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ABSTRACT 
An integral part of information-centric smart manufacturing 

is the adaptation of industrial robots to complement human 
workers in a collaborative manner. While advancement in 
sensing has enabled real-time monitoring of workspace, 
understanding the semantic information in the workspace, such 
as parts and tools, remains a challenge for seamless robot 
integration. The resulting lack of adaptivity to perform in a 
dynamic workspace have limited robots to tasks with pre-defined 
actions. In this paper, a machine learning-based robotic object 
detection and grasping method is developed to improve the 
adaptivity of robots. Specifically, object detection based on the 
concept of single-shot detection (SSD) and convolutional neural 
network (CNN) is investigated to recognize and localize objects 
in the workspace. Subsequently, the extracted information from 
object detection, such as the type, position, and orientation of the 
object, is fed into a multi-layer perceptron (MLP) to generate the 
desired joint angles of robotic arm for proper object grasping 
and handover to the human worker. Network training is guided 
by forward kinematics of the robotic arm in a self-supervised 
manner to mitigate issues such as singularity in computation. 
The effectiveness of the developed method is validated on an eDo 
robotic arm in a human-robot collaborative assembly case study. 

Keywords: Human Robot Collaboration, Deep Learning, 
Object detection, Self-supervised Learning. 

1. INTRODUCTION
A critical building block of smart manufacturing is the

incorporation of industrial robots to assist human workers in 
assembly, where the workers and robots share a workspace and 
collaboratively performs tasks for which direct contact is 
allowed [1]. Compared to the traditional assembly workspace 
where the workers and robots are strictly separated for safety 
reasons and the tasks of each are carried out sequentially, human-
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robot collaboration (HRC) will improve both flexibility and 
efficiency in assembly [2]. 

A prerequisite for successful HRC is to allow robot to 
monitor the workspace, interpret collaboration context, and act 
accordingly. For this purpose, recognition and prediction of 
human action have been investigated [2-5]. They provide the 
basis for the robot to understand the part or tool that is needed to 
accomplish the subsequent operation. However, research on 
recognizing, localizing, and grasping the intended part/tool in an 
appropriate manner is still limited. For example, placement of 
parts/tools is strictly pre-defined in prior HRC studies [3-5], and 
dedicated research on robotic object grasping is primarily 
focused on grasping outcome (success or fail) rather than 
differentiating the type of objects [6-8]. Considering that the 
position and orientation of parts/tools cannot be assumed to 
remain time-invariant, and collaborative operations such as 
object handover may require specific grasping orientation, 
research is needed to investigate techniques for: 1) object 
detection, which recognizes and localizes parts/tools of interest 
based on sensing images, and 2) robot control, which 
subsequently determines the joint angles of robotic arm that are 
needed for the end-effector to arrive at desired position with 
desired orientation for grasping. 

For object detection, two commonly investigated techniques 
are region-based convolutional neural network, or RCNN [9] 
(with its variants, Fast RCNN [10] and Faster RCNN [11]) and 
the method of You Only Look Once, or YOLO [12]. The RCNN-
based methods take a two-step approach. First, the regions-of-
interest (ROIs) of an image that potentially contain objects of 
interest is generated by a region-proposal procedure [9-11]. Then, 
each ROI passes through an object detection network, which 
predicts the object type within the ROI and the corresponding 
bounding box position and shape. By contrast, YOLO follows a 
single-step approach, which splits the image into grid cells and 
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uses each cell to predict a fixed number of bounding boxes and 
the corresponding object types [12].  

Despite the state-of-the-art benchmark performance by 
RCNN and YOLO, both have limitations in a manufacturing 
setting. For RCNN, training of a region-proposal network (RPN) 
is required before object detection can be carried out. However, 
collecting sufficient training images from the shop floor can be 
difficult without interrupting normal production schedule. While 
techniques such as transfer learning may alleviate the data 
availability issue, dedicated pretrained RPN is currently not 
available, which can make transfer learning less effective. For 
YOLO, it relies on a single grid, which makes it less effective in 
recognizing parts/tools of varying scales.  

Considering that convolutional neural network (CNN) with 
feature maps of different sizes has been widely investigated for 
image recognition [13-15], which naturally provides multi-scale 
image analysis, this research investigates the concept of single-
shot detection (SSD) [16] that is capable of direct utilization of 
the exiting feature maps in CNN for object detection. In addition, 
SSD only incurs a small number of additional network weights 
and therefore, can be effectively trained using limited training 
samples. 

Once the spatial information of parts/tools are extracted by 
object detection, the desired position and orientation of the 
robotic arm end-effector can be obtained, based on which the 
joint angles that are needed for grasping will be computed. Such 
joint angles can be computed using inverse kinematics (IK). 
However, direct inverse solution involves nonlinearity, 
simplifying assumptions, and singularity [17-18]. Recently, deep 
learning has been increasingly investigated to bypass the 
analytical limitations and allow more tolerant and singularity-
free robot control. For example, numerical mapping between 
end-effector spatial information and joint angles has been 
directly established using supervised learning [18-21]. In [17], 
generative adversarial network (GAN) has been investigated to 
solve the inverse kinematics with the generator predicting the 
joint angles and the discriminator determining whether the 
predicted angles are valid.  

Despite the progress, these methods are generally not related 
to the physics (i.e., kinematics) that governs the motion of the 
robotic arm but solely dependent on the large number of labeled 
training samples. This study presents a novel method for solving 
inverse kinematics using self-supervised learning. Through self-
supervised learning it is feasible to use forward kinematics (FK) 

to evaluate whether the predicted robot joint angles can guide the 
end-effector to the desired position and orientation. By replacing 
the prediction error of the joint angles (computed using labeled 
training samples) with the error of the end-effector position and 
orientation (computed using FK) to guide training, training data 
labeling (i.e., for joint angle) is no longer needed. In addition, the 
network’s physical consistency is enhanced. In Fig. 1, a 
flowchart of the developed method for object detection and robot 
joint angle control is shown. 

The rest of paper is organized as follows: Section 2 presents 
the theoretical background of object detection based on SSD and 
joint angle control using self-supervised learning. In Section 3, 
experimental setup for evaluating the developed method is 
described. The results are presented and discussed in Section 4, 
and conclusions and future work are summarized in Section 5.  

 
2. THEORETICAL BACKGROUND 

In the presented study, object detection and robot joint angle 
control are formulated as learning problems, by extending the 
capability of the CNN and multi-layer perceptron (MLP), 
respectively. 

 
2.1 Single-shot object detection of parts and tools 

The goal of object detection is to simultaneously: 1) identify 
the types of parts/tools of interest in sensing images, and 2) 
determine their positions and orientations by predicting 
bounding boxes to surround each of them. Different from 
traditional image recognition using CNN in which each image 
only contains a single candidate object [13], the task of object 
detection in this presented study requires the accommodation of 
varying number of candidate objects as well as changing 
positions and orientations. This requires enhancement of the 
standard CNN structure. 

The concept of single-shot detector [16] allows to adapt the 
existing, standard CNN structure as the backbone for object 
detection, as shown in Fig. 2. The main idea is to: 1) utilize 
feature maps of size m x n in each layer of the CNN as a grid of 
the same size to cover the input image (in Fig. 2, m is chosen to 
be equal to n for illustration purpose), and 2) use each grid cell 
to predict a fixed number (i.e., k, in Fig. 2, k=3) of bounding 
boxes and the types of the objects surrounded by the boxes. In 
Fig. 2, the predicted bounding boxes from selected grid cells 
(with shading) are illustrated, and boxes that match the ground 
truth in the input image are color coordinated.  

FIGURE 1: Integrated method for part/tool detection and robot joint angle control in HRC 
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FIGURE 2: Object detection based on SSD 

Specifically, for p feature maps of dimension m x n in CNN, 
each prediction from a grid cell consists of a vector 
[∆𝑐𝑐𝑐𝑐,∆𝑐𝑐𝑐𝑐,∆𝑤𝑤, ∆ℎ, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁], where ∆𝑐𝑐𝑐𝑐,∆𝑐𝑐𝑐𝑐 represent the 
relative distances between the center of the predicted bounding 
box and the center of the grid cell in the x and y coordinates, 
respectively. ∆𝑤𝑤, ∆ℎ represent changes in the width and height 
of the bounding box relative to the grid cell dimension, 
respectively. 𝑐𝑐1, 𝑐𝑐2 ,…, 𝑐𝑐𝑁𝑁  denotes N scores, each of which 
indicating how likely there would be an object surrounded by the 
bounding box that belongs to one of the N candidate object types 
(e.g., screwdriver, cap, belt, sheave, etc.), including background. 
𝑐𝑐1, 𝑐𝑐2,…, 𝑐𝑐𝑁𝑁 then pass through a softmax function to obtain the 
predicted object type. Each element in the vector 
[∆𝑐𝑐𝑐𝑐,∆𝑐𝑐𝑐𝑐,∆𝑤𝑤,∆ℎ, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁]  is predicted using a 3 x 3 
convolutional kernel centered at the corresponding grid cell. 
Therefore, for feature maps of size m x n, the total number of 
bounding boxes to be predicted is 𝑚𝑚 ∙ 𝑛𝑛 ∙ 𝑘𝑘 and the total number 
of kernel weights to be trained is 9 ∙ (𝑁𝑁 + 4) ∙ 𝑘𝑘.  

It should be noted that the kernels for SSD are different from 
the kernels in the standard CNN. The purpose of the kernels in 
the standard CNN is to generate feature maps, whereas the 
kernels for SSD utilize the generated feature maps for object 
detection. As the CNN structure goes deeper, the size of the 
feather maps becomes smaller and the grid changes from “fine” 
to “coarse”, effectively allowing multi-scale image analysis. 

The loss function for single-shot object detection training 
consists of two parts [16]: 

𝐿𝐿�𝑐𝑐, �̂�𝑐, 𝑙𝑙, 𝑙𝑙 � = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐, �̂�𝑐) + 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏�𝑙𝑙, 𝑙𝑙�  (1) 

In Eq. (1), 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐, �̂�𝑐) denotes the error term for classification 
of object types and 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏�𝑙𝑙, 𝑙𝑙�  denotes the error term for 
prediction of position and shape of bounding boxes. During 
training, each predicted bounding box is first compared to the 
ground truth boxes to evaluate the degree of matching, which is 
quantified using the intersection over union (IoU) ratio (Fig. 3). 
The predicted boxes with an IoU ratio over 0.5 are categorized 
as “matched”. Then, 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐, �̂�𝑐)  is computed as the cross-
entropy [17] between the predicted object type �̂�𝑐 and ground 
truth object type 𝑐𝑐 for all boxes. 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏�𝑙𝑙, 𝑙𝑙� is computed as the 
squared difference in each of ∆𝑐𝑐𝑐𝑐,∆𝑐𝑐𝑐𝑐,∆𝑤𝑤,∆ℎ  between the 
predicted values and ground truth for all matched boxes. By 
minimizing Eq. (1) during training, the capability of both object 
type recognition and bounding box prediction can be improved.  

 
FIGURE 3: Intersection over union (IoU) ratio 

To utilize the spatial information extracted from object 
detection for robot’s action, projective transformation is needed 
to transform the camera coordinates into the robot coordinates. 
This transformation is shown in Fig. 4, known as the 
homography transformation [22]. The idea is to transfer a tilted 
image plane from the perspective view of camera to an 
orthographic view by using a 3-by-3 homography matrix H. In 
this study, the objects’ z-coordinates are fixed since they are all 
placed on the same horizontal surface. 

 
FIGURE 4: Homography transformation 

Mathematically, the transformation can be written as [22]: 

 

(2) 

where T( , ,1)Rx y and * * T( , ,1)Cx y are homogeneous vectors of the 
same physical point in the robot coordinates (R) and camera 
coordinates (C), respectively. (a, b, d, e) are parameters for 
image rotation and stretching, (c, f) are parameters for translation, 
and (g, h) are parameters for scaling. λ  is a normalization 
factor. The parameters can be calibrated using four non-colinear 
points [22]. 

 
2.2 Self-supervised learning for robot joint control 

Once the desired end-effector position and orientation is 
extracted from the object detection step, they are used to generate 
joint angles of robotic arm such that the end-effector can arrive 
at the desired position with the desired orientation for part/tool 
grasping. However, general closed-form IK solution for robot 
arm to arrive at any spatial point with desired orientation is often 
infeasible due to geometrical and rotational constraints that are 
physically associated with the robotic arm [23]. The alternatives 
that have been reported include: 1) numerical solvers that 
approach the desirable position iteratively [24], and 2) machine 
learning methods that minimizes a loss function related to the 
accuracy required for robot movement [17-19]. Both can find the 
optimal solution and provide tolerance to the aforementioned 
issues. 

The numerical solvers start with an initial selection of joint 
angles. At each iteration, FK is applied to obtain the 
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corresponding end-effector position and orientation. Then, the 
error between the obtained and the desired position and 
orientation is used to update the joint angles in the next iteration 
through the inverse Jacobian matrix of the FK until convergence. 
However, a large number of iterations is often needed for 
convergence [24]. In addition, the inversion of Jacobian matrix 
is prone to singularity and the algorithm is affected by the initial 
selection of joint angles and is prone to local minimum [24].  

In this study, machine learning approach is investigated for 
solving IK problems to avoid initial joint angle selection, 
iterative computation, and instability in inverting Jacobian 
matrix. With a loss function that is designed to minimize position 
and orientation error, machine learning is suited for determining 
optimal solutions for cases where the precise IK solution does 
not exist. To achieve this objective, a self-supervised machine 
learning approach is developed as illustrated in Fig. 5.  

Specifically, a MLP is developed to predict the joint angles 
of robotic arm 𝜽𝜽� based on the given position and orientation of 
the end-effector at the MLP input: position (x, y, z) with the 
orientation (i, j, k) expressed as a unit vector. Training of the 
MLP is guided by the FK of the robotic arm, which computes the 
position and orientation of the end-effector that would be 
achieved by using the predicted joint angles from the MLP. 
Errors in the position and orientation between the predicted 
values from the FK and the given values at the MLP input 
constitute the loss function. At the end of the training process, 
errors in the position and orientation of the end-effector are 
minimized, indicating that the MLP is able to predict the robot’s 
joint angles and control the end-effector to arrive at the desired 
position and orientation with high accuracy.  

 
FIGURE 5: Self-supervised learning for joint angle control 

The FK investigated in this study is based on the standard 
notion of Denavit-Hartenberg (D-H convention). In Table 1, the 
D-H table of the 6-axis robotic arm is presented. 

TABLE 1 D-H table for the 6-axis robotic arm 
Joint 𝜃𝜃(deg) 𝑑𝑑(mm) 𝑎𝑎(mm) 𝛼𝛼(deg) 

 

1 𝜃𝜃1∗ 337 0 −90° 
2 𝜃𝜃2∗ − 90° 0 210.5 0 
3 𝜃𝜃3∗ + 90° 0 0 90° 
4 𝜃𝜃4∗ 268 0 −90° 
5 𝜃𝜃5∗ 0 0 90° 
6 𝜃𝜃6∗ 306.5 0 0 
The parameters in the D-H table describe the relationship 

between the previous joint coordinate and the current joint 
coordinate: 

• 𝜃𝜃(deg): rotation angle from previous 𝑐𝑐𝑖𝑖−1 axe to current 
𝑐𝑐𝑖𝑖 axe around 𝑧𝑧𝑖𝑖−1 axe; 

• 𝑑𝑑(mm): offset of 𝑜𝑜𝑖𝑖  along 𝑧𝑧𝑖𝑖−1 axe from 𝑜𝑜𝑖𝑖−1; 
• 𝑎𝑎(mm): offset of 𝑜𝑜𝑖𝑖  along 𝑐𝑐𝑖𝑖 axe from 𝑜𝑜𝑖𝑖−1; 

• 𝛼𝛼(deg): rotation angle from previous 𝑧𝑧𝑖𝑖−1 axe to current 
𝑧𝑧𝑖𝑖 axe around 𝑐𝑐𝑖𝑖 axe; 

• 𝜃𝜃𝑖𝑖∗: joint variables changing with time. 
Based on Table 1, the FK of the end effector (𝑐𝑐𝑒𝑒 ,𝑐𝑐𝑒𝑒 , 𝑧𝑧𝑒𝑒) 

from the origin of the robot arm (𝑐𝑐𝑏𝑏,𝑐𝑐𝑏𝑏 , 𝑧𝑧𝑏𝑏) is computed as: 

(𝑐𝑐𝑒𝑒 ,𝑐𝑐𝑒𝑒 , 𝑧𝑧𝑒𝑒) = �� 𝐴𝐴𝑖𝑖+1𝑖𝑖
5

𝑖𝑖=1
∙ (𝑐𝑐𝑏𝑏,𝑐𝑐𝑏𝑏 , 𝑧𝑧𝑏𝑏)T�

T

 (3) 

where 𝐴𝐴𝑖𝑖+1𝑖𝑖  represents the transformation matrices computed 
from D-H table: 
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− 
 − =
 
 
 

 (4) 

The structure of the developed MLP for predicting the joint 
angles consists of residual connections [25] and a sinusoidal 
activation function [26]. Residual connections are designed to 
alleviate the limitations of the standard MLP, in which 
contributions from features extracted by the early layers 
gradually fade away when processing the late layers. This is 
achieved by preserving access to these early layer features such 
that the prediction can utilize all features. Sinusoidal activation 
function is inspired by the solutions to partial differential 
equations [26], where improved reconstruction of 1D and 2D 
data with trigonometric nature is shown. As the purpose of the 
MLP is essentially to solve equations of IK with trigonometric 
nature, sinusoidal activation function is considered.  

In practice, both the input and output of the MLP are 
normalized. The activation function at the output layer is the 
sigmoid function, which constrains the range of the output to [0, 
1]. The loss function L for training the MLP is given as: 

2
1

1 ˆ ˆ(|| || (1 , ))
n

i i
i

L X X o o
n =

= − + −∑  (5) 

where 2|| ||⋅ denotes the error between the desired end-effector 

position iX and the predicted position ˆ
iX measured using 

Euclidean distance. ˆ1 , [0, 2]o o− ∈  measures the error in end-
effector orientation. It is 0 when both orientation vectors 
perfectly align. n is the number of training inputs. 

 
3. EXPERIMENTAL EVALUATION 

The developed method is experimentally evaluated in a 
testbed assembly workspace, as shown in Fig. 6. The testbed is 
placed to the right of the worker and an eDo robot [27] is 
installed on the table to his left. Parts that are required for the 
assembly of a bearing module (bearing cap), a driving sheave 
module (sheave) and a belt module (belt) of the testbed (see Fig. 
7) are placed next to the robot along with the needed tools such 
as a screwdriver and a ratchet. The parts and tools are monitored 
by a RGB camera (1280 x 720) installed to the right of the robot.  

Human-robot collaboration is achieved by monitoring the 
human worker using a separate camera (1280 x 720), which is 
placed outside of Fig. 6. This allows to infer the part/tool that is 
going to be needed for the subsequent assembly operation and 
predict the worker’s future motion trajectory [4, 14]. The inferred 
part/tool triggers the object detection algorithm to generate the 
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desired position and orientation of the end-effector for its grasp. 
The position and orientation information are then fed into the 
MLP to predict the desired joint angles and grasp the part/tool in 
an appropriate manner. Once the worker’s motion indicates that 
he/she is ready for handover, the predicted trajectory end-
location is again fed into the MLP to predict the joint angles that 
allow to deliver the part/tool to the handover location. 

 
FIGURE 6: Collaborative testbed assembly workspace 

 

 
FIGURE 7: Modules in testbed assembly 

To train the object detection algorithm, a total of 180 images 
of parts/tools were collected and split into 130 images for 
training and 50 for testing. Each image contains a different 
combination of the five parts and tools that are of interest: 
bearing cap, sheave, belt, screwdriver, and ratchet. The position 
and orientation of each part/tool is varied from image to image. 
To facilitate the identification of desired end-effector position 
and orientation for grasping the screwdriver and ratchet, the 
handles of both tools are labeled separately from the shank. The 
center of the handle bounding box determines the end-effector 
position, while the direction perpendicular to the line connecting 
the centers of the handle and the shank bounding boxes 
determines the orientation. 

For the backbone CNN, a MobileNet [28] pretrained using 
the “common objects in context”, or the COCO dataset [29] is 
selected. MobileNet is characterized by a series of modifications 
to the standard CNN to reduce the computational complexity 
such as decomposing the convolution operation into depth-wise 

and point-wise operations [28]. The network structure of is 
illustrated in Table 2. The COCO dataset contains many daily 
objects, such as fork, knife, and spoon, which share visual 
similarities to the parts/tools commonly seen in a manufacturing 
setting. Each image of dimension 1280 x 720 is first cropped to 
fit the table trolley area before resized to 640 x 640 to serve as 
the network input. For SSD, the number of predictions made by 
each grid cell is empirically set to k=4 [16]. Object detection 
training is carried out using a Tesla P100 GPU in Google Colab 
and learning rate is set to 0.05.  

TABLE 2 Network structure of pretained MobileNet 
Input Size # Output Feature Maps Kernel Stride 

640 x 640 x 3 32 2 
320 x 320 x 32 16 1 
320 x 320 x 16 24 2 
160 x 160 x 24 32 2 

80 x 80 x 32 64 2 
40 x 40 x 64 96 1 
40 x 40 x 96 160 2 
20 x 20 x 160 320 1 
20 x 20 x 320 1280 1 

20 x 20 x 1280 - - 

For robot joint angle control, joints 4 and 6 of the eDo robot 
(see image in Table 1) are constrained. Specifically, joint 4, 
which controls the rotation of end-effector with respect to the 
operation plane of joints 2 and 3, is set to 0 given that the robotic 
arm only grasps objects vertically in this study. Joint 6, which 
controls the opening direction of the gripper, is constrained by 
the orientation information from the object detection and the 
rotating angle of joint 1. Therefore, the prediction of joint angles 
for part/tool grasping is reduced to joints 1, 2, 3, and 5.  

The structure of the MLP consists of five hidden layers with 
81 neurons each. During training, no ground truth data for joint 
angles is required. Instead, 8,000 end-effector position and 
orientation samples, which are the inputs to the MLP, are 
randomly generated in a 1x1x1m cube within the workspace, 
where 60% of the samples are used as training data and the rest 
40% used as testing data. To ensure that the sampled position and 
orientation can be reached by the robotic arm, the sampling 
process follows the limits of joints to cover the workspace cube. 
 
4. RESULTS AND DISCUSSION 

The outcome of the experimental evaluation is presented and 
discussed in this section. First, the outcome of algorithm training 
is evaluated using the collected training and testing data as 
described in Section 3. Next, the algorithms are evaluated in a 
collaborative assembly scenario for which additional variations 
are added, such as parts/tools not seen during training, to 
evaluate the robustness of the developed methods.  

4.1 Algorithm training outcome 
The training and testing curves for SSD-based object 

detection is shown in Fig. 8. The testing curve is obtained by 
feeding the object detection algorithm with testing data once 
every 100 epochs. Convergence is observed after approximately 
1500 epochs. It is noted that at the end of the training process, 
both curves are closely aligned, indicating no overfitting. 
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FIGURE 8: Training and testing results for object detection 

Four representative testing images are shown in Fig. 9 to 
demonstrate the performance of the object detection algorithm. 
Images (a) and (d) do not contain the full set of the five 
parts/tools of interest. This is common in assembly as different 
parts/tools can be used in different orders. In addition, for images 
(b) and (c) where the full set of five parts/tools are available, their 
positions and orientations have also been varied. It is seen in Fig. 
9 that the object detection algorithm has successfully recognized 
and localized the parts/tools in these scenarios, confirming the 
effectiveness and robustness of the algorithm in spite of the 
variations introduced for the trained objects. 

 
FIGURE 9: Experimental results for SSD-based object detection 

For training the self-supervised MLP, convergence is 
observed at round 500 epochs, as shown in Fig. 10. Table 3 
illustrates the effectiveness of the residual connections and 
sinusoidal activation function for improving object prediction 
accuracy. Specifically, the developed MLP with residual 
connections and sinusoidal activation is compared to: 1) a MLP 
with only sinusoidal activation, 2) two MLPs without residual 
connections and sinusoidal activation from [18, 21]. From Table 
3, the developed algorithm has shown to achieve the highest 
accuracy in the predictions of both position and orientation.   

  

4.2 Experimental test 
In this section, the performance of the developed methods is 

evaluated in a collaborative assembly scenario. Of direct interest 
is the sequence from the robot’s receiving a command on the 

needed part/tool to the handover to human worker. To simulate 
a realistic shop floor environment, additional parts/tools that are 
not used during the object detection training such as an Allen key, 
wrench, and pliers, are placed along with the five parts/tools of 
direct interest to evaluate whether the object detection algorithm 
can reliably detect the correct ones. This scenario is common 
since different workspaces may share a central location for 
parts/tools. Object detection is also continuously carried out 
during the whole grasping action to evaluate the impact of the 
gripper on detection performance. For simplicity, the robotic arm 
is also constrained to 4-axis during handover, with the head of 
screwdriver or ratchet pointing perpendicularly away from 
rotation plane shared by joints 2, 3, and 5. 

 
FIGURE 10: MLP Training with and without residual connections 

To avoid collision with the parts/tools, each robot grasping is 
preceded by a “reaching” stage during which the end-effector 
arrives at the position with the desired x-y coordinate and a z-
coordinate of 100 mm before moving downwards and closing the 
gripper. A representative grasping scenario is illustrated in Fig. 
11, in which a screwdriver is of interest. The three frames (a)-(c) 
indicate when the robot is at standby position (“standby”, in 
which object detection is carried out and robot is triggered), 
when the gripper moves to the position above the object 
(“reaching”), and when the gripper moves downwards towards 
the object, and arrives at the position for grasping (“grasping”), 
respectively.  

It is noted from Fig. 11(d)-(f) that the object detection 
algorithm exhibits robustness when objects that are not of 
interest (i.e., Allen key, the pilers and the wrench) are placed 
along with the objects of interest. For example, none of the Allen 
key, pliers and wrench is mistakenly detected. In addition, the 
object detection algorithm also demonstrates robustness when 
the objects are partially blocked by the gripper, as in Fig. 11(e), 
without being specifically trained for such scenario. However, it 
is noted that, the handle of the screwdriver is mis-recognized as 
bearing cap (Fig. 11(f)) when the gripper arrives at the grasping 
position, indicating that there are still scenarios for which the 
object detection algorithm needs to be improved as a subject of 
future research. The overall object detection accuracy is 
illustrated in Fig. 12. Quantitative evaluation of the MLP 
performance in robotic grasping indicates that the mean errors in 
the position and orientation induced by the joint angle prediction 
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error from MLP are 15 mm and 1.5 degree with respect to the 
desired values, respectively, which are on the same order as the 
simulation results shown in Section 4.1 (10 mm and 2.1 degree). 

 

 
FIGURE 12: Object detection accuracy 

 
5. CONCLUSIONS 

In an effort to improve the adaptivity of robot in dynamic 
workspace shared with human workers and realize human-robot 
collaborative assembly, an integrated method based on object 
detection and robot joint angle control has been developed. The 
work fills an existing gap in recognizing, localizing, and properly 
grasping the needed parts/tools for collaborative operations. 
Object detection is based on the concept of single-shot detection, 
which allows for the utilization of existing, pretrained CNN as 
the computation backbone. The desired robotic arm end-effector 
position and orientation for object grasping, which are extracted 
from the object detection algorithm, are then fed into a MLP to 
predict the required robotic arm joint angles. A self-supervised 
training method is developed for the MLP, which relies on the 
forward kinematics of the robotic arm and does not require 
labeled training data. Evaluated in a collaborative testbed 
assembly case study, the object detection method has shown 
predominantly reliable recognition and localization of parts/tools 

of interest, without making false identifications on previously 
unseen objects. The MLP with self-supervised learning 
capability has also achieved joint angle prediction with good 
accuracy, with the mean end-effector position error being 15mm 
and mean orientation error being 1.5 degree only. Future research 
will systematically investigate scenarios where parts/tools are 
partially blocked, to further enhance the object detection 
capability, and extend the self-supervised learning method to full 
6-axis robotic arm configuration. 
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