
  

 
 

 Abstract— Impedance based kinesthetic haptic devices have 
been a focus of study for many years. Factors such as delay and 
the dynamics of the device itself affect the stable rendering 
range of traditional active kinesthetic devices. A parallel hybrid 
actuation approach, which combines active energy supplying 
actuators and passive energy absorbing actuators into a single 
actuator, has recently been experimentally shown to increase 
the range of stable virtual stiffness a haptic device can achieve 
when compared to the active component of the actuator alone. 
This work presents both a stability and rendering range 
analysis that aims to identify the mechanisms and limitations 
by which parallel hybrid actuation increases the stable 
rendering range of virtual stiffness. Increases in actuator 
stability are analytically and experimentally shown to be linked 
to the stiffness of the passive actuator. 

I. INTRODUCTION 

Actuation has been a persistent challenge since the 
inception of kinesthetic haptic devices. Many attempts have 
been made to improve haptic actuators and understand how 
to present a convincing rendering to a user.  

To overcome limitations of traditional active only 
actuators, researchers turned to what is known as hybrid 
actuation, or the combination of active and passive actuators. 
Perhaps the earliest investigations of this include work using 
fixed external dampers to expand the range of virtual 
stiffness and damping [1]. [2] expanded upon this work 
showing that MR brakes could be used as controllable 
physical dampers and was able to expand the range of stable 
impedances without many of the negatives of using a fixed 
damper. Passivity observers and fast acting eddy current 
dampers were able to dissipate excess energy in haptic 
devices and again improve control robustness of haptic 
devices [3]. While these hybrid approaches have 
demonstrated improvements in rendering range, they can 
suffer from force artifacts arising from the nonlinear brake 
characteristics and brake actuation delay that results in poor 
perceived rendering accuracy, a phenomenon referred to as 
the sticky-effect. 

Recently, we have introduced a new hybrid actuation 
approach that employs measurement and feedback of real-
time brake torques. 
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Fig. 1) Schematic representation of the parallel hybrid actuation approach 
with passive actuator, active actuator, and filtered passive feedback. 

Brake torque measurements are used to remove unwanted 
force artifacts, improving rendering accuracy while 
maintaining the extended rendering range associated with 
hybrid devices. Our work in handheld [4] and grounded 
kinesthetic haptic devices [5] has experimentally shown the 
range of pure virtual stiffness is increased by combining a 
particle brake and a DC motor according to the parallel 
feedback control structure shown in Fig. 1. However, the 
mechanism by which this arrangement extends the stable 
rendering range is not well understood. The nonlinear 
characteristics of passive actuators, in our case a particle 
brake, are complex, offering various explanations. Some 
prior work has suggested that a brake’s small-deflection 
stiffness contributes to the extended rendering range [5]. 
While other hybrid actuation approaches show that 
dissipation provided by the passive actuator extends a hybrid 
actuator’s rendering range [2], [6]. The work presented here 
attempts to gain a deeper understanding of the mechanism by 
which this parallel arrangement of active and passive 
actuators, shown in Fig. 1, expands the range of stable virtual 
stiffness. We hope that this ultimately informs and improves 
the design of future hybrid and parallel actuated systems. Our 
work is organized as follows: 

 Section II: Provides an overview of the assumptions used 
to model our hybrid actuator, schematically shown in Fig. 
1. A modified Dahl model and equivalent stiffness and 
damping analysis form the basis of our modeling 
assumptions and lends to linear analysis methods. 

 Sections III-IV: We analyze the stability of our actuator 
from the viewpoint of passivity and uncoupled asymptotic 
stability, starting from the small amplitude model 
presented in Fig. 2(c). Subsequently, we study the effect of 
larger perturbations or amplitudes of oscillation on the 
stability of the system. 

 Section V: We present a study of the devices output 
impedance and factors that affect the output impedance. 

 Section VI: We experimentally validate stability results 
presented in prior sections. 
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Fig. 2a) Full single degree of freedom Nonlinear model b) Large amplitude 
linearized model c) Small amplitude linearized model. 

II. HYBRID ACTUATOR DYNAMICS AND MODELING 

Analysis of our hybrid actuator begins with a nonlinear 
model of a one degree of freedom system which can be seen 
in Fig. 2. The nonlinear model includes a parallel actuation 
structure which allows the active actuator to compensate for 
the passive actuator using measured brake torque. Other 
model elements, incorporated due to their significant impact 
on rendering stability, include time delay (to capture sample-
and-hold delay and communication delays), a low pass filter 
in the passive actuator feedback signal (required for noise 
attenuation), linear inertia and damping plant dynamics, and a 
nonlinear Dahl friction model which, as shown in [4], 
captures the important dynamics of the particle brake. For 
more information about the full parallel actuation approach 
see [4] and [5]. 

In our stability and impedance analysis, we have made 
several simplifying assumptions. We assume that the virtual 
stiffness is rendered bilaterally, recognizing that this will 
likely result in conservative stability estimates. Prior 
literature [7] has equated the bilateral case to steady state 
contact interior to a virtual wall. Breaking contact with the 
wall will reduce control forces to zero and maintains stability 
as a result.  Additionally, we assume that the particle brake’s 
Dahl friction model can be represented by an amplitude 
dependent equivalent stiffness and damping as shown in 
appendix A. For very small displacements, the equivalent 
model reduces to a stiffness alone (see Fig. 2(c)). This 
assumption is valid because nonlinear friction type models 
have amplitude dependent damping which decreases to zero 
at zero amplitude [8]. The equivalent stiffness and damping 
assumptions allow us to apply linear stability analysis to the 
system and examine the effect of larger amplitude motions on 
the stability of the actuator. 

A. Equivalent Stiffness and Damping 
Assuming a constant brake activation level 

(corresponding with the steady state frictional force) we can 
approximate the brake through an equivalent stiffness and 
equivalent damper in parallel. Several important brake 
characteristics emerge upon calculating equivalent stiffness 
and damping (Appendix A). First, the Dahl model simplifies 
to a pure stiffness at low amplitudes. This is consistent with 
prior literature studying the Dahl model [8] and motivates the 
small amplitude linear model presented in Fig. 2(c). Upon 
reaching larger amplitudes the equivalent stiffness begins to 

decrease and damping increases to a critical amplitude where 
it peaks and begins to decrease. The increase in damping and 
corresponding decrease in stiffness is also typical to 
dissipative friction like nonlinearities. Adding an equivalent 
damping term to the linear model as in Fig. 2(b) allows us to 
approximately analyze stability of the system at larger 
amplitudes without the introducing the complexity of the full 
nonlinear model. 

III. HYBRID ACTUATOR STABILITY ANALYSIS 

Analyzing the stability of the hybrid actuator will 
highlight the mechanisms that extend and limit the actuator’s 
rendering performance. In this first section, we will consider 
the effects of time delay, along with the brakes dynamics but 
ignore the effect of brake measurement filtering, which will 
be considered in Section III.D.  

A. Small Amplitude Passivity with Unfiltered Passive 
Actuator Feedback 
Considering the system shown in Fig. 2c, where the brake 

is approximated by an equivalent stiffness, we can evaluate 
the stability of the system using passivity.  Passivity stems 
from the study of what are known as dissipative or positive 
real systems [9]. The formal definition of a passive system is 
shown in (1). 

( ) ( ) ( )
0

0 0 0
t

f x d E tτ τ τ + ≥ ∀ ≥∫   (1) 

Variables f and ẋ are conjugate power variables 
describing energy flow in the system and E(0) is the energy 
stored in the system at t = 0 [10]. Applying (1) to a one-port 
system, a single degree of freedom haptic device, like ours 
implies that a system will be passive if the integral of power 
extracted from the system over time does not exceed the 
initial energy of the system [11]. We show this by first 
calculating the work dissipated by the damper of the system 
assuming a sinusoidal position, velocity, and time delayed 
position (2), (3), (4) respectively.  

( ) sin( )x t A tω=  (2) 

( ) cos( )x t A tω ω=  (3) 

( ) sin( )D Dx t A t Tω ω= −  (4) 

The work dissipated by a damper can be calculated from 
(5) the integral of power over time. 

( )( )bW Bxdx Bx xdt= =∫ ∫     (5) 

Substituting (3) for the velocity terms in (5) and 
integrating over one period of motion yields a symbolic 
expression (7) for the total work dissipated by linear damping 
in the system for each cycle of motion.  
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2
bW BA ωπ=  (7) 

The work due to the actuator force is then calculated by 
substituting (3) and (4) into (5) and can be seen in (10). 

( ) ( ) ( )a b D b DW K K x dx K K x xdt= − = −∫ ∫    (8) 
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( ) ( )2 sina b dW A K K Tπ ω= − −  (10) 

While the virtual stiffness is greater than the physical 
stiffness the active actuator is generating energy as we might 
expect. However, if the virtual stiffness is less than the 
physical stiffness the active actuator becomes dissipative 
despite the entire system rendering a net positive stiffness. 
This is the behavior that allows the system to remain stable 
and passive independent of delay. To satisfy the passivity 
integral (1) the sum of the work done must be greater than 
zero (11). 

( ) ( )2 2 sin 0b dBA A K K Tωπ π ω− − ≥  (11) 

The resulting inequality is most restrictive as the 
frequency, ω, approaches zero. Evaluating the expression at 
zero frequency results in (12) where TD is the delay time, B is 
the linear damping, and Kb is the brakes stiffness. Equation 
(12) bounds the maximum passive virtual stiffness our device 
can produce. An approximation for the delay due to the zero-
order hold (TD = T/2 sec) yields a passivity relationship in 
terms of sample time T.  

2
b b

D

B BK K K K
T T

≤ + ⇔ ≤ +  (12) 

Several insights into the stability of the system are gained 
through this simplified analysis and are summarized below: 

1. Brake stiffness, Kb, is an important factor in determining 
the range of passive virtual stiffness our hybrid device is 
capable of rendering, and a higher brake stiffness directly 
increases the maximum stable virtual stiffness.  

2. No physical damping, B, is needed to passively render 
virtual stiffness up to the brake’s stiffness. 

3. The range of virtual stiffness reduces to the brake stiffness 
as time delays increase. The system is passive independent 
of delay for virtual stiffness up to the brake stiffness. 

An intuitive explanation for the stability results emerges 
when considering (12). The parallel actuation topology 
allows the actuator to substitute physical stiffness for virtual 
stiffness. 

B. Asymptotic Stability Independent of Delay 
As an alternative approach, we can consider the 

asymptotic stability of the system shown in Fig. 2c, using 
pseudo-delay methods [12], [13]. Pseudo-delay methods 
utilize a mapping based on the bilinear transform to 
transform the infinite dimensional time delayed system to a 
finite dimensional system. Stability analysis of the finite 
dimensional system allows one to draw conclusions about the 
stability of the original system. 

First, we substitute the pseudo-delay (13) for pure delay 
terms in the systems closed loop transfer function yielding 
the characteristic quasi-polynomial (14). 
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( ) ( )3 2 2 bJTs J BT s B KT K T s K+ + + − + +   (14) 

The Routh array, Table 1, can be used to analyze the 
stability of (14) which now depends on an additional 
parameter, T, the pseudo-delay. The system will be stable if 
the first column of the Routh array is positive. 

Table 1. Routh array for characteristic quasi-polynomial 

JT   2 bB KT K− +   
J BT+   K   

( ) ( )2 2
2 2 2b bBK BK T B JK JK T BJ

BT J

− + − + +

+
 0   

K   0   
Considering only positive parameter values leaves (15) as 

the limiting case. A discriminate analysis allows us to 
determine the range of values where the system will be stable 
for all values of the pseudo-delay, T. 

( ) ( )2 22 2 2
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BT J

− + − + +
>

+
 (15) 

Setting the discriminate equal to zero and solving for the 
virtual stiffness, K, yields (16), the upper bound for the 
maximum uncoupled virtual stiffness independent of delay. 
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Fig. 3a) Plots of maximum stable stiffness vs total time delay. Parameter values used to generate all theoretical curves are found in Table 1 b) Zoomed plot 
showing a numerical comparison of asymptotic stability to an exact expression obtained via pseudo-delay methods and the passivity expression. 



  

C. Asymptotic Stability and A Critical Delay 
We can compare the stability analyses of the hybrid device 

to an active only device (where Kb = 0) by numerically 
evaluating the maximum asymptotically stable stiffness using 
a bisection method, the Nyquist stability criteria, and the 
systems open loop transfer function (17). Numerical results, 
excluding filter effects and equivalent damping, shown in 
Fig. 3, are obtained using the stiff brake parameters from 
Table 1 in the experimental section VI. 
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As seen in Fig. 3, the hybrid system outperforms the active 
system most significantly at lower sample frequencies or 
large delays. In fact, we can identify a critical delay, from the 
passivity-based expression (12), in terms of system 
parameters. For delay larger than the critical delay, TDcrit, 
identified in (18), the hybrid system will outperform the 
active only system in the sense that the maximum rendered 
stiffness will be significantly larger.  

2
b

D crit crit
b

KBT f
K B

= ⇔ =  (18) 

For delay less than TDcrit, the hybrid and active only 
systems have similar performance, although the hybrid 
device’s maximum asymptotically stable virtual stiffness will 
always achieve a higher stiffness than the active device alone 
by a quantity of at least the brake stiffness even at very low 
time delays.  

D. Effects of Filtered Passive Actuator Feedback on 
Maximum Virtual Stiffness 
Prior to this section we have considered a system with 

ideal passive feedback, where the measured brake force was 
not filtered. However, an unfiltered passive feedback signal 
can be difficult to achieve in practice. Filtering may be 
required due to sensor noise or to prevent aliasing during 
analogue to digital conversion. The addition of a filter must 
be done carefully because it has implications on both the 
stability and output impedance of the actuator. 

Evaluating closed form solutions of uncoupled 
asymptotic stability are not practical for the filtered feedback 
case with delay, shown in Fig. 2.  

 
Fig. 4) Numerical maximum stable virtual stiffness while varying the filter 
cutoff frequency or bandwidth for a range of different time delays. 

 
Fig. 5) Reformulated block diagram showing the effect of passive actuator 
torque and passive actuator feedback resulting in a net high pass filtered 
position feedback effect on the open loop transfer function. 

As such, we numerically evaluate uncoupled asymptotic 
stability utilizing the open loop transfer function (17) while 
neglecting equivalent damping, using a bisection method, 
bode plots, and the Nyquist Stability Criteria (see Fig. 4).  

As seen in Fig. 4, the maximum virtual stiffness 
approaches the active devices stability limit as the filter 
cutoff frequency approaches zero. Conversely, the maximum 
virtual stiffness approaches the result obtained for a fixed 
delay alone (where we assume perfect brake torque 
measurement) as the cutoff frequency approaches infinity. As 
seen in Fig. 4, continuously varying the filter cutoff 
frequency shows a curious peak in the resulting uncoupled 
stability curve, suggesting that the maximum virtual stiffness 
can be increased significantly, as compared to the perfect 
brake measurement case, by selecting a particular brake 
feedback cutoff frequency. 

To gain insight into this phenomenon, it is useful to 
temporarily ignore delay in the system, which allows us to 
reorganize our block diagram from Fig. 2 into Fig. 5. As seen 
in Fig. 5, physical reflected brake torque and the low pass 
filtered brake feedback signal produced by the active actuator 
cancel each other at low frequencies. Subtracting a low pass 
filtered signal from itself results in a high pass filtered signal. 
High pass filtering a signal in phase with position results in 
the approximation of a damper below the filter bandwidth. 

One can use the system’s open loop frequency response 
and the Nyquist stability criteria to better understand why the 
high pass behavior of the brake and filtered brake feedback 
allow for increased virtual stiffness. Additionally, we aim to 
understand why there is an optimal tuning and how one can 
tune the passive feedback filter to obtain this.  

Fig. 6 shows the system’s open loop transfer function for 
a range of filter cutoff frequencies. Fig. 6a shows three 
frequency responses of the hybrid open loop transfer function 
corresponding to the portion of Fig. 4, where the maximum 
virtual stiffness increases as the cutoff frequency increases. 

The effect of the combined high pass filter on the 
maximum stable virtual gain becomes clear with knowledge 
of the combined high pass hybrid damping effect. As the 
filter bandwidth increases, damping from the high pass 
hybrid effect reaches higher frequencies. This helps to both 
decrease the magnitude of resonance associated with the 
brake stiffness and smooths the 180-degree phase loss 
associated with the otherwise lightly damped mode 
introduced by the brake. These combined effects allow for an 
increased phase crossover frequency and overall maximum 
virtual stiffness.  



  

 
Fig. 6a) Bode plots of the open loop transfer function of the system with 
increasing filter bandwidth while the maximum virtual stiffness is increasing. 
b) Bode plots of the system with a decreasing maximum virtual stiffness. 

Dissipation created by the combined high pass hybrid 
effect is mostly limited to frequencies below the filters cutoff 
frequency and decreases in magnitude as the filter bandwidth 
increases, see Fig. 6b. As the filter cutoff frequency continues 
to increase, phase loss from external delay in the system 
begins to dominate added phase from the high pass filter at 
high frequencies, reducing the phase crossover frequency and 
the corresponding maximum virtual stiffness. The combined 
effects of damping, introduced by the filtered brake signal, 
and a corresponding decrease in damping magnitude, as the 
cutoff frequency increases, causes the peak in maximum 
virtual stiffness (see Fig. 4). 

The system’s internal resonance plays a large role in 
determining the location (i.e. filter cutoff frequency) of the 
maximum uncoupled stable virtual stiffness. In fact, we can 
see that the peak in maximum virtual stiffness and the 
resonance peak in the open loop transfer function occur at 
similar frequencies. This is not by chance and moving the 
physical system’s resonance changes both the peak maximum 
virtual stiffness value and the cutoff frequency needed to 
achieve the maximum virtual stiffness. In general, shifting 
the resonance to a lower frequency corresponds to higher 
peak virtual stiffness. This is because the high pass damping 
effect is more effective at lower frequencies below its cutoff 
frequency. 

Reducing the resonance frequency, with the intent to 
increase peak virtual stiffness, can be achieved primarily in 
two ways. Firstly, brake stiffness could be reduced. However, 
doing so affects the amount of dissipation achieved through 
the hybrid high pass filter effect. Device inertia has the most 

significant effect on the maximum stiffness in this regard. 
Increasing inertia shifts the resonance to a lower frequency 
without reducing energy dissipation in the system, although 
doing so has negative impacts on device output impedance.  

IV. LARGE AMPLITUDE STABILITY RESULTS 

We can analyze the full nonlinear system and investigate 
its behavior for large amplitude displacements by employing 
the approximate equivalent stiffness and damping 
approximation from section IIA.  

Expanding our analysis to include equivalent damping as 
seen in Fig. 2b allows us to analyze the “average” behavior of 
the hybrid actuator for a given orbit about the equilibrium 
point. For various amplitudes, we substitute the amplitude 
dependent stiffness and damping into the full open loop 
transfer function (17) and solve for the uncoupled asymptotic 
stability utilizing a combination of the bisection method, 
bode plots, and the Nyquist Stability. The resulting amplitude 
dependent stability curve is shown in Fig. 7. 

 Several important features are evident from Fig. 7, and 
four distinct regions of stability behavior emerge from this 
analysis. The system displays unconditional stability across 
all amplitudes at low stiffness, below the active only 
asymptotic stability limit. The system is conditionally stable 
over a range of amplitudes at virtual stiffness below the 
hybrid small amplitude stability limit. The system has a 
possibility of limit cycles above the small amplitude stability 
point for a limited range of amplitudes and virtual stiffness. 
Finally, at truly large stiffness the device becomes unstable at 
all amplitudes. The useful rendering range of the hybrid 
actuator is below the small amplitude asymptotic stability 
limit, where the system will decay back to an equilibrium 
point.  

It might seem that the conditional stability provided by 
the hybrid actuator is insufficient, but the interaction forces 
required to deflect the actuator beyond the maximum 
amplitude predicted are relatively large and larger brake 
activation levels can increase the stable range of amplitudes. 
In practice a modestly sized brake can provide a useful range 
of conditionally stable amplitudes for the actuator to operate 
over. For example, the hybrid actuator shown in Fig. 10 can 
render the stiffness up to 15 Nm of force which corresponds 
to deflections of approximately 0.3 degrees at its maximum 
stable stiffness from Fig. 7. 

 
Fig. 7) Amplitude dependent stability curve showing four distinct regions of 
stability. The curve is generated by substituting equivalent stiffness and 
damping values into the linear model for a range of position amplitudes. 



  

 Some might recognize Fig. 7 to be a form of a bifurcation 
diagram where the virtual stiffness is the bifurcation 
parameter. In fact, that is one interpretation of Fig. 7. A Hopf 
bifurcation can occur at the small amplitude stability limit if 
filtered feedback is used. While limit cycles are not useful for 
a haptic device, the behavior can be perplexing for a user or 
designer of this class of hybrid haptic device. Limit cycles are 
particularly easy to achieve at low filter bandwidths. 
Increasing filter bandwidth minimizes the possibility of this 
behavior as limit cycles are not possible at an infinite filter 
bandwidth.    

V. LIMITATIONS AND FACTORS ON OUTPUT IMPEDANCE 

Typical haptic devices have imperfect renderings due to 
physical device dynamics including damping, friction, and 
inertia. These unavoidable features inevitably distort the 
device’s rendering and output impedance. The impedance 
transfer function for our hybrid device, relative to the 
device’s position, is shown in (19). 

( )
2( )

dsTcH
b b

c

s Js Bs K K K e
s s

ωτ
θ ω

− 
= + + + − 

+ 
 (19) 

Our hybrid device has physical damping and inertia 
inherent to the device along with physical stiffness and 
damping added by the passive actuator. Physical passive 
actuator dynamics and delay can distort the device’s 
impedance as well. Fig. 8 shows the effect that the feedback 
filter bandwidth has on device output impedance.  

We see, from Fig. 8, that the passive actuator distorts the 
output impedance when the filter is tuned quite low. 
Increasing the filter’s cutoff frequency effectively reduces 
distortion below the filter’s cutoff frequency. This is only 
effective at removing distortion due to passive actuator 
dynamics. Increasing the filter bandwidth has diminishing 
returns when device dynamics like inertia are primarily 
responsible for distorting the devices output impedance. 
Consequently, to present an output impedance equivalent to 
that of a traditional active only haptic device we must select a 
filter bandwidth high enough to preserve the devices 
rendering range.  

Fig. 9 shows the effect of delay on the hybrid devices 
output impedance. At small time delays the output impedance 
of the device closely matches that of an active device and the 
desired impedance. 

 
Fig. 8) Impedances distorted by filter bandwidth. Hybrid actuator 
impedances for a range of filter cutoff frequencies and zero delay.  

 
Fig. 9) Impedance frequency response plots distorted by delay. Hybrid 
actuator impedances for a range of delays and unfiltered passive feedback. 

All shown impedances are stable, because the filter 
bandwidth is infinite for Fig. 9 and the rendered stiffness is 
less than the brake stiffness. This highlights the fact that it is 
possible to have significant distortion of a system’s 
impedance due to delay while still maintaining stability. 
Ultimately, to maintain the desired output impedance, the 
hybrid actuator needs to have small delays and a sufficient 
filter bandwidth. 

VI. EXPERIMENTAL VALIDATION 

We validated the stability of the hybrid actuation system 
using two configurations of a custom one degree of freedom 
hybrid actuator, shown in Fig. 10. 

Our hybrid actuator, shown in Fig. 10a, consists of a 
Maxon RE90 DC motor, used for the active actuator, and a 
Placid Industries B6 particle brake as the passive actuator. 
The actuators are rigidly connected via a capstan and are 
connected to the output handle via an 11:1 veteran cable 
transmission. Passive actuator feedback is measured with an 
Interface MRT-2NM reaction torque sensor. The handle 
position is measured with a Renishaw Magnetic Linear 
Encoder, 450,000 lines per revolution, and is used to render 
the virtual stiffness. This actuator test configuration 
represents a high brake stiffness configuration typical of a 
hybrid haptic device designed to extend the maximum 
stiffness above an equivalent active only device.  

Fig. 10b shows a compliant brake configuration where we 
use a grounded spring as a stand in for a brake, primarily for 
the purpose of validating high brake filter cutoff frequency 
experiments which are not practical with the high stiffness 
configuration. 

 
Fig. 10a) The one degree of freedom hybrid actuator used to test the hybrid 
actuation approach. The device includes a DC Motor and a Particle Brake 
rigidly connected in parallel. b) A “compliant brake” configuration utilizing a 
grounded machined spring as a stand in for the particle brake.   



  

Table 2 lists the estimated hybrid device parameters for 
both compliant and stiff break configurations. 

Table 2. Summary of Hybrid Parameters 
Parameter Brake 

Stiffness 
Spring 

Stiffness Inertia Damping 

Value 1600  14 0.053 0.013  
Units [Nm/rad] [Nm/rad] [Nm/(rad/sec2)] [Nm/(rad/sec)] 

A. Hybrid Stability Validation - Stiff Brake Configuration 
We begin our experimental validation by testing the 
uncoupled stability of a prototype desktop hybrid actuator, 
using the high brake stiffness configuration, and comparing it 
to our theoretical results. 

 During the experiment, we incrementally increased the 
virtual stiffness of the hybrid actuator. An active disturbance 
signal was injected onto the motor torque command to 
perturb the system. The system was also manually perturbed 
with a dead blow hammer. The tested virtual stiffness is 
considered to be stable if no vibrations or unstable behavior 
are detected after four perturbations, spaced two seconds 
apart. The virtual stiffness is then increased randomly, in a 
predetermined range. This process is repeated until unstable 
behavior, vibrations or oscillations, are observed.  

We tested five delays while running our system with a 
3500 Hz sample frequency. The nominal experimental 
system delay, including the effects of sampling and 
processing, was measured at 0.0003 seconds. We added 
additional delay between 0.01 and 0.0001 seconds. Fig. 11 
shows a comparison between the maximum stable stiffness 
when using the high brake stiffness configuration of the 
hybrid actuator and the maximum stable stiffness when 
using the active actuator stiffness configuration. The results 
from a series of five tests compare well to the theoretical 
results and are well above the theoretical active only stability 
curve at the delays used.  

Varying the filter bandwidth was also identified as an 
important factor affecting the maximum stable virtual 
stiffness. Noise propagation in the high brake stiffness 
system limits the experimental validation to filter cutoff 
frequencies less than approximately 30 Hz. Fig. 12 compares 
the theoretical hybrid curve (for zero added delay) to a range 
of experimentally obtained maximum stiffness values over a 
range of filter cutoff frequencies. 

Experimental results from both varying time delay and 
filter bandwidth agree well with the linear analysis and 
deviations at lower filter cutoff frequencies are likely due to 
brake energy dissipation at larger amplitudes. 

 
Fig. 11) Experimental stability results for a “stiff” brake (Fig 10a) under 
varying time delays. Filtered passive actuator feedback of 15 Hz BW is used.   

 
Fig. 12) Theoretical maximum stable virtual stiffness while varying the 
feedback filter bandwidth. Experimental unilateral and bilateral tests are also 
plotted over the theoretical curves. Light blue shaded regions are the stable 
range of amplitudes for a range of oscillation amplitudes (from the large 
amplitude model). 

Additionally, Fig. 12 shows experimental coupled 
stability results, where the actuator was tested using a 
unilateral constraint and a human user. Trends predicted in 
our analysis are reflected in unilateral coupled stability tests 
as well and we see an increase in the maximum stable virtual 
stiffness as filter cutoff frequency is increased to 30 Hz.  

B. Hybrid Stability Validation – Compliant Brake 
Configuration 
We present an additional experimental system validation 

utilizing a compliant brake configuration shown in Fig. 10b. 
We chose to test a low stiffness brake configuration primarily 
to allow for validation of the stiffness vs filter bandwidth 
curve at higher filter bandwidth values. In addition, using a 
linear spring as a substitute for the small displacement brake 
stiffness provides the best possible comparison to the 
presented linear analysis. Finally, measuring spring 
deflection with a high-resolution encoder eliminates noise 
issues from torque sensor feedback allowing us to explore a 
wider range of filter cutoff frequencies.  

Fig. 13 shows a comparison between theoretical and 
experimental results for an unfiltered passive feedback 
configuration and shows close agreement. The system is 
stable approximately up to the brake or spring stiffness even 
under conditions with large time delays.  

We see from Fig. 14 that the peak stable stiffness predicted 
by our analysis, across three sample frequencies or time 
delays, agrees well both in terms of the predicted filter cutoff 
frequency and the maximum predicted stable stiffness. 

 
Fig. 13) Experimental stability results under increasing time delays and 
unfiltered feedback with a compliant brake (Fig 10b). 



  

 
Fig. 14) Maximum stable stiffness for varying filter cutoff frequencies at 
three different delay values. Experimental results are shown with the mean 
and standard deviation from six experimental test runs. 

Experimental results from the compliant brake 
configuration validates the theoretical predictions made in 
section III and shows that the peak in maximum stable virtual 
stiffness can be explained through our analysis.  

VII. CONCLUSION AND FUTURE WORK 

Our analysis and experimental validation indicate that the 
spring-like characteristics of our passive actuator are 
responsible for the expanded rendering range of the parallel 
hybrid actuation approach investigated in this work. 
Carefully tuned filtered passive actuator feedback has been 
shown to increase the maximum passive and uncoupled 
virtual stiffness.  

This work focused on rendering virtual stiffness. Future 
work will expand our analysis to a wider set of virtual 
impedances, including virtual damping, and could yield 
further advancements in hybrid actuator control. 
Investigating whether the results translate to a multi-degree 
of freedom device would also make a meaningful 
contribution. Overall, we hope that this study of parallel 
hybrid actuators will inform the design and analysis of future 
haptic devices and more broadly parallel robotic actuators. 

APPENDIX 

A. Equivalent Stiffness and Damping  
Equivalent stiffness and damping can be calculated by 

first assuming a displacement and resulting velocity (20) and 
(21) respectively. 

( )cosx A tω=  (20) 

( )sinx A tω ω= −  (21) 

We can then calculate the time domain waveform of the 
Dahl model Ff(t) and find the first two Fourier coefficients 
(22) and (23). 

( ) ( )
2

2

2 cos

T

T

fa F t t dt
T

ω
−

= ∫   (22) 

( ) ( )
2

2

2 sin

T

T

fb F t t dt
T

ω
−

= ∫   (23) 

Recognizing that equivalent stiffness and damping are 
forces proportional to displacement and velocity we can 

equate the Fourier coefficients to our assumed position and 
velocity waveforms resulting in (24) and (25). 

( ) ( )cos coseqa t K A tω ω=  (24) 

( ) ( )sin sineqb t B A tω ω ω= −  (25) 

Solving (24) and (25) for the equivalent stiffness and 
damping results in amplitude dependent parameters (26) and 
(27) respectively. 

eq
aK
A

=  (26) 

eq
bB
Aω

−
=  (27) 
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