18].

Under the assumption that x belongs to the set of s-sparse sig-
nals Ms = {x e R", |WTx| <s}, where s represents the sparsity
level of a signal on a given dictionary W, an accurate estimate X of
the signal x can be obtained by solving the problem [1,18]:

min [|W'x||; s.t. |[Ax—y|l, <€ (2.2)
xeRn

provided that A satisfies the null-space property when the noise
level € = 0 or similarly the restricted isometry property (RIP) when
€ > 0. In this work, however, we depart from the ¢;-regularization
problem and instead propose to reconstruct the signal of interest x
by solving the problem:

minx"Lex s.t. [|Ax —y|l2 <€, (2.3)
XxeRM

where L is the graph Laplacian of an undirected graph G. As will
be elaborated, the problem (2.3) suggests that the best solution to
the underdetermined system of linear Eq. (2.1) is the signal that
is smoothest with respect to G. Note that the problem (2.3) can
be viewed from the point of view of signal recovery on graphs
[19] for certain sensing matrices A. In our case, however, the ma-
trix A does not necessarily perform an operation on the graph.
The problem (2.3) can instead be regarded as a particular instance
of kernel-based reconstruction, where L; defines a topology-based
kernel [20].

3. Rank-order path graphs

We now define formally the concept of rank-order path graph
and smoothness with respect to a graph. Then, we derive impor-
tant theoretical results, stated in the form of theorems and propo-
sitions, which can be leveraged to design graph-based smoothness
models for signal recovery. Last, we study the problem of signal
recovery from undersampled measurements and how to solve it
using rank-order path graphs.



J.E Florez-Ospina, D.L. Lau, D. Guillot et al.

1 3 5o 1 3 )
@ @
2 4 2 4

Fig. 1. Illustration of two different path graphs on V = {1, 2, 3, 4, 5}.

3.1. Graphs, permutations, and rank-order path graphs

An undirected graph G = (V,E, w) is a triple, consisting of a ver-
tex set V. ={1,2,...,n}, an edge set E c V x V, and a nonnegative
weight function w: E — [0, c0) such that w(i, j) = w(j,i) > 0 for
(i, j) e E, and w(i, j) = 0 for (i, j) ¢ E. In this work, we assume that
an edge (i, j) is an unordered pair of vertices i, j € V, and graphs
are not allowed to have self-loops, i.e., (i,i) ¢ E for any i € V. Also,
when w is unspecified, we assume the graph is unweighted, or
equivalently that w(i, j) = 1 for (i, j) € E and zero otherwise.

The adjacency matrix W of G is an n x n matrix whose en-
tries W;; are given by the weight function w(i, j) at the edge
(i, J) eV xV, ie, W;; =w(, j). By definition w(i, j) = w(j, i), and
therefore we have that the adjacency matrix W is symmetric, i.e.,
W = W{;. The degree matrix Dg of G is an n x n diagonal matrix
whose diagonal entries D;; are given by Z]’Llw(i, j). The graph
Laplacian L; € R™" of G is an n x n matrix whose diagonal entries
L;; are given by Z?:l w(i, j) and off-diagonal entries L;; are given
by —w(i, j), equivalently

Lc = D — Wo. (3.1)

An important characteristic of the graph Laplacian is that it is sym-
metric positive semidefinite, thus its eigenvalues are real and non-
negative.

A permutation o of the set V can be defined by (1) a lin-
ear ordering o = 010,...0,_10n Where o; €V is listed exactly
once; (2) a bijective map o : V — V such that 6(1) =07, 0(2) =
0y,...,0(n—1) =0,_1,0(n) = oy. Sometimes, we may need to
represent ¢ as a permutation matrix P € {0, 1}™" such that

n
.
P= Z eje(’]’
j=1

where ej, j=1,...,n denote the standard basis. Equivalently, we
can generate P by permuting the rows of the n x n identity matrix
according to o.

To simplify notation, let S, be the set of all possible permuta-
tions of V.

Example 3.1. Consider the set S; of permutations of V = {1, 2, 3}.
Then S3 consists of the permutations 123, 132, 213, 231, 312, and
321. The permutation 231 € S3 can be written as 0 (1) =2, 0(2) =
3,63) =1, or

0 1 O
0 0 1
1 0 O

Example 3.2. A path graph on the vertex set V ={1,2,...,n} is a
graph G = (V, E) with edge set E c V x V given by

E= {(Gl’ 62)’ (02’ 03)’ ) (Un—l70n)}

where ¢ is a permutation of V. Fig. 1 shows pictorial representa-
tions of a pair of path graphs on V = {1, 2, 3,4, 5}, which are asso-
ciated with the permutations 12345 and 13542.

Further, let £, be the set of possible path graphs on V =
{1,..., n}. It follows that for G e £, there exist a permutation
0 € Sy such that the edge set E of G is given by {(o;, ai+1)}?;11.
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Definition 3.3. Let x = (xq, ..., xn)T € R" be a signal on the ver-
tex set V={1,...,n}. The path graph G e £, is said to be the
rank-order path graph induced by x if the permutation r—! =

ritry !yt e Sy associated with the path graph G satisfies:

X1 <X-1=<...<X.-
=4t = = At

(3.2)

where x 1 denotes the i — th order statistic x(;, of the entries of x.
i

The inverse permutation r of r~! in &, forms the rank-order
statistics of x; that is, x; has rank r; among the entries of x. To
illustrate the concept, consider the following example.

Example 3.4. Let x = (0.53,0.25,0.10,0.77,0.42)T be a signal on
the vertex set V = {1,...,5}. Observe that

X3 =0.10<x;=0.25<x5;=0.42 <x; =053 <x4 =0.77.

Thus, we obtain that r—! = 32514. The associated path graph is
therefore G € L5 with edge set E given by:

E=1{(3,2),(2,5),(51),(1,4)}.

Also, note the rank-order statistics of x are given by r =42153 ¢
Ss, which can be verified to be the inverse permutation of r~1 as
mentioned above.

3.2. Smoothness with respect to rank-order path graphs

Consider a graph G on the vertex set V ={1,..., n}, and let x €
R" be a signal on V. Then, the smoothness of x with respect to G is
defined by Shuman et al. [21]:

X > XTLcx. (3.3)

As elaborated in [21], the smoothness of a graph signal varies
depending on the underlying graph on which it resides. That is, a
signal, which may be considered smooth on a given graph, may
no longer be smooth on a different graph. In the following theo-
rem, we show that when the underlying graph G is restricted to
the set of path graphs £;, the path graph on which a signal x is
the smoothest is the rank-order path graph induced by x.

Theorem 3.5. Let x = (X1,X,....xy)T € R and let r~1€S, be a

permutation such that

X1 <X 1=<...<X-1.
=4t = =%y

(3.4)

Then the function F(G) = x"L¢x achieves a global minimum on £, at
the graph G* with edge set E = {(r; ', r; )}

Proof. See Appendix A O

This theorem states the fundamental principle of using rank-
order path graphs to regularize inverse problems. As elaborated
shortly, when we know the rank-order statistics of a signal of inter-
est, and a few underdetermined linear observations of the signal,
it is possible to find accurate estimates of a variety of signals using
smoothness with respect to rank-order path graphs.

Rank-order statistics can naturally be extended to multivariate
signals (e.g., spectral images or video). To generalize the concept,
we rely on the notion of smoothness with respect to a collection
of signals. More formally, the smoothness of a collection of signals,

X1, X2, ..., X € R" with respect to G is given by Kalofolias [22]:
X tr(XTLcX), (3.5)
where X € R™L is such that X = (x1,%, ..., x;). Note that when

L=1,(3.5) reduces to (3.3).

By analogy to the case where X consists of only a signal
(Theorem 3.5), we define the multivariate rank-order statistics of X
to be the inverse permutation associated with the path solving the
problem:

min F(G) := tr(X"L¢X). (3.6)
GeLly
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Fig. 2. Geometric illustration of underdetermined system of linear equations subject to ordering constraints. Left, the shaded region illustrates the ordering relationship
between the components of X = (x1,x;)7, i.e., X, < x1. Right, the contour lines of the objective function, which favor signals whose induced order statistics are smooth.

In particular, such a path is a Hamiltonian path of minimal length,
and can be found by optimizing over the set of permutations S, as
stated in the following proposition.

Proposition 3.6. Problem (3.6) can be reformulated as follows:

n-1
min tr(X"LcX) = min X —x_ | 3.7
min (X" LgX) min ZHJi X, 112, (3.7)
i=

where X5, = (Xy10 - Xgy1) 1S the o;j-th row of X.

Proof. See Appendix B O

3.3. Spectral properties of rank-order path graphs

A smooth signal on the graph G is often described as having
low-pass spectrum with respect to the spectral basis of L;. That
is, most of the signal’s energy is concentrated on the eigenvectors
associated with the smallest eigenvalues. In the case of a (rank-
order) path graph, the spectral basis has an explicit form, and
therefore this can facilitate graph signal processing on the spec-
tral domain of path graphs. As elaborated in [23,24], a path graph
G with vertex set V = {1.....n} and edge set E = {(i.i+ 1)}/ has
graph Laplacian L; with eigenvalues A, >0, k=0,...,n—1 such
that

> k

xkzz—zcos(”?), (3.8)

and eigenvectors i, € R", k=0,..., n — 1 with entries i, given by
2 i+ D )

ﬁjkz\/;cos<(]+nz)k), j=0,...,n—-1, (3.9)

where g, i1, ..., 0,1 are also referred to as the DCT-2 basis.
We note that in the case where k=0, the value of iij has to
be divided by +/2 so that the eigenvectors form an orthonor-
mal basis [24]. That is, the first eigenvector il is given by iy =
%2(\/% ..... \/%)T. More generally, the spectral basis of a rank-
order path graph is a permuted version of the DCT-2 basis as
stated in the following theorem.

Theorem 3.7. As before, let G € £, be the path graph with edge set
given by (1,2),(2,3),...,(n—1,n). Then for any G € L, its graph

Laplacian L is given by

L; =P'L:P (3.10)

for some permutation matrix P. As a consequence, the eigenvectors u;,
of L are given by

u, = P71, (3.11)

where fiy, k=0,...,n—1 are defined in (3.9).

Proof. See Appendix C. O

3.4. Signal recovery using rank-order path graphs

As mentioned in Section 2, we would like to recover a signal of
interest x € R" from a set of noisy measurements y € R™ obeying
y=Ax+e as in (2.1), by solving the problem (2.3). In doing so, we
now assume the graph G to belong to the family of path graphs £,
and in particular the path graph induced by available rank-order
information of the signal of interest. The problem is thus to mini-
mize xTLcx over the set {x: ||Ax —y|, < ¢€}.

At first, it would appear that the rank-statistics of a signal tell
everything there is to know about x, but there is an abundance of
signals with the same rank-order statistics. So, even if we have a
limited number of observations from the signal, we may still be
unable to recover an accurate estimate of x. Therefore, in addi-
tion to suitable rank-order information, the signal of interest has
to be sufficiently smooth with respect to the given rank-order path
graph. We illustrate the concept in the following example.

Example 3.8. Consider the recovery of a two-dimensional signal
X = (x1,x,)T from a scalar linear measurement y = Ax with A =
(2,1). Furthermore, assume that the rank statistics r of x are given
by r=(2,1), so xe M ={x € R, x, <x;}. Note that the set {x ¢
R2, Ax =y} n{xeR2, x; <x;q}, highlighted in blue in Fig. 2(left),
does not allow us to distinguish a unique estimate of x. Observe,
however, that under the assumption that x is smooth with re-
spect to the path graph G e £, with edge set {(2,1)}, it is pos-
sible to identify unique estimates of x by minimizing R(x) over
[xeR2, Ax=y}n{xeR2 x, <x{}. Since R(x) = (X; —x2)? de-
creases along y = 2x; + X, as the entries of x take similar values
as illustrated by the colored contour lines in Fig. 2(right), it can be
said that R(x) will favor or prefer signals with smooth reordered
entries.
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Fig. 3. Signal of interest in blue on the left and noisy undersampled measurements on the right. On the right, in red and black, we show the rearrangements of the signal of
interest when permuting its entries using 7~' and r~', which encode approximate and exact rank-order statistics of the signal. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

3.5. Approximate (Multivariate) rank-order statistics

In practice, the (multivariate) rank-order statistics of a signal of
interest have to be estimated from readily available data. A pos-
sible approach to this problem is to borrow the rank-order statis-
tics of a related signal that can be inexpensively acquired. In CSI
with side information, for instance, the rank-order statistics of a
panchromatic image can be used as approximate multivariate rank-
order statistics of the spectral image of interest. Another possible
approach is to estimate the (multivariate) rank-order statistics from
a collection of noisy estimates of the signal of interest by exploit-
ing the notion of (multivariate) rank-order statistics in Section 3.2.
This problem, however, does not have closed form, and its solu-
tion can be found as a particular instance of the Traveling Sales-
man Problem (TSP).

4. Illustrative examples

We now develop an example of signal recovery from noisy un-
dersampled linear measurements, where a one-dimensional signal
would like to be reconstructed using smoothness with respect to
rank-order path graphs induced by approximate rank-order infor-
mation.

Let x = (xq,...,xy)T, depicted in blue in Fig. 3(left), be the sig-
nal of interest, and let y = (y1,...,¥m), depicted in Fig. 3(right),
denote a set of noisy undersampled measurements from x such
that y = Ax + e where A ¢ R™" is a sensing matrix with entries
drawn from N (0,SD := 1), and e € R™ is a noise term with entries
drawn from A/(0, SD :=0.3).

The idea is to reconstruct x from y through the program (2.3),
where it is assumed that x is the smoothest with respect to a path
graph G € £, whose structure depends on a given permutation as
explained in EX. 3.2. An important question to ask is: what path
graph should we use to obtain accurate signal estimates? In this
example, we use three different path graphs to show how this se-
lection affect the reconstruction result.

The first path graph is constructed based on the permutation
o € S, obtained by sorting the temporal position of the samples
from smallest to largest. The second graph is constructed based on
the permutation #~1 obtained by sorting the elements of a piece-
wise constant approximation of the original signal in ascending or-
der. This permutation arranges the elements of the original signal
depicted in blue in Fig. 3(left) in approximately ascending order as
depicted by the signal in red in Fig. 3(left). The third path graph
is the rank-order path graph induced by the original signal, which

is based on the permutation r~! € S, and sorts the entries of the
original signal in ascending order as depicted by the black signal
in Fig. 3(left).

For n =256, m =90, signal estimates and error signals are
shown in Fig. 4; where the extent of the feasible set {x: |Ax —

yllo <€} is given by € = SDv/m + +/2m with SD = 0.3 due to the
fact that the norm of the error term e is a chi-square random vari-
able [18]. In the figure, from left to right, we can observe that
the estimate’s accuracy is best when we have complete knowledge
of the rank-order statistics of x. However, when we have partial
knowledge, as illustrated in the center figure, the signal estimate
may still be sufficiently accurate depending on the application. To
run the numerical experiment, we used the CVX convex optimiza-
tion toolbox [25].

In general, the estimation error ||X — x||» of a signal estimate %,
obtained by the program (2.3), is controlled by the smoothness of
the signal of interest x with respect to the pre-specified graph G.
Fig. 5 shows the graph spectrum of x on the path graphs induced
by o, #~1, r=1. As Theorem 3.5 indicates, x is the smoothest on the
path graph induced by r~1, and thus its spectrum is concentrated
the most at the lowest frequencies as shown in Fig. 5 on the right.
The spectrum of x is not as concentrated on the remaining path
graphs, but we can notice that partial knowledge of the rank-order
statistics may also lead to high energy compaction as shown in
Fig. 5 on the center.

5. Compressive spectral imaging using rank-order path graphs

We now consider the problem of compressive spectral imaging
(CSI). Here the aim is to reconstruct a spectral image of L bands,
X1, X, ..., X, e R"*™ from a single spatio-spectrally coded snap-
shot Y € Rm>*m2+L-1  captured by a CSI camera, where the relation-
ship between {X}}_, and Y is given by

(5.1)

where y =vec(Y), x= (vec(X))T,...,vec(X;)")T, and H denotes
a sensing matrix, arising from the discretization of a continu-
ous imaging model. In this work, we assume that the CSI cam-
era is a single disperser coded aperture snapshot spectral imag-
ing (SD-CASSI) system, depicted in the horizontal (or primary
arm) of the dual-camera compressive spectral imager (DC-CSI)
in Fig. 6. At a basic level, a SD-CASSI system encodes a collec-
tion of L images, captured at different wavelengths, into a sin-
gle snapshot. In doing so, the images are first spatially modulated
by a wavelength-independent random coded aperture t, then a

y ~ Hx,
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Fig. 4. Illustration of signal recovery from undersampled linear measurements using rank-order path graphs, encoding rank-order information of the signal of interest with
different levels of accuracy. From left to right, we display signal estimates for the cases where there is no, partial, and complete knowledge of the rank-order statistics of the

signal of interest.
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Fig. 5. Graph spectrum of the signal of interest x (depicted in blue in Fig. 5) on three different path graphs. From left to right, the first 64 coefficients of the spectrum of
x on the temporal-order path graph, an approximate rank-order path graph, and the rank-order path graph induced by x. The matrix P is thus given by the identity matrix,
the permutation matrix induced by 7-', and the permutation matrix induced by r-!, respectively. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 6. Schematic of single disperser CASSI system with side information.

wavelength-dependent shift, along the x-axis, is introduced to each
of the images by the prism, and finally the spatio-spectrally coded
images are integrated along the wavelength domain by the focal
plane array FPA1 [26,27].

As mentioned in Section 2, since (5.1) is underdetermined and
approximate, we cannot simply take the inverse of H to obtain x.
Instead, we search for the spectral image that best describes our
prior knowledge of the scene, and simultaneously fits the measure-
ments to a pre-specified noise level.

In the last decade, numerous approaches to CSI, which use dif-
ferent forms of prior knowledge, have been developed from the
most traditional ones based on compressive sensing (CS) to the
most recent ones based on deep learning. For a comprehensive re-
view on the topic, we refer the reader to the recent signal process-
ing magazine in snapshot compressive imaging [13,14]. For the pur-

pose of this paper, we only review state-of-the-art methods related
to CS. In particular, approaches based on sparse representation and
total variation.

Sparse representation approaches can be formulated as the
problem (2.2), where it is assumed that the spectral image of in-
terest has the sparsest representation on a given dictionary W¥. A
suitable dictionary can be either selected as a pre-specified set of
functions, or designed based on signal examples [28]. In our ex-
periments, we define ¥ = W, w ® ¥ip_pcr, where W,py denotes
two-dimensional Symmlet-8 wavelet transform basis, and ¥p_pct
denotes discrete cosine transform basis [13,29-31]. Hereafter, this
approach is referred to as WDCT.

Similarly, the total variation model for spectral images assumes
that the spectral image has minimal total-variation (TV) norm
|Ix|lTv over the feasible set defined by the measurements. Math-
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Fig. 7. Spectral and panchromatic images on a two dimensional domain 2. The lo-
cal rank-order information of Z at €2, leads to a collection of rank-order paths G,
on Q. The G;’s are then merged into a single graph G by (5.6).

ematically, the reconstruction problem can be formulated as:

min L”X”TV s.t. |[y—Hx|; <€ (5.2)
xeR™M"2

where € > 0 is the noise level. There are several ways to define the
total variation of a spectral image, but these often result from the
extension of the total variation of a scalar image [32] to the case
of vector (or multichannel) images [26,33,34|. In our experiments,
[|x|lty is given by ZIL:1 i HV(FI)U‘ ||2 where V ~ (%, %)T is a
first order finite difference approximation of the gradient [33]. It is
important to note that the TV model acts as a baseline model for
CSI. Not only does it exhibit comparable performance with respect
to recent state-of-the-art methods based on deep learning [35], but
it also serves as a good initialization to more elaborate methods
such as [36,37], which exploit non-local similarity and low-rank
constraints.

5.1. CSI with side information

When the scene of interest contains fine spatial details and di-
verse spectral content, a single CASSI snapshot may not be suffi-
cient to attain a desirable level of accuracy. As a result, in the last
years, several dual-camera systems such the system in Fig. 6, have
been proposed [16,17,38]. In this context, in addition to the pri-
mary arm, snapshot CSI systems contain a side-information cam-
era, which captures a panchromatic or color projection of the spec-
tral image. The extra information can be leveraged to design adap-
tive sparse representation reconstruction algorithms [39], leading
to improved reconstructions. Also note that the relationship be-
tween the side image Z € R™*"2, captured by the focal plane array
FPA2, and the spectral image {XI}IL=1 can be modeled as:

z~ Rx, (5.3)

where z = vec(Z), x = (vec(X;)T, ..., vec(X;)T)T, and R is such that

R=[s2(X1).....52(A)]®1,

where I denotes the nyn, x nyn, identity matrix, and s,(};) de-
notes the spectral sensitivity of the FPA2 at the Ith spectral band.
As a result, we may add an additional constraint, i.e., ||z — Rx|; <
€, to the feasible set in (2.2), (2.3), and (5.2), which is referred to
as using z as a direct measurement of {X,},L:1

Remark 5.1. In practice, the side information matrix R has to be
estimated through a calibration process. This supposes an addi-
tional step that may be troublesome when the primary and sec-
ondary detectors do not have the same quantum efficiency as
noted by the seminal work in CSI with side information [16]. In
our experiments with simulated data, we study the effects on re-
construction accuracy of including the side information as a direct
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measurement. But, in our experiments with real data, we don’t use
it as a direct measurement. As will be demonstrated, our approach
does not need prior knowledge of the side information matrix R to
benefit from the side information.

5.2. Spectral image estimation using rank-Order path graphs

We now address the CSI problem by using smoothness on rank-
order path graphs. As mentioned in Section 3, a signal is the
smoothest on a rank-order path graph induced by the signal itself,
but of course, in this setting, we do not know the signal of interest
x, and we will thus borrow the rank-order statistics from the side
information image z to construct the graph.

Since the rank-order statistics of z may deviate from those of x,
it is prudent to address the problem at a local level. This is a fairly
common approach in imaging inverse problems [40,41]. In partic-
ular, we only use sets of local rank-order statistics from z, leading
to a collection of local rank-order paths on V. To enable such a
collection to be used in problem (2.3), a single graph G on V is
constructed from the individual rank-order paths on V as follows:

5.2.1. Construction and aggregation of rank-order paths in CSI

Recall that a spectral image Xi,X5,...,X; € R"1*™2 with vector
representation x € RM"L such that x = (vec(X{)T,...,vec(X))")T
can be assumed to reside on two-dimensional domain given by:

Q:{l,...,m}x{l,...,nz}.

Given a panchromatic image Z on €2, the idea is to construct
the graph G on 2 based on the local rank-order statistics of Z as
follows.

Define a collection of overlapping neighborhoods €2 indexed by
S c € such that = [ Jys $2;. Particularly, in this work, €, is de-
fined by:

Qi ={(i1,ix) e Q:ky <iy <ki+w; =1,k <ip) <ky+wy -1},
(5.4)

where wy, w, € N\ {0} define the size of €, and S is defined by:

S={(k1,k2) eQ: (k],kz)ES] XSz}, (55)
where Sy = {1+ (- Dds; Y, and  §, = {1+ (i - 1ydsp}Y™,
where ds; and ds, are selected such that adjacent €2,'s are
overlapped to a certain degree. This is important because the
collection of graphs may result disconnected otherwise, causing
block artifacts during reconstruction.

For each €2, perform the following procedure:

1. Find an ordering of the elements of €, i.e., Q2 = {si}lg’fl such
that the values of Z at Q; satisfy:

Zs

<2y << Zsg s

where Z;, denotes the value of Z indexed by two-dimensional
coordinate associated with s;.
2. Construct a graph G = (2, E;) on Q2 with edge set E; given by

Ex={(s1.52). (52.83), ... (5|ka|,1,5|glk|)},

As a last step, the collection of graphs {Gk}l‘i1 are merged into
a single graph G by means of the following operation:

Isl
G=(Q|JE. (5.6)
k=1
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To shed light on the main elements of the aforementioned
graph-construction process, Fig. 7 illustrates the spectral and
panchromatic images residing on 2 and the construction of rank-
order paths on €2 as in Step 2. It can be observed that the rank-
order statistics of Z at ; for k€S lead to a collection of rank-
order paths on €.

5.2.2. Rank-order paths (ROPs) algorithm for DC-CSI reconstruction
Given a compressive and panchromatic measurements Y €
RM>*m+Ll-1 and 7 e RM*M2, acquired through the DC-CSI system
in Fig. 6, and provided a matrix model of the imaging system given
by H and R, a spectral image estimate of the scene can be obtained
by measuring the smoothness of the estimate with respect to a
collection of rank-order path graphs using the Algorithm 1.

Algorithm 1 ROPs.

1: Input: compressive and side-info measurements Y and Z; pri-
mary and side-info sensing matrices H and R; dimensions of
the spectral image nq, ny, L; noise level € >0, and a side-
information flag w_side € {0, 1}.

2: Output: spectral image estimate X.

3: Initialize S, wy, w,.

4: Obtain a graph G by running the procedure in Sec. 5.2.1 pro-
vided Z and S, wq, wy.

5: if w_side == 0 then

6 Set A:=H, and y := vec(Y).

7: else

8 Set A :=[HT,RT|T, and y := [vec(Y)T, vec(Z)T]".
9: end if

10: Set X as the solution to the problem~(2.3) with G s.t. Lg :=1; ®
L, A, y, and €, where I denotes the identity matrix of size
LxL.

11: Reshape £ into a spectral image X, ..., X].

12: Return {X}}_,

We note that a side information flag w_side has been included
in Algorithm 1 for the sake of completeness. This is because some
approaches exploit side information as a direct measurement i.e.,
w_side := 1. However, integrating side information by means of
the side information matrix R may be inconvenient in certain set-
tings as explained in Section 5.1. Thus, in our experiments with
real data, we use w_side := 0. As will be shown with simulated
data, this setting does not affect the performance of our algorithm
significantly, but instead the algorithm is able to run about 14
times faster than the case where w_side := 1.

In simulations, when € = 0, the problem (2.3) can be posed as
a quadratic program with equality constraints, as follows which re-
duces to a system of linear equations [42]. Similarly, when € > 0,
there exists @ > 0 such that the problem (2.3) can be reformulated
as a particular instance of Tikhonov regularization [42]. Specifi-
cally, problem (2.3) can be reduced to the unconstrained program
miny ||y — Ax[|3 + axT (I, ® Lz)x, whose solution satisfies:

(ATA+a(, ®L:))x =ATy, (5.7)

where I; denotes an identity matrix of size L x L, and G denotes the
graph with vertex set €2 obtained from the side information as in
Step 4 of Algorithm 1. The regularization term xT (I, ® Le)x can be
expressed as Zle x/Lex;, where xq,...,x, form x. The regulariza-
tion term thus encourages spectral images which are sufficiently
smooth with respect to G over the set of signals defined by the
measurements.

A typical approach to parameter selection is to optimize a cer-
tain metric, e.g., PSNR, SSIM, or SAM, over the space of parame-
ters. This approach in practice may not be straightforward because
we often lack of a reference datacube to compute such metrics. To
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overcome this difficulty, we can rely on simulations with noiseless
data using a spectral scene, hopefully with similar spatio-spectral
characteristics to that of the scene of interest. In the case of our
method, this would avoid the need to tune a regularization param-
eter, which may also be troublesome.

We have noticed that the most influential parameter to select
in our method is the size of subdomain €2, determined by wy, w,
even though the degree to which adjacent ,’s overlap is also rel-
evant to avoid block artifacts. We suggest the practitioner keep the
overlap constant, say between 25 and 75 percent, and play with
the subdomain’s size. Particularly, we assume that w; = w, and
notice that the value of wy for good reconstructions with simu-
lated data depends on the size of the spectral scene of interest as
well as its spatial content. As will be evident in the experimental
results, a scene of size 512 x 512 x 31 may require a larger w; than
a scene of size 256 x 256 x 31. We note that, in our experiments,
the same set of parameters were used for all spectral datacubes
regardless of their spatio-spectral content. In the experiments with
real data, however, the regularization parameter may vary depend-
ing on the signal.

5.2.3. Bilateral filter graph (BFG) algorithm for DC-CSI reconstruction

A reasonable question to ask is whether a different graph can
be used for reconstruction or not. And the answer is yes indeed.
In general, we need a graph on which the spectral image is suf-
ficiently smooth. Instead of using local rank-ordering information
from Z to construct a collection of paths on €2, we can exploit, in-
stead, distance-ordering information from Z by using a collection
of bilateral-filter (BF) graphs on €2. The BF graph arises in the con-
text of graph signal processing by interpreting the bilateral filter
as a kernel-based graph [43]. Although the BF graph is well known
for image denoising and various computer vision applications, e.g.,
[44-47], presumably such a graph has not been used before for
compressive spectral imaging. In the context of our paper, we thus
have adapted it to the CSI task to provide a comparison with a dif-
ferent graph-based smoothness model.

Unlike in Section 5.2.1, here we set S:= €, and define Q=
{(i1,i3) e 2 max{|i; — kq|, i — k2|} < r}, where r e N\ {0} de-
notes the radius of €2, around k € S. This definition of neighbor-
hood is amenable to the fact that a bilateral filter graph has a star-
like network structure, where the center vertex is given by k.

We now can adapt the graph construction procedure in
Section 5.2.1 as follows:

1. Construct a graph G, = (2, Ex, wy) on £ with edge set given
by:

Ee =k, j) 1 j# ke,
1

and the weight function wy, : Q x Q2 [0, c0) given by:

. lli—jli3 |Zi - z;|?
wi (i, j) = exp(——==-=2) exp(——=—
k(i J) p( 252 ) exp( 2%
for (i, j) € E,, and wy(i, j) = 0 otherwise, where Js, §; > 0 are
bandwidth parameters, and Z; denote the value of Z at j e ;.
In our experiments, the bandwidth parameters are set as ds =

2r, and &, = mean({|Z; —Zj|2}(i,j)eUkEk)'

)

As a last step, the collection of graphs {G;};cs are merged into
a single graph G by means of the following operation:

G= V.| JE.w), (5.8)
keS
where the weight function w : | J, E; — [0, o) is defined by
® (i
wi, j) = —— 2k WU ) (5.9)

[{keS:we.j) >0}
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HSDC3 HSDC4

Fig. 8. UDEL hyperspectral image database. RGB renderings of four hyperspectral datacubes (HSDC) used for performance evaluation of the signal recovery algorithms. The
hyperspectral datacubes HSDC1, HSDC2, HSDC3, and HSDC4 consist of 31 spectral bands of size 2064-by-3088 pixels, ranging from 400 to 700 nm.

6. Experimental results

We now evaluate the performance of the proposed graph-based
model ROPs (described in Section 5.2.2) and compare it against the
aforementioned traditional approaches TV and WDCT and a more
recent method DeSCI [36], which are based on sparse represen-
tation and low-rank minimization. In doing so, we reconstruct a
collection of spectral images of various scenes from simulated and
real measurements. In the case of simulated measurements, the
performance is assessed in terms of the structural similarity index
(SSIM) and the spectral angle mapper (SAM), which measure the
spatial and spectral fidelity of the reconstructed datacubes. In ad-
dition, we include average reconstruction and graph-construction
times (R-TIME and GC-TIME). In the case of real measurements,
we evaluate the performance of all approaches except the WDCT
model due to its inferior performance in simulations. In this con-
text, the spatial and spectral fidelity is judged by visual inspection
of the reconstructed RGB renderings. In addition, we evaluate the
reconstructed spectral signatures at certain locations with respect
to the reflectance spectra measured by a non-imaging spectrome-
ter, Ocean Optics USB2000+, brought in close proximity with the
target location.

6.1. Noiseless simulated measurements

For simulated data, we considered a total of 20 hyperspec-
tral image datacubes, consisting of four datacubes from the UDEL
database, captured at our lab and shown in Fig. 8, eight dat-
acubes selected at random from Harvard [48], and eight dat-
acubes selected at random from ICVL [49]. Specifics about the used
databases can be found in the supplementary materials. The goal is
to reconstruct such datacubes from their compressive and panchro-
matic snapshots. For convenience, the datacubes were downsam-
pled to the size 512 x 512 x L, where L = 31 represents the number
of frequency bands of a given datacube.

By assuming the sensing matrices H and R are known, the com-
pressive and panchromatic images y and z of a datacube can be
generated using the forward models (5.1) and (5.3). As aforemen-
tioned, H is set as a SD-CASSI matrix with binary random coded
aperture of size 512 x 512 with 50% transmittance, and the spec-
tral sensitivities of the FPA1 and FPA2 are set to be one for all
wavelengths. Fig. 9 shows simulated compressive and panchro-
matic snapshots of the scene HSDC2 displayed in Fig. 8.

Provided the snapshots and sensing matrices, estimates of the
spectral datacubes were obtained by running the reconstruction al-
gorithms in two regimes. In the first regime, the side information
signal z is not considered as a direct measurement, meaning that
the feasible set of signals, or data-fidelity term, is determined by
the CASSI's snapshot y and sensing matrix H, i.e., {x € Rm™Ll : Hx =
y}. In the second regime, the side information is considered as a
direct measurement, and thus the feasible set of signals is further

Fig. 9. Compressive and panchromatic snapshots of the HSDC2 in Fig. 8, generated
by simulated sensing matrices of the DCCSI in Fig. 6.

constrained as {x e Rm™L: Hx =y, Rx = z}. It is important to say
that, regardless of the regime, the graph-based algorithms always
rely on statistical properties (i.e., rank-order statistics, or radiomet-
ric distances) of the side signal z to construct the graphs.

Table 1 shows the average reconstruction performance of the
above mentioned methods ROPs, BFG, TV, WDCT, and DeSCI across
different datacubes. The best metrics are boldfaced. The column
w/o indicates that side information is not included as a direct
measurement in any of the methods, while the column w/ in-
dicates the opposite. To reconstruct the datacubes based on the
TV and WDCT models, we used a fast algorithm based on alter-
nating direction of multipliers, referred to as C-SALSA [50], and
the noise level €, the maximum number of iterations MAXIT, and
the tolerance TOL were set to 108, 10000, and 105, respectively.
To reconstruct the datacubes based on the ROPs and BFG models,
we used the Algorithm 1 in Section 5.2.2 and its adaptation with
the bilateral-filter graph in Section 5.2.3. For ROPs, the parame-
ters of the neighborhood €2, were set to w; =w, =9, and adja-
cent 2,'s were set to be at most 50 percent overlapped. For BFG,
the neighborhood parameter was set to r = 3. In step 10 of the
Algorithm 1, the problem (2.3) was solved by a method based on
conjugate gradients for sparse systems of linear equations, referred
to as SYMMLQ [51]; here, TOL and MAXIT were also set to 10000,
and 10-6. For DeSCI, we tried our best to provide the DeSCI with a
good initialization via GAP-TV, and ran the rank-minimization part
of the algorithm using the default settings. DeSCI was run without
side information due to the the time it takes for reconstructions,
but obviously we can expect it to improve with side information.

As indicated by the columns w/o and w/ in Table 1, when
side information is used as a direct measurement, the reconstruc-
tion performance of all the methods increases, but this, in turn,
increases the reconstruction complexity, leading to longer recon-
struction times. In contrast, when side information is not used as
a direct measurement, the reconstruction performance of all meth-
ods decreases, but this, in turn, leads to faster reconstruction time.
However, note that our approach is able to maintain reconstruction
accuracy in both regimes, and therefore we may want to run our
algorithm in the first regime, w/o. To illustrate, consider the recon-
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Fig. 10. Reconstructions from simulated measurements. RGB rendering of the original spectral datacube, and reconstructed RGB renderings obtained by the ROPs, BFG, TV,
WDCT, and DeSCI models without side information as direct measurement. Also in the figure, original and reconstructed spectral signatures at locations P1, P2, and P3
displayed on the original RGB image. In the legends, the values in parenthesis are SAM values in degrees; the smaller the better.

Table 1

Average performance metrics of our approach based on smoothness on graphs (ROPs and BFG), and two traditional approaches
based on compressive sensing and low-rank minimization (TV, WDCT, and DeSCI) across different databases UDEL(4), HRVRD(8),
and ICVL(8), where the number in parenthesis denotes the number of datacubes within each database. The columns w/ and
w/o indicate whether the reconstruction algorithm uses side information or not as a direct measurement of the spectral image
of interest. Regardless of the column w/ and w/o, ROPs and BFG always require the side information image to construct the
graphs as described in Section 5.

ROPs BFG vV WDCT DeSCI
SIDE INFO w/0 w/ w/o w/ w/o w/ w/0 w/ w/0
UDEL(4) SSIM 0.96 0.97 0.88 0.95 0.82 0.97 0.76 0.91 0.82
SAM (°) 1213 11.53 15.74 13.51 16.58 12.16 20.14 17.39 18.09
R-TIME (min) 7.65 116.16  245.41 689.00 146.94  408.27 36548 626.71 1214.01
GC-TIME (sec) 1.06 1.22 196.15 19142 - - - - -
HRVRD(8) SSIM 0.99 0.99 0.93 0.98 0.89 0.98 0.83 0.94 0.89
SAM (°) 291 293 3.79 4.00 4.39 3.14 7.82 7.43 598
R-TIME (min) 9.31 126.57 22281 690.56 156.60 366.20 516.58  641.20 1330.18
GC-TIME (sec) 1.15 1.12 21769  193.65 - - - - -
ICVL(8) SSIM 0.98 0.98 0.89 0.97 0.81 0.98 0.76 0.94 0.81
SAM (°) 2.35 2.26 3.22 3.02 3.89 2.46 539 4.69 4.82
R-TIME (min) 7.99 107.98 181.10 679.83  150.24 379.94 486.80 77299 132841
GC-TIME (sec) 1.10 1.07 23756 20433 - - - - -

10
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Fig. 11. Box plots of SSIM and SAM values of reconstructed spectral images for different noise levels added to the compressive measurements. The higher the SNR, the less
noisy the measurements. Our method ROPs w/o exhibits significantly higher performance than the comparing approaches over the entire collection of spectral images.

structed RGB renderings in Fig. 10; here the reconstructed spectral
images were obtained without side information as a direct mea-
surement. In such a regime, we can observe that our approach still
produces spectral image estimates, which preserve spatial details
and contain minor spectral distortion as opposed to the traditional
approaches. Note that, in the case of our approach, the SSIM value
in both regimes w/o and w/ does not change significantly. This is
because the graph-based prior encodes the spatial structure of the
side information, and is able to transfer it to the reconstructions
without relying explicitly on the side-information sensing matrix
R.

6.2. Noisy simulated measurements

We now consider a more realistic simulated scenario to show
the performance of our method, ROPs w/o, and the comparing ap-
proaches, TV w/, and WDCT wy/, in the presence of noisy measure-
ments. In doing so, we reconstruct the same collection of spectral
images from their compressive snapshots contaminated with ad-
ditive white Gaussian noise. More precisely, let x € R©122)31 rep-
resent a spectral image of interest, then its coded snapshot y e
R>12(512431-1) qatisfies y = Hx + e, where e is a noise term with en-
tries drawn from a zero-mean Gaussian distribution with standard
deviation

. [std(Hx)?2
SD = W,

where std(Hx)2 denotes variance of entries of Hx, i.e., clean coded
snapshot, and SNR denotes the signal-to-noise ratio in dBs. In our
experiment, SNR takes values in the set {10, 20, 30}.

Provided z and R as in the previous experiment, TV w/
and WDCT w/ reconstruct x from y by minimizing |x|;yv and
| ®Tx||; respectively over {x: |[[HT,RT|Tx — [y, Z'|T|, < €}. While
our method, ROPs w/o, reconstructs x from y by minimizing x"L¢x
over {x: ||Hx —y||, < €}, where the graph G is constructed from z
as in Section 5.2.1. Unlike in Section 6.1 that we used SYMMLQ to
solve the optimization problem associated with our method, here
we use the same constrained optimization solver C-SALSA to solve
all the optimization problems. We should note that even though
our approach can be solved much more efficiently by reformulat-
ing the problem as an unconstrained problem as will be done in
the experiments with real measurements, here it is convenient to
work with the constrained formulation because the extent of the
feasible set can be defined as € := SDy/m ++/2m as explained in
Section 4, thus avoiding the search for a regularization parameter.

1

\, . BE AM QBLITTE

ORIG ORIG

SCN1: Blocks SCN2: PenaPalace

Fig. 13. Color images of the spectral scenes of interest. The color images were cap-
tured by the side-information camera in Fig. 12 under the same illumination condi-
tions used for the CASSI snapshot. The spectral signatures at the points P1, P2, P3,
and P4 will be evaluated.

Fig. 11 summarizes the SSIM and SAM values for different lev-
els of noise added to the measurements, where the variability of
the metrics is due to the number of spectral images considered
for reconstruction. As indicated by Fig. 11(left), our method obtains
SSIM values, which are not only higher but less variable than the
comparing approaches. Similarly, as indicated by Fig. 11(right), our
method obtains SAM values that are smaller and less variable than
the comparing methods. The figures thus exhibit that our approach
produces consistent spectral image estimates with high spatial fi-
delity and low spectral distortion across different noise levels for
various spectral scenes.
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SCN1

SCN2

Fig. 14. Compressive and panchromatic snapshots of the scenes SCN1, SCN2 as seen by our DCCSI system Fig. 12. The snapshots of SCN3, and SCN4 can be found in the

supplementary materials.

ROPs

Q —e—ROPs(8.50)
= - - -BFG(8.61)
= TV(16.93)
B [ DeSCI(13.47)
ﬁ ——REF P1
@
el
=
=
=
g
<
: 400 500 600 700
TV ORIG Anm]
—o—ROPs(17.93)
@ - - -BFG(19.73) & | [o—ROPs(22.69) i —e—ROPs(12.16)
b= TV(22.05) | |- - ~BFG(24.35) . = - - -BFG(14.03)
g DeSCI(25.02) = TV(29.16) ! g TV(19.32)
= — _REF P2 Bl EEEE DeSCI(18.11) P = I — DeSCI(18.48)
3 (& | |[——rerps 2 — REF P4
[ [ [
e} el s}
=} =} =}
a a a
g g g
< ; < <
¥ g
400 500 600 700 400 500 600 700 400 500 600 700
)\[nm] )\[nm] )\[nm]

Fig. 15. Reconstructions from real measurements. RGB image of the original scene obtained by a color camera, and reconstructed RGB renderings obtained by the ROPs, BFG,
TV, and DeSCI models without side information as direct measurement. Also in the figure, reconstructed spectral signatures at a few locations P1, P2, P3, and P4 displayed in
ORIG. In the legends, the values in parenthesis indicate the accuracy of the reconstruction in terms of the SAM metric in degrees. The average values over the four signatures
are 15.32 for ROPs, 16.76 for BFG, 20.40 for TV, and 18.77 for DeSCI; the smaller, the better.

6.3. Real measurements

For real data, we implemented the dual-camera compressive
spectral imaging (DC-CSI) system in Fig. 12 whose schematic is dis-
played in Fig. 6. We then configured the DC-CSI system to encode
31 spectral bands of size 256 x 256 from a scene of interest onto a
compressive snapshot of size 256 x 286, and a panchromatic snap-
shot of size 256 x 256. The interested reader is referred to the sup-
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plementary materials for implementation details of our DC-CSI sys-
tem. Figs. 13 and 14 show the scenes of interest, and some com-
pressive and panchromatic snapshots as seen by our DC-CSI system
in Fig. 12.

Since the primary and secondary cameras of our DC-CSI sys-
tem have different quantum efficiencies, using side information as
a direct measurement may not be straightforward as discussed in
Section 5.1. Thus, the reconstruction algorithms ROPs, BFG, TV, and
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Fig. 16. Reconstructions from real measurements. Reconstructed RGB renderings obtained by the ROPs, BFG, TV, and DeSCI models without side information as direct
measurement. Also in the figure, reconstructed spectral signatures at a few locations P1, P2, P3, and P4 displayed in ORIG. In the legends, the values in parenthesis indicate
the accuracy of the reconstruction in terms of the SAM value in degrees. The average values over the four signatures are 13.14 for ROPs, 16.44 for BFG, 14.55 for TV, and

21.04 for DeSCI; the smaller, the better.

DeSCI were only run in the first regime; side information is not in-
cluded as a direct measurement. That is, the feasible set of signals,
or data-fidelity term, is determined by {x e R": |[Ax —y|, <€},
where the CASSI's sensing matrix H was estimated by a calibration
procedure similar to that proposed in [27]. We should note that,
in this setting, the graph-based algorithms are expected to pro-
duce spectral image estimates with better spatial resolution than
the comparing approaches since they leverage the statistical prop-
erties of the panchromatic data for reconstruction.

Color renderings of the scenes (SCN1 and SCN2) and spectral
signatures reconstructed by ROPs, BFG, TV, DeSCI can be observed
in Figs. 15, and 16. Unlike the TV, DeSCl, and BFG approaches, the
proposed graph-based approach ROPs produces color images that
not only contain as much spatial details as the associated panchro-
matic images but also display almost as many colors as the color
images in Fig. 13. Even though BFG preserves sharp edges on rel-
atively large spatial structures, it smooths out small details on the
scene, leading to piece-wise constant approximations. In contrast,
ROPs preserves better both large and small details.

In the figures, we can also observe reconstructed and reference
spectral signatures at four different location P1, P2, P3, and P4.
For comparison purposes, such signatures have been normalized
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by their total intensity. To clarify, let X; (i, j), X>(i, j). ..., X, (i, j) be
a spectral signature at location (i, j) € €2. The normalized spectral
signature is given by

%3, j) = Lx’('—’) I=1,....L
Zp:] Xp(ls i)
In the figure’s legends, the SAM value of the reconstructed signa-
ture with respect to the reference is displayed in parenthesis for
each approach. As suggested by the average SAM value over the
four spectral signatures, the proposed method ROPs outperforms
the other methods on average. Specifically, the methods ROPs, BFG,
TV, and DeSCI reach average SAM values of 15.32, 16.76, 20.40, and
18.77 for SCN1 in Fig. 15 and 13.14, 16.44, 14.55, and 21.04 for
SCN2 in Fig. 16, respectively. In addition, Figs. 17 and 18 display the
intensity estimates of the scenes across the spectrum. Although the
graph-based estimates exhibit high intensity artifacts at the image
boundaries and so do the comparing approaches, in particular at
the shorter wavelengths, they perform significantly better than the
competing approaches, which do not exploit structural information
from the side information.

Regarding parameter settings, for all algorithms, we set the pa-
rameter TOL to 103, We noticed that the stability of the solutions
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Fig. 17. Spectral image estimates of the scene SCN 1 in Fig. 13. We display 30 out of 31 spectral bands of size 256 by 256 obtained by the graph-based approaches ROPs,

BFG, and the comparing approaches TV, and DeSCI.

may be affected by setting this parameter too small, as we did in
the simulated data case. For ROPs, the parameters of the neigbor-
hood €2, were set to w; =w, =7, and adjacent €2;'s were set to
be at most 66 percent overlapped. For BFG, the neighborhood pa-
rameter was set to r = 2, and the bandwidth parameters were set
to 8s = 2r, and &;/3, where §; is set as suggested in Section 5.2.3.
Additionally, the regularization parameter « in (5.7) was selected
by a grid search over « > 0. To that end, we obtained first an es-
timate x,, for each «, and recorded the values of the data fidelity
term ||Hxy — y||§ and regularization term x] L;xy. Last, we selected
as regularization parameter the one at which the curves given

TLex |Fixe 113 : ;
by (o, — XX Yy and (o, ——%2"2__) intersected; specifi-
y ( maxg (X4 LeXe ) ) ( maxg (||Hxe—yl|3) ) » 5P

cally, for ROPs « = 2.9764 for both SCN1 and SCN2, and for BFG
o = 1.2743 for both SCN1 and SCN2. For TV, we defined the noise
level parameter € > 0 in (5.2) by the same procedure; specifically,
€ =9.0418 for SCN1 and € = 7.0330 for SCN2. The DeSCI's param-
eters were adjusted as in the case of simulated measurements.

7. Discussion

In this paper, we introduced the concept of rank-order path
graphs and examined the problem of signal recovery from under-

sampled linear measurements by using smoothness with respect
to rank-order path graphs. In particular, we showed the usefulness
of rank-order path graphs for compressive spectral imaging, and
demonstrated its advantages over some traditional approaches. De-
spite having a relatively simple sparse edge structure, rank-order
path graphs are capable of capturing structural details in the data,
leading to efficient graph representations, and fast iterative inver-
sion. The key idea is that by rearranging the original feature space,
the complexity of the rearranged space can be captured by using
fundamental graphs, i.e., path graphs.

We note that all methods have an inherent limitation that may
affect their reconstruction accuracy. In particular, the data fidelity
term ||y — lflx||§ is well suited to handle additive Gaussian noise in
y, but in practice, the statistical nature of the noise affecting y is
far from additive Gaussian. There is non-linear noise due to quan-
tization and non-uniform illumination of the scene besides signal-
dependent noise due to the approximate nature of the sensing ma-
trix. Consequently, we should not have a perfect match between
our reconstructed spectral signatures and the reference spectra
measured by the non-imaging spectrometer. In our experiment,
however, some fixes may lead to overall improvements. First, the
CASSI matrix is derived based on the assumption that the coded
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Fig. 18. Spectral image estimates of the scene SCN 2 in Fig. 13. We display 30 out of 31 spectral bands of size 256 by 256 obtained by the graph-based approaches ROPs,

BFG, and the comparing approaches TV, and DeSCI.

aperture’s pixel size and detector’s pixel size are the same, and
this assumption does not hold in our experiment. This is because
128 x 128 coded aperture pixels map onto 1024 x 1024 detector
pixels, which degrades the quality of our compressive measure-
ment. We may thus enhance spectral reconstruction by replacing
the coded aperture with a higher resolution one. Second, on the
calibration front, more careful estimation of the shift introduced
by the prism to the coded aperture on the detector and the use
of a calibration source, i.e.,, monochromator and light guide, with a
more uniform illumination pattern may also lead to improved re-
constructions.

The fact that a one-dimensional projection (e.g. a panchromatic
image) from a high-dimensional object (or a hyperspectral image)
can be used to rank order its elements smoothly appears to be
rooted in the theory of manifolds. In our application scenario, we
could say that if the hyperspectral image lives close to a low di-
mensional linear manifold, then the ordering information from the
panchromatic image is useful to infer a smooth multivariate order-
ing of the high dimensional vectors (or spectral signatures). We are
currently exploring this hypothesis.

In recent years, the idea of patch ordering has been used as
a means to regularizing various image restoration problems, e.g,
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[52] and some references therein. Specifically, the method by Vaks-
man et al. [52] builds on the assumption that a patch-based per-
mutation obtained from a noisy image induces a smooth reorder-
ing of the associated pixels in the original image. Consequently, a
restored image can be obtained by encouraging image estimates
with sparse second derivative along the linear order of the pixels
induced by the permutation. A simplified version of their regular-
ization term is given by:

R(x) = |[MLcPx||1.,

where M denotes a weight diagonal matrix, L; denotes the graph
Laplacian of a path graph G, and P denotes the patch-based per-
mutation matrix inferred from the noisy image.

In our context, the assumption that the signal of interest is suf-
ficiently smooth with respect to a path graph, leads fundamentally
to regularization terms of the form:

R(x) = |IL*Px||3,

where G is the path graph with edge set {(i,i+ 1)}, and P is
computed from the rank-order statistics of the panchromatic im-
age.
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Even though both regularization terms bear a similarity, not
only do they lead to different solutions with different character-
istics, but our regularization term is simpler to minimize. It is im-
portant to say, however, that the work by Vaksman et al. [52] can
indeed be instrumental to extend our approach to a broader class
of compressive spectral imaging (CSI) systems even if we do not
have access to a panchromatic side information image. We note
that several other CSI systems, e.g., [53-55], capture compressive
images that are co-registered with the spectral image of interest
and look almost like a panchromatic image with random coded
noise. When a co-registered compressive image is available, un-
like in SD-CASSI, it may be possible to estimate the rank-order
information of a panchromatic image from the compressive im-
age itself. As a result, a suitable set of rank-order path graphs can
be used for CSI reconstruction without an additional camera. Of
course, the statistics of the noise may deviate quite a lot from
those of traditional image restoration problems. Thus, we may
need to adapt significantly to the available methods or invent new
ones.

If there is, on the other hand, access to a panchromatic im-
age, which is aligned to the spectral image of interest, since our
method does not rely on the side information sensing matrix to
integrate such a panchromatic image in the reconstruction process,
our method can be easily used to regularize a variety of recent
spectral imaging systems, e.g., [56-60], without increasing calibra-
tion complexity nor adding significant hardware design considera-
tions.

Rank-order path graphs could be extended to applications such
as depth map restoration [61,62], positron emission tomography
enhancement [63], and spectral X-Ray computer tomography re-
construction [64] to name a few, where side information is readily
available. To construct the graphs, however, we should not use rank
ordering information directly extracted from the side information
itself. Instead, rank orderings have to consider the geometrical as-
pects of the multimodal feature space [65-67]. To do so, the notion
of multivariate rank-order statistics presented in Section 3 can be
explored.

Adaptive compressive spectral imaging architectures may ben-
efit from the use of rank-order path graphs because not only
does its construction take little computational overhead but
their edge structure is also highly sparse. To do so, we can
show that the error accuracy is inversely related to the small-
est eigenvalue of (ATA+oz(IL®L(—;)) in (5.7). As a result by al-
lowing the coded aperture to modify the distribution of ze-
ros and ones in the matrix A such that the smallest eigen-
value is maximized, we may obtain richer spatio-spectrally
coded measurements and therefore better reconstructions than
random coded apertures. As suggested by the recent maga-
zine in snapshot spectral imaging this is a direction worth
exploring [14].

We conclude by saying that rank-order path graphs have the
potential to become a valuable asset not only in modern-day com-
puter vision and computational imaging problems, but also as
models to learn efficient graph representations of data.
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Appendix A. Proof of Theorem 3.5

The proof of Theorem 3.5 depends on the following lemma.

Lemma A.l. Let x = (Xq,...,X;)T € R". Then

n-1 n-1
H 2 2
mmE Xoyyy — Xoy)™ = E 1 —X1)%,
i=1 i=1

oges

where =1 € S, is such that X1 <X_1<...<X_1.
1 2 n
Proof. Replacing x = (x1,Xz,.... X)) by (X_1,x_1,....x_1)T, we
1 2 n
may assume without loss of generality that x; <x; <--- < xp. Let
o € Sy be a permutation of {1,..., n} such that 0 = 0103 ...0y, and

l<i<n-1.

Choose 0,011 € {oy};_; such that X, <Xo,,. For Be
[Xo;. Xoy,, |, it is easy to see that (X, —X5)? > (X5, — B)*.
More generally, let ¢, ;:=max(o;.1,0;). Since by hypothesis
Xt = Xy -1 and Xt -1 belongs in the interval formed by
Xoi,1+Xo;, We have that (xo,, —X0)? = (X, 7Xt1.+1,1)2. Summing
over i, we conclude that

n-1 n-1
D Koy —%5)% = Y Kty — Xpy-1)%
i=1 i=1

Therefore, the left hand side reaches a minimum over S, at the
permutation t;t, ...t,, which is equivalent to the permutation that
sorts the entries of x in ascending order, ie., r~1 = r1*1r2*l I
This concludes the proof. O

Proof of Theorem 3.5.. Recall that for any graph G = (V,E) and
any vector z = (z1,...,zn)T € R", we have

lez= ) (z-z)

(i.)€E(G)

By definition, for G € £;, there is a permutation o € S, such
that E = {(61,0), (02,03), ..., (04_1,0n)}, and we have xTL¢x =
2 _ yn—-1 2
Z(i,j)e{(rrk,rrk+1)};;} (i —x))* =332 Koy =Xy, )". Thus,

n-1
7 2
g;lsr,} ;(Xf’ku - X(Tk) :

minx"Lex =
GeLly

The result now follows from Lemma Appendix A.1. O
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Appendix B. Proof of Proposition 3.6

The proof of Proposition 3.6 depends on the following lemma.

Lemma B.1. Let G= (V,E,W) be an undirected weighted graph on
V={1,...,n}, and let X € R™L. Then

o XTLeX) = > Wyllx —x;113.
(i,j)eE

where x; = (Xj1, X, ..., X;j.) denotes the ith row of X.

Proof. Let x; denote the Ith column of X. By definition of tr(), we
have that tr(XTLgX) = YF_, X[ Lgx,. Since ] Lgx; can expressed as
> jyee Wij (g — le)z, where x;; denotes the ith entry of x;, we ob-
tain tr(XTLeX) = 311 > jer Wij (X — xj1)?. Interchanging the or-
der of the summations, we get

L
tr(XTLeX) = Y Wy > (g —xp)* = Y Wllx; —x)]

(i.j)eE =1 (i.j)eE

2
2

as claimed. O

Proof of Proposition 3.6.. Applying Lemma Appendix B.1, we ob-
tain

min tr(X"LcX) = min X — X3
min (X"LgX) min Z llx; —x;l15

(i,j)eE

Observe that each permutation o = 610, ...0n € Sy can be associ-
ated with a path graph G = (V,E) € £, whose edge set is given by

E:{(O’,‘,O’i+1):i:],...,m—]}.

Therefore, we can optimize over the set of permutations Sy in-
stead of £m, and this completes the proof. O

Appendix C. Proof of Theorem 3.7

The proof of Theorem 3.7 depends on the following definition
and lemma.

Definition C.1. The graphs G and H are isomorphic if there exist a
bijective map 7 : V(G) — V(H) such that

(i, j) € E(G) iff (z (i), T(j)) € E(H).

Lemma C.2. The graphs G and H are isomorphic if and only if their
adjacency matrices are related by

W; = PPW,P
for some permutation matrix P.
Proof. See [68] Theorem 4.2.1. O

Proof of Theorem 3.7.. By definition, G € £, has edge set E(G)
given by {(0},0y,1) :k=1,...,n—1} for some permutation o €
Sn. Note that the inverse permutation o~! of o can be regarded as
a bijection from V to V, and satisfies

(i, j) € E(G) iff (071(i),071(j)) € EG).

This is because (i, j) can be written as (oy,0y,1) for some ke
{1,...,n—1}, and thus (6~1(i),c=1(j)) = (k. k+ 1) € E(G). There-
fore G and G are isomorphic.

By applying Lemma Appendix C.2 with G and G, we obtain that
W = PTWCP for some permutation matrix P. In particular, P can
be constructed from o as follows. Recall that PT = P-1, we thus
have that the adjacency matrix W of G satisfies Wi = PWPT. By
assumption, the edge set of G is given by {(k.k+1) :k=1,...,n—
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1}. So, we have that efWxe; = elPWP e, ¢ =1, where e, de-
notes kth standard basis vector. This shows that PTe, = ey, and
Ple,.1 =eq,,,, and we thus obtain

P'le; e es,| =>P=

en] =[es, e,

Now, it remains to show the relationship between the graph
Laplacians of G and G. By definition, Lz =Dz —W¢. So, we have
that PTLzP = PTD;P — W¢. The result follows by verifying that the
degree matrix of G is given by PTDGP. To do so, note that the de-
gree of the vertex oy € V(G) is ef Dceg, = ey, PTD:Peq, = e;Dgey
since Pe;, =e;. As a consequence, the degree of the vertex oy
can be computed exactly from engTDCPegk and this concludes the
proof. O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.sigpro.2022.108707.
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