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Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services.
Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown.
We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using bio-
diversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the
distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their
patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite
their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among
vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general
forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for
small-ranged vertebrates will benefit invertebrates while providing a “treasure map” to guide future discovery.

INTRODUCTION

Thirty-five years ago, invertebrates were famously called “the little
things that run the world,” (1) highlighting the importance of or-
ganisms that often remain in the background while vertebrates take
center stage. Today, the critical roles of invertebrates for ecosystem
functioning and services (2, 3) are more widely recognized in both
the public consciousness and in organized conservation efforts. How-
ever, we still lack an understanding of the patterns and dynamics of
Earth’s invertebrate biodiversity, including basic questions such as
which areas have the most species, which areas harbor concen-
trations of small-ranged species, and even whether there is a major
global decline in insect biomass underway (4).

Without comprehensive, high-resolution geographic datasets on
invertebrate groups, our knowledge of global biodiversity patterns
is highly biased toward one branch of the tree of life: vertebrates (5).
This vertebrate bias could undermine the effectiveness of area-based
conservation efforts (6, 7) even as these appear to be gaining momentum.

It is possible that global-scale vertebrate biodiversity patterns are
representative of invertebrate diversity patterns, but this potential
remains mostly untested [but see (8)]. Recent studies on global
species richness patterns of invertebrate groups suggest im-
portant divergences from vertebrates (9, 10), but formal compari-
sons have not been made, and the distributions of small-ranged
invertebrates—which are of critical importance to conservation—
are nearly unknown.

In addressing these knowledge gaps, we face a fundamental data
impediment. There are far fewer researchers and data collectors for
invertebrates than for vertebrates (11, 12), despite the former
constituting orders of magnitude more species. Without a base of
experts to consult for each species, we need to rely heavily on com-
putational approaches to overcome several challenges in assembling
a map of global diversity. First, we must synthesize information
scattered in (often obscure) literature, museum collections, and
specimen databases. Second, such data and metadata require vetting,
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updating, and interpretation. Third, we need a workflow that takes
occurrence data for thousands of species spanning a broad spec-
trum of data size and quality and then returns reasonable estimates
of these species’ distributions. Last, we need to account for different
levels of research attention across the globe, resulting in geographic
variation in field sampling intensity, the uneven taxonomic study of
those samples, and variable progress in the continued improvement
of taxonomic frameworks over time (11). Inventories are still incom-
plete for even the most conspicuous invertebrates in the best-studied
regions (13). Thus, methods to estimate and account for these bias-
es are needed, and ideally, these would also guide future inventory
efforts toward efficient discovery (14).

Here, we address these challenges for ants and provide a uniquely
comprehensive, high-resolution global biodiversity map for a major
invertebrate taxon. Ants are ecologically dominant and economi-
cally important insects that play critical roles in ecosystems (15, 16).
Their known species richness is comparable to birds and mammals
combined, and thus high enough to be informative while still trac-
table. They are also globally widespread (17, 18) and abundant (19, 20),
and represent a good proxy for the diversity of other arthropod
groups at both local and regional scales [e.g., (21, 22)]. These traits,
combined with recent data synthesis efforts (23, 24), make them an
attractive test case to assess congruence between invertebrate and
vertebrate diversity centers.

We present the most comprehensive ant occurrence dataset to
date and use a multifaceted informatics and modeling pipeline (fig.
S1) to reconstruct a global biodiversity map at 10-arc min resolu-
tion (~20 km at the equator) encompassing nearly all described ant
species. We use estimates of species ranges to calculate global maps
of ant species richness (the number of species in an area) and rarity
(richness weighted by range size to emphasize small-ranged species).

Previous analyses of global invertebrate diversity either used point sam-
ples of alpha diversity to model geographic patterns of species rich-
ness (9, 17, 25) or were limited in resolution to large administrative
regions (10, 18), neither of which allow for both fine-scale richness
and rarity estimates. Furthermore, we use machine learning models
[Random Forest (26)] to account for the effects of sampling bias on
the diversity maps and predict which areas may harbor hidden ant
diversity. We then assess the congruence of biodiversity patterns
for ants and vertebrates (amphibians, birds, mammals, and reptiles).
The global distributions of different vertebrate taxa are themselves
not fully congruent, as each has distinct features (27, 28). Thus, our
main goal is to determine whether biodiversity patterns for ants are
comparably similar to those of vertebrate groups as these groups
are to each other, or indeed highly divergent given their large phylo-
genetic, physiological, and ecological differences. Finally, we evalu-
ate how well current protected areas capture important biodiversity
centers.

RESULTS AND DISCUSSION

Our data compilation (fig. S1) recovered 1,802,913 occurrence re-
cords for the native distributions of 15,463 valid species and subspe-
cies. From these raw records, after data correction, georeferencing
coordinates from existing locality metadata, error checking, and filter-
ing out records with errors or high uncertainty, 1,479,293 records
(representing 14,328 species) were used for analysis. This constitutes
considerably more geographic coverage than previous global stud-
ies on invertebrates [e.g., this study: 159,061 unique georeferenced
coordinates, mapped onto 47,385 unique 10-arc min grid cells (~20 km);
as compared to earthworms, (9): 9212 unique sites and nematodes
(25): 6759 samples, 1876 unique 30-arc sec grid cells (~1 km)].
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Fig. 1. Global ant species richness patterns in comparison with terrestrial vertebrates. (A) Species richness centers (top 10% of area) for amphibians, birds, mammals,
reptiles, and ants, indicating areas of congruence and incongruence of biodiversity centers across taxa. (B) Species richness maps based on stacking individual species
range estimates for ants and vertebrates. (C) Spearman’s correlation matrix for grid cell-level species richness across taxa.
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These data were used to make range estimates with different methods
based on data available for each species [buffered point(s): 5168 species;
polygon based on alpha hull: 1554 species; or species distribution
model (SDM) prediction within the alpha hull (after further spa-
tially thinning occurrence records): 7606 species; see fig. S1]. As
the uncertainty inherent in most of the occurrence data was on the
order of 1 to 20 km, we performed our mapping and modeling at
10-arc min spatial resolution (~20 km at the equator). We estimated
ant richness and rarity by aggregating species range estimates and
defined centers of diversity as the top 10% of area for each.

Global patterns of ant species richness and congruence

with vertebrates

Ant species richness peaks in tropical regions (Fig. 1), consistent with
previous work on ants (17, 18, 29) and many other groups (30),
although inconsistent with global patterns for bees (10) and earth-
worms (9). Moreover, many of the regions identified within the
tropics overlap with richness centers for vertebrate groups. Consensus
species richness centers across taxa include the Amazon basin, the
Atlantic Forest of Brazil, Mesoamerica, Central Africa, and Southeast
Asia, although for the latter two regions, there is considerable
finer-scale mismatch. The Afrotropics, in general, is also a relatively
less rich region for ants than for vertebrates, particularly in the savanna
and dry woodland areas of central and southern Africa. In contrast,
the ant faunas in regions of New Guinea, Australia, and Madagascar
are more species-rich relative to their global diversity than they are
for vertebrates. Ant species richness (Fig. 1) is moderately correlated
with richness of all vertebrates (Spearman’s rho = 0.70) and slightly
less correlated on average than vertebrate groups are with each other
(Spearman’s rho: ants-vertebrates mean = 0.68; vertebrates-vertebrates
mean = 0.78; Fig. 1C and table S2). The overlap of richness centers

between ants and vertebrates is also high and comparable in magnitude
to the overlap of vertebrate groups with each other (ants-summed
vertebrates = 0.72; ants-vertebrates mean = 0.68; vertebrates-
vertebrates mean = 0.71; Fig. 1C and table S4).

We test the robustness of our richness estimates by exploring
different methodological variations. First, we evaluate whether
the species distribution modeling step [complexity-tuned Maxent
models (31, 32) predicted within the range polygon] has undue
influence on the recovered richness centers, and we find that while these
models contributed more detailed estimations of species ranges rel-
ative to univalue polygons, their effects on the location of richness
centers are minimal (fig. S2). Second, we compare our richness esti-
mates to a separate dataset [Global Ants Database (GLAD) (24)] of
local community measurements of alpha diversity that (unlike our
analysis) includes morphospecies. Although there is considerable
variation in richness among local communities even on small spa-
tial scales, the grid-cell prediction is both positively correlated and
forms an upper bound for local measurements (i.e., local richness
mostly does not exceed modeled regional richness). Third, we evaluate
the robustness of our primary method of estimating and stacking
species range estimates [e.g., (33)] using three alternate methods:
(i) rarefaction and extrapolation of sampling curves, (ii) taxonomic
surrogacy models (modeling species richness as a function of genus
richness), and (iii) a climate-based macroecological model based on
the GLAD data. In general, we find consistency between these methods
and the range-stacking approach (fig. S3). However, we note that
the only method that did not use the Global Ant Biodiversity In-
formatics (GABI) occurrence data (i.e. the macroecological model
based on community data) did have the lowest correlations with all
other methods (Spearman’s rho = ~0.6, compared to >0.8 for the
other methods), although as a model of alpha diversity, it is the least
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Fig. 2. Global patterns of ant rarity and comparison with terrestrial vertebrates. (A) The concordance of different rarity (i.e., rarity-weighted richness, a metric indi-
cating a concentration of small-ranged species) centers (top 10% of area) for amphibians, birds, mammals, reptiles, and ants. (B) Continuous rarity maps for ants and

vertebrates. (C) Spearman’s correlation matrix for grid cell-level rarity across taxa.
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comparable as local and regional diversity are not always correlated.
To determine how robust our results were to changes in spatial res-
olution (34), we recalculated correlation of continuous values and
overlap of diversity centers across varying spatial resolutions rang-
ing from about 20 to 1000 km at the equator (10, 20, 50, 100, 200,
and 500 arc min) and found little change in the broad-scale diversi-
ty patterns we observed (fig. S4).

Global patterns of ant rarity and congruence

with vertebrates

Areas of high rarity (i.e., areas with many small-ranged species; Fig. 2)
are used more frequently for conservation planning (along with
assessments of threat status and economic, social, and local consider-
ations) than areas of high species richness per se, as range-restricted
species face increased threat of extinction (35, 36). Moreover, richness
patterns are known to be driven mostly by the distributions of
widespread species (37). Around the globe, rarity centers (Fig. 2) are
smaller, less contiguous, and more numerous than the fewer, larger
centers observed for richness (Fig. 1). Ant rarity is correlated with
vertebrate rarity (Spearman’s rho: ants-summed vertebrates = 0.77;
ants-vertebrates mean = 0.73; vertebrates-vertebrates mean = 0.82;
Fig. 2C and table S2), and although overlap fractions for diversity

centers are slightly lower (ants-summed vertebrates = 0.53; ant-
vertebrates mean = 0.48; vertebrates-vertebrates mean = 0.59; Fig. 2C
and table S4), on a global scale, this level of overlap still represents
a high level of agreement. Consensus areas of high rarity include
Mesoamerica, South Africa, Madagascar, the southwest and eastern
coasts of Australia, Southeast Asia, Sri Lanka, the western Congo,
and New Guinea. However, regions of ant rarity appear to diverge
from those of vertebrate rarity in several places: Small-ranged ant
species are more prominent than small-ranged vertebrates in areas
such as the southwestern United States, the Mediterranean basin, Japan,
and the Korean peninsula (Fig. 2). Conversely, areas identified as rarity
centers for vertebrates but missing for ants include several moun-
tainous regions encompassing most of the Southern Tropical Andes,
the Western Ghats, and the Himalayan region, among others. As
with richness, we tested the effects of spatial resolution on the rarity
estimates and did not find substantial sensitivity (fig. S5).

Predicting richness and rarity accounting for sampling bias

While most biologists would not expect the global distributions of
different taxonomic groups to be entirely congruent (27, 28), it is
important to evaluate whether apparent divergences are caused by
real biological differences or reflect a geographically biased global
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Fig. 3. Machine learning predicts how increased sampling could change our understanding of ant richness and rarity centers. Random Forest models were trained
to predict ant species richness and rarity values as a function of climate (7 vars.), topography, biogeographic realm, vertebrate biodiversity, and sampling density. We then
used the models to predict (A) richness and rarity values under a “universal high sampling” scenario, revealing which areas may drop out of the top 10% with increased
global sampling (red), which are robust to sampling (purple), and which centers are predicted to enter the top 10% with increased sampling (blue). The latter represents
a treasure map indicating areas that should be prioritized for future sampling. The top 10% areas for vertebrates are indicated by hatched regions. (B) Overlap fractions
for empirical and projected center designations for richness and rarity, and Spearman’s correlations continuous richness and rarity values.
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inventory. In principle, sampling biases could increase or decrease
correlations across taxa. We use “sampling” as shorthand for the entire
process of field collection, specimen curation, taxonomic study,
species description, and taxonomic revision over time, any of which
could limit information on biodiversity in a region (as measured here
by the density of ant occurrences for described species) and bias
broader patterns.

We train Random Forest (26) models on our empirical ant esti-
mates using potential predictor variables that reflect climate, topog-
raphy, vertebrate richness/rarity, and global ant sampling intensity
to predict how our estimates of richness and rarity may change with
increased, and more spatially homogeneous, sampling around the
globe. These models are (as expected) able to reproduce the existing

The Nearctic

ant empirical richness and rarity with high accuracy [complexity
tuned with spatial cross-validation (38); see fig. S7], and we use these
models to project changes to these patterns under a scenario of uni-
versally high sampling (i.e., the maximum sampling density observed
for ants; fig. S6). For both richness and rarity, vertebrate patterns,
sampling intensity, and several climate variables rank high on the
basis of variable importance (fig. S7).

We find that 54% of the original center area for richness (Fig. 3)
and 66% for rarity (Figs. 3 to 6) are robust to sampling effects (i.e.,
they remain in the top 10%). If future sampling targets those areas
that currently have low sampling intensity, however, the locations
of the remaining diversity center areas are predicted to change. Un-
der this scenario, richness centers are predicted to expand in central

The Nearctic is one of the most intensively sampled regions for ants, with rarity centers
identified in Florida, California, and southeastern Arizona. Modeling suggests intensive
sampling may overestimate the relative importance of these regions globally, although
some area remains even after accounting for sampling. In northwestern Mexico, our
experience indicates the Sierra Madre Occidental likely holds many yet unknown
small-ranged species, as has been found for vertebrates, even though our modeling did

[ 4 not identify this area as a hidden richness center.
[

%
Southwestern Mexico 7
The Sierra Madre del Sur, a recognized %
hotspot for vertebrates and plants, is
predicted to harbor several hidden
hotspots for ant rarity that may be
revealed with further study.

MesoAmerica
MesoAmerica is an important biodiversity center for ants as
well as vertebrates groups. The region has received a relative-
ly large amount of ant research attention in recent decades.
However even given this, we expect it to remain among the
most important regions in the world for biodiversity even
after other areas are sampled more thoroughly.

The Tropical Andes
The Andes are an important endemism region for all vertebrate
groups, all the way from Colombia to northern Argentina. However,
most areas south of central Ecuador are not known as rarity centers
for ants from existing data. Our analysis suggests that this may be due
to undersampling, and models predict that increased sampling will
reveal a hidden treasure of small-ranged species. Indeed, the
southern Tropical Andes is among the most important priorities for
further biodiversity research on ants, a conclusion that was not
obvious at the outset. This also accords with our impressions from
collecting in these areas.
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Ant rarity center status
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%,

— Not a current or predicted center for ants

The Caribbean Islands

This region, consisting of many islands large enough to
support speciation and radiation, is identified as a rarity
center for ants along with vertebrates. This further
supports the region’s status as a recognized biodiversity

hotspot.
The Guiana Shield
[ This region of great geological complexity
H is poorly documented for both ants and
. many other taxa, but plants and vertebrates
P support status as a biodiversity hotspot.

Our modeling predicts hidden ant rarity
centers across the region, and recent

o inventory work in French Guiana is
£ % Z /Z consistent with a large fauna with high
: & 777 richness and rarity.
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e The Atlantic Forest
Intensive work in recent decades by scientists in
L) the region has revealed the Atlantic Forest as a
globally important rarity center for ants,
= consistent with data from vertebrates and

existing recognition as a biodiversity hotspot.
For ants, the south of the region is much better
documented, with predicted hidden centers in
the central and northern areas. Further study of
existing collections could help fill this gap. Most
of the areas that are identified as centers are
predicted to remain so even after further study.

Fig. 4. Empirical and predicted rarity centers of the Western Hemisphere. Rarity centers based on current knowledge and projected by a Random Forest model under

a “universal high sampling” scenario. See Fig. 3 for more explanation.
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The Mediterranean

This area of high topographical, environmental, and geologi-
cal complexity shows up as a rarity center for ants, unlike
vertebrates as a whole. While there is considerably more
sampling in this region relative to most of the world, we
predict that some areas will remain in the top 10% even after
further sampling, including the Atlas mountains, Crete,
Cyprus, and the Levant. The Mediterranean in general is more
important for richness and rarity of ants than other groups.

West Africa .
The Guinean forests along the coasts of West Africa are a
recognized biodiversity hotspot for other groups, and we find
them an area of high rarity for ants as well. Within the region,
the forests of Liberia and Sierra Leone appear to be especially
undersampled and harbor a hidden treasure of small-ranged
ant species. <
] L .

Y 2
Western Central Africa M

With a complex topography and high rainfall, Western Central
Africa is a biogeographic domain recognized as a biodiversity
hotspot for various taxonomic groups. Strong ecological
gradients and putative Pleistocene refugia in this area have
been hypothesized as drivers of diversification and
endemism. Although ant sampling density is relatively high
compared to the rest of Central Africa, many parts of Western
Central Africa remain poorly explored. There is little doubt
that the potential for new discoveries is high and that this
area would remain a top rarity center after future sampling.

South and Southeastern Africa

These areas, known to be so important for plants and
vertebrates, also are highlighted as rarity areas for ants based
on existing sampling, and are predicted to be robust to future
sampling. Notably, south and central Zimbabwe have higher
rarity for ants relative to vertebrates.

Vertebrate rarity
center
Yes No
Empirical ant centers predicted to fall
|3 = out of the top 10% with future sampling

-_-_ Empirical ant centers that are robust to
future sampling

-_-_ “Missing” ant centers that are predicted to be

revealed with future sampling
a

Ant rarity center status

— Not a current or predicted center for ants

.G

o

1 Eastern Central Africa

An afc of high rarity centers can be
found including portions of the
mountains around the central Great Rift
., valley along with the northern end of
" the Eastern Coastal forests. While a
subset of these sareas already are
supported as rarity centers, the area is
predicted to expand substantially with
future work.

Madagascar

Madagascar and surrounding Indian Ocean
islands are certainly rarity hotspots of highest
priority for most taxonomic groups, and are also
rarity centers for ants. This region has had
intensive surveys in the past two decades which
have revealed a massive endemic fauna. We
predict the region will remain a rarity center after
other areas are documented more thoroughly.

Fig. 5. Empirical and predicted rarity centers of Europe, Africa, and West Asia. Rarity centers based on current knowledge and projected by a Random Forest model

under a “universal high sampling” scenario. See Fig. 3 for more explanation.

Africa, Indonesia, southern China, and New Guinea. In general, ac-
counting for sampling has divergent effects on richness and rarity.
Our model predicts that additional sampling for ants will consider-
ably reduce the overlap between vertebrate and ant richness centers
[shifting from 72% for empirical versus 47% for modeled after future
sampling; Fig. 3]. Moreover, while richness patterns are predicted
to change to some degree, there is little effect on correlation of con-
tinuous richness values between ants and vertebrates (Spearman’s rho
increases from 0.70 for empirical to 0.72 after correcting for sam-
pling). The model also predicts that the existing global pattern of
rarity centers will also be substantially altered with future sampling,
but in this case, the diversity center areas are predicted to overlap
more with those of vertebrates (53% for empirical versus 78% for modeled

Kass et al., Sci. Adv. 8, eabp9908 (2022) 3 August 2022

after future sampling; Figs. 3 to 6), and correlations overall will in-
crease more substantially than for richness (Spearman’s rho increases
from 0.78 for empirical to 0.88 after correcting for sampling). This
shows that vertebrate rarity patterns are predictive of both known
and yet undiscovered areas of high ant rarity.

A “treasure map” for biodiversity

The model predictions for ant rarity centers not yet revealed by sam-
pling represent a treasure map of hidden biodiversity, which can be
used as a guide for future discovery of small-ranged species (Figs. 4
to 6). Such regions include the Southern Tropical Andes, the Western
Ghats, much of Southeast Asia, and parts of New Guinea, all of which
are rarity centers for vertebrates but not for ants based on current
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Himalaya and Northeast India

The slopes of the Himalayas, the rainforests of Northeast India,
and neighboring areas in Bangladesh and Myanmar are predict-
ed to be_rarity centers, but are mostly not yet identified with
current s}mpling. Given the importance of these regions for
other groups of plants and animals, we believe these are likely to
be centers for ants that could be revealed with future inventories.

ls‘

“,
2
Pty

S

i§\\\\\

The Western Ghats and Sri Lanka 4
These areas, known as biodiversity hotspots for \
other groups, are also predicted to be rarity centers

for ants. While rarity center status of Sri Lanka is
detected for ants even with existing sampling, the
Western Ghats need further inventory attention.
We additionally predict more of the Western Ghats
will ultimately be a rarity center for ants (as it is for
vertebrates), despite the model focusing on
southerly regions.

Vertebrate rarity
center

Yes No . i
Empirical ant centers predicted to fall
“out of the top 10% with future sampling

Ant rarity center status

-_-_ Empirical ant centers robust to future
sampling

-_-_ “Missing” ant centers predicted to be revealed

with future sampling
a

— Not a current or predicted center for ants

Japan, Korea, and Taiwan

Japan, the Korean peninsula, and Taiwan are indicated as
rarity centers, however they are also highly sampled
relative to neighboring areas. Our model predicts much
of this area may fall out of the top 10% with increased
global sampling, however Southern Kyushu, the Ryukyu
islands, and Taiwan are predicted to remain rarity centers.

Southeast Asia

Much of Southeast Asia emerges as an existing or predict-
ed rarity center for ants in accord with our prior expecta-
tions for the region. In particular, large areas of Thailand
and Vietnam and many undersampled Phillippine and
Indonesian islands are likely hidden rarity hotspots. This
is unquestionably one of the most important regions in
the world for ant biodiversity.

Melanesia
The island systems of Melanesia, including New Guinea,
the Solomon Islands, New Caledonia, Vanuatu, and Fiji, all
4 are predicted to be rarity centers. Many of these islands
support ant speciation and radliation and harbor endemic
species. Parts of New Guinea, the Solomon Islands, and
Vanuatu are highlighted as particularly in need of
inventory attention.

* Australia
As expected by myrmecologists, Australia is an important
ant rarity center, with the forests and savannas of the east
coast and Mediterranean habitats of the southwest
supported as rarity regions that are robust to sampling
effects. We are unsure about the predicted hidden rarity
hotspots of Tasmania and the southeast mainland, which
may be artifacts.

Fig. 6. Empirical and predicted rarity centers of Eastern Asia and Oceania. Rarity centers based on current knowledge and projected by a Random Forest model under

a “universal high sampling” scenario. See Fig. 3 for more explanation.

data. Many of the higher-latitude areas currently in the top 10% may
drop out as the tropics become more thoroughly sampled. However,
one notable area that is predicted to remain a biodiversity center for
ants even with higher global sampling is the Mediterranean region,
which is not in the top 10% for any vertebrate group. Further anal-
ysis and discussion of individual centers for each region are pre-
sented in Figs. 4 to 6.

Protection status of biodiversity centers

Large-scale biodiversity maps are not a panacea for conservation
(39), but rather one component of a multiscale approach that
integrates ecological, socioeconomic, geopolitical, and cultural fac-
tors (40). Our maps and highlighted areas considering biodiversity
alone should not be considered global conservation priorities per se,
but they do provide foundational knowledge that should help guide
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biodiversity conservation to better incorporate insects. Moreover, a
global perspective allows us to zoom out and take stock of how well
current protected areas currently overlap with biodiversity centers.
While our analysis raises confidence that many important biodiver-
sity centers are shared across widely divergent taxa, we also find that
regardless of metric or taxon, only a modest fraction of these areas
currently have protection (15 to 29%; Fig. 7), with rarity centers
among the least likely to have preservation status.

Future directions

While we built a workflow to overcome inherent data challenges,
each step of the process required methods and choices that could
undoubtedly be improved with further research on best practices
relative to the specific goal of generating a biodiversity map. As
we work toward developing comprehensive maps for a greater
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Fig. 7. Global protection status of richness and rarity centers. Richness and rarity centers (top 10% of area) are overlaid with protected areas using data retrieved from
the World Database of Protected Areas (protectedplanet.net) and processed. Biodiversity centers for ants based on current sampling (top row), predicted ant centers
under universal high sampling (second row), and vertebrate centers (bottom row) are presented.

diversity of taxonomic groups, the data impediments for other taxa
will more likely resemble the challenges presented by ants than the
special cases of highly studied vertebrates. Thus, we need more re-
search on optimized methods and workflows to apply across the
tree of life. Data limitation should not be an excuse to avoid under-
studied groups or dismiss their relevance, but rather a reason to fo-
cus our ingenuity on meeting an informatics challenge.

Second, this analysis sets the stage for a new round of investiga-
tion of the mechanisms underlying both ant biodiversity patterns
and cross-taxon congruence. For example, ant biodiversity patterns
are most congruent with those of reptiles, echoing a similar finding
for the global spread of introduced species (41), but the reasons
for this correlation are unknown. Moreover, although global plant
datasets at a comparable resolution were not available to include in
this study, illuminating the level of geographic covariation between
plant and insect diversity is a critically important goal for both basic
science and conservation.

Last, while our models aim to fill geographic gaps in knowledge,
they are at best a temporary stopgap while we continue our global
inventory. Models are hypotheses, and predictions of hidden diver-
sity must be tested with future targeted inventory efforts for specific
areas. Our analyses highlight how focused efforts can greatly in-
crease knowledge of regional biodiversity; for example, Mesoamerica,
Madagascar, Colombia, and the Atlantic Forest of Brazil are now
robustly documented as ant biodiversity centers, largely due to
vigorous research activity in these areas in recent years. We identify
regions that should be special priorities for new inventory work
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(encompassing new field sampling, taxonomic analysis of existing
collections, and revision of earlier taxonomic work), underscoring
the need to expand taxonomic and scientific capacity in those
regions. With that said, nearly all areas are understudied for ants
to some degree, and thus, inventory work should be encouraged
everywhere.

Our study provides the first global, high-resolution map for any
major insect group encompassing all described species. While it was
possible a priori that ants could be highly divergent in their patterns
from vertebrates, we found substantial—albeit imperfect—congruence
across these distant taxa. Ants are only modestly less correlated with
vertebrate groups than vertebrate groups are with each other. These
results for ants imply that conservation efforts aimed at vertebrates
are likely to capture a diversity of insects as well, and these correla-
tions exceed expectations from shared responses to general climate
gradients (e.g., higher diversity in the humid tropics). The predic-
tive value of vertebrate biodiversity patterns is particularly notable
for rarity—the most critical metric for conservation—as our Random
Forest models predict that many (but not all) of the differences
between ant and vertebrate centers can be attributed to sampling
biases. This suggests that ecological and historical forces shape
endemism patterns in ways that can be generalized across divergent
taxa. Vertebrate patterns are the most informative variables (along
with sampling density) in our models, being more important than
climate or biogeographic realm.

That said, the fact that groups are correlated does not imply they
are interchangeable. Ant patterns have distinct features, as do each
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of the vertebrate groups, and it is likely these apparent idiosyncra-
sies are shared by many other taxa that are not yet represented in
global analyses. Furthermore, birds and mammals, the taxa that usually
receive preferential conservation attention (5), are tightly correlated
with each other but less correlated with the ectothermic groups of
amphibians, reptiles, and ants. Thus, even as some generalities emerge,
there is a critical need to increase the diversity of taxa informing our
understanding of global biodiversity.

To protect species, we need to know where they are, but global
inventories for most invertebrate groups will take decades or more
to complete. Our analysis shows that informatics and modeling ap-
proaches provide an alternate route to resolving a provisional bio-
diversity map for data-deficient groups. While our analysis raises
confidence that many important biodiversity centers are shared
across widely divergent taxa, we also find that only a modest frac-
tion of these areas are protected, highlighting the need for bold and
rapid action to protect Earth’s biodiversity.

MATERIALS AND METHODS

Experimental design

The overall analysis workflow (fig. S1) has the following steps: (i) com-
pile raw data from diverse sources and harmonize taxonomys; (ii)
clean, vet, and georeference the data; (iii) use point occurrence data
to model and estimate species distributions; (iv) aggregate species
distributions into composite biodiversity maps and identify species
richness and rarity centers; (v) model and predict how diversity
centers will change with future sampling, including identification
of areas with undiscovered diversity; (vi) compare ant biodiversity
centers with vertebrate centers; and (vii) assess the degree to which
biodiversity centers are captured in existing protected areas. All
programming code, occurrence data (pre- and postprocessing),
model results, and diversity estimates can be found in data S1
(https://doi.org/10.5061/dryad.wstqjq2pp).

Data compilation

The GABI database is intended to consolidate and curate ant geo-
graphic biodiversity data in a single place, synthesizing data from
literature, online databases, museum databases, and personal col-
lections (23) (see table S1 for detailed data sources and data S1 for
the full dataset). At the time of this study (data downloaded 14 July
2020), it is composed of 2,466,704 total records, but only 1,802,913
(73%) have a valid species name (following species nomenclature
from AntCat.org (42)) and are not dubious or exotic records. We
put these records through a data-cleaning, georeferencing, and op-
timization pipeline. Of these, 766,854 records we compiled from
the literature, 1,177,653 records from 81 public databases [the largest
component being 420,251 records from AntWeb (version 8.66) (43)],
and 42,084 records from personal collections and communications,
representing 15,463 known ant species and subspecies (not includ-
ing dubious or exotic records). The compilation workflow is sum-
marized in fig. S1; more details on the methods for data compilation
and databasing are described in a previous publication (23), and the
data can be viewed through https://antmaps.org/ (44). Of these raw
records, most lack georeferenced occurrence points, and many ex-
isting point records have errors. While previous analyses using
earlier versions of this dataset assigned these records manually to
large administrative areas (e.g., states, countries) for analysis [e.g.
(18, 41)], here we used an informatics pipeline to clean and convert
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these raw records into an extensive georeferenced dataset, which we
then used for downstream range modeling and diversity mapping.

Data cleaning, georeferencing, and optimization

Species occurrence data are typically fraught with errors, missing
fields, and various biases that necessitate cleaning and verification
steps before it is used in analyses (45, 46). Although several estab-
lished tools exist for processing occurrence data [e.g., (47)], includ-
ing some introduced quite recently (48, 49), most focus on online
biodiversity databases, and the diverse nature of occurrence data
problems often leads to low effectiveness of any one tool when ap-
plied to a new dataset (50). These issues are compounded for data-
sets like GABI with a global extent, which include areas of the world
poorly represented in locality-validation databases and records that
originate from varied data sources. We initially experimented with
single tools to validate and clean the GABI occurrence data, but found
this strategy resulted in many inaccuracies, especially for regions
outside North America, Europe, or Australia. As GABI has over 2
million data records, it proved infeasible to manually inspect each
record and correct inaccuracies. Geocoding tools, such as those of-
fered by Google and implemented through Python or R packages,
are not used often in ecological and evolutionary studies, but they
can help fix a variety of spatial errors and suggest correct position-
ing of coordinates. We thus opted to use a combination of function-
ality from existing occurrence data cleaning tools, geocoding tools,
and custom scripts that automate cleaning and validation proce-
dures existing tools did not offer and then make manual fixes when
necessary to optimize data accuracy (fig. S1).

Our custom geoprocessing pipeline (i) converts raw text and nu-
meric data gathered from the literature or specimen databases into
georeferenced occurrence points and (ii) cross-checks point accura-
cy using a variety of methods (numbers here refer to R and Python
scripts and can be found in data S1, https://doi.org/10.5061/dryad.
wstqjq2pp). We first retrieved 1,802,913 raw ant occurrence records
from the GABI database (downloaded 14 July 2020), of which only
1,062,720 records had coordinate information [1]. To prepare the
data for geocoding, we pooled duplicate localities based on locality
or archipelago information from multiple fields and latitude/longitude
coordinates (when available) rounded to four decimals (~11 m; [2]),
ensured proper encoding for numeric fields [3], ensured coordi-
nates did not have obvious errors in location (e.g., outside of +180°)
or formatting [4], corrected character-encoding errors for locality
fields (Python package ftfy (51); [5]), measured the fuzzy distance
between original and corrected country names (Python package
FuzzyWuzzy (52); [5]), and detected additional coordinate infor-
mation by scanning text in other fields [6]. We then addressed any
remaining character-encoding errors for locality fields and confirmed
country attributions by checking against global locality-validation
databases [GeoNames (<https://geonames.org/>), United Nations
Trade Statistic Country Code (<https://unstats.un.org/unsd/tradekb/
Knowledgebase/Country-Code>), Geo-Locate (<http://geo-locate.
org/>), and Google geocoding returns] to generate a standardized
locality string [7], and, finally, produced the geocoding dataset rep-
resenting all the unique localities in the data [8]. We conducted re-
verse geocoding (finding locality information based on available
coordinates) and forward geocoding (finding coordinates based on
locality information) on the cleaned dataset via the Google Geocoding
API (53) using the geocoder Python package (54) (9) and then
cleaned and parsed the geocoding return data, assigned levels of
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spatial precision [10], and integrated these data with the original
database [11]. We filtered out all geocoded results with precision
radius higher than 100 km. This radius refers to the area interpreted
by the Google geocoder, returned as the “viewport,” and is calculat-
ed using the geodesic distance of the northeast and southwest points
of the viewport. Essentially, we used the viewport to constrain geo-
coded regions to within a 100-km radius to limit centroids that
would otherwise represent a very large region. For the 10-arc min
bioclimatic raster data we used in our analysis, this would represent
a potential error (at its worst) of ~5 pixels from the center in each
direction at the equator. We selected which records to retain using
a decision tree based on agreements between locations (countries
and administrative regions) and pairs of records (original and geo-
coded, where original records are prioritized) [12]. The optimal
records were then run through the CoordinateCleaner R package
(48), which calculates metrics to judge the validity of the point data.
We used this package to remove records that were judged to be
polygon centroids and then made manual edits based on identified
outliers for final locational corrections as many of the flags identi-
fied by the package were not applicable for ants and needed expert
opinions to verify. This process assigned optimal coordinates derived
from existing record metadata for 988,331 records (112,256 unique
coordinates) and generated optimal coordinates for 490,962 geocoded
records (48,675 unique coordinates), resulting in an optimized geo-
referenced dataset of 1,479,293 total records. No geocoded records
were retained in the optimized dataset with a precision radius greater
than 100 km, and most (82%) of these records have a spatial preci-
sion under 20 km.

Species range estimates

For each species, we made polygonal range estimates and addition-
ally used species distribution models (SDMs) to estimate suitability
within these shapes for species with sufficient data (fig. S1). We first
estimated ranges with alpha hulls [R package alphahull (55) with alpha
value 15] for species with >3 occurrence localities (9156 species; 4 species
used alpha shapes because of issues fitting alpha hulls) and with buff-
ered points (30 km) for species with <3 occurrence localities (5168 species).
We decided on an alpha value of 15 for alpha hull polygonal range
estimates (for species with <5 occurrence localities) and SDM study
extents (for species with >5 occurrence localities), as it resulted in
ecologically realistic range shapes over the broad spectrum of point
patterns for the ant occurrence data. We buffered alpha hulls and
points by 30 km to account for spatial uncertainty, using the R
package geobuffer (56) to make geodesic buffers for point data. As
geodesic buffering for polygons was not possible in R and difficult
to implement otherwise, we used the package rgeos (57) to make
Euclidean buffers for polygonal data after projecting the data to the
World Behrmann equal-area projection (as it allowed for some
tools to draw geometry past the prime meridian instead of cutting it
off using the “+over” specification in the coordinate reference sys-
tem definition), and then projected back to the original World
Geodetic System (WGS) 1984 geographic coordinate system. For
species with >5 occurrence localities (7606 species), we first spatially
thinned occurrences by 10 km [R package spThin (58)] to reduce
the effects of sampling bias and then built SDMs to predict suitability
within their study extent, which was defined by their buffered alpha
hull range estimate. We used the presence-background machine
learning algorithm Maxent 3.4.1, which fits a relationship between
occurrence localities and environmental variables constrained to
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best match the background environmental distribution (32). For
predictor variables, we used 19 global bioclimatic variables at
10-arc min resolution (approximately 20 km at the equator) from
the WorldClim 2.0 dataset (59) representing long-term annual trends,
seasonality, and extremes that are relevant to describing the spatial
patterns of species’ ranges. The resolution was chosen to reflect the
precision of the compiled and georeferenced data. From these ras-
ters, we removed areas corresponding to inland water bodies (from
<https://naturalearthdata.com>) and then masked them to each species’
alpha hull range estimate for modeling using the R package raster
(60). As inspections of the ant occurrence data revealed strong signals
of sampling bias for multiple species even after spatial thinning, we
sampled background localities for each SDM with the same bias
inherent in the occurrence data using a sampling density grid (61).
To make this grid, we calculated the kernel density of the occurrence
localities for all ant species in the GABI database across the globe
[fig. S6; ArcGIS Pro 2.6.0 (62)] and removed inland water bodies.
Then, after transforming these density values to a range between
0 and 1, we used them as proxies for sampling effort and probabilis-
tically sampled 10,000 background points for each species. Species
with smaller study extents (<10,000 grid cells) were assigned full
background samples (i.e., all grid cells) to avoid using too few back-
ground localities for model training.

For each species with sufficient data after spatial thinning (=5
occurrence localities, n = 7606), we built a range of SDMs with dif-
fering levels of complexity and selected optimal models per species
using sequential selection criteria based on cross-validation evalua-
tions. Maxent has two main hyperparameters for managing model
complexity: Feature classes control the shape of the model response,
and regularization multipliers control how much complexity is pe-
nalized. As default settings in Maxent can result in overfit models,
we built SDMs for each species with different combinations of fea-
ture classes [linear (L) linear-quadratic (LQ), hinge (H), and linear-
quadratic-hinge (LQH)] and regularization multiplier values [1 (default:
low penalization) to 5 (higher penalization)] to evaluate models
with a range of different complexities, from simple linear relation-
ships to complex ones with curvilinear fits or splines (63). In es-
sence, the addition of complex feature classes (here, Q and H) adds
potential complexity to the model, but increasing regularization
will result in the increasing removal of both predictor variable fea-
tures (i.e., quadratic or hinge fits) and the variables themselves [i.e.,
coefficients can be reduced to zero, dropping the variable from the
model (32)]. We used the R package ENMeval 2.0.0 (31) to itera-
tively construct models with all combinations of these settings and
evaluated models using k-fold cross-validation on withheld data:
leave-one-out (i.e., delete-one jackknife) for species with <25 occur-
rence localities [as this method maximizes sample size of validation
data (64)], and random (k = 5) for all others. We did not use spatial
cross-validation for evaluation, as our aim was simply to choose the
models that best predicted current data and not to transfer models
to different areas or time periods (38). We used the following sequen-
tial criteria for model selection based on both threshold-dependent
and threshold-independent performance metrics (63, 65). First, we
filtered out all models without nonzero coefficients (possible because
high regularization can reduce all predictor variable coefficients to
zero). Next, we filtered out models that performed poorly (<0 or
NA) for the Continuous Boyce Index [R package ecospat (66)] cal-
culated on the full dataset, as positive values indicate that the model’s
predictions are consistent with the distribution of occurrences (67).
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We chose to calculate the Continuous Boyce Index on the full data-
set as a standard measure across all species as opposed to on valida-
tion data because for many species, the validation scores were NA
because of low sample size for partitions. Of the remaining models,
we first selected those with the lowest 10 percentile omission rate
(the proportion of validation occurrences not predicted by the
model after thresholding the prediction by the 10-percentile suit-
ability value, which is more conservative than using the lowest suit-
ability value for thresholding) and then broke ties by choosing the
model with the highest validation area under the ROC curve (AUC) (63).
Although calculating AUC with presence-background models is
problematic when models with different training data or study
extents are compared, relative comparisons for the same species and
model settings are valid (68). We did not filter out models with values
of AUC at or below 0.5 because although such scores may indicate
an ability to discriminate between occurrences and background
localities no better than random (69), this only holds true when ab-
sence data are used, and the particular value at which performance
can be called poor is unknown when using background data (70).
We note that in preliminary tests, we experimented with choosing
optimal models using the Continuous Boyce Index as an alternative
performance metric to validation AUC for this step in the sequential
criteria but found that the result was NA for many low-data species
and that the final richness predictions were very similar regardless
of this choice—we thus chose to use validation AUC. If ties remained,
we chose the model with the lowest number of nonzero coefficients
to prioritize simpler models. Across modeled species, 33% (n = 2519)
had minimum omission rate values that were unique, while 54% (4111)
used validation AUC to break ties in minimum omission rate, and
the remaining ones had ties in AUC that were broken by picking the
model with the minimum number of nonzero model coefficients.
We then used these models to predict suitability over each species’
alpha hull range estimate using Maxent’s “cloglog” transformation
(32), which predicts a continuous scale between 0 and 1. As many
ant occurrence records do not include consistent information for
sampling date, and as article publication date can be a poor proxy
for date of collection, our dataset is not temporally resolved. But
although, the boundaries of range estimates based on older records
may miss recent range shifts, the impact on global-scale patterns
should be modest.

Species richness and rarity calculations

We then stacked (i.e., combined) the species range estimates to pro-
duce maps of two key biodiversity metrics: species richness and rarity-
weighted richness (71) (fig. S1; henceforth rarity). Species richness,
the number of species present in an area (72), is a fundamental variable
for ecology and conservation. However, because geographic varia-
tion in species richness is dominated by widespread species rather
than those with small ranges, examining species richness alone will
miss key areas of diversity that should be priorities for conservation
attention (73). In contrast, rarity reflects the presence or absence of
many small-ranged species in an area, with high values indicating
concentration of biodiversity unique to a region.

We overlaid the species-level range estimates (polygonal and
SDM-derived) to estimate global species richness and rarity patterns
for ants (fig. S1). The richness of cell i was calculated as s; = sum(w;),
where the weight for species j (w;) was either 1 (for polygonal range
estimates) or the continuous Maxent cloglog prediction (74). As low-data
species tend to have restricted ranges, there should be little, if any,
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associated bias in favor of these species in richness estimates. In cal-
culations of rarity, species are often weighted by the inverse of range
size, or r; = 1/(a)) for cell i, where a; is the area of the range of species
j. However, this weighting across species is arbitrary, and we found
that species with a single locality dominate the calculation. Although
species truly confined to a single locality would certainly be of high
interest for conservation, in practice, most such data are a product
of “sampling islands” that underestimate the range extents of species
found there. As a result, rarity can be locally overestimated, leading
to many small and isolated diversity centers. To adjust the weighting
across species, we added a constant ¢ to make the rarity calculation
r; = 1/(aj + ¢), which moderates the decline of the weight with in-
creasing range size. This results in more balanced estimates between
species with small and large ranges, reducing the dominance of sin-
gle localities and thus removing some apparent sampling islands on
the map. In experimenting with the data, we found that a value of
¢ = 60,000 km? (corresponding to a circular range with radius 138 km)
was sufficient to “denoise” the plot without losing important smaller
rarity centers, and we used this for the main analysis. We then pro-
jected each diversity estimate from its original geographic projec-
tion (WGS 1984) to the equal-area Eckert IV projected coordinate
system (with bilinear resampling to the maximum value to ensure
that maximum diversity per cell did not change) for mapping and
further analysis.

Comparison of richness estimates to community-level

point observations

As a test of the performance of our ant richness estimates, we used
simple linear models to determine how well our grid cell richness
corresponds to maximum observed community richness from a
mostly independent ant community database. While regional rich-
ness is not necessarily expected to match community richness, it
should form an upper bound and be correlated. The Global Ants
Database (GLAD) (downloaded 20 February 2020) consists of over
50,000 ant occurrence records (>2300 unique localities) from over
200 community ecology studies around the world (24). The GLAD
database partially overlaps with the GABI database, in that occur-
rence records from community surveys may have been represented
in published literature or specimen databases that were entered into
GABI However, GLAD also contains many unpublished datasets
and, importantly, includes morphospecies information in richness
measurements. As the range-modeling approach using GABI point
occurrence data can only be performed with described species (be-
cause morphospecies cannot be matched across different studies or
localities), it allows us to check whether our grid-cell estimates are
much too low because of a low fraction of described species in
some areas. We used the existing fields to subset an analysis dataset
consisting only of native species found in undisturbed areas, used
the corrected versions of species names, and retained the identities
of morphospecies by giving them unique names linked to the study
that identified them. We also removed all occurrences of “?” from
species names, assuming that the presumed identifications were cor-
rect. We then associated each GLAD record with the corresponding
grid cell from the GABI prediction (10-arc min resolution) and
calculated richness per grid cell by study to avoid summing mor-
phospecies across studies. When more than one study existed for a
grid cell, we kept the highest observed GLAD richness per equal
area grid cell for a range of increasingly coarser spatial resolutions
(10, 20, 50, 100, 200, and 500 arc min) and matched these values to
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GABI-estimated richness values at the same cell. We then ran a sim-
ple linear model and calculated the coefficient of determination (R%
for each resolution (figs. S4 and S5). This methodology is similar to
the approach used by Ballesteros-Mejia et al. (75), who validated
their modeled continental-scale richness patterns for sphingid moths
based on the observed richness at multiple “well-sampled locations.”

We found that the correlation between GABI and GLAD richness
was, in general, relatively high (fig. S3). In line with expectations,
correlation increased with coarser resolution, from 0.337 to 0.460,
although R initially decreased slightly. The R* values were as fol-
lows: 10 arc min, 0.337; 20 arc min, 0.336; 50 arc min, 0.339; 100 arc
min, 0.355; 200 arc min, 0.404; and 500 arc min, 0.460. For all cor-
relation analyses, all non-NA grid cell values were used, including
both zero and nonzero values, and Antarctica was excluded.

Alternative methods to estimate species richness

In addition, we determined that our ant richness estimates were mostly
robust to alternative methods: rarefaction and extrapolation sampling
curves, genus surrogacy models, and macroecological models based
on climatic variables and community data from GLAD (fig. S3).
Richness from rarefaction/extrapolation moving window

We estimated richness using a rarefaction/extrapolation approach
by calculating Hill numbers (76) (g = 0) based on the preprocessed
GABI occurrence data (before removing point duplicates and spa-
tial thinning for modeling). We used the R package iNEXT (77) to
calculate the observed and estimated richness, as well as sampling
completeness, for each grid cell based on the GABI occurrence data
within a moving window (fig. S3). After experimenting with several
different sizes, we decided to use 10-arc min grid cell windows of 60 x
60 (i.e., 10° x 10°) to balance the smoothness of the mapped result
with an appropriate spatial resolution to visualize global patterns.
We summarized the GABI occurrences for all cells within each
window as a frequency table that represents the number of occur-
rences per grid cell for each species (i.e., “incidences”) and then input
these frequencies and the total number of cells as sampling units
into the iNEXT() function with the “incidence_freq” setting for data
type. Although iNEXT does not use occurrence-based frequencies
to calculate species richness, this parameterization returns a single
estimate for the entire window instead of individual ones per grid cell,
and so was more appropriate for our purposes. To avoid unreliable
estimates, we followed a similar methodology to Kusumoto et al. (78)
by omitting calculations for windows with few grid cells containing
species incidences (in our case, <2) or those with as many singletons
as there were total incidences. Unlike Kusumoto et al. (78), we did
not apply a constraint to the number of species within a window as
some areas had low taxonomic diversity but sufficient sampling.
Richness from genus surrogacy

As an alternative method for estimating richness, we used the “higher
taxon surrogacy” approach (79) by modeling species richness as a
function of genus richness for each set of grid cell predictions, with
the assumption that species richness is more undersampled than
genus richness. As ants are undersampled in general, particularly in
certain regions of the globe, modeling the mean of richness would
likely be an underestimate, and thus, we used quantile regression to
model the upper bound. We estimated genus-level richness by first
aggregating the GABI species occurrence data to the genus level,
then applying the same methodology we used to estimate richness
at the species level (i.e., stacking polygonal range estimates and
SDM predictions). Aside from the necessity for the response to be
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monotonically increasing and convex in shape, we lacked a theo-
retical basis for specifying any particular parametric model for this
relationship. We thus fit nonparametric additive regression models
with the quantile (fau) set at 0.9 and additionally with constraints
“increasing” and “convex” using the R package quantreg (80). We
fit separate models for each biogeographic realm (81) with our esti-
mates of species richness as the response variable and genus richness
as the sole predictor variable, exploring a range of very small to rela-
tively large lambda values for penalizing complexity (0.01, 0.1, 1, 2,
3,4,5,6,7,8,9, 10). For each realm, we selected the model with the
lowest Akaike information criterion (AIC) value. When multiple
models had delta AIC values (model AIC — minimum AIC across
all models) equal to or less than 2, we chose the simplest model from
this subset (i.e., the model with the minimum lambda value). We
combined the predictions for each biogeographic realm to make a
global map of richness estimates based on genus surrogacy (fig. S3).
Responses for 0.9 quantile models were all curvilinear with vary-
ing degrees of complexity. We also fit 0.5 quantile models with the
same settings for reference. Realms with a high number of occur-
rence records resulted in low optimal lambda values, indicating the
need for higher complexity to model more complex responses. The
lambda values per realm were, from smallest to largest: Afrotropical,
0.01; Australian, 0.01; Nearctic, 0.01; Palearctic, 0.01; Saharo-Arabian,
0.01; Neotropical, 2; Madagascan, 4; Sino-Japanese, 6; Oriental, 7;
Oceania, 10; and Panamanian, 10. In general, responses for both quan-
tiles (0.9 and 0.5) remained similar for the full ranges of genus richness,
with some exceptions: Oceania, Nearctic, and Panamanian had 0.9
quantile responses that diverged considerably higher for high genus
richness values.
Macroecological model using GLAD community database
For the macroecological modeling approach, we took advantage of
the GLAD (24) dataset to model ant species richness based on envi-
ronmental variables. Using the methodology explained in “Com-
parison of richness estimates to community-level point observations,”
we assigned maximum GLAD richness to 10-arc min grid cells.
This resulted in 268 unique grid cells with maximum GLAD rich-
ness estimates with global representation (Africa, 28; Asia, 38;
Europe, 40; North America, 43; Oceania, 46; and South America, 73).
We modeled GLAD ant richness as a function of bioclimatic and
biogeographic predictor variables. We selected a subset of the original
19 bioclimatic variables from WorldClim 2.0 (59) with low collin-
earity [variance inflation factor less than 3 (82)] using the R package
usdm (83). We used a conservative threshold as regression models
without regularization are sensitive to dependence between predic-
tor variables caused by high collinearity (84). The six variables we
retained for modeling were mean diurnal range (bio2), mean tempera-
ture of wettest quarter (bio8), mean temperature of driest quarter
(bio9), precipitation seasonality (biol5), precipitation of warmest
quarter (bio18), and precipitation of coldest quarter (bio19). We
also used a dataset of global biogeographic realms based on verte-
brate distributions and phylogenies (81). We first fit a generalized
linear model with Poisson error distribution and log link function
with the bioclimatic and biogeographic predictor variables, but as
this model showed overdispersion, we then fit all subsequent models
with a negative binomial error distribution. We performed an ex-
haustive model selection procedure with the R package MuMIn (85)
and used the sample-size corrected Akaike information criterion (AICc)
to determine the optimal combination of predictor variables. The opti-
mal model included all the input predictor variables, and all other
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models were suboptimal as they had delta AICc >2. As some predic-
tor variable ranges for the globe included values outside those used
for model training, we made “clamped” predictions (fig. S3) that used
modified versions of the original predictor variables that were con-
strained to their respective ranges from the training data (86) using
the function clamp.vars() in ENMeval 2.0.0 (31). Thus, our predic-
tions do not make extrapolations beyond the bounds of the training
data. Ultimately, there were few major differences between the un-
clamped and clamped predictions that extended mainly to very small
areas. We do note that some regions that our range-stacking ap-
proach found were richness centers for ants, such as the African
Mediterranean, Central Africa, Madagascar, and parts of Southeast Asia,
have relatively poor coverage in the GLAD database, which can perhaps
explain why this approach had the least correlation with the other
methods. Of these regions, only Central Africa had a high richness
prediction that was generally congruent with the other methods.

Terrestrial vertebrate data

We compared the stacked estimates of ant richness and rarity to
corresponding maps we made using existing range datasets of ter-
restrial vertebrates: amphibians, birds, mammals, reptiles, and these
groups combined (henceforth “vertebrates”). These data come from
different sources: International Union for Conservation of Nature
(IUCN) range maps for amphibians and mammals (2010) and BirdLife
International NatureServe breeding ranges for birds (2011) are de-
scribed in Jenkins et al. (27) (2013), and range maps for reptiles
were developed by Roll et al. (28). To match our methodology for
GABI polygonal range estimates, we overlaid the polygonal range
estimates for each taxon and summed the overlapping polygons for
each 10-arc min grid cell. Although we buffered range estimates for
ants (30 km) to account for geographic uncertainty, we chose not to
buffer those for vertebrates. As the vertebrate range estimates were
delineated with expert knowledge, buffering would likely lead to over-
estimation, as well as change their shapes from those previously re-
ported and used for analysis. For comparisons with ant diversity maps,
all maps for vertebrates were also projected to the equal-area Eckert IV
projected coordinate system, and Spearman’s correlations among
grid cells were calculated to give an overall estimate of congruence.

Diversity center calculations

We calculated diversity centers for the richness and rarity maps of
both ants and vertebrates to make comparisons of such areas among
taxa. Centers were defined for each diversity metric as the top 10%
quantile after excluding Antarctica (table S3). Other studies have used
smaller thresholds, such as 2.5% (87), 5% (27), or a range from 2.5
to 10% (28), but these focused on more well-known terrestrial verte-
brates. As this is the first study of this scale for insects, we decided to
use a less conservative threshold for diversity centers to identify a
broader selection of areas of conservation importance. We made
comparisons between the richness and rarity centers for ants and each
vertebrate group, including the vertebrates combined (Figs. 1 and 2).

Tests of sensitivity to spatial resolution

As our richness and rarity estimates for ants were conducted at the
relatively fine resolution of 10 arc min at a global scale, we sought to
determine how robust the observed diversity patterns were to coarser
spatial grains. Compared with richness estimates derived from range
maps, those derived from SDMs have been shown to reveal greater
heterogeneity in diversity between regions when spatial grain is increased
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(88). However, global diversity estimates made at fine resolutions
may nonetheless have higher uncertainty, and thus, we examined
how consistent our diversity patterns were over a range of increas-
ing resolutions (75), similar to the methodology in “Comparison
of richness estimates to community-level point observations.” For
all taxa, we first coarsened each species’ range estimate raster
(either polygonal range estimate or SDM prediction, based on data
availability) to coarser resolutions of 20, 50, 100, 200, and 500-arc
min resolutions (with bilinear resampling to the maximum value to
ensure that maximum richness per cell did not change) using the
Python package rasterio (89). Therefore, if a window of four cells
representing a cell of the coarser resolution contained suitability
predictions of 0.2, 0.45, 0.9, and 0.1 (or binary values of 0, 0, 1, and 0),
the resulting resampled raster would have a value of 0.9 (or 1 for binary
values) for this cell. We chose this strategy so that if a suitable area
exists within a larger region that contains a population, the larger
region would also be categorized as suitable for the species because
it contained some suitable area. We then made diversity estimates
of the coarsened range estimates (using the same methodology as
for the 10-arc min resolution data) to create a range of diversity esti-
mates at coarser spatial grains. To assess how correlated each coars-
er ant diversity estimate was with the original 10-arc min estimate,
we extracted the values for the centroids of the 10-arc min cells
from the diversity estimates at all resolutions (10, 20, 50, 100, 200,
and 500 arc min), removed any cells associated with NA values, and cal-
culated Spearman’s rank correlation coefficients. We did the same
comparison between diversity estimates for ants and vertebrates at
progressively coarser resolutions and calculated correlation between
richness values, as well as overlap proportion between diversity cen-
ters (figs. S4 and S5).

In summary, the diversity patterns we observed were quite ro-
bust to changes in spatial grain: Correlation between 10 arc min and
coarser resolutions was above 0.9 for both ant richness and rarity
except for 500 arc min, where a drop in correlation occurred to 0.89
for richness and 0.82 for rarity. We also assessed how correlated each
vertebrate group’s diversity estimates were to the ant diversity esti-
mate at the same resolution by calculating the Spearman’s rank cor-
relation. We found that, in general, correlation increased with grain
size for richness yet decreased slightly for rarity, and that overlap of
diversity centers decreased slightly with grain size for richness yet
remained mostly constant for rarity (fig. S3). For both richness and
rarity at most resolutions, reptiles were most correlated with ants,
while birds were least correlated (figs. S4 and S5).

Predicting changes to diversity centers under a
high-sampling scenario

We trained Random Forest models on our estimates of ant diversity
to make predictions of undiscovered ant diversity under a scenario
of equally high sampling across the globe. Specifically, we built sep-
arate models predicting our global estimates of ant richness and rarity
(excluding Antarctica) as a function of climatic variables [19 bio-
climatic variables from WorldClim 2.0 (59)], topography [Shuttle
Radar Topography Mission (SRTM) elevation from WorldClim 2.0],
categorical biogeographic realms (81), the GABI ant sampling density,
and summed vertebrate richness or rarity, all at 10-arc min resolution.
To avoid spurious variable importance values, we removed variables
with high collinearity using the vifcor() function from the R package
usdm (83) with a threshold of 0.7. We used slightly less restrictive crite-
ria here than for the macroecological model (see “Alternative methods
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to estimate species richness”), as Random Forest is known to be rel-
atively robust to multicollinearity (90), but this only resulted in the
addition of one more bioclimatic variable [precipitation of the driest
month (bio14)]. The biogeographical realms shapefile dataset we used
from Holt et al. (81) lacked coverage of many smaller islands (particularly
in Oceania) and some coastal areas, so we first converted the poly-
gons to a raster and then performed a k-nearest neighbors classifi-
cation with the R package spatialEco (91) to classify cells without
data to the most proximal cell with a biogeographical classification.
For our ant sampling density grid (see “Species range estimates”),
low density reflects either lack of field collection and/or taxonomic work
to process existing collections. The vertebrate diversity estimates were
projected from the equal-area Eckert IV projected coordinate system to
WGS 1984 (with bilinear resampling to the maximum value) to match
the geographic coordinate system of the other datasets. We includ-
ed vertebrate richness and rarity predictors for two reasons. First, it
lets us determine the extent of predictive power that vertebrate bio-
diversity patterns hold beyond that captured by climate and region.
Second, since these data represent the current state of knowledge of
vertebrate biodiversity centers, they allow us to assess whether the ant
data alone identify novel regions of richness and rarity even after
including important regions for vertebrates.

We tuned model complexity and evaluated models using spatial
cross-validation to optimize transferability to new conditions. Using
the R package ranger (92), we built Random Forest models with
different values of the hyperparameter “mtry,” which controls how
many predictor variables are randomly sampled at each split within
a tree. We used a range of 1 to 10—higher values indicate more
variable interactions are allowed, leading to higher model complexity
(93)—with other hyperparameters left at their defaults. After re-
moving highly collinear predictor variables, we built models with
the following variables: mean diurnal temperature range (bio2),
mean temperature of wettest quarter (bio8), mean temperature of
driest quarter (bio9), precipitation of driest month (bio14), precip-
itation seasonality (bio15), precipitation of warmest quarter (bio18),
precipitation of coldest quarter (biol9), elevation, biogeographic
realm, ant sampling density, and vertebrate richness or rarity. We
log-transformed rarity values to avoid problems with model con-
vergence due to extremely small values. To evaluate models, we im-
plemented spatial cross-validation using a fivefold systematic 10 x 14
checkerboard partitioning scheme (fig. S6) using the R package
blockCV (94) and then calculated the average mean square error
(MSE) over the folds for each model. We performed model selection
using spatial cross-validation as it tends to result in models with
better transferability to new conditions (38). We selected optimal
model complexity settings that resulted in the minimum average
MSE (mtry = 4 for richness and mtry = 2 for rarity; fig. S7) and then
trained models with these settings on the full dataset. For these
models, we made maps to show the average root mean square error
per block labeled by their spatial fold, which highlights areas that
had high prediction error when the model was trained on the other
spatial folds but missing the data from the fold represented by each
block (fig. S7). We calculated variable importance values for each
selected model with the permutation importance option in ranger
(fig. S7). We then made extrapolations of richness and rarity for the
globe under a scenario of equally high sampling by setting all cells with
values in the sampling density grid to 1, representing the highest ob-
served sampling density in our dataset (Figs. 3 to 6). Last, we over-
laid the high-sampling scenario maps with the original diversity
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maps for ants and vertebrates and calculated percent overlap be-
tween them (Figs. 3 to 6).

Global protected area coverage

To determine how much diversity center area is currently protected,
we calculated the total area of global protected areas located within
our diversity center estimations for each taxon (Fig. 7). We down-
loaded the World Database on Protected Areas 1.6 (95) file geoda-
tabase from <www.protectedplanet.net> (downloaded 11 March 2021)
and retained only designated and national protected area polygons
from the feature dataset to match the methodology of Jenkins et al.
(27). We then fully dissolved the multifeature polygon layer to a uni-
value, single feature without overlap and projected it to the equal-area
coordinate system Eckert IV. We converted the diversity center ras-
ters for all taxa and sampling extrapolations for ants into univalue
polygons and then used them to mask the protected areas layer. All
GIS operations were conducted with ArcGIS Pro 2.6.0 (62).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abp9908
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