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Abstract— Impedance based kinesthetic haptic devices have
been a focus of study for many years. Factors such as delay and
the dynamics of the device itself affect the stable rendering
range of traditional active kinesthetic devices. A parallel hybrid
actuation approach, which combines active energy supplying
actuators and passive energy absorbing actuators into a single
actuator, has recently been experimentally shown to increase
the range of stable virtual stiffness a haptic device can achieve
when compared to the active component of the actuator alone.
This work presents both a stability and rendering range
analysis that aims to identify the mechanisms and limitations
by which parallel hybrid actuation increases the stable
rendering range of virtual stiffness. Increases in actuator
stability are analytically and experimentally shown to be linked
to the stiffness of the passive actuator.

I. INTRODUCTION

Actuation has been a persistent challenge since the
inception of kinesthetic haptic devices. Many attempts have
been made to improve haptic actuators and understand how
to present a convincing rendering to a user.

To overcome limitations of traditional active only
actuators, researchers turned to what is known as hybrid
actuation, or the combination of active and passive actuators.
Perhaps the earliest investigations of this include work using
fixed external dampers to expand the range of virtual
stiffness and damping [1]. [2] expanded upon this work
showing that MR brakes could be used as controllable
physical dampers and was able to expand the range of stable
impedances without many of the negatives of using a fixed
damper. Passivity observers and fast acting eddy current
dampers were able to dissipate excess energy in haptic
devices and again improve control robustness of haptic
devices [3]. While these hybrid approaches have
demonstrated improvements in rendering range, they can
suffer from force artifacts arising from the nonlinear brake
characteristics and brake actuation delay that results in poor
perceived rendering accuracy, a phenomenon referred to as
the sticky-effect.

Recently, we have introduced a new hybrid actuation
approach that employs measurement and feedback of real-
time brake torques.
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Fig. 1) Schematic representation of the parallel hybrid actuation approach
with passive actuator, active actuator, and filtered passive feedback.

Brake torque measurements are used to remove unwanted
force artifacts, improving rendering accuracy while
maintaining the extended rendering range associated with
hybrid devices. Our work in handheld [4] and grounded
kinesthetic haptic devices [5] has experimentally shown the
range of pure virtual stiffness is increased by combining a
particle brake and a DC motor according to the parallel
feedback control structure shown in Fig. 1. However, the
mechanism by which this arrangement extends the stable
rendering range is not well understood. The nonlinear
characteristics of passive actuators, in our case a particle
brake, are complex, offering various explanations. Some
prior work has suggested that a brake’s small-deflection
stiffness contributes to the extended rendering range [5].
While other hybrid actuation approaches show that
dissipation provided by the passive actuator extends a hybrid
actuator’s rendering range [2], [6]. The work presented here
attempts to gain a deeper understanding of the mechanism by
which this parallel arrangement of active and passive
actuators, shown in Fig. 1, expands the range of stable virtual
stiffness. We hope that this ultimately informs and improves
the design of future hybrid and parallel actuated systems. Our
work is organized as follows:

= Section II: Provides an overview of the assumptions used
to model our hybrid actuator, schematically shown in Fig.
1. A modified Dahl model and equivalent stiffness and
damping analysis form the basis of our modeling
assumptions and lends to linear analysis methods.

= Sections III-IV: We analyze the stability of our actuator
from the viewpoint of passivity and uncoupled asymptotic
stability, starting from the small amplitude model
presented in Fig. 2(c). Subsequently, we study the effect of
larger perturbations or amplitudes of oscillation on the
stability of the system.

= Section V: We present a study of the devices output
impedance and factors that affect the output impedance.

= Section VI: We experimentally validate stability results
presented in prior sections.
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II. HYBRID ACTUATOR DYNAMICS AND MODELING

Analysis of our hybrid actuator begins with a nonlinear
model of a one degree of freedom system which can be seen
in Fig. 2. The nonlinear model includes a parallel actuation
structure which allows the active actuator to compensate for
the passive actuator using measured brake torque. Other
model elements, incorporated due to their significant impact
on rendering stability, include time delay (to capture sample-
and-hold delay and communication delays), a low pass filter
in the passive actuator feedback signal (required for noise
attenuation), linear inertia and damping plant dynamics, and a
nonlinear Dahl friction model which, as shown in [4],
captures the important dynamics of the particle brake. For
more information about the full parallel actuation approach
see [4] and [5].

In our stability and impedance analysis, we have made
several simplifying assumptions. We assume that the virtual
stiffness is rendered bilaterally, recognizing that this will
likely result in conservative stability estimates. Prior
literature [7] has equated the bilateral case to steady state
contact interior to a virtual wall. Breaking contact with the
wall will reduce control forces to zero and maintains stability
as a result. Additionally, we assume that the particle brake’s
Dahl friction model can be represented by an amplitude
dependent equivalent stiffness and damping as shown in
appendix A. For very small displacements, the equivalent
model reduces to a stiffness alone (see Fig. 2(c)). This
assumption is valid because nonlinear friction type models
have amplitude dependent damping which decreases to zero
at zero amplitude [8]. The equivalent stiffness and damping
assumptions allow us to apply linear stability analysis to the
system and examine the effect of larger amplitude motions on
the stability of the actuator.

A. Equivalent Stiffness and Damping

Assuming a constant brake activation level
(corresponding with the steady state frictional force) we can
approximate the brake through an equivalent stiffness and
equivalent damper in parallel. Several important brake
characteristics emerge upon calculating equivalent stiffness
and damping (Appendix A). First, the Dahl model simplifies
to a pure stiffness at low amplitudes. This is consistent with
prior literature studying the Dahl model [8] and motivates the
small amplitude linear model presented in Fig. 2(c). Upon
reaching larger amplitudes the equivalent stiffness begins to

decrease and damping increases to a critical amplitude where
it peaks and begins to decrease. The increase in damping and
corresponding decrease in stiffness is also typical to
dissipative friction like nonlinearities. Adding an equivalent
damping term to the linear model as in Fig. 2(b) allows us to
approximately analyze stability of the system at larger
amplitudes without the introducing the complexity of the full
nonlinear model.

III. HYBRID ACTUATOR STABILITY ANALYSIS

Analyzing the stability of the hybrid actuator will
highlight the mechanisms that extend and limit the actuator’s
rendering performance. In this first section, we will consider
the effects of time delay, along with the brakes dynamics but
ignore the effect of brake measurement filtering, which will
be considered in Section II1.D.

A. Small Amplitude Passivity with Unfiltered Passive
Actuator Feedback

Considering the system shown in Fig. 2¢, where the brake
is approximated by an equivalent stiffness, we can evaluate
the stability of the system using passivity. Passivity  stems
from the study of what are known as dissipative or positive
real systems [9]. The formal definition of a passive system is
shown in (1).
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Variables f and X are conjugate power variables
describing energy flow in the system and E(0) is the energy
stored in the system at £ = 0 [10]. Applying (1) to a one-port
system, a single degree of freedom haptic device, like ours
implies that a system will be passive if the integral of power
extracted from the system over time does not exceed the
initial energy of the system [11]. We show this by first
calculating the work dissipated by the damper of the system
assuming a sinusoidal position, velocity, and time delayed
position (2), (3), (4) respectively.

x(t) = Asin(wt) (2)
x(1) = Awcos(wr) 3)
x, (1) = Asin(ewt - oT,) “4)

The work dissipated by a damper can be calculated from
(5) the integral of power over time.

W, =[] Biax =[f](B%) (idr) 5)
Substituting (3) for the velocity terms in (5) and
integrating over one period of motion yields a symbolic
expression (7) for the total work dissipated by linear damping
in the system for each cycle of motion.

w, :L%(BAa)cos(a)t))(Aa)cos(a)t))dt (6)

W, = BA'or (7
The work due to the actuator force is then calculated by
substituting (3) and (4) into (5) and can be seen in (10).
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While the virtual stiffness is greater than the physical
stiffness the active actuator is generating energy as we might
expect. However, if the virtual stiffness is less than the
physical stiffness the active actuator becomes dissipative
despite the entire system rendering a net positive stiffness.
This is the behavior that allows the system to remain stable
and passive independent of delay. To satisfy the passivity

integral (1) the sum of the work done must be greater than
zero (11).

BAon—n A’ (K—Kb)sin(ﬂla))zo (11)

The resulting inequality is most restrictive as the
frequency, o, approaches zero. Evaluating the expression at
zero frequency results in (12) where Tp is the delay time, B is
the linear damping, and K is the brakes stiffness. Equation
(12) bounds the maximum passive virtual stiffness our device
can produce. An approximation for the delay due to the zero-
order hold (7p = T/2 sec) yields a passivity relationship in
terms of sample time 7.
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Several insights into the stability of the system are gained
through this simplified analysis and are summarized below:

(12)

1. Brake stiffness, Ku, is an important factor in determining
the range of passive virtual stiffness our hybrid device is
capable of rendering, and a higher brake stiffness directly
increases the maximum stable virtual stiffness.

2.No physical damping, B, is needed to passively render
virtual stiffness up to the brake’s stiffness.

3. The range of virtual stiffness reduces to the brake stiffness
as time delays increase. The system is passive independent
of delay for virtual stiffness up to the brake stiffness.

An intuitive explanation for the stability results emerges

B. Asymptotic Stability Independent of Delay

As an alternative approach, we can consider the
asymptotic stability of the system shown in Fig. 2c, using
pseudo-delay methods [12], [13]. Pseudo-delay methods
utilize a mapping based on the bilinear transform to
transform the infinite dimensional time delayed system to a
finite dimensional system. Stability analysis of the finite
dimensional system allows one to draw conclusions about the
stability of the original system.

First, we substitute the pseudo-delay (13) for pure delay
terms in the systems closed loop transfer function yielding
the characteristic quasi-polynomial (14).

e*STD — s (13)
1+L
JIs’ +(J +BT)s* +(B—KT +2K,T)s +K (14)

The Routh array, Table 1, can be used to analyze the
stability of (14) which now depends on an additional
parameter, 7, the pseudo-delay. The system will be stable if
the first column of the Routh array is positive.

Table 1. Routh array for characteristic quasi-polynomial

JT BfKT+2Kb
J+ BT K
2 2
(ZBbeBK)T +(B 72JK+2JKb)T+BJ 0
BT +J
K 0

Considering only positive parameter values leaves (15) as
the limiting case. A discriminate analysis allows us to
determine the range of values where the system will be stable
for all values of the pseudo-delay, T

(2BK, —BK)T* +(B* —2JK +2JK, )T + BJ
>

BT +J
Setting the discriminate equal to zero and solving for the
virtual stiffness, K, yields (16), the upper bound for the
maximum uncoupled virtual stiffness independent of delay.

B\J4JK, — B

(15)

when considering (12). The parallel actuation topology K<K (16)
allows the actuator to substitute physical stiffness for virtual S By 2]
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C. Asymptotic Stability and A Critical Delay

We can compare the stability analyses of the hybrid device
to an active only device (where K, = 0) by numerically
evaluating the maximum asymptotically stable stiffness using
a bisection method, the Nyquist stability criteria, and the
systems open loop transfer function (17). Numerical results,
excluding filter effects and equivalent damping, shown in
Fig. 3, are obtained using the stiff brake parameters from
Table 1 in the experimental section VI.

)

OLTF = (17)
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As seen in Fig. 3, the hybrid system outperforms the active
system most significantly at lower sample frequencies or
large delays. In fact, we can identify a critical delay, from the
passivity-based expression (12), in terms of system
parameters. For delay larger than the critical delay, Tper,
identified in (18), the hybrid system will outperform the
active only system in the sense that the maximum rendered
stiffness will be significantly larger.

i < f;‘rit = ﬁ
K, 2B

For delay less than Tpes, the hybrid and active only
systems have similar performance, although the hybrid
device’s maximum asymptotically stable virtual stiffness will
always achieve a higher stiffness than the active device alone
by a quantity of at least the brake stiffness even at very low
time delays.

D. Effects of Filtered Passive Actuator Feedback on
Maximum Virtual Stiffness

Prior to this section we have considered a system with
ideal passive feedback, where the measured brake force was
not filtered. However, an unfiltered passive feedback signal
can be difficult to achieve in practice. Filtering may be
required due to sensor noise or to prevent aliasing during
analogue to digital conversion. The addition of a filter must
be done carefully because it has implications on both the
stability and output impedance of the actuator.

(18)

D crit —

Evaluating closed form solutions of uncoupled
asymptotic stability are not practical for the filtered feedback
case with delay, shown in Fig. 2.
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As such, we numerically evaluate uncoupled asymptotic
stability utilizing the open loop transfer function (17) while
neglecting equivalent damping, using a bisection method,
bode plots, and the Nyquist Stability Criteria (see Fig. 4).

As seen in Fig. 4, the maximum virtual stiffness
approaches the active devices stability limit as the filter
cutoff frequency approaches zero. Conversely, the maximum
virtual stiffness approaches the result obtained for a fixed
delay alone (where we assume perfect brake torque
measurement) as the cutoff frequency approaches infinity. As
seen in Fig. 4, continuously varying the filter cutoff
frequency shows a curious peak in the resulting uncoupled
stability curve, suggesting that the maximum virtual stiffness
can be increased significantly, as compared to the perfect
brake measurement case, by selecting a particular brake
feedback cutoff frequency.

To gain insight into this phenomenon, it is useful to
temporarily ignore delay in the system, which allows us to
reorganize our block diagram from Fig. 2 into Fig. 5. As seen
in Fig. 5, physical reflected brake torque and the low pass
filtered brake feedback signal produced by the active actuator
cancel each other at low frequencies. Subtracting a low pass
filtered signal from itself results in a high pass filtered signal.
High pass filtering a signal in phase with position results in
the approximation of a damper below the filter bandwidth.

One can use the system’s open loop frequency response
and the Nyquist stability criteria to better understand why the
high pass behavior of the brake and filtered brake feedback
allow for increased virtual stiffness. Additionally, we aim to
understand why there is an optimal tuning and how one can
tune the passive feedback filter to obtain this.

Fig. 6 shows the system’s open loop transfer function for
a range of filter cutoff frequencies. Fig. 6a shows three
frequency responses of the hybrid open loop transfer function
corresponding to the portion of Fig. 4, where the maximum
virtual stiffness increases as the cutoff frequency increases.

The effect of the combined high pass filter on the
maximum stable virtual gain becomes clear with knowledge
of the combined high pass hybrid damping effect. As the
filter bandwidth increases, damping from the high pass
hybrid effect reaches higher frequencies. This helps to both
decrease the magnitude of resonance associated with the
brake stiffness and smooths the 180-degree phase loss
associated with the otherwise lightly damped mode
introduced by the brake. These combined effects allow for an
increased phase crossover frequency and overall maximum
virtual stiffness.
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Fig. 6a) Bode plots of the open loop transfer function of the system with
increasing filter bandwidth while the maximum virtual stiffness is increasing.
b) Bode plots of the system with a decreasing maximum virtual stiffness.

Dissipation created by the combined high pass hybrid
effect is mostly limited to frequencies below the filters cutoff
frequency and decreases in magnitude as the filter bandwidth
increases, see Fig. 6b. As the filter cutoff frequency continues
to increase, phase loss from external delay in the system
begins to dominate added phase from the high pass filter at
high frequencies, reducing the phase crossover frequency and
the corresponding maximum virtual stiffness. The combined
effects of damping, introduced by the filtered brake signal,
and a corresponding decrease in damping magnitude, as the
cutoff frequency increases, causes the peak in maximum
virtual stiffness (see Fig. 4).

The system’s internal resonance plays a large role in
determining the location (i.e. filter cutoff frequency) of the
maximum uncoupled stable virtual stiffness. In fact, we can
see that the peak in maximum virtual stiffness and the
resonance peak in the open loop transfer function occur at
similar frequencies. This is not by chance and moving the
physical system’s resonance changes both the peak maximum
virtual stiffness value and the cutoff frequency needed to
achieve the maximum virtual stiffness. In general, shifting
the resonance to a lower frequency corresponds to higher
peak virtual stiffness. This is because the high pass damping
effect is more effective at lower frequencies below its cutoff
frequency.

Reducing the resonance frequency, with the intent to
increase peak virtual stiffness, can be achieved primarily in
two ways. Firstly, brake stiffness could be reduced. However,
doing so affects the amount of dissipation achieved through
the hybrid high pass filter effect. Device inertia has the most

significant effect on the maximum stiffness in this regard.
Increasing inertia shifts the resonance to a lower frequency
without reducing energy dissipation in the system, although
doing so has negative impacts on device output impedance.

IV. LARGE AMPLITUDE STABILITY RESULTS

We can analyze the full nonlinear system and investigate
its behavior for large amplitude displacements by employing
the approximate equivalent stiffness and damping
approximation from section IIA.

Expanding our analysis to include equivalent damping as
seen in Fig. 2b allows us to analyze the “average” behavior of
the hybrid actuator for a given orbit about the equilibrium
point. For various amplitudes, we substitute the amplitude
dependent stiffness and damping into the full open loop
transfer function (17) and solve for the uncoupled asymptotic
stability utilizing a combination of the bisection method,
bode plots, and the Nyquist Stability. The resulting amplitude
dependent stability curve is shown in Fig. 7.

Several important features are evident from Fig. 7, and
four distinct regions of stability behavior emerge from this
analysis. The system displays unconditional stability across
all amplitudes at low stiffness, below the active only
asymptotic stability limit. The system is conditionally stable
over a range of amplitudes at virtual stiffness below the
hybrid small amplitude stability limit. The system has a
possibility of limit cycles above the small amplitude stability
point for a limited range of amplitudes and virtual stiffness.
Finally, at truly large stiffness the device becomes unstable at
all amplitudes. The useful rendering range of the hybrid
actuator is below the small amplitude asymptotic stability
limit, where the system will decay back to an equilibrium
point.

It might seem that the conditional stability provided by
the hybrid actuator is insufficient, but the interaction forces
required to deflect the actuator beyond the maximum
amplitude predicted are relatively large and larger brake
activation levels can increase the stable range of amplitudes.
In practice a modestly sized brake can provide a useful range
of conditionally stable amplitudes for the actuator to operate
over. For example, the hybrid actuator shown in Fig. 10 can
render the stiffness up to 15 Nm of force which corresponds
to deflections of approximately 0.3 degrees at its maximum
stable stiffness from Fig. 7.
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Fig. 7) Amplitude dependent stability curve showing four distinct regions of
stability. The curve is generated by substituting equivalent stiffness and
damping values into the linear model for a range of position amplitudes.
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Some might recognize Fig. 7 to be a form of a bifurcation
diagram where the wvirtual stiffness is the bifurcation
parameter. In fact, that is one interpretation of Fig. 7. A Hopf
bifurcation can occur at the small amplitude stability limit if
filtered feedback is used. While limit cycles are not useful for
a haptic device, the behavior can be perplexing for a user or
designer of this class of hybrid haptic device. Limit cycles are
particularly easy to achieve at low filter bandwidths.
Increasing filter bandwidth minimizes the possibility of this
behavior as limit cycles are not possible at an infinite filter
bandwidth.

V. LIMITATIONS AND FACTORS ON OUTPUT IMPEDANCE

Typical haptic devices have imperfect renderings due to
physical device dynamics including damping, friction, and
inertia. These unavoidable features inevitably distort the
device’s rendering and output impedance. The impedance
transfer function for our hybrid device, relative to the
device’s position, is shown in (19).

7, (s)

0(s)
Our hybrid device has physical damping and inertia
inherent to the device along with physical stiffness and
damping added by the passive actuator. Physical passive
actuator dynamics and delay can distort the device’s
impedance as well. Fig. 8 shows the effect that the feedback
filter bandwidth has on device output impedance.

(19)

=Js* +Bs+K, +(K— L KbJe‘Td
s+,

We see, from Fig. 8, that the passive actuator distorts the
output impedance when the filter is tuned quite low.
Increasing the filter’s cutoff frequency effectively reduces
distortion below the filter’s cutoff frequency. This is only
effective at removing distortion due to passive actuator
dynamics. Increasing the filter bandwidth has diminishing
returns when device dynamics like inertia are primarily
responsible for distorting the devices output impedance.
Consequently, to present an output impedance equivalent to
that of a traditional active only haptic device we must select a
filter bandwidth high enough to preserve the devices
rendering range.

Fig. 9 shows the effect of delay on the hybrid devices
output impedance. At small time delays the output impedance
of the device closely matches that of an active device and the
desired impedance.
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Fig. 9) Impedance frequency response plots distorted by delay. Hybrid
actuator impedances for a range of delays and unfiltered passive feedback.

All shown impedances are stable, because the filter
bandwidth is infinite for Fig. 9 and the rendered stiffness is
less than the brake stiffness. This highlights the fact that it is
possible to have significant distortion of a system’s
impedance due to delay while still maintaining stability.
Ultimately, to maintain the desired output impedance, the
hybrid actuator needs to have small delays and a sufficient
filter bandwidth.

VI. EXPERIMENTAL VALIDATION

We validated the stability of the hybrid actuation system
using two configurations of a custom one degree of freedom
hybrid actuator, shown in Fig. 10.

Our hybrid actuator, shown in Fig. 10a, consists of a
Maxon RE90 DC motor, used for the active actuator, and a
Placid Industries B6 particle brake as the passive actuator.
The actuators are rigidly connected via a capstan and are
connected to the output handle via an 11:1 veteran cable
transmission. Passive actuator feedback is measured with an
Interface MRT-2NM reaction torque sensor. The handle
position is measured with a Renishaw Magnetic Linear
Encoder, 450,000 lines per revolution, and is used to render
the virtual stiffness. This actuator test configuration
represents a high brake stiffness configuration typical of a
hybrid haptic device designed to extend the maximum
stiffness above an equivalent active only device.

Fig. 10b shows a compliant brake configuration where we
use a grounded spring as a stand in for a brake, primarily for
the purpose of validating high brake filter cutoff frequency
experiments which are not practical with the high stiffness
configuration.
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a) Parallel configuration of a stiff b) Parallel configuration of a
brake and DC motor. compliant “brake” and DC motor.
Fig. 10a) The one degree of freedom hybrid actuator used to test the hybrid
actuation approach. The device includes a DC Motor and a Particle Brake
rigidly connected in parallel. b) A “compliant brake” configuration utilizing a
grounded machined spring as a stand in for the particle brake.



Table 2 lists the estimated hybrid device parameters for
both compliant and stiff break configurations.

Table 2. Summary of Hybrid Parameters

Brake Spring . .
Parameter Stiffness | Stiffness Inertia Damping
Value 1600 14 0.053 0.013
Units [Nm/rad] | [Nm/rad] | [Nm/(rad/sec2)] [Nm/(rad/sec)]

A. Hybrid Stability Validation - Stiff Brake Configuration

We begin our experimental validation by testing the
uncoupled stability of a prototype desktop hybrid actuator,
using the high brake stiffness configuration, and comparing it
to our theoretical results.

During the experiment, we incrementally increased the
virtual stiffness of the hybrid actuator. An active disturbance
signal was injected onto the motor torque command to
perturb the system. The system was also manually perturbed
with a dead blow hammer. The tested virtual stiffness is
considered to be stable if no vibrations or unstable behavior
are detected after four perturbations, spaced two seconds
apart. The virtual stiffness is then increased randomly, in a
predetermined range. This process is repeated until unstable
behavior, vibrations or oscillations, are observed.

We tested five delays while running our system with a
3500 Hz sample frequency. The nominal experimental
system delay, including the effects of sampling and
processing, was measured at 0.0003 seconds. We added
additional delay between 0.01 and 0.0001 seconds. Fig. 11
shows a comparison between the maximum stable stiffness
when using the high brake stiffness configuration of the
hybrid actuator and the maximum stable stiffness when
using the active actuator stiffness configuration. The results
from a series of five tests compare well to the theoretical
results and are well above the theoretical active only stability
curve at the delays used.

Varying the filter bandwidth was also identified as an
important factor affecting the maximum stable virtual
stiffness. Noise propagation in the high brake stiffness
system limits the experimental validation to filter cutoff
frequencies less than approximately 30 Hz. Fig. 12 compares
the theoretical hybrid curve (for zero added delay) to a range
of experimentally obtained maximum stiffness values over a
range of filter cutoff frequencies.

Experimental results from both varying time delay and
filter bandwidth agree well with the linear analysis and
deviations at lower filter cutoff frequencies are likely due to
brake energy dissipation at larger amplitudes.
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Fig. 11) Experimental stability results for a “stiff” brake (Fig 10a) under
varying time delays. Filtered passive actuator feedback of 15 Hz BW is used.
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Fig. 12) Theoretical maximum stable virtual stiffness while varying the
feedback filter bandwidth. Experimental unilateral and bilateral tests are also
plotted over the theoretical curves. Light blue shaded regions are the stable
range of amplitudes for a range of oscillation amplitudes (from the large
amplitude model).

Additionally, Fig. 12 shows experimental coupled
stability results, where the actuator was tested using a
unilateral constraint and a human user. Trends predicted in
our analysis are reflected in unilateral coupled stability tests
as well and we see an increase in the maximum stable virtual
stiffness as filter cutoff frequency is increased to 30 Hz.

B. Hybrid Stability Validation — Compliant Brake
Configuration

We present an additional experimental system validation
utilizing a compliant brake configuration shown in Fig. 10b.
We chose to test a low stiffness brake configuration primarily
to allow for validation of the stiffness vs filter bandwidth
curve at higher filter bandwidth values. In addition, using a
linear spring as a substitute for the small displacement brake
stiffness provides the best possible comparison to the
presented linear analysis. Finally, measuring spring
deflection with a high-resolution encoder eliminates noise
issues from torque sensor feedback allowing us to explore a
wider range of filter cutoff frequencies.

Fig. 13 shows a comparison between theoretical and
experimental results for an unfiltered passive feedback
configuration and shows close agreement. The system is
stable approximately up to the brake or spring stiffness even
under conditions with large time delays.

We see from Fig. 14 that the peak stable stiffness predicted
by our analysis, across three sample frequencies or time
delays, agrees well both in terms of the predicted filter cutoff
frequency and the maximum predicted stable stiffness.
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Fig. 13) Experimental stability results under increasing time delays and
unfiltered feedback with a compliant brake (Fig 10b).
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Fig. 14) Maximum stable stiffness for varying filter cutoff frequencies at
three different delay values. Experimental results are shown with the mean
and standard deviation from six experimental test runs.

Experimental results from the compliant brake
configuration validates the theoretical predictions made in
section III and shows that the peak in maximum stable virtual
stiffness can be explained through our analysis.

VII. CONCLUSION AND FUTURE WORK

Our analysis and experimental validation indicate that the
spring-like characteristics of our passive actuator are
responsible for the expanded rendering range of the parallel
hybrid actuation approach investigated in this work.
Carefully tuned filtered passive actuator feedback has been
shown to increase the maximum passive and uncoupled
virtual stiffness.

This work focused on rendering virtual stiffness. Future
work will expand our analysis to a wider set of virtual
impedances, including virtual damping, and could yield
further advancements in hybrid actuator control.
Investigating whether the results translate to a multi-degree
of freedom device would also make a meaningful
contribution. Overall, we hope that this study of parallel
hybrid actuators will inform the design and analysis of future
haptic devices and more broadly parallel robotic actuators.

APPENDIX

A. Equivalent Stiffness and Damping
Equivalent stiffness and damping can be calculated by
first assuming a displacement and resulting velocity (20) and
(21) respectively.
x = Acos (a)t) (20)
x=-w4 sin(a)t) 21
We can then calculate the time domain waveform of the

Dahl model Fyt) and find the first two Fourier coefficients
(22) and (23).

(N1

(22)

F, (t)cos(a)t)dt

N

(23)

|
N oy

N

F, (t)sin (ot )dt

Recognizing that equivalent stiffness and damping are
forces proportional to displacement and velocity we can

equate the Fourier coefficients to our assumed position and
velocity waveforms resulting in (24) and (25).

acos(wt) =K, Acos(wr) 24

bsin(wt)=—-B, wAsin(wot) (25)
Solving (24) and (25) for the equivalent stiffness and

damping results in amplitude dependent parameters (26) and
(27) respectively.

K, = a (26)
A
_=b 27)
“ wA
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