Proceedings of the 2022 International Symposium on Flexible Automation

ISFA2022
July 3 -7, 2022, Yokohama, Japan

ISFA2022-025

MACHINE LEARNING-BASED ROBOTIC OBJECT DETECTION AND GRASPING
FOR COLLABORATIVE ASSEMBLY

Jianjing Zhang, Chuanping Liu, Joshua Huang, and Robert X. Gao'
Department of Mechanical and Aerospace Engineering
Case Western Reserve University
Cleveland, OHIO, USA

ABSTRACT

An integral part of information-centric smart manufacturing
is the adaptation of industrial robots to complement human
workers in a collaborative manner. While advancement in
sensing has enabled real-time monitoring of workspace,
understanding the semantic information in the workspace, such
as parts and tools, remains a challenge for seamless robot
integration. The resulting lack of adaptivity to perform in a
dynamic workspace have limited robots to tasks with pre-defined
actions. In this paper, a machine learning-based robotic object
detection and grasping method is developed to improve the
adaptivity of robots. Specifically, object detection based on the
concept of single-shot detection (SSD) and convolutional neural
network (CNN) is investigated to recognize and localize objects
in the workspace. Subsequently, the extracted information from
object detection, such as the type, position, and orientation of the
object, is fed into a multi-layer perceptron (MLP) to generate the
desired joint angles of robotic arm for proper object grasping
and handover to the human worker. Network training is guided
by forward kinematics of the robotic arm in a self-supervised
manner to mitigate issues such as singularity in computation.
The effectiveness of the developed method is validated on an eDo
robotic arm in a human-robot collaborative assembly case study.

Keywords: Human Robot Collaboration, Deep Learning,
Object detection, Self-supervised Learning.

1. INTRODUCTION

A critical building block of smart manufacturing is the
incorporation of industrial robots to assist human workers in
assembly, where the workers and robots share a workspace and
collaboratively performs tasks for which direct contact is
allowed [1]. Compared to the traditional assembly workspace
where the workers and robots are strictly separated for safety
reasons and the tasks of each are carried out sequentially, human-

! Corresponding author: Robert.Gao@case.edu

180

robot collaboration (HRC) will improve both flexibility and
efficiency in assembly [2].

A prerequisite for successful HRC is to allow robot to
monitor the workspace, interpret collaboration context, and act
accordingly. For this purpose, recognition and prediction of
human action have been investigated [2-5]. They provide the
basis for the robot to understand the part or tool that is needed to
accomplish the subsequent operation. However, research on
recognizing, localizing, and grasping the intended part/tool in an
appropriate manner is still limited. For example, placement of
parts/tools is strictly pre-defined in prior HRC studies [3-5], and
dedicated research on robotic object grasping is primarily
focused on grasping outcome (success or fail) rather than
differentiating the type of objects [6-8]. Considering that the
position and orientation of parts/tools cannot be assumed to
remain time-invariant, and collaborative operations such as
object handover may require specific grasping orientation,
research is needed to investigate techniques for: 1) object
detection, which recognizes and localizes parts/tools of interest
based on sensing images, and 2) robot control, which
subsequently determines the joint angles of robotic arm that are
needed for the end-effector to arrive at desired position with
desired orientation for grasping.

For object detection, two commonly investigated techniques
are region-based convolutional neural network, or RCNN [9]
(with its variants, Fast RCNN [10] and Faster RCNN [11]) and
the method of You Only Look Once, or YOLO [12]. The RCNN-
based methods take a two-step approach. First, the regions-of-
interest (ROIs) of an image that potentially contain objects of
interest is generated by a region-proposal procedure [9-11]. Then,
each ROI passes through an object detection network, which
predicts the object type within the ROI and the corresponding
bounding box position and shape. By contrast, YOLO follows a
single-step approach, which splits the image into grid cells and

Assembly
workspace

Input image

. & & @ O (xa ya Z)

, (E.6.8 } ®lololo] Positon
Desired joint angles | {(i, j k)|
¢) Orientation

Part/Tool needed for subsequence operation

FIGURE 1: Integrated method for part/tool detection and robot joint angle control in HRC

uses each cell to predict a fixed number of bounding boxes and
the corresponding object types [12].

Despite the state-of-the-art benchmark performance by
RCNN and YOLO, both have limitations in a manufacturing
setting. For RCNN, training of a region-proposal network (RPN)
is required before object detection can be carried out. However,
collecting sufficient training images from the shop floor can be
difficult without interrupting normal production schedule. While
techniques such as transfer learning may alleviate the data
availability issue, dedicated pretrained RPN is currently not
available, which can make transfer learning less effective. For
YOLO, it relies on a single grid, which makes it less effective in
recognizing parts/tools of varying scales.

Considering that convolutional neural network (CNN) with
feature maps of different sizes has been widely investigated for
image recognition [13-15], which naturally provides multi-scale
image analysis, this research investigates the concept of single-
shot detection (SSD) [16] that is capable of direct utilization of
the exiting feature maps in CNN for object detection. In addition,
SSD only incurs a small number of additional network weights
and therefore, can be effectively trained using limited training
samples.

Once the spatial information of parts/tools are extracted by
object detection, the desired position and orientation of the
robotic arm end-effector can be obtained, based on which the
joint angles that are needed for grasping will be computed. Such
joint angles can be computed using inverse kinematics (IK).
However, direct inverse solution involves nonlinearity,
simplifying assumptions, and singularity [17-18]. Recently, deep
learning has been increasingly investigated to bypass the
analytical limitations and allow more tolerant and singularity-
free robot control. For example, numerical mapping between
end-effector spatial information and joint angles has been
directly established using supervised learning [18-21]. In [17],
generative adversarial network (GAN) has been investigated to
solve the inverse kinematics with the generator predicting the
joint angles and the discriminator determining whether the
predicted angles are valid.

Despite the progress, these methods are generally not related
to the physics (i.e., kinematics) that governs the motion of the
robotic arm but solely dependent on the large number of labeled
training samples. This study presents a novel method for solving
inverse kinematics using self-supervised learning. Through self-
supervised learning it is feasible to use forward kinematics (FK)

181

to evaluate whether the predicted robot joint angles can guide the
end-effector to the desired position and orientation. By replacing
the prediction error of the joint angles (computed using labeled
training samples) with the error of the end-effector position and
orientation (computed using FK) to guide training, training data
labeling (i.e., for joint angle) is no longer needed. In addition, the
network’s physical consistency is enhanced. In Fig. 1, a
flowchart of the developed method for object detection and robot
joint angle control is shown.

The rest of paper is organized as follows: Section 2 presents
the theoretical background of object detection based on SSD and
joint angle control using self-supervised learning. In Section 3,
experimental setup for evaluating the developed method is
described. The results are presented and discussed in Section 4,
and conclusions and future work are summarized in Section 5.

2. THEORETICAL BACKGROUND

In the presented study, object detection and robot joint angle
control are formulated as learning problems, by extending the
capability of the CNN and multi-layer perceptron (MLP),
respectively.

2.1 Single-shot object detection of parts and tools

The goal of object detection is to simultaneously: 1) identify
the types of parts/tools of interest in sensing images, and 2)
determine their positions and orientations by predicting
bounding boxes to surround each of them. Different from
traditional image recognition using CNN in which each image
only contains a single candidate object [13], the task of object
detection in this presented study requires the accommodation of
varying number of candidate objects as well as changing
positions and orientations. This requires enhancement of the
standard CNN structure.

The concept of single-shot detector [16] allows to adapt the
existing, standard CNN structure as the backbone for object
detection, as shown in Fig. 2. The main idea is to: 1) utilize
feature maps of size m X n in each layer of the CNN as a grid of
the same size to cover the input image (in Fig. 2, m is chosen to
be equal to n for illustration purpose), and 2) use each grid cell
to predict a fixed number (i.e., &, in Fig. 2, /=3) of bounding
boxes and the types of the objects surrounded by the boxes. In
Fig. 2, the predicted bounding boxes from selected grid cells
(with shading) are illustrated, and boxes that match the ground
truth in the input image are color coordinated.

Input image

Standard f D \
CNN SNy 3x3x2 3x3x8
Structure [j/ kernels g "~ kemels
(backbone) .
n=16
Feature AZ
maps p=2
-~y LT
Single]
Shot =
Detector 4\- .I i
Image with ground] ‘)
gewing 16x 16 grid 8x8 grid 4 x4 grid

truth bounding boxes

FIGURE 2: Object detection based on SSD

Specifically, for p feature maps of dimension m X n in CNN,
each prediction from a grid cell consists of a vector
[Acx, Acy, Aw, Ah,cy,cy, ..., cy], where Acx, Acy represent the
relative distances between the center of the predicted bounding
box and the center of the grid cell in the x and y coordinates,
respectively. Aw, Ah represent changes in the width and height
of the bounding box relative to the grid cell dimension,
respectively. ¢q,¢,,..., ¢y denotes N scores, each of which
indicating how likely there would be an object surrounded by the
bounding box that belongs to one of the N candidate object types
(e.g., screwdriver, cap, belt, sheave, etc.), including background.
€1,C,..., Cy then pass through a softmax function to obtain the
predicted object type. Each element in the vector
[Acx, Acy, Aw, Ak, cq, Cy, ..., cy] 1s predicted using a 3 X 3
convolutional kernel centered at the corresponding grid cell.
Therefore, for feature maps of size m X n, the total number of
bounding boxes to be predicted is m - n - k and the total number
of kernel weights to be trainedis 9 - (N + 4) - k.

It should be noted that the kernels for SSD are different from
the kernels in the standard CNN. The purpose of the kernels in
the standard CNN is to generate feature maps, whereas the
kernels for SSD utilize the generated feature maps for object
detection. As the CNN structure goes deeper, the size of the
feather maps becomes smaller and the grid changes from “fine”
to “coarse”, effectively allowing multi-scale image analysis.

The loss function for single-shot object detection training
consists of two parts [16]:

L(c,6,1,1) = Leass(c, &) + Lyox (1, 1) (1)

In Eq. (1), Lggss(c, &) denotes the error term for classification
of object types and Lbox(l, i) denotes the error term for
prediction of position and shape of bounding boxes. During
training, each predicted bounding box is first compared to the
ground truth boxes to evaluate the degree of matching, which is
quantified using the intersection over union (IoU) ratio (Fig. 3).
The predicted boxes with an IoU ratio over 0.5 are categorized
as “matched”. Then, Lg,s(c,é) is computed as the cross-
entropy [17] between the predicted object type ¢ and ground
truth object type ¢ for all boxes. Lbox(l, Z) is computed as the
squared difference in each of Acx,Acy,Aw,Ah between the
predicted values and ground truth for all matched boxes. By
minimizing Eq. (1) during training, the capability of both object
type recognition and bounding box prediction can be improved.

182

Area of
Overlap
Intersection _
overUnion ~ T
Area of
Union
- -

FIGURE 3: Intersection over union (IoU) ratio

To utilize the spatial information extracted from object
detection for robot’s action, projective transformation is needed
to transform the camera coordinates into the robot coordinates.
This transformation is shown in Fig. 4, known as the
homography transformation [22]. The idea is to transfer a tilted
image plane from the perspective view of camera to an
orthographic view by using a 3-by-3 homography matrix H. In
this study, the objects’ z-coordinates are fixed since they are all

(x5 7),

(%, 3)
H
—
)

(EAR) (x, ¥,
Perspective image

(1)

(Xy2Ys)
Orthographic image

FIGURE 4: Homography transformation
Mathematically, the transformation can be written as [22]:

Rotation/Stretching ~ Translation
| I I,_l N
x a blcl|lx
y =A d e f y* (2)
1), g b 1](1)
Scaling

Homography matrix: H

where (x,y,1); and (x', ", 1)} are homogeneous vectors of the

same physical point in the robot coordinates (R) and camera
coordinates (C), respectively. (a, b, d, e) are parameters for
image rotation and stretching, (c, f) are parameters for translation,
and (g,) are parameters for scaling. A is a normalization
factor. The parameters can be calibrated using four non-colinear
points [22].

2.2 Self-supervised learning for robot joint control

Once the desired end-effector position and orientation is
extracted from the object detection step, they are used to generate
joint angles of robotic arm such that the end-effector can arrive
at the desired position with the desired orientation for part/tool
grasping. However, general closed-form IK solution for robot
arm to arrive at any spatial point with desired orientation is often
infeasible due to geometrical and rotational constraints that are
physically associated with the robotic arm [23]. The alternatives
that have been reported include: 1) numerical solvers that
approach the desirable position iteratively [24], and 2) machine
learning methods that minimizes a loss function related to the
accuracy required for robot movement [17-19]. Both can find the
optimal solution and provide tolerance to the aforementioned
issues.

The numerical solvers start with an initial selection of joint
angles. At each iteration, FK is applied to obtain the

corresponding end-effector position and orientation. Then, the
error between the obtained and the desired position and
orientation is used to update the joint angles in the next iteration
through the inverse Jacobian matrix of the FK until convergence.
However, a large number of iterations is often needed for
convergence [24]. In addition, the inversion of Jacobian matrix
is prone to singularity and the algorithm is affected by the initial
selection of joint angles and is prone to local minimum [24].

In this study, machine learning approach is investigated for
solving IK problems to avoid initial joint angle selection,
iterative computation, and instability in inverting Jacobian
matrix. With a loss function that is designed to minimize position
and orientation error, machine learning is suited for determining
optimal solutions for cases where the precise IK solution does
not exist. To achieve this objective, a self-supervised machine
learning approach is developed as illustrated in Fig. 5.

Specifically, a MLP is developed to predict the joint angles
of robotic arm @ based on the given position and orientation of
the end-effector at the MLP input: position (x, y, z) with the
orientation (i, j, k) expressed as a unit vector. Training of the
MLP is guided by the FK of the robotic arm, which computes the
position and orientation of the end-effector that would be
achieved by using the predicted joint angles from the MLP.
Errors in the position and orientation between the predicted
values from the FK and the given values at the MLP input
constitute the loss function. At the end of the training process,
errors in the position and orientation of the end-effector are
minimized, indicating that the MLP is able to predict the robot’s
joint angles and control the end-effector to arrive at the desired
position and orientation with high accuracy.

Residual connections

Predicted
position

Predicted
orientation

il FO=6aaL0 Y

Forward kinematics

[xrna]l @ o«
| posiion || @

ECYRSN IS
 Orientation

b,
Predicted

“Spatial
infi e joints

Multi-layer perceptron

Position error Qrientation error
[

Weights update T

Loss function

L=13 0% - %, +0-(0.0))
=

FIGURE 5: Self-supervised learning for joint angle control
The FK investigated in this study is based on the standard
notion of Denavit-Hartenberg (D-H convention). In Table 1, the
D-H table of the 6-axis robotic arm is presented.

TABLE 1 D-H table for the 6-axis robotic arm

Joint | O(deg) d(mm) a(mm) a(deg)
1 o; 337 0 —o0° (- 98~®)
2 | 63 —90° 0 210.5 0 "
3 | 6;+90° 0 0 90° '@
4 0; 268 0 -90°
5 9: 0 0 90°
6 0; 306.5 0 0

The parameters in the D-H table describe the relationship
between the previous joint coordinate and the current joint
coordinate:

o O(deg): rotation angle from previous x;_; axe to current

x; axearound z;_; axe;
o d(mm): offset of o; along z;_, axe from o0;_q;
e a(mm): offset of o; along x; axe from 0;_4;

183

o a(deg): rotation angle from previous z;_; axe to current
z; axe around x; axe;
e 0;:joint variables changing with time.
Based on Table 1, the FK of the end effector (x,, Y, Z.)
from the origin of the robot arm (x,,y,,Z,) is computed as:

5 T
(Xer Ver 2e) = [n'_lAhl ’ (xo:yo:zo)T (3)

where A, represents the transformation matrices computed
from D-H table:

cosf —sinb cosa, sing sina, a;cosb,
; sind. cosf cosa, —cosésing, a,sing,
AR) sing, cosq, d, “)
0 0 0 1

The structure of the developed MLP for predicting the joint
angles consists of residual connections [25] and a sinusoidal
activation function [26]. Residual connections are designed to
alleviate the limitations of the standard MLP, in which
contributions from features extracted by the early layers
gradually fade away when processing the late layers. This is
achieved by preserving access to these early layer features such
that the prediction can utilize all features. Sinusoidal activation
function is inspired by the solutions to partial differential
equations [26], where improved reconstruction of 1D and 2D
data with trigonometric nature is shown. As the purpose of the
MLP is essentially to solve equations of IK with trigonometric
nature, sinusoidal activation function is considered.

In practice, both the input and output of the MLP are
normalized. The activation function at the output layer is the
sigmoid function, which constrains the range of the output to [0,
1]. The loss function L for training the MLP is given as:

13 - n
L=;Z(I|X,-—X,- I, +(1~(0,6))) 5
i=1
where ||-||, denotes the error between the desired end-effector
position X, and the predicted position X . measured using

Euclidean distance. 1— (0,5) €[0,2] measures the error in end-

effector orientation. It is 0 when both orientation vectors
perfectly align. n is the number of training inputs.

3. EXPERIMENTAL EVALUATION

The developed method is experimentally evaluated in a
testbed assembly workspace, as shown in Fig. 6. The testbed is
placed to the right of the worker and an eDo robot [27] is
installed on the table to his left. Parts that are required for the
assembly of a bearing module (bearing cap), a driving sheave
module (sheave) and a belt module (belt) of the testbed (see Fig.
7) are placed next to the robot along with the needed tools such
as a screwdriver and a ratchet. The parts and tools are monitored
by a RGB camera (1280 x 720) installed to the right of the robot.

Human-robot collaboration is achieved by monitoring the
human worker using a separate camera (1280 x 720), which is
placed outside of Fig. 6. This allows to infer the part/tool that is
going to be needed for the subsequent assembly operation and
predict the worker’s future motion trajectory [4, 14]. The inferred
part/tool triggers the object detection algorithm to generate the

desired position and orientation of the end-effector for its grasp.
The position and orientation information are then fed into the
MLP to predict the desired joint angles and grasp the part/tool in
an appropriate manner. Once the worker’s motion indicates that
he/she is ready for handover, the predicted trajectory end-
location is again fed into the MLP to predict the joint angles that
allow to deliver the part/tool to the handover location.

— C—
eDo Robot
- r
-

Machinery Fault Simulator
(MFS) Testbed

FIGURE 6: Collaborative testbed assembly workspace
i ll‘ 2

o Bearing cap
© Driven sheave

9 Coupling

’ o Motor
@ orivingsheave @ Bet

FIGURE 7: Modules in testbed assembly

To train the object detection algorithm, a total of 180 images
of parts/tools were collected and split into 130 images for
training and 50 for testing. Each image contains a different
combination of the five parts and tools that are of interest:
bearing cap, sheave, belt, screwdriver, and ratchet. The position
and orientation of each part/tool is varied from image to image.
To facilitate the identification of desired end-effector position
and orientation for grasping the screwdriver and ratchet, the
handles of both tools are labeled separately from the shank. The
center of the handle bounding box determines the end-effector
position, while the direction perpendicular to the line connecting
the centers of the handle and the shank bounding boxes
determines the orientation.

For the backbone CNN, a MobileNet [28] pretrained using
the “common objects in context”, or the COCO dataset [29] is
selected. MobileNet is characterized by a series of modifications
to the standard CNN to reduce the computational complexity
such as decomposing the convolution operation into depth-wise

184

and point-wise operations [28]. The network structure of is
illustrated in Table 2. The COCO dataset contains many daily
objects, such as fork, knife, and spoon, which share visual
similarities to the parts/tools commonly seen in a manufacturing
setting. Each image of dimension 1280 x 720 is first cropped to
fit the table trolley area before resized to 640 X 640 to serve as
the network input. For SSD, the number of predictions made by
each grid cell is empirically set to k=4 [16]. Object detection
training is carried out using a Tesla P100 GPU in Google Colab
and learning rate is set to 0.05.

TABLE 2 Network structure of pretained MobileNet

Input Size # Output Feature Maps Kernel Stride

640 x 640 x 3 32 2
320 x 320 x 32 16 1
320 x 320 x 16 24 2
160 x 160 x 24 32 2

80 x 80 x 32 64 2

40 x 40 x 64 96 1

40 x 40 x 96 160 2
20x20 x 160 320 1
20 x 20 x 320 1280 1
20 x 20 x 1280 -

For robot joint angle control, joints 4 and 6 of the eDo robot
(see image in Table 1) are constrained. Specifically, joint 4,
which controls the rotation of end-effector with respect to the
operation plane of joints 2 and 3, is set to 0 given that the robotic
arm only grasps objects vertically in this study. Joint 6, which
controls the opening direction of the gripper, is constrained by
the orientation information from the object detection and the
rotating angle of joint 1. Therefore, the prediction of joint angles
for part/tool grasping is reduced to joints 1, 2, 3, and 5.

The structure of the MLP consists of five hidden layers with
81 neurons each. During training, no ground truth data for joint
angles is required. Instead, 8,000 end-effector position and
orientation samples, which are the inputs to the MLP, are
randomly generated in a 1x1xIm cube within the workspace,
where 60% of the samples are used as training data and the rest
40% used as testing data. To ensure that the sampled position and
orientation can be reached by the robotic arm, the sampling
process follows the limits of joints to cover the workspace cube.

4. RESULTS AND DISCUSSION

The outcome of the experimental evaluation is presented and
discussed in this section. First, the outcome of algorithm training
is evaluated using the collected training and testing data as
described in Section 3. Next, the algorithms are evaluated in a
collaborative assembly scenario for which additional variations
are added, such as parts/tools not seen during training, to
evaluate the robustness of the developed methods.

4.1 Algorithm training outcome

The training and testing curves for SSD-based object
detection is shown in Fig. 8. The testing curve is obtained by
feeding the object detection algorithm with testing data once
every 100 epochs. Convergence is observed after approximately
1500 epochs. It is noted that at the end of the training process,
both curves are closely aligned, indicating no overfitting.

TABLE 3 Jomnt angle prediction results comparison

Network structure Activation function Robaot arm system Position error ~ Orientation error
MILP with r93|dual Sinusoidal, Sigmoid 4 axes in 3D space 10mm 21°
connections
MLP wﬂhout_ residual Sinusoidal, Sigmoid 4 axes in 3D space 24mm 23°
connections
MLP [21] Tanh, RelLU 3 axes in 2D space 100mm N/A
MLP [18] Tanh, RelU 6 axes in 3D space 78mm N/A
0.18 _ needed part/tool to the handover to human worker. To simulate
g:i :E;:::f a realistic shop floor environment, additional parts/tools that are
T not used during the object detection training such as an Allen key,
@ 0.40 wrench, and pliers, are placed along with the five parts/tools of
S0 direct interest to evaluate whether the object detection algorithm
0.06 can reliably detect the correct ones. This scenario is common
0.04 since different workspaces may share a central location for
e parts/tools. Object detection is also continuously carried out
0.00
0 500 1000 1500 2000 during the whole grasping action to evaluate the impact of the

Training epoch
FIGURE 8: Training and testing results for object detection

Four representative testing images are shown in Fig. 9 to
demonstrate the performance of the object detection algorithm.
Images (a) and (d) do not contain the full set of the five
parts/tools of interest. This is common in assembly as different
parts/tools can be used in different orders. In addition, for images
(b) and (c) where the full set of five parts/tools are available, their
positions and orientations have also been varied. It is seen in Fig.
9 that the object detection algorithm has successfully recognized
and localized the parts/tools in these scenarios, confirming the
effectiveness and robustness of the algorithm in spite of the
variations introduced for the trained objects.

Ay [j

bt Belt cap Bearing cap shv Sheave
sdr Screwdriver (shank & head) hdl_rht Ratchet (handle) tht Raichet (shank & head)

FIGURE 9: Experimental results for SSD-based object detection

For training the self-supervised MLP, convergence is
observed at round 500 epochs, as shown in Fig. 10. Table 3
illustrates the effectiveness of the residual connections and
sinusoidal activation function for improving object prediction
accuracy. Specifically, the developed MLP with residual
connections and sinusoidal activation is compared to: 1) a MLP
with only sinusoidal activation, 2) two MLPs without residual
connections and sinusoidal activation from [18, 21]. From Table
3, the developed algorithm has shown to achieve the highest
accuracy in the predictions of both position and orientation.

hdl_sdr Screwdriver (handle)

4.2 Experimental test

In this section, the performance of the developed methods is
evaluated in a collaborative assembly scenario. Of direct interest
is the sequence from the robot’s receiving a command on the

185

gripper on detection performance. For simplicity, the robotic arm
is also constrained to 4-axis during handover, with the head of
screwdriver or ratchet pointing perpendicularly away from
rotation plane shared by joints 2, 3, and 5.

0.49

0.42 ==MLP with residual blocks
~—MLP without residual blocks
0.35
@ 0.28
=021

0.14
0.07
0.00

200 300
Training epoch
FIGURE 10: MLP Training with and without residual connections

To avoid collision with the parts/tools, each robot grasping is
preceded by a “reaching” stage during which the end-effector
arrives at the position with the desired x-y coordinate and a z-
coordinate of 100 mm before moving downwards and closing the
gripper. A representative grasping scenario is illustrated in Fig.
11, in which a screwdriver is of interest. The three frames (a)-(c)
indicate when the robot is at standby position (“standby”, in
which object detection is carried out and robot is triggered),
when the gripper moves to the position above the object
(“reaching”), and when the gripper moves downwards towards
the object, and arrives at the position for grasping (“grasping”),
respectively.

It is noted from Fig. 11(d)-(f) that the object detection
algorithm exhibits robustness when objects that are not of
interest (i.e., Allen key, the pilers and the wrench) are placed
along with the objects of interest. For example, none of the Allen
key, pliers and wrench is mistakenly detected. In addition, the
object detection algorithm also demonstrates robustness when
the objects are partially blocked by the gripper, as in Fig. 11(e),
without being specifically trained for such scenario. However, it
is noted that, the handle of the screwdriver is mis-recognized as
bearing cap (Fig. 11(f)) when the gripper arrives at the grasping
position, indicating that there are still scenarios for which the
object detection algorithm needs to be improved as a subject of
future research. The overall object detection accuracy is
illustrated in Fig. 12. Quantitative evaluation of the MLP
performance in robotic grasping indicates that the mean errors in
the position and orientation induced by the joint angle prediction

0 100

400 500

Standby

RGB Camera 4
= - 3
eDo Robot

(e)

cap Bearingcap shv Sheave

Reaching

hdl_rht Ratchet (handle)

FIGURE 11: Object detection performance as end-effector descends for grasping screwdriver

error from MLP are 15 mm and 1.5 degree with respect to the
desired values, respectively, which are on the same order as the
simulation results shown in Section 4.1 (10 mm and 2.1 degree).

100%
95%
90%
85%

80%

DN
IO

Object Detection Accuracy

100.0% 95.1%

Belt

97.9% 94.4%

Rachet Rachet
Handle Shank

FIGURE 12: Object detection accuracy

00.0% 92.4%

=
‘X

5
»

75%
Screwdriver Screwdriver
Handle (Shank)

Cap

5. CONCLUSIONS

In an effort to improve the adaptivity of robot in dynamic
workspace shared with human workers and realize human-robot
collaborative assembly, an integrated method based on object
detection and robot joint angle control has been developed. The
work fills an existing gap in recognizing, localizing, and properly
grasping the needed parts/tools for collaborative operations.
Object detection is based on the concept of single-shot detection,
which allows for the utilization of existing, pretrained CNN as
the computation backbone. The desired robotic arm end-effector
position and orientation for object grasping, which are extracted
from the object detection algorithm, are then fed into a MLP to
predict the required robotic arm joint angles. A self-supervised
training method is developed for the MLP, which relies on the
forward kinematics of the robotic arm and does not require
labeled training data. Evaluated in a collaborative testbed
assembly case study, the object detection method has shown
predominantly reliable recognition and localization of parts/tools

186

Grasping

hdl_sdr Screwdriver (handle) sdr Screwdriver (shank & head)

ht Ratchet (shank & head)

of interest, without making false identifications on previously
unseen objects. The MLP with self-supervised learning
capability has also achieved joint angle prediction with good
accuracy, with the mean end-effector position error being 15mm
and mean orientation error being 1.5 degree only. Future research
will systematically investigate scenarios where parts/tools are
partially blocked, to further enhance the object detection
capability, and extend the self-supervised learning method to full
6-axis robotic arm configuration.

ACKNOWLEDGEMENTS

The authors acknowledge the support for this research by the
National Science Foundation under award CMMI-1830295.

REFERENCES

[1] Lu, Y., Xu, X. and Wang, L., 2020, “Smart manufacturing
process and system automation—a critical review of the
standards and envisioned scenarios. Journal of Manufacturing
Systems,” 56, pp.312-325.

Wang, L., Gao, R., Vancza, J., Kriiger, J., Wang, X.V., Makris,
S. and Chryssolouris, G., 2019, “Symbiotic human-robot
collaborative assembly,” CIRP annals, 68(2), pp.701-726.
Wang, P., Liu, H., Wang, L. and Gao, R., 2018, “Deep learning-
based human motion recognition for predictive context-aware
human-robot collaboration,” CIRP annals, 67(1), pp.17-20.
Zhang, J., Liu, H., Chang, Q., Wang, L. and Gao, R., 2020,
“Recurrent neural network for motion trajectory prediction in
human-robot collaborative assembly,” CIRP annals, 69(1),
pp-9-12.

Wang, L., Liu, S., Cooper, C., Wang, X.V. and Gao, R., 2021,
“Function block-based human-robot collaborative assembly
driven by brainwaves,” CIRP annals, 70(1), pp.5-8.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. and Quillen, D.,
2018, “Learning hand-eye coordination for robotic grasping

with deep learning and large-scale data collection,”

International journal of robotics research, 37(4-5), pp.421-436.

Zeng, A., Song, S., Lee, J., Rodriguez, A. and Funkhouser, T.,

2020, “Tossingbot: Learning to throw arbitrary objects with

residual physics,” IEEE Transactions on Robotics, 36(4),

pp.1307-1319.

Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J. and Khansari,

M., 2020, “Rl-cyclegan: Reinforcement learning aware

simulation-to-real,” Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition pp. 11157-11166.

Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014, “Rich

feature hierarchies for accurate object detection and semantic

segmentation,” Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 580-587.

[10] Girshick, R., 2015, “Fast r-cnn,” Proceedings of the IEEE
international conference on computer vision, pp. 1440-1448.

[11] Ren, S., He, K., Girshick, R. and Sun, J., 2015, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” Advances in neural information processing systems,
28.

[12] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016,
“You only look once: Unified, real-time object detection,”
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 779-788.

[13] Krueger, J., Lehr, J., Schlueter, M. and Bischoff, N., 2019,
“Deep learning for part identification based on inherent
features,” CIRP Annals, 68(1), pp. 9-12.

[14] Zhang, J., Wang, P. and Gao, R., 2021, “Hybrid machine
learning for human action recognition and prediction in
assembly,” Robotics and Computer-Integrated Manufacturing,
72,p.102184.

[15] Xiong, Q., Zhang, J., Wang, P., Liu, D. and Gao, R., 2020,
“Transferable two-stream convolutional neural network for
human action recognition,” Journal of Manufacturing Systems,
56, pp.605-614.

[16] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.Y. and Berg, A.C., 2016, “Ssd: Single shot multibox detector,”
European conference on computer vision, pp. 21-37.

[17] Ren, H. and Ben-Tzvi, P., 2020, “Learning inverse kinematics
and dynamics of a robotic manipulator using generative
adversarial networks,” Robotics and Autonomous Systems, 124,
p-103386.

187

[18] Aggarwal, L., Aggarwal, K. and Urbanic, R.J., 2014, “Use of
artificial neural networks for the development of an inverse
kinematic solution and visual identification of singularity zone
(s),” Procedia CIRP, 17, pp.812-817.

[19] Karlik, B. and Aydin, S., 2000, “An improved approach to the
solution of inverse kinematics problems for robot manipulators,”
Engineering applications of artificial intelligence, 13(2),
pp-159-164.

[20] Chiddarwar, S.S. and Babu, N.R., 2010, “Comparison of RBF
and MLP neural networks to solve inverse kinematic problem
for 6R serial robot by a fusion approach,” Engineering
applications of artificial intelligence, 23(7), pp.1083-1092.

[21] Duka, A.V., 2014, “Neural network based inverse kinematics
solution for trajectory tracking of a robotic arm,” Procedia
Technology, 12, pp.20-27.

[22] Szeliski, R., 2010, “Computer vision: algorithms
applications,” Springer Science & Business Media.
[23]1Ho, T., Kang, C.G., Lee, S., 2012, “Efficient closed-form
solution of inverse kinematics for a specific six-DOF arm”,
International Journal of Control, Automation and Systems,

10(3), pp.567-573.

[24] Beeson, P., Ames, B., 2015, “TRAC-IK: An open-source
library for improved solving of generic inverse kinematics”,
IEEE-RAS 15th International Conference on Humanoid Robots,
pp. 928-935.

[25]1He, K., Zhang, X., Ren, S. and Sun, J., 2016, “Identity
mappings in deep residual networks,” In European conference
on computer vision, pp. 630-645.

[26] Sitzmann, V., Martel, J., Bergman, A., Lindell, D. and
Wetzstein, G., 2020, “Implicit neural representations with
periodic activation functions,” Advances in Neural Information
Processing Systems, 33, pp.7462-7473.

[27] https://www.comau.com/

[28] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen,
L.C., 2018, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4510-4520.

[29] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P. and Zitnick, C.L., 2014, “Microsoft
coco: Common objects in context,” European conference on
computer vision, pp. 740-755.

and

