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E C O L O G Y

The global distribution of known and undiscovered  
ant biodiversity
Jamie M. Kass1*†, Benoit Guénard2†, Kenneth L. Dudley1, Clinton N. Jenkins3, Fumika Azuma1,  
Brian L. Fisher4, Catherine L. Parr5,6,7, Heloise Gibb8, John T. Longino9, Philip S. Ward10, 
Anne Chao11, David Lubertazzi12, Michael Weiser13, Walter Jetz14, Robert Guralnick15, 
Rumsaïs Blatrix16, James Des Lauriers17, David A. Donoso18, Christos Georgiadis19, Kiko Gomez20, 
Peter G. Hawkes21,22, Robert A. Johnson23, John E. Lattke24, Joe A. MacGown25, William Mackay26, 
Simon Robson27, Nathan J. Sanders28, Robert R. Dunn29, Evan P. Economo1,30*

Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services. 
Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown. 
We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using bio-
diversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the 
distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their 
patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite 
their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among 
vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general 
forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for 
small-ranged vertebrates will benefit invertebrates while providing a “treasure map” to guide future discovery.

INTRODUCTION
Thirty-five years ago, invertebrates were famously called “the little 
things that run the world,” (1) highlighting the importance of or-
ganisms that often remain in the background while vertebrates take 
center stage. Today, the critical roles of invertebrates for ecosystem 
functioning and services (2, 3) are more widely recognized in both 
the public consciousness and in organized conservation efforts. How-
ever, we still lack an understanding of the patterns and dynamics of 
Earth’s invertebrate biodiversity, including basic questions such as 
which areas have the most species, which areas harbor concen-
trations of small-ranged species, and even whether there is a major 
global decline in insect biomass underway (4).

Without comprehensive, high-resolution geographic datasets on 
invertebrate groups, our knowledge of global biodiversity patterns 
is highly biased toward one branch of the tree of life: vertebrates (5). 
This vertebrate bias could undermine the effectiveness of area-based 
conservation efforts (6, 7) even as these appear to be gaining momentum. 

It is possible that global-scale vertebrate biodiversity patterns are 
representative of invertebrate diversity patterns, but this potential 
remains mostly untested [but see (8)]. Recent studies on global 
species richness patterns of invertebrate groups suggest im-
portant divergences from vertebrates (9, 10), but formal compari-
sons have not been made, and the distributions of small-ranged 
invertebrates—which are of critical importance to conservation—
are nearly unknown.

In addressing these knowledge gaps, we face a fundamental data 
impediment. There are far fewer researchers and data collectors for 
invertebrates than for vertebrates (11,  12), despite the former 
constituting orders of magnitude more species. Without a base of 
experts to consult for each species, we need to rely heavily on com-
putational approaches to overcome several challenges in assembling 
a map of global diversity. First, we must synthesize information 
scattered in (often obscure) literature, museum collections, and 
specimen databases. Second, such data and metadata require vetting, 
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updating, and interpretation. Third, we need a workflow that takes 
occurrence data for thousands of species spanning a broad spec-
trum of data size and quality and then returns reasonable estimates 
of these species’ distributions. Last, we need to account for different 
levels of research attention across the globe, resulting in geographic 
variation in field sampling intensity, the uneven taxonomic study of 
those samples, and variable progress in the continued improvement 
of taxonomic frameworks over time (11). Inventories are still incom-
plete for even the most conspicuous invertebrates in the best-studied 
regions (13). Thus, methods to estimate and account for these bias-
es are needed, and ideally, these would also guide future inventory 
efforts toward efficient discovery (14).

Here, we address these challenges for ants and provide a uniquely 
comprehensive, high-resolution global biodiversity map for a major 
invertebrate taxon. Ants are ecologically dominant and economi-
cally important insects that play critical roles in ecosystems (15, 16). 
Their known species richness is comparable to birds and mammals 
combined, and thus high enough to be informative while still trac-
table. They are also globally widespread (17, 18) and abundant (19, 20), 
and represent a good proxy for the diversity of other arthropod 
groups at both local and regional scales [e.g., (21, 22)]. These traits, 
combined with recent data synthesis efforts (23, 24), make them an 
attractive test case to assess congruence between invertebrate and 
vertebrate diversity centers.

We present the most comprehensive ant occurrence dataset to 
date and use a multifaceted informatics and modeling pipeline (fig. 
S1) to reconstruct a global biodiversity map at 10–arc min resolu-
tion (~20 km at the equator) encompassing nearly all described ant 
species. We use estimates of species ranges to calculate global maps 
of ant species richness (the number of species in an area) and rarity 
(richness weighted by range size to emphasize small-ranged species). 

Previous analyses of global invertebrate diversity either used point sam-
ples of alpha diversity to model geographic patterns of species rich-
ness (9, 17, 25) or were limited in resolution to large administrative 
regions (10, 18), neither of which allow for both fine-scale richness 
and rarity estimates. Furthermore, we use machine learning models 
[Random Forest (26)] to account for the effects of sampling bias on 
the diversity maps and predict which areas may harbor hidden ant 
diversity. We then assess the congruence of biodiversity patterns 
for ants and vertebrates (amphibians, birds, mammals, and reptiles). 
The global distributions of different vertebrate taxa are themselves 
not fully congruent, as each has distinct features (27, 28). Thus, our 
main goal is to determine whether biodiversity patterns for ants are 
comparably similar to those of vertebrate groups as these groups 
are to each other, or indeed highly divergent given their large phylo-
genetic, physiological, and ecological differences. Finally, we evalu-
ate how well current protected areas capture important biodiversity 
centers.

RESULTS AND DISCUSSION
Our data compilation (fig. S1) recovered 1,802,913 occurrence re-
cords for the native distributions of 15,463 valid species and subspe-
cies. From these raw records, after data correction, georeferencing 
coordinates from existing locality metadata, error checking, and filter-
ing out records with errors or high uncertainty, 1,479,293 records 
(representing 14,328 species) were used for analysis. This constitutes 
considerably more geographic coverage than previous global stud-
ies on invertebrates [e.g., this study: 159,061 unique georeferenced 
coordinates, mapped onto 47,385 unique 10–arc min grid cells (~20 km); 
as compared to earthworms, (9): 9212 unique sites and nematodes 
(25): 6759 samples, 1876 unique 30–arc sec grid cells (~1 km)]. 

Fig. 1. Global ant species richness patterns in comparison with terrestrial vertebrates. (A) Species richness centers (top 10% of area) for amphibians, birds, mammals, 
reptiles, and ants, indicating areas of congruence and incongruence of biodiversity centers across taxa. (B) Species richness maps based on stacking individual species 
range estimates for ants and vertebrates. (C) Spearman’s correlation matrix for grid cell–level species richness across taxa.
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These data were used to make range estimates with different methods 
based on data available for each species [buffered point(s): 5168 species; 
polygon based on alpha hull: 1554 species; or species distribution 
model (SDM) prediction within the alpha hull (after further spa-
tially thinning occurrence records): 7606 species; see fig. S1]. As 
the uncertainty inherent in most of the occurrence data was on the 
order of 1 to 20 km, we performed our mapping and modeling at 
10–arc min spatial resolution (~20 km at the equator). We estimated 
ant richness and rarity by aggregating species range estimates and 
defined centers of diversity as the top 10% of area for each.

Global patterns of ant species richness and congruence 
with vertebrates
Ant species richness peaks in tropical regions (Fig. 1), consistent with 
previous work on ants (17, 18, 29) and many other groups (30), 
although inconsistent with global patterns for bees (10) and earth-
worms (9). Moreover, many of the regions identified within the 
tropics overlap with richness centers for vertebrate groups. Consensus 
species richness centers across taxa include the Amazon basin, the 
Atlantic Forest of Brazil, Mesoamerica, Central Africa, and Southeast 
Asia, although for the latter two regions, there is considerable 
finer-scale mismatch. The Afrotropics, in general, is also a relatively 
less rich region for ants than for vertebrates, particularly in the savanna 
and dry woodland areas of central and southern Africa. In contrast, 
the ant faunas in regions of New Guinea, Australia, and Madagascar 
are more species-rich relative to their global diversity than they are 
for vertebrates. Ant species richness (Fig. 1) is moderately correlated 
with richness of all vertebrates (Spearman’s rho = 0.70) and slightly 
less correlated on average than vertebrate groups are with each other 
(Spearman’s rho: ants-vertebrates mean = 0.68; vertebrates-vertebrates 
mean = 0.78; Fig. 1C and table S2). The overlap of richness centers 

between ants and vertebrates is also high and comparable in magnitude 
to the overlap of vertebrate groups with each other (ants-summed 
vertebrates = 0.72; ants-vertebrates mean = 0.68; vertebrates- 
vertebrates mean = 0.71; Fig. 1C and table S4).

We test the robustness of our richness estimates by exploring 
different methodological variations. First, we evaluate whether 
the species distribution modeling step [complexity-tuned Maxent 
models (31, 32) predicted within the range polygon] has undue 
influence on the recovered richness centers, and we find that while these 
models contributed more detailed estimations of species ranges rel-
ative to univalue polygons, their effects on the location of richness 
centers are minimal (fig. S2). Second, we compare our richness esti-
mates to a separate dataset [Global Ants Database (GLAD) (24)] of 
local community measurements of alpha diversity that (unlike our 
analysis) includes morphospecies. Although there is considerable 
variation in richness among local communities even on small spa-
tial scales, the grid-cell prediction is both positively correlated and 
forms an upper bound for local measurements (i.e., local richness 
mostly does not exceed modeled regional richness). Third, we evaluate 
the robustness of our primary method of estimating and stacking 
species range estimates [e.g., (33)] using three alternate methods: 
(i) rarefaction and extrapolation of sampling curves, (ii) taxonomic 
surrogacy models (modeling species richness as a function of genus 
richness), and (iii) a climate-based macroecological model based on 
the GLAD data. In general, we find consistency between these methods 
and the range-stacking approach (fig. S3). However, we note that 
the only method that did not use the Global Ant Biodiversity In-
formatics (GABI) occurrence data (i.e. the macroecological model 
based on community data) did have the lowest correlations with all 
other methods (Spearman’s rho = ~0.6, compared to >0.8 for the 
other methods), although as a model of alpha diversity, it is the least 

Fig. 2. Global patterns of ant rarity and comparison with terrestrial vertebrates. (A) The concordance of different rarity (i.e., rarity-weighted richness, a metric indi-
cating a concentration of small-ranged species) centers (top 10% of area) for amphibians, birds, mammals, reptiles, and ants. (B) Continuous rarity maps for ants and 
vertebrates. (C) Spearman’s correlation matrix for grid cell–level rarity across taxa.
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comparable as local and regional diversity are not always correlated. 
To determine how robust our results were to changes in spatial res-
olution (34), we recalculated correlation of continuous values and 
overlap of diversity centers across varying spatial resolutions rang-
ing from about 20 to 1000 km at the equator (10, 20, 50, 100, 200, 
and 500 arc min) and found little change in the broad-scale diversi-
ty patterns we observed (fig. S4).

Global patterns of ant rarity and congruence 
with vertebrates
Areas of high rarity (i.e., areas with many small-ranged species; Fig. 2) 
are used more frequently for conservation planning (along with 
assessments of threat status and economic, social, and local consider-
ations) than areas of high species richness per se, as range-restricted 
species face increased threat of extinction (35, 36). Moreover, richness 
patterns are known to be driven mostly by the distributions of 
widespread species (37). Around the globe, rarity centers (Fig. 2) are 
smaller, less contiguous, and more numerous than the fewer, larger 
centers observed for richness (Fig. 1). Ant rarity is correlated with 
vertebrate rarity (Spearman’s rho: ants-summed vertebrates = 0.77; 
ants-vertebrates mean = 0.73; vertebrates-vertebrates mean = 0.82; 
Fig. 2C and table S2), and although overlap fractions for diversity 

centers are slightly lower (ants-summed vertebrates = 0.53; ant-
vertebrates mean = 0.48; vertebrates-vertebrates mean = 0.59; Fig. 2C 
and table S4), on a global scale, this level of overlap still represents 
a high level of agreement. Consensus areas of high rarity include 
Mesoamerica, South Africa, Madagascar, the southwest and eastern 
coasts of Australia, Southeast Asia, Sri Lanka, the western Congo, 
and New Guinea. However, regions of ant rarity appear to diverge 
from those of vertebrate rarity in several places: Small-ranged ant 
species are more prominent than small-ranged vertebrates in areas 
such as the southwestern United States, the Mediterranean basin, Japan, 
and the Korean peninsula (Fig. 2). Conversely, areas identified as rarity 
centers for vertebrates but missing for ants include several moun-
tainous regions encompassing most of the Southern Tropical Andes, 
the Western Ghats, and the Himalayan region, among others. As 
with richness, we tested the effects of spatial resolution on the rarity 
estimates and did not find substantial sensitivity (fig. S5).

Predicting richness and rarity accounting for sampling bias
While most biologists would not expect the global distributions of 
different taxonomic groups to be entirely congruent (27, 28), it is 
important to evaluate whether apparent divergences are caused by 
real biological differences or reflect a geographically biased global 

Fig. 3. Machine learning predicts how increased sampling could change our understanding of ant richness and rarity centers. Random Forest models were trained 
to predict ant species richness and rarity values as a function of climate (7 vars.), topography, biogeographic realm, vertebrate biodiversity, and sampling density. We then 
used the models to predict (A) richness and rarity values under a “universal high sampling” scenario, revealing which areas may drop out of the top 10% with increased 
global sampling (red), which are robust to sampling (purple), and which centers are predicted to enter the top 10% with increased sampling (blue). The latter represents 
a treasure map indicating areas that should be prioritized for future sampling. The top 10% areas for vertebrates are indicated by hatched regions. (B) Overlap fractions 
for empirical and projected center designations for richness and rarity, and Spearman’s correlations continuous richness and rarity values.
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inventory. In principle, sampling biases could increase or decrease 
correlations across taxa. We use “sampling” as shorthand for the entire 
process of field collection, specimen curation, taxonomic study, 
species description, and taxonomic revision over time, any of which 
could limit information on biodiversity in a region (as measured here 
by the density of ant occurrences for described species) and bias 
broader patterns.

We train Random Forest (26) models on our empirical ant esti-
mates using potential predictor variables that reflect climate, topog-
raphy, vertebrate richness/rarity, and global ant sampling intensity 
to predict how our estimates of richness and rarity may change with 
increased, and more spatially homogeneous, sampling around the 
globe. These models are (as expected) able to reproduce the existing 

ant empirical richness and rarity with high accuracy [complexity 
tuned with spatial cross-validation (38); see fig. S7], and we use these 
models to project changes to these patterns under a scenario of uni-
versally high sampling (i.e., the maximum sampling density observed 
for ants; fig. S6). For both richness and rarity, vertebrate patterns, 
sampling intensity, and several climate variables rank high on the 
basis of variable importance (fig. S7).

We find that 54% of the original center area for richness (Fig. 3) 
and 66% for rarity (Figs. 3 to 6) are robust to sampling effects (i.e., 
they remain in the top 10%). If future sampling targets those areas 
that currently have low sampling intensity, however, the locations 
of the remaining diversity center areas are predicted to change. Un-
der this scenario, richness centers are predicted to expand in central 

Fig. 4. Empirical and predicted rarity centers of the Western Hemisphere. Rarity centers based on current knowledge and projected by a Random Forest model under 
a “universal high sampling” scenario. See Fig. 3 for more explanation.
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Africa, Indonesia, southern China, and New Guinea. In general, ac-
counting for sampling has divergent effects on richness and rarity. 
Our model predicts that additional sampling for ants will consider-
ably reduce the overlap between vertebrate and ant richness centers 
[shifting from 72% for empirical versus 47% for modeled after future 
sampling; Fig. 3]. Moreover, while richness patterns are predicted 
to change to some degree, there is little effect on correlation of con-
tinuous richness values between ants and vertebrates (Spearman’s rho 
increases from 0.70 for empirical to 0.72 after correcting for sam-
pling). The model also predicts that the existing global pattern of 
rarity centers will also be substantially altered with future sampling, 
but in this case, the diversity center areas are predicted to overlap 
more with those of vertebrates (53% for empirical versus 78% for modeled 

after future sampling; Figs. 3 to 6), and correlations overall will in-
crease more substantially than for richness (Spearman’s rho increases 
from 0.78 for empirical to 0.88 after correcting for sampling). This 
shows that vertebrate rarity patterns are predictive of both known 
and yet undiscovered areas of high ant rarity.

A “treasure map” for biodiversity
The model predictions for ant rarity centers not yet revealed by sam-
pling represent a treasure map of hidden biodiversity, which can be 
used as a guide for future discovery of small-ranged species (Figs. 4 
to 6). Such regions include the Southern Tropical Andes, the Western 
Ghats, much of Southeast Asia, and parts of New Guinea, all of which 
are rarity centers for vertebrates but not for ants based on current 

Fig. 5. Empirical and predicted rarity centers of Europe, Africa, and West Asia. Rarity centers based on current knowledge and projected by a Random Forest model 
under a “universal high sampling” scenario. See Fig. 3 for more explanation.
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data. Many of the higher-latitude areas currently in the top 10% may 
drop out as the tropics become more thoroughly sampled. However, 
one notable area that is predicted to remain a biodiversity center for 
ants even with higher global sampling is the Mediterranean region, 
which is not in the top 10% for any vertebrate group. Further anal-
ysis and discussion of individual centers for each region are pre-
sented in Figs. 4 to 6.

Protection status of biodiversity centers
Large-scale biodiversity maps are not a panacea for conservation 
(39), but rather one component of a multiscale approach that 
integrates ecological, socioeconomic, geopolitical, and cultural fac-
tors (40). Our maps and highlighted areas considering biodiversity 
alone should not be considered global conservation priorities per se, 
but they do provide foundational knowledge that should help guide 

biodiversity conservation to better incorporate insects. Moreover, a 
global perspective allows us to zoom out and take stock of how well 
current protected areas currently overlap with biodiversity centers. 
While our analysis raises confidence that many important biodiver-
sity centers are shared across widely divergent taxa, we also find that 
regardless of metric or taxon, only a modest fraction of these areas 
currently have protection (15 to 29%; Fig.  7), with rarity centers 
among the least likely to have preservation status.

Future directions
While we built a workflow to overcome inherent data challenges, 
each step of the process required methods and choices that could 
undoubtedly be improved with further research on best practices 
relative to the specific goal of generating a biodiversity map. As 
we work toward developing comprehensive maps for a greater 

Fig. 6. Empirical and predicted rarity centers of Eastern Asia and Oceania. Rarity centers based on current knowledge and projected by a Random Forest model under 
a “universal high sampling” scenario. See Fig. 3 for more explanation.
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diversity of taxonomic groups, the data impediments for other taxa 
will more likely resemble the challenges presented by ants than the 
special cases of highly studied vertebrates. Thus, we need more re-
search on optimized methods and workflows to apply across the 
tree of life. Data limitation should not be an excuse to avoid under-
studied groups or dismiss their relevance, but rather a reason to fo-
cus our ingenuity on meeting an informatics challenge.

Second, this analysis sets the stage for a new round of investiga-
tion of the mechanisms underlying both ant biodiversity patterns 
and cross-taxon congruence. For example, ant biodiversity patterns 
are most congruent with those of reptiles, echoing a similar finding 
for the global spread of introduced species (41), but the reasons 
for this correlation are unknown. Moreover, although global plant 
datasets at a comparable resolution were not available to include in 
this study, illuminating the level of geographic covariation between 
plant and insect diversity is a critically important goal for both basic 
science and conservation.

Last, while our models aim to fill geographic gaps in knowledge, 
they are at best a temporary stopgap while we continue our global 
inventory. Models are hypotheses, and predictions of hidden diver-
sity must be tested with future targeted inventory efforts for specific 
areas. Our analyses highlight how focused efforts can greatly in-
crease knowledge of regional biodiversity; for example, Mesoamerica, 
Madagascar, Colombia, and the Atlantic Forest of Brazil are now 
robustly documented as ant biodiversity centers, largely due to 
vigorous research activity in these areas in recent years. We identify 
regions that should be special priorities for new inventory work 

(encompassing new field sampling, taxonomic analysis of existing 
collections, and revision of earlier taxonomic work), underscoring 
the need to expand taxonomic and scientific capacity in those 
regions. With that said, nearly all areas are understudied for ants 
to some degree, and thus, inventory work should be encouraged 
everywhere.

Our study provides the first global, high-resolution map for any 
major insect group encompassing all described species. While it was 
possible a priori that ants could be highly divergent in their patterns 
from vertebrates, we found substantial—albeit imperfect—congruence 
across these distant taxa. Ants are only modestly less correlated with 
vertebrate groups than vertebrate groups are with each other. These 
results for ants imply that conservation efforts aimed at vertebrates 
are likely to capture a diversity of insects as well, and these correla-
tions exceed expectations from shared responses to general climate 
gradients (e.g., higher diversity in the humid tropics). The predic-
tive value of vertebrate biodiversity patterns is particularly notable 
for rarity—the most critical metric for conservation—as our Random 
Forest models predict that many (but not all) of the differences 
between ant and vertebrate centers can be attributed to sampling 
biases. This suggests that ecological and historical forces shape 
endemism patterns in ways that can be generalized across divergent 
taxa. Vertebrate patterns are the most informative variables (along 
with sampling density) in our models, being more important than 
climate or biogeographic realm.

That said, the fact that groups are correlated does not imply they 
are interchangeable. Ant patterns have distinct features, as do each 

Fig. 7. Global protection status of richness and rarity centers. Richness and rarity centers (top 10% of area) are overlaid with protected areas using data retrieved from 
the World Database of Protected Areas (protectedplanet.net) and processed. Biodiversity centers for ants based on current sampling (top row), predicted ant centers 
under universal high sampling (second row), and vertebrate centers (bottom row) are presented.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia D
avis on A

ugust 24, 2022

http://protectedplanet.net


Kass et al., Sci. Adv. 8, eabp9908 (2022)     3 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 16

of the vertebrate groups, and it is likely these apparent idiosyncra-
sies are shared by many other taxa that are not yet represented in 
global analyses. Furthermore, birds and mammals, the taxa that usually 
receive preferential conservation attention (5), are tightly correlated 
with each other but less correlated with the ectothermic groups of 
amphibians, reptiles, and ants. Thus, even as some generalities emerge, 
there is a critical need to increase the diversity of taxa informing our 
understanding of global biodiversity.

To protect species, we need to know where they are, but global 
inventories for most invertebrate groups will take decades or more 
to complete. Our analysis shows that informatics and modeling ap-
proaches provide an alternate route to resolving a provisional bio-
diversity map for data-deficient groups. While our analysis raises 
confidence that many important biodiversity centers are shared 
across widely divergent taxa, we also find that only a modest frac-
tion of these areas are protected, highlighting the need for bold and 
rapid action to protect Earth’s biodiversity.

MATERIALS AND METHODS
Experimental design
The overall analysis workflow (fig. S1) has the following steps: (i) com-
pile raw data from diverse sources and harmonize taxonomy; (ii) 
clean, vet, and georeference the data; (iii) use point occurrence data 
to model and estimate species distributions; (iv) aggregate species 
distributions into composite biodiversity maps and identify species 
richness and rarity centers; (v) model and predict how diversity 
centers will change with future sampling, including identification 
of areas with undiscovered diversity; (vi) compare ant biodiversity 
centers with vertebrate centers; and (vii) assess the degree to which 
biodiversity centers are captured in existing protected areas. All 
programming code, occurrence data (pre- and postprocessing), 
model results, and diversity estimates can be found in data S1 
(https://doi.org/10.5061/dryad.wstqjq2pp).

Data compilation
The GABI database is intended to consolidate and curate ant geo-
graphic biodiversity data in a single place, synthesizing data from 
literature, online databases, museum databases, and personal col-
lections (23) (see table S1 for detailed data sources and data S1 for 
the full dataset). At the time of this study (data downloaded 14 July 
2020), it is composed of 2,466,704 total records, but only 1,802,913 
(73%) have a valid species name (following species nomenclature 
from AntCat.org (42)) and are not dubious or exotic records. We 
put these records through a data-cleaning, georeferencing, and op-
timization pipeline. Of these, 766,854 records we compiled from 
the literature, 1,177,653 records from 81 public databases [the largest 
component being 420,251 records from AntWeb (version 8.66) (43)], 
and 42,084 records from personal collections and communications, 
representing 15,463 known ant species and subspecies (not includ-
ing dubious or exotic records). The compilation workflow is sum-
marized in fig. S1; more details on the methods for data compilation 
and databasing are described in a previous publication (23), and the 
data can be viewed through https://antmaps.org/ (44). Of these raw 
records, most lack georeferenced occurrence points, and many ex-
isting point records have errors. While previous analyses using 
earlier versions of this dataset assigned these records manually to 
large administrative areas (e.g., states, countries) for analysis [e.g. 
(18, 41)], here we used an informatics pipeline to clean and convert 

these raw records into an extensive georeferenced dataset, which we 
then used for downstream range modeling and diversity mapping.

Data cleaning, georeferencing, and optimization
Species occurrence data are typically fraught with errors, missing 
fields, and various biases that necessitate cleaning and verification 
steps before it is used in analyses (45, 46). Although several estab-
lished tools exist for processing occurrence data [e.g., (47)], includ-
ing some introduced quite recently (48, 49), most focus on online 
biodiversity databases, and the diverse nature of occurrence data 
problems often leads to low effectiveness of any one tool when ap-
plied to a new dataset (50). These issues are compounded for data-
sets like GABI with a global extent, which include areas of the world 
poorly represented in locality-validation databases and records that 
originate from varied data sources. We initially experimented with 
single tools to validate and clean the GABI occurrence data, but found 
this strategy resulted in many inaccuracies, especially for regions 
outside North America, Europe, or Australia. As GABI has over 2 
million data records, it proved infeasible to manually inspect each 
record and correct inaccuracies. Geocoding tools, such as those of-
fered by Google and implemented through Python or R packages, 
are not used often in ecological and evolutionary studies, but they 
can help fix a variety of spatial errors and suggest correct position-
ing of coordinates. We thus opted to use a combination of function-
ality from existing occurrence data cleaning tools, geocoding tools, 
and custom scripts that automate cleaning and validation proce-
dures existing tools did not offer and then make manual fixes when 
necessary to optimize data accuracy (fig. S1).

Our custom geoprocessing pipeline (i) converts raw text and nu-
meric data gathered from the literature or specimen databases into 
georeferenced occurrence points and (ii) cross-checks point accura-
cy using a variety of methods (numbers here refer to R and Python 
scripts and can be found in data S1, https://doi.org/10.5061/dryad.
wstqjq2pp). We first retrieved 1,802,913 raw ant occurrence records 
from the GABI database (downloaded 14 July 2020), of which only 
1,062,720 records had coordinate information [1]. To prepare the 
data for geocoding, we pooled duplicate localities based on locality 
or archipelago information from multiple fields and latitude/longitude 
coordinates (when available) rounded to four decimals (~11 m; [2]), 
ensured proper encoding for numeric fields [3], ensured coordi-
nates did not have obvious errors in location (e.g., outside of ±180°) 
or formatting [4], corrected character-encoding errors for locality 
fields (Python package ftfy (51); [5]), measured the fuzzy distance 
between original and corrected country names (Python package 
FuzzyWuzzy (52); [5]), and detected additional coordinate infor-
mation by scanning text in other fields [6]. We then addressed any 
remaining character-encoding errors for locality fields and confirmed 
country attributions by checking against global locality-validation 
databases [GeoNames (<https://geonames.org/>), United Nations 
Trade Statistic Country Code (<https://unstats.un.org/unsd/tradekb/
Knowledgebase/Country-Code>), Geo-Locate (<http://geo-locate.
org/>), and Google geocoding returns] to generate a standardized 
locality string [7], and, finally, produced the geocoding dataset rep-
resenting all the unique localities in the data [8]. We conducted re-
verse geocoding (finding locality information based on available 
coordinates) and forward geocoding (finding coordinates based on 
locality information) on the cleaned dataset via the Google Geocoding 
API (53) using the geocoder Python package (54) (9) and then 
cleaned and parsed the geocoding return data, assigned levels of 
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spatial precision [10], and integrated these data with the original 
database [11]. We filtered out all geocoded results with precision 
radius higher than 100 km. This radius refers to the area interpreted 
by the Google geocoder, returned as the “viewport,” and is calculat-
ed using the geodesic distance of the northeast and southwest points 
of the viewport. Essentially, we used the viewport to constrain geo-
coded regions to within a 100-km radius to limit centroids that 
would otherwise represent a very large region. For the 10–arc min 
bioclimatic raster data we used in our analysis, this would represent 
a potential error (at its worst) of ~5 pixels from the center in each 
direction at the equator. We selected which records to retain using 
a decision tree based on agreements between locations (countries 
and administrative regions) and pairs of records (original and geo-
coded, where original records are prioritized) [12]. The optimal 
records were then run through the CoordinateCleaner R package 
(48), which calculates metrics to judge the validity of the point data. 
We used this package to remove records that were judged to be 
polygon centroids and then made manual edits based on identified 
outliers for final locational corrections as many of the flags identi-
fied by the package were not applicable for ants and needed expert 
opinions to verify. This process assigned optimal coordinates derived 
from existing record metadata for 988,331 records (112,256 unique 
coordinates) and generated optimal coordinates for 490,962 geocoded 
records (48,675 unique coordinates), resulting in an optimized geo-
referenced dataset of 1,479,293 total records. No geocoded records 
were retained in the optimized dataset with a precision radius greater 
than 100 km, and most (82%) of these records have a spatial preci-
sion under 20 km.

Species range estimates
For each species, we made polygonal range estimates and addition-
ally used species distribution models (SDMs) to estimate suitability 
within these shapes for species with sufficient data (fig. S1). We first 
estimated ranges with alpha hulls [R package alphahull (55) with alpha 
value 15] for species with ≥3 occurrence localities (9156 species; 4 species 
used alpha shapes because of issues fitting alpha hulls) and with buff-
ered points (30 km) for species with <3 occurrence localities (5168 species). 
We decided on an alpha value of 15 for alpha hull polygonal range 
estimates (for species with <5 occurrence localities) and SDM study 
extents (for species with ≥5 occurrence localities), as it resulted in 
ecologically realistic range shapes over the broad spectrum of point 
patterns for the ant occurrence data. We buffered alpha hulls and 
points by 30  km to account for spatial uncertainty, using the R 
package geobuffer (56) to make geodesic buffers for point data. As 
geodesic buffering for polygons was not possible in R and difficult 
to implement otherwise, we used the package rgeos (57) to make 
Euclidean buffers for polygonal data after projecting the data to the 
World Behrmann equal-area projection (as it allowed for some 
tools to draw geometry past the prime meridian instead of cutting it 
off using the “+over” specification in the coordinate reference sys-
tem definition), and then projected back to the original World 
Geodetic System (WGS) 1984 geographic coordinate system. For 
species with ≥5 occurrence localities (7606 species), we first spatially 
thinned occurrences by 10 km [R package spThin (58)] to reduce 
the effects of sampling bias and then built SDMs to predict suitability 
within their study extent, which was defined by their buffered alpha 
hull range estimate. We used the presence-background machine 
learning algorithm Maxent 3.4.1, which fits a relationship between 
occurrence localities and environmental variables constrained to 

best match the background environmental distribution (32). For 
predictor variables, we used 19 global bioclimatic variables at 
10–arc min resolution (approximately 20 km at the equator) from 
the WorldClim 2.0 dataset (59) representing long-term annual trends, 
seasonality, and extremes that are relevant to describing the spatial 
patterns of species’ ranges. The resolution was chosen to reflect the 
precision of the compiled and georeferenced data. From these ras-
ters, we removed areas corresponding to inland water bodies (from 
<https://naturalearthdata.com>) and then masked them to each species’ 
alpha hull range estimate for modeling using the R package raster 
(60). As inspections of the ant occurrence data revealed strong signals 
of sampling bias for multiple species even after spatial thinning, we 
sampled background localities for each SDM with the same bias 
inherent in the occurrence data using a sampling density grid (61). 
To make this grid, we calculated the kernel density of the occurrence 
localities for all ant species in the GABI database across the globe 
[fig. S6; ArcGIS Pro 2.6.0 (62)] and removed inland water bodies. 
Then, after transforming these density values to a range between 
0 and 1, we used them as proxies for sampling effort and probabilis-
tically sampled 10,000 background points for each species. Species 
with smaller study extents (<10,000 grid cells) were assigned full 
background samples (i.e., all grid cells) to avoid using too few back-
ground localities for model training.

For each species with sufficient data after spatial thinning (≥5 
occurrence localities, n = 7606), we built a range of SDMs with dif-
fering levels of complexity and selected optimal models per species 
using sequential selection criteria based on cross-validation evalua-
tions. Maxent has two main hyperparameters for managing model 
complexity: Feature classes control the shape of the model response, 
and regularization multipliers control how much complexity is pe-
nalized. As default settings in Maxent can result in overfit models, 
we built SDMs for each species with different combinations of fea-
ture classes [linear (L) linear-quadratic (LQ), hinge (H), and linear- 
quadratic-hinge (LQH)] and regularization multiplier values [1 (default: 
low penalization) to 5 (higher penalization)] to evaluate models 
with a range of different complexities, from simple linear relation-
ships to complex ones with curvilinear fits or splines (63). In es-
sence, the addition of complex feature classes (here, Q and H) adds 
potential complexity to the model, but increasing regularization 
will result in the increasing removal of both predictor variable fea-
tures (i.e., quadratic or hinge fits) and the variables themselves [i.e., 
coefficients can be reduced to zero, dropping the variable from the 
model (32)]. We used the R package ENMeval 2.0.0 (31) to itera-
tively construct models with all combinations of these settings and 
evaluated models using k-fold cross-validation on withheld data: 
leave-one-out (i.e., delete-one jackknife) for species with <25 occur-
rence localities [as this method maximizes sample size of validation 
data (64)], and random (k = 5) for all others. We did not use spatial 
cross-validation for evaluation, as our aim was simply to choose the 
models that best predicted current data and not to transfer models 
to different areas or time periods (38). We used the following sequen-
tial criteria for model selection based on both threshold-dependent 
and threshold-independent performance metrics (63, 65). First, we 
filtered out all models without nonzero coefficients (possible because 
high regularization can reduce all predictor variable coefficients to 
zero). Next, we filtered out models that performed poorly (≤0 or 
NA) for the Continuous Boyce Index [R package ecospat (66)] cal-
culated on the full dataset, as positive values indicate that the model’s 
predictions are consistent with the distribution of occurrences (67). 
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We chose to calculate the Continuous Boyce Index on the full data-
set as a standard measure across all species as opposed to on valida-
tion data because for many species, the validation scores were NA 
because of low sample size for partitions. Of the remaining models, 
we first selected those with the lowest 10 percentile omission rate 
(the proportion of validation occurrences not predicted by the 
model after thresholding the prediction by the 10-percentile suit-
ability value, which is more conservative than using the lowest suit-
ability value for thresholding) and then broke ties by choosing the 
model with the highest validation area under the ROC curve (AUC) (63). 
Although calculating AUC with presence-background models is 
problematic when models with different training data or study 
extents are compared, relative comparisons for the same species and 
model settings are valid (68). We did not filter out models with values 
of AUC at or below 0.5 because although such scores may indicate 
an ability to discriminate between occurrences and background 
localities no better than random (69), this only holds true when ab-
sence data are used, and the particular value at which performance 
can be called poor is unknown when using background data (70). 
We note that in preliminary tests, we experimented with choosing 
optimal models using the Continuous Boyce Index as an alternative 
performance metric to validation AUC for this step in the sequential 
criteria but found that the result was NA for many low-data species 
and that the final richness predictions were very similar regardless 
of this choice—we thus chose to use validation AUC. If ties remained, 
we chose the model with the lowest number of nonzero coefficients 
to prioritize simpler models. Across modeled species, 33% (n = 2519) 
had minimum omission rate values that were unique, while 54% (4111) 
used validation AUC to break ties in minimum omission rate, and 
the remaining ones had ties in AUC that were broken by picking the 
model with the minimum number of nonzero model coefficients. 
We then used these models to predict suitability over each species’ 
alpha hull range estimate using Maxent’s “cloglog” transformation 
(32), which predicts a continuous scale between 0 and 1. As many 
ant occurrence records do not include consistent information for 
sampling date, and as article publication date can be a poor proxy 
for date of collection, our dataset is not temporally resolved. But 
although, the boundaries of range estimates based on older records 
may miss recent range shifts, the impact on global-scale patterns 
should be modest.

Species richness and rarity calculations
We then stacked (i.e., combined) the species range estimates to pro-
duce maps of two key biodiversity metrics: species richness and rarity- 
weighted richness (71) (fig. S1; henceforth rarity). Species richness, 
the number of species present in an area (72), is a fundamental variable 
for ecology and conservation. However, because geographic varia-
tion in species richness is dominated by widespread species rather 
than those with small ranges, examining species richness alone will 
miss key areas of diversity that should be priorities for conservation 
attention (73). In contrast, rarity reflects the presence or absence of 
many small-ranged species in an area, with high values indicating 
concentration of biodiversity unique to a region.

We overlaid the species-level range estimates (polygonal and 
SDM-derived) to estimate global species richness and rarity patterns 
for ants (fig. S1). The richness of cell i was calculated as si = sum(wj), 
where the weight for species j (wj) was either 1 (for polygonal range 
estimates) or the continuous Maxent cloglog prediction (74). As low-data 
species tend to have restricted ranges, there should be little, if any, 

associated bias in favor of these species in richness estimates. In cal-
culations of rarity, species are often weighted by the inverse of range 
size, or ri = 1/(aj) for cell i, where aj is the area of the range of species 
j. However, this weighting across species is arbitrary, and we found 
that species with a single locality dominate the calculation. Although 
species truly confined to a single locality would certainly be of high 
interest for conservation, in practice, most such data are a product 
of “sampling islands” that underestimate the range extents of species 
found there. As a result, rarity can be locally overestimated, leading 
to many small and isolated diversity centers. To adjust the weighting 
across species, we added a constant c to make the rarity calculation 
ri = 1/(aj + c), which moderates the decline of the weight with in-
creasing range size. This results in more balanced estimates between 
species with small and large ranges, reducing the dominance of sin-
gle localities and thus removing some apparent sampling islands on 
the map. In experimenting with the data, we found that a value of 
c = 60,000 km2 (corresponding to a circular range with radius 138 km) 
was sufficient to “denoise” the plot without losing important smaller 
rarity centers, and we used this for the main analysis. We then pro-
jected each diversity estimate from its original geographic projec-
tion (WGS 1984) to the equal-area Eckert IV projected coordinate 
system (with bilinear resampling to the maximum value to ensure 
that maximum diversity per cell did not change) for mapping and 
further analysis.

Comparison of richness estimates to community-level  
point observations
As a test of the performance of our ant richness estimates, we used 
simple linear models to determine how well our grid cell richness 
corresponds to maximum observed community richness from a 
mostly independent ant community database. While regional rich-
ness is not necessarily expected to match community richness, it 
should form an upper bound and be correlated. The Global Ants 
Database (GLAD) (downloaded 20 February 2020) consists of over 
50,000 ant occurrence records (>2300 unique localities) from over 
200 community ecology studies around the world (24). The GLAD 
database partially overlaps with the GABI database, in that occur-
rence records from community surveys may have been represented 
in published literature or specimen databases that were entered into 
GABI. However, GLAD also contains many unpublished datasets 
and, importantly, includes morphospecies information in richness 
measurements. As the range-modeling approach using GABI point 
occurrence data can only be performed with described species (be-
cause morphospecies cannot be matched across different studies or 
localities), it allows us to check whether our grid-cell estimates are 
much too low because of a low fraction of described species in 
some areas. We used the existing fields to subset an analysis dataset 
consisting only of native species found in undisturbed areas, used 
the corrected versions of species names, and retained the identities 
of morphospecies by giving them unique names linked to the study 
that identified them. We also removed all occurrences of “?” from 
species names, assuming that the presumed identifications were cor-
rect. We then associated each GLAD record with the corresponding 
grid cell from the GABI prediction (10–arc min resolution) and 
calculated richness per grid cell by study to avoid summing mor-
phospecies across studies. When more than one study existed for a 
grid cell, we kept the highest observed GLAD richness per equal 
area grid cell for a range of increasingly coarser spatial resolutions 
(10, 20, 50, 100, 200, and 500 arc min) and matched these values to 
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GABI-estimated richness values at the same cell. We then ran a sim-
ple linear model and calculated the coefficient of determination (R2) 
for each resolution (figs. S4 and S5). This methodology is similar to 
the approach used by Ballesteros-Mejia et  al. (75), who validated 
their modeled continental-scale richness patterns for sphingid moths 
based on the observed richness at multiple “well-sampled locations.”

We found that the correlation between GABI and GLAD richness 
was, in general, relatively high (fig. S3). In line with expectations, 
correlation increased with coarser resolution, from 0.337 to 0.460, 
although R2 initially decreased slightly. The R2 values were as fol-
lows: 10 arc min, 0.337; 20 arc min, 0.336; 50 arc min, 0.339; 100 arc 
min, 0.355; 200 arc min, 0.404; and 500 arc min, 0.460. For all cor-
relation analyses, all non-NA grid cell values were used, including 
both zero and nonzero values, and Antarctica was excluded.

Alternative methods to estimate species richness
In addition, we determined that our ant richness estimates were mostly 
robust to alternative methods: rarefaction and extrapolation sampling 
curves, genus surrogacy models, and macroecological models based 
on climatic variables and community data from GLAD (fig. S3).
Richness from rarefaction/extrapolation moving window
We estimated richness using a rarefaction/extrapolation approach 
by calculating Hill numbers (76) (q = 0) based on the preprocessed 
GABI occurrence data (before removing point duplicates and spa-
tial thinning for modeling). We used the R package iNEXT (77) to 
calculate the observed and estimated richness, as well as sampling 
completeness, for each grid cell based on the GABI occurrence data 
within a moving window (fig. S3). After experimenting with several 
different sizes, we decided to use 10–arc min grid cell windows of 60 × 
60 (i.e., 10° × 10°) to balance the smoothness of the mapped result 
with an appropriate spatial resolution to visualize global patterns. 
We summarized the GABI occurrences for all cells within each 
window as a frequency table that represents the number of occur-
rences per grid cell for each species (i.e., “incidences”) and then input 
these frequencies and the total number of cells as sampling units 
into the iNEXT() function with the “incidence_freq” setting for data 
type. Although iNEXT does not use occurrence-based frequencies 
to calculate species richness, this parameterization returns a single 
estimate for the entire window instead of individual ones per grid cell, 
and so was more appropriate for our purposes. To avoid unreliable 
estimates, we followed a similar methodology to Kusumoto et al. (78) 
by omitting calculations for windows with few grid cells containing 
species incidences (in our case, <2) or those with as many singletons 
as there were total incidences. Unlike Kusumoto et al. (78), we did 
not apply a constraint to the number of species within a window as 
some areas had low taxonomic diversity but sufficient sampling.
Richness from genus surrogacy
As an alternative method for estimating richness, we used the “higher 
taxon surrogacy” approach (79) by modeling species richness as a 
function of genus richness for each set of grid cell predictions, with 
the assumption that species richness is more undersampled than 
genus richness. As ants are undersampled in general, particularly in 
certain regions of the globe, modeling the mean of richness would 
likely be an underestimate, and thus, we used quantile regression to 
model the upper bound. We estimated genus-level richness by first 
aggregating the GABI species occurrence data to the genus level, 
then applying the same methodology we used to estimate richness 
at the species level (i.e., stacking polygonal range estimates and 
SDM predictions). Aside from the necessity for the response to be 

monotonically increasing and convex in shape, we lacked a theo-
retical basis for specifying any particular parametric model for this 
relationship. We thus fit nonparametric additive regression models 
with the quantile (tau) set at 0.9 and additionally with constraints 
“increasing” and “convex” using the R package quantreg (80). We 
fit separate models for each biogeographic realm (81) with our esti-
mates of species richness as the response variable and genus richness 
as the sole predictor variable, exploring a range of very small to rela-
tively large lambda values for penalizing complexity (0.01, 0.1, 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10). For each realm, we selected the model with the 
lowest Akaike information criterion (AIC) value. When multiple 
models had delta AIC values (model AIC − minimum AIC across 
all models) equal to or less than 2, we chose the simplest model from 
this subset (i.e., the model with the minimum lambda value). We 
combined the predictions for each biogeographic realm to make a 
global map of richness estimates based on genus surrogacy (fig. S3).

Responses for 0.9 quantile models were all curvilinear with vary-
ing degrees of complexity. We also fit 0.5 quantile models with the 
same settings for reference. Realms with a high number of occur-
rence records resulted in low optimal lambda values, indicating the 
need for higher complexity to model more complex responses. The 
lambda values per realm were, from smallest to largest: Afrotropical, 
0.01; Australian, 0.01; Nearctic, 0.01; Palearctic, 0.01; Saharo-Arabian, 
0.01; Neotropical, 2; Madagascan, 4; Sino-Japanese, 6; Oriental, 7; 
Oceania, 10; and Panamanian, 10. In general, responses for both quan-
tiles (0.9 and 0.5) remained similar for the full ranges of genus richness, 
with some exceptions: Oceania, Nearctic, and Panamanian had 0.9 
quantile responses that diverged considerably higher for high genus 
richness values.
Macroecological model using GLAD community database
For the macroecological modeling approach, we took advantage of 
the GLAD (24) dataset to model ant species richness based on envi-
ronmental variables. Using the methodology explained in ‘‘Com-
parison of richness estimates to community-level point observations,’’ 
we assigned maximum GLAD richness to 10–arc min grid cells. 
This resulted in 268 unique grid cells with maximum GLAD rich-
ness estimates with global representation (Africa, 28; Asia, 38; 
Europe, 40; North America, 43; Oceania, 46; and South America, 73). 
We modeled GLAD ant richness as a function of bioclimatic and 
biogeographic predictor variables. We selected a subset of the original 
19 bioclimatic variables from WorldClim 2.0 (59) with low collin-
earity [variance inflation factor less than 3 (82)] using the R package 
usdm (83). We used a conservative threshold as regression models 
without regularization are sensitive to dependence between predic-
tor variables caused by high collinearity (84). The six variables we 
retained for modeling were mean diurnal range (bio2), mean tempera-
ture of wettest quarter (bio8), mean temperature of driest quarter 
(bio9), precipitation seasonality (bio15), precipitation of warmest 
quarter (bio18), and precipitation of coldest quarter (bio19). We 
also used a dataset of global biogeographic realms based on verte-
brate distributions and phylogenies (81). We first fit a generalized 
linear model with Poisson error distribution and log link function 
with the bioclimatic and biogeographic predictor variables, but as 
this model showed overdispersion, we then fit all subsequent models 
with a negative binomial error distribution. We performed an ex-
haustive model selection procedure with the R package MuMIn (85) 
and used the sample-size corrected Akaike information criterion (AICc) 
to determine the optimal combination of predictor variables. The opti-
mal model included all the input predictor variables, and all other 
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models were suboptimal as they had delta AICc >2. As some predic-
tor variable ranges for the globe included values outside those used 
for model training, we made “clamped” predictions (fig. S3) that used 
modified versions of the original predictor variables that were con-
strained to their respective ranges from the training data (86) using 
the function clamp.vars() in ENMeval 2.0.0 (31). Thus, our predic-
tions do not make extrapolations beyond the bounds of the training 
data. Ultimately, there were few major differences between the un-
clamped and clamped predictions that extended mainly to very small 
areas. We do note that some regions that our range-stacking ap-
proach found were richness centers for ants, such as the African 
Mediterranean, Central Africa, Madagascar, and parts of Southeast Asia, 
have relatively poor coverage in the GLAD database, which can perhaps 
explain why this approach had the least correlation with the other 
methods. Of these regions, only Central Africa had a high richness 
prediction that was generally congruent with the other methods.

Terrestrial vertebrate data
We compared the stacked estimates of ant richness and rarity to 
corresponding maps we made using existing range datasets of ter-
restrial vertebrates: amphibians, birds, mammals, reptiles, and these 
groups combined (henceforth “vertebrates”). These data come from 
different sources: International Union for Conservation of Nature 
(IUCN) range maps for amphibians and mammals (2010) and BirdLife 
International NatureServe breeding ranges for birds (2011) are de-
scribed in Jenkins et al. (27) (2013), and range maps for reptiles 
were developed by Roll et al. (28). To match our methodology for 
GABI polygonal range estimates, we overlaid the polygonal range 
estimates for each taxon and summed the overlapping polygons for 
each 10–arc min grid cell. Although we buffered range estimates for 
ants (30 km) to account for geographic uncertainty, we chose not to 
buffer those for vertebrates. As the vertebrate range estimates were 
delineated with expert knowledge, buffering would likely lead to over-
estimation, as well as change their shapes from those previously re-
ported and used for analysis. For comparisons with ant diversity maps, 
all maps for vertebrates were also projected to the equal-area Eckert IV 
projected coordinate system, and Spearman’s correlations among 
grid cells were calculated to give an overall estimate of congruence.

Diversity center calculations
We calculated diversity centers for the richness and rarity maps of 
both ants and vertebrates to make comparisons of such areas among 
taxa. Centers were defined for each diversity metric as the top 10% 
quantile after excluding Antarctica (table S3). Other studies have used 
smaller thresholds, such as 2.5% (87), 5% (27), or a range from 2.5 
to 10% (28), but these focused on more well-known terrestrial verte-
brates. As this is the first study of this scale for insects, we decided to 
use a less conservative threshold for diversity centers to identify a 
broader selection of areas of conservation importance. We made 
comparisons between the richness and rarity centers for ants and each 
vertebrate group, including the vertebrates combined (Figs. 1 and 2).

Tests of sensitivity to spatial resolution
As our richness and rarity estimates for ants were conducted at the 
relatively fine resolution of 10 arc min at a global scale, we sought to 
determine how robust the observed diversity patterns were to coarser 
spatial grains. Compared with richness estimates derived from range 
maps, those derived from SDMs have been shown to reveal greater 
heterogeneity in diversity between regions when spatial grain is increased 

(88). However, global diversity estimates made at fine resolutions 
may nonetheless have higher uncertainty, and thus, we examined 
how consistent our diversity patterns were over a range of increas-
ing resolutions (75), similar to the methodology in “Comparison 
of richness estimates to community-level point observations.” For 
all taxa, we first coarsened each species’ range estimate raster 
(either polygonal range estimate or SDM prediction, based on data 
availability) to coarser resolutions of 20, 50, 100, 200, and 500–arc 
min resolutions (with bilinear resampling to the maximum value to 
ensure that maximum richness per cell did not change) using the 
Python package rasterio (89). Therefore, if a window of four cells 
representing a cell of the coarser resolution contained suitability 
predictions of 0.2, 0.45, 0.9, and 0.1 (or binary values of 0, 0, 1, and 0), 
the resulting resampled raster would have a value of 0.9 (or 1 for binary 
values) for this cell. We chose this strategy so that if a suitable area 
exists within a larger region that contains a population, the larger 
region would also be categorized as suitable for the species because 
it contained some suitable area. We then made diversity estimates 
of the coarsened range estimates (using the same methodology as 
for the 10–arc min resolution data) to create a range of diversity esti-
mates at coarser spatial grains. To assess how correlated each coars-
er ant diversity estimate was with the original 10–arc min estimate, 
we extracted the values for the centroids of the 10–arc min cells 
from the diversity estimates at all resolutions (10, 20, 50, 100, 200, 
and 500 arc min), removed any cells associated with NA values, and cal-
culated Spearman’s rank correlation coefficients. We did the same 
comparison between diversity estimates for ants and vertebrates at 
progressively coarser resolutions and calculated correlation between 
richness values, as well as overlap proportion between diversity cen-
ters (figs. S4 and S5).

In summary, the diversity patterns we observed were quite ro-
bust to changes in spatial grain: Correlation between 10 arc min and 
coarser resolutions was above 0.9 for both ant richness and rarity 
except for 500 arc min, where a drop in correlation occurred to 0.89 
for richness and 0.82 for rarity. We also assessed how correlated each 
vertebrate group’s diversity estimates were to the ant diversity esti-
mate at the same resolution by calculating the Spearman’s rank cor-
relation. We found that, in general, correlation increased with grain 
size for richness yet decreased slightly for rarity, and that overlap of 
diversity centers decreased slightly with grain size for richness yet 
remained mostly constant for rarity (fig. S3). For both richness and 
rarity at most resolutions, reptiles were most correlated with ants, 
while birds were least correlated (figs. S4 and S5).

Predicting changes to diversity centers under a  
high-sampling scenario
We trained Random Forest models on our estimates of ant diversity 
to make predictions of undiscovered ant diversity under a scenario 
of equally high sampling across the globe. Specifically, we built sep-
arate models predicting our global estimates of ant richness and rarity 
(excluding Antarctica) as a function of climatic variables [19 bio-
climatic variables from WorldClim 2.0 (59)], topography [Shuttle 
Radar Topography Mission (SRTM) elevation from WorldClim 2.0], 
categorical biogeographic realms (81), the GABI ant sampling density, 
and summed vertebrate richness or rarity, all at 10-arc min resolution. 
To avoid spurious variable importance values, we removed variables 
with high collinearity using the vifcor() function from the R package 
usdm (83) with a threshold of 0.7. We used slightly less restrictive crite-
ria here than for the macroecological model (see “Alternative methods 
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to estimate species richness”), as Random Forest is known to be rel-
atively robust to multicollinearity (90), but this only resulted in the 
addition of one more bioclimatic variable [precipitation of the driest 
month (bio14)]. The biogeographical realms shapefile dataset we used 
from Holt et al. (81) lacked coverage of many smaller islands (particularly 
in Oceania) and some coastal areas, so we first converted the poly-
gons to a raster and then performed a k-nearest neighbors classifi-
cation with the R package spatialEco (91) to classify cells without 
data to the most proximal cell with a biogeographical classification. 
For our ant sampling density grid (see “Species range estimates”), 
low density reflects either lack of field collection and/or taxonomic work 
to process existing collections. The vertebrate diversity estimates were 
projected from the equal-area Eckert IV projected coordinate system to 
WGS 1984 (with bilinear resampling to the maximum value) to match 
the geographic coordinate system of the other datasets. We includ-
ed vertebrate richness and rarity predictors for two reasons. First, it 
lets us determine the extent of predictive power that vertebrate bio-
diversity patterns hold beyond that captured by climate and region. 
Second, since these data represent the current state of knowledge of 
vertebrate biodiversity centers, they allow us to assess whether the ant 
data alone identify novel regions of richness and rarity even after 
including important regions for vertebrates.

We tuned model complexity and evaluated models using spatial 
cross-validation to optimize transferability to new conditions. Using 
the R package ranger (92), we built Random Forest models with 
different values of the hyperparameter “mtry,” which controls how 
many predictor variables are randomly sampled at each split within 
a tree. We used a range of 1 to 10—higher values indicate more 
variable interactions are allowed, leading to higher model complexity 
(93)—with other hyperparameters left at their defaults. After re-
moving highly collinear predictor variables, we built models with 
the following variables: mean diurnal temperature range (bio2), 
mean temperature of wettest quarter (bio8), mean temperature of 
driest quarter (bio9), precipitation of driest month (bio14), precip-
itation seasonality (bio15), precipitation of warmest quarter (bio18), 
precipitation of coldest quarter (bio19), elevation, biogeographic 
realm, ant sampling density, and vertebrate richness or rarity. We 
log-transformed rarity values to avoid problems with model con-
vergence due to extremely small values. To evaluate models, we im-
plemented spatial cross-validation using a fivefold systematic 10 × 14 
checkerboard partitioning scheme (fig. S6) using the R package 
blockCV (94) and then calculated the average mean square error 
(MSE) over the folds for each model. We performed model selection 
using spatial cross-validation as it tends to result in models with 
better transferability to new conditions (38). We selected optimal 
model complexity settings that resulted in the minimum average 
MSE (mtry = 4 for richness and mtry = 2 for rarity; fig. S7) and then 
trained models with these settings on the full dataset. For these 
models, we made maps to show the average root mean square error 
per block labeled by their spatial fold, which highlights areas that 
had high prediction error when the model was trained on the other 
spatial folds but missing the data from the fold represented by each 
block (fig. S7). We calculated variable importance values for each 
selected model with the permutation importance option in ranger 
(fig. S7). We then made extrapolations of richness and rarity for the 
globe under a scenario of equally high sampling by setting all cells with 
values in the sampling density grid to 1, representing the highest ob-
served sampling density in our dataset (Figs. 3 to 6). Last, we over-
laid the high-sampling scenario maps with the original diversity 

maps for ants and vertebrates and calculated percent overlap be-
tween them (Figs. 3 to 6).

Global protected area coverage
To determine how much diversity center area is currently protected, 
we calculated the total area of global protected areas located within 
our diversity center estimations for each taxon (Fig. 7). We down-
loaded the World Database on Protected Areas 1.6 (95) file geoda-
tabase from <www.protectedplanet.net> (downloaded 11 March 2021) 
and retained only designated and national protected area polygons 
from the feature dataset to match the methodology of Jenkins et al. 
(27). We then fully dissolved the multifeature polygon layer to a uni-
value, single feature without overlap and projected it to the equal-area 
coordinate system Eckert IV. We converted the diversity center ras-
ters for all taxa and sampling extrapolations for ants into univalue 
polygons and then used them to mask the protected areas layer. All 
GIS operations were conducted with ArcGIS Pro 2.6.0 (62).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abp9908
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