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Abstract—Minimally Invasive Surgery lacks tactile feedback
that surgeons find useful for finding and diagnosing tissue
abnormalities. The goal of this paper is to calibrate sensors
of a motorized Smart Grasper surgical instrument to provide
accurate force and position measurements. These values serve
two functions with the novel calibration hardware. The first is
to control the motor of the Grasper to prevent tissue damage.
The second is to act as the base upon which future work in
multi-modal sensor fusion tissue characterization can be built.
Our results show that the Grasper jaw distance is a function
of both applied force and motor angle while the force the jaws
apply to the tissue can be measured using the internal load
cell. All code and data sets used to generate this paper can
be found on GitHub at https://github.com/Yana-Sosnovskaya/
Smart Grasper public

Index Terms—Surgical Robotics, force sensing, sensor fusion

I. INTRODUCTION

Minimally Invasive Surgery (MIS) has become standard in

modern medicine and involves operating through small inci-

sions using laparoscopic instruments (graspers) for manipula-

tion and endoscopic cameras for visual feedback. Advantages

of MIS include faster recovery, less blood loss, and a lower

risk of complications.

Alongside its benefits, MIS also brings new challenges,

such as a lack of tactile feedback for surgeons [1], [2].

In open surgery, surgeons can palpate the tissue to gain

information about non-visible structures such as the location

of tumors and blood vessels [1], [3]. Moreover, force sensing

is crucial for avoiding tissue trauma during grasping in

abdominal surgeries. Excessive forces will cause tissue to

be traumatized, and insufficient forces can lead to instru-

ment slippage reducing operation efficiency and endangering

This material is based upon work supported by the National Science
Foundation under Grant No. 2036255.

patient safety [4], [5]. Conventional laparoscopic surgical

instruments still lack force sensing, making diagnostic quality

tactile feedback infeasible [2]–[4].

Multiple laparoscopic graspers with force sensors have

been designed to provide the force measurements necessary

for useful tactile feedback. One example is the laparoscopic

grasping tool developed by [6] for the Raven-II surgical

robot [7]. This tool has the capability of sensing a three-

axis Cartesian manipulation force and a single-axis grasping

force, using two torque sensors embedded in driving pulleys

of the Raven-II surgical robot. Kim et al. [8], [9] take another

approach that uses capacitive transducers with an analog

signal processing unit embedded in the instrument’s tip.

A multi-modal approach was used in building sensorized-

forceps by [10]. Their work mostly focused on compensating

for environmental influences (e.g. temperature and humidity

change) that affect force measurements. Other surgical in-

struments use strain gauges for direct [11] and indirect [12]

force measurement. Soakhanvar et al. [13] used three uniaxial

polyvinylidene fluoride (PVDF) films based on the piezoelec-

tric effect to measure force, the location of concentrated load

(e.g. a hidden lump) and the softness of the grasped object.

Recent research developed by [14] presents a novel clamping

force sensor based on fiber Bragg grating integrated in a

manual laparoscopic instrument and tested on both ex-vivo

tissue and in-vivo porcine liver.

The existing work in this field is vast, but no instrument

is ready for the operating room. Some of them have a

good measurement range and sensitivity but are too big to

use on actual surgical instruments [15]; MIS port sizes are

typically between 5 and 10 mm in diameter [16]. Others lack

measurement range [6], are insufficiently sensitive [2], or are

unlikely to survive sterilization [17]. Additionally, many of

these surgical instruments only close in set increments rather
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Fig. 1: The Smart Grasper (formerly MEG) without its top cover. The drive system turns a paddle wheel using a steel rope (not shown). The paddle wheel
it attached to a ball-in-socket joint that moves the pushrod back in forth, which opens and closes the Babcock jaws. Readings from the internal load cell
record the force on the pushrod.

than having a continuous range of motion. This lack of fine

position control could lead to tissue deformation and damage

if the force needed to close a given amount is above the safe

threshold for a particular tissue [4], [5].

In this paper, we address these issues by building on

the Motorized Endoscopic Grasper (MEG), first developed

by [18]. The MEG employs force and position sensors to

provide continuous, one-dimensional jaw position and force

measurements while grasping tissue. To differentiate the

planned multi-modal tissue classification setup from previous

work, we rename the MEG to the Smart Grasper.

A new calibration setup was built in order to verify and im-

prove upon the calibration procedures previously developed

by Roan et al. [19], [20]. The accuracy of the other modalities

(e.g. pulse oximetry, bioimpedance, temperature, ultrasound)

that will be placed on the jaws of the Smart Grasper is

dependent on the quality of the force and position calibration.

Accurate force calibration will also allow for a controller that

reduces damage to tissue resulting from excessive applied

force.

II. METHODS

A. Hardware

The mechanical hardware was mostly unchanged

from [18]. Fig. 1 demonstrates how the motor (RE25-10 W,

Maxon) with attached 19:1 planetary gearbox (GP26,

Maxon) and encoder (HEDL55, Maxon) opened and closed

the Grasper tip’s jaws.

While the Grasper’s mechanical hardware remained un-

touched, a few changes were made to the sensing and

controls. An updated motor controller (2018 ESCON 50/5 4-

Q Servocontroller, Maxon) is controlled via microcontroller

(Teensy 4.0) by Pulse-Width Modulation (PWM) in current

control mode. The relationship between the PWM input

and the command current was linear but varied based on

controller setup parameters. For all the data gathered in this

paper, the motor controller was set to output anywhere from

0−400 mA of current. A quadrature encoder buffer breakout

board (LS7366R, SuperDroid Robots) keeps track of encoder

counts at 40 MHz.

Only one of the internal force sensors (FR1010, 40 lb,

FUTEK) was used because of damage to the second’s wiring

during storage, but no need could be found to have two

load cells besides redundancy. After amplification (CSG110,

FUTEK), a 10 bit analog-to-digital converter (ADC) maps

the 0 − 5 V force sensor output to discretized values (DV)

ranging from 0− 1023.

The test fixture consisted of a wooden base with screw

points to attach the Grasper and the smaller calibration

subassemblies (sections II-B1 and II-C1).

B. Force Calibration

1) Subassembly Design: The force calibration fixture

(Fig. 2) was attached to the mount described in section II-A

and consisted of an aluminum plate connected to the external

load cell (TAL220B, 5 kg). The upper Grasper jaw engaged

with the plate and the lowered jaw engaged with a 3D printed

base, as seen in Fig. 2. Raising the external load cell and

lowering the 3D printed piece increased the jaw distance.

Output from the external load cell was routed through a

breakout board (HX711, Sparkfun) with an amplifier and a

24 bit ADC before going to the microcontroller.

2) External Load Cell Calibration: Determining the re-

lationship between the external load cell DV and forces

measured in newtons required applying known forces to the

load cell and recording the measurement. We hung masses

from a 3D printed fixture as shown in Fig. 3.

Fig. 4 shows both the data collected as well as the best

fit line relating the external load cell DV to newtons. The

coefficient values for (1) were found using a least squares

regression.

F (z) = c0 + c1z (1)

where z is the force reading from the external load cell

measured in DV and F is the force measurement in newtons.

This line has a root mean square error (RMSE) of 0.0879 N

and an R2 value of 1.00. Looking at Fig. 4 further illustrates

the goodness of the fit and suggests that the RSME would

be even lower if not for one outlying data point. Values for

c0 and c1 can be found in Table I.
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Fig. 2: Force Calibration Fixture with external load cell. HX711 breakout
board not shown. The external load cell and the 3D printed piece were raised
and lowered by adding and removing washers.

(a) (b)

Fig. 3: Unloaded (a) and loaded (b) fixture for calibrating external load cell
readings to known forces.

The 0 − 16 N range of data gathered spans the operable

space. The Grasper jaws have an area of 56.4 mm2, so

applying 16 N would produce just under 284 kPa of pressure.

This much pressure is above the 160 − 280 kPa range that

caused liver failure with the Smart Grasper in [5].

3) Internal Load Cell Calibration: Grasper and external

load cell data were recorded from forces created by the drive

Fig. 4: A curve mapping the external load cell readings to newtons. The
curve has an RSME of 0.0879 N and an R2 of 1.00.

TABLE I: External Load Cell to Newtons Coefficient Values

Coefficient Value Units

c0 −5.63× 10
−3 N

c1 4.46× 10
−5 N per external DV

(a) (b)

Fig. 5: Jaw Distance. Note that the distance between the red dots in (a)
corresponds to djaw in (b).

motor and pushrod. The Grasper was fed an incrementally

increasing current and the average load cell readings for

each were recorded. Encoder data was recorded as well

because [19] claimed that jaw distance also impacted the

measured force. For the same reason, the calibration process

was repeated for different jaw distances.

C. Position Calibration

Being able to accurately determine the distance between

the Grasper’s jaws is crucial to combining data from other

planned sensor modalities into a cohesive picture of the tissue

being grasped.

In an infinitely stiff grasper, there would be an direct

relationship between the motor rotation to jaw distance. How-

ever, stretching and bending of the mechanical components

add compliance between the motor angle (measured by an

encoder) and the jaw distance (djaw in Fig. 5). Therefore, the

jaw distance is a function of both motor angle and applied

force (see (6)). Deformation and slack in the system will vary

with force and the state of the cable.

1) Subassembly Design: The position calibration fixture

is a block of known width upon which the Grasper jaws

squeeze (Fig. 6). These blocks were 3D printed and range in

size from 5 mm to 19 mm in 1 mm increments.

2) Procedure: The position calibration procedure began

by putting a block with known width in the fixture (Fig 7).

The Grasper was then fed a current causing it grasp the block

(Fig. 6). Calipers were used to measure the actual distance

between the jaws to the nearest 0.1 mm. The current to the

Grasper was increased, and measurements from the internal

force sensor and the motor encoder during this process were

recorded. The process was then repeated for every block.

Each run of the calibration process can record data for

multiple distances. The encoder was zeroed by feeding a

Grasper a current that causes the jaws to open until they

reach a mechanical stop. The point at which the jaws cannot
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Fig. 6: Grasper jaws squeeze a 5 mm block during the position calibration
process. During setup, the block is placed so that the measured jaw distance
is collinear with the measurement line across the tip.

Fig. 7: Position calibration subassembly with 5 mm block.

open any wider is made the zero point. This was done at the

start of each run and every time a new block was put into the

position fixture. Zeroing the encoder every time a new block

was put into the position fixture prevented error accumulating

when manually aligning the jaws to the measurement line.

The error that zeroing the encoder addressed only occurred

during the manual manipulation of the Grasper and so should

not be an issue during normal use.

III. RESULTS AND DISCUSSION

The Python 3.8 function scipy.opimize.curve_fit

was used for all surface fitting. Both quadratic and linear

surface fits were tried for the position and the force fit.

The purpose of this regression analysis is to find a cal-

ibration function that takes the sensor readings as inputs

and outputs a value close enough to the true value to be

usable. Both overfitting and underfitting optimization curves

can reduce their predictive power. Given the relatively small

size of the data sets, the risk of overfitting is greater than

the risk of underfitting. Therefore, even though the quadratic

better fit the current data, the linear fit was chosen. The

improvement was not enough to justify the increased risk

of overfitting.

A. Force Calibration

1) Force Surface Fit: The best fit planar surface for the

force calibration is defined by:

z(x, y) = c2 + c3x+ c4y (2)

where x is the internal force sensor reading in DV, y is

the encoder reading in counts, and z is the same as in (1).

Values for c2, c3, and c4 were not found for this step. Instead,

a direct relationship between the internal load cell and the

force at the Grasper’s tip measured in newtons was found by

substituting (2) into (1). This action yields:

F (x, y) = c0 + c1 (c2 + c3x+ c4y) (3)

which can be simplified to:

F (x, y) = α+ βx+ γy (4)

The values for α, β, and γ can be found in Table II and the

resulting surface can be seen in Fig. 8. This fit has an RMSE

of 0.980 N and a mean absolute error (MAE) of 0.721 N.

Given the quality of the fit found in section II-B2, (1) was

treated as true for the purpose of determining the error of the

final planar fit.

TABLE II: Grasper Force Reading to Jaw Tip Force Coefficient Values

Coefficient Value Units

α −0.484 N

β 1.70× 10
−2 N per Grasper DV

γ −1.54× 10
−5 N per encoder count

The error between the measured and calculated force

values exerted by the Grasper’s jaws appears to be normally

distributed around zero (the actual calculated mean error is

−5.11× 10−9 N) with a standard deviation of 0.980 N.

2) Curve Fit: The small value for γ in (4) indicates that

the encoder value plays little role in determining the force

applied at the Grasper tip. Another way to demonstrate the

encoder’s negligible impact is by determining the quality of

the fit without the encoder. A 1D linear regression mapping

the internal force sensor to the measured force at the jaws

(Fig. 9) has an RSME of 0.989 N, barely more than the

RSME from the surface fit. This curve fit is defined by

F (x) = ζ + φx (5)

with F is the jaw force measurement in newtons and x is

the internal force sensor measured in DV. The values of ζ

and φ can be found in Table III.

TABLE III: Force Measurement Linear Regression Coefficient Values

Coefficient Value Units

ζ 0.0402 N

φ 1.73× 10
−2 N per Grasper DV

The error of this curve fit appears to be normally dis-

tributed with a mean of zero (the calculated mean error is

1.22× 10−15 N) and a standard deviation of 0.989 N.
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(a) Force surface fit plot

(b) Force fit contour plot

(c) Force fit error distribution

Fig. 8: Planar surface fit for force calibration. The best fit surface is plotted
alongside (a) the measured data in 3D and (b) a 2D contour plot. The
distribution of the error between the measured and calculated force for a
given force-encoder pair is shown in (c).

3) Comparison to Previous Work: Roan et al. [19] use

the linkage geometry to get a set of equations relating the

force measured by the internal load cell to the force at

the jaw tip. These equations do indeed depend on the jaw

angle θ which is directly related to the jaw distance djaw.

However, these equations do not account for disturbances in

the system such as backlash, friction, and deformation. Roan

et al. add an “adjusted jaw displacement factor” to better fit

their equations to the data, but they attribute this fudge factor

only to “measurement errors in link length” [19, pp. 182-

183].

Rather than try to model all possible deviations from the

perfectly rigid, frictionless environment assumed in [19], we

(a) Force curve fit plot

(b) Force curve fit error distribution

Fig. 9: 1D linear curve fit for force calibration. (a) The best fit line is plotted
alongside the measured data. Different colored data points are from different
trials. The distribution of the error between the measured and calculated force
for a given Grasper force reading is shown in (b). The R2 value of this fit
is 0.928.

used the data generated in section II-B to determine the

relationship between the applied force and the measured

force. Our standard deviation of 0.99 N is worse than the

0.30 N standard deviation claimed in [19]. Nonetheless, we

believe our results are a more accurate reflection of the

precision possible in the system.

4) Goodness of Fit: Both the surface fit and the linear

fit are sufficient for the main purpose of the tool: securing

tissue without damaging it. Using 160 kPA as the upper

limit on pressure at the jaw tips as suggested in [5] limits

the maximum applied force to 9 newtons. Heijnsdijk et al.

found the minimum force to securely grasp tissue to be

approximately 3 N for surgical graspers with similar pro-

files [4]. These bounds leave a 6 N effective operating range,

and large enough window even with a standard deviation

of approximately 1 N. If future work requires more precise

force measurements then either the calibration process needs

to be refined or a better method of force sensing needs to be

implemented.

Moreover, the the near identical standard deviation of the

surface fit that includes the encoder readings (0.980 N) and

the curve fit that ignores the encoder readings (0.989 N)

indicates that the jaw distance plays at a negligible role in

determining the force applied at the Grasper’s tip.
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B. Position Calibration

1) Position Surface Fit: The best fit planar surface

(Fig. 10) to the data gathered in section II-C is defined by:

d(x, y) = k0 + k1x+ k2y (6)

where x is the internal force sensor reading in DV, y

is the encoder reading in counts, and d is jaw distance in

millimeters. Values for the k0, k1, and k2 coefficients can be

found in Table IV. The fit has an RSME of 0.742 mm and

a MAE of 0.575 mm.

TABLE IV: Position Coefficient Values

Coefficient Value Unit

k0 80.3 mm

k1 1.88× 10
−2 mm per Grasper DV

k2 1.07× 10
−3 mm per encoder count

The error between the measured and calculated position

values for a given set of force and encoder readings (Fig. 10c)

appears to be normally distributed around zero (the calculated

mean error is −1.03× 10−12 mm). This implies that (6) can

be rewritten as:

d(x, y) = k0 + k1x+ k2y + ε(µ, σ) (7)

where ε is a Gaussian distribution with mean µ = 0 and

standard deviation σ = 0.743 mm. The formulation in (7) can

then be propagated forward when evaluating sensor readings

with position-dependent modalities such as ultrasound.

2) Comparison to Previous Work: Like [19], we use

regression to determine an equation relating the measured

force and encoder values to the jaw distance. Our measured

standard deviation of 0.743 mm is larger than Roan’s reported

standard deviation of 0.2834 mm. Nonetheless, we believe

our results are more robust for current state of the Grasper.

First, whereas we used a machined fixture to collect posi-

tion data, while Roan et al. used cardboard “structures” to set

the jaw distance for calibration [19, p. 181]. Accurately mea-

suring the jaw distance without a proper calibration fixture is

difficult, so there are likely meaningful measurement errors

that are unaccounted for in the stated standard deviation.

Second [19] overfit the curve to their data. Roan et al.’s

regression has eight terms [19] compared to just three terms

in (6). While [19]’s surface may fit the collected data very

well, it is less likely to fit other points in the space over

which the grasper will operate.

IV. CONCLUSION AND FUTURE WORK

This work demonstrates the calibration setup and proce-

dure for joint calibration of a motorized endoscope Smart

Grasper using both force and encoder outputs. While our

results may have greater uncertainty as previous calibration

work, our more robust methodology means that the resulting

calibration equations are a better reflection of the underlying

system and are therefore more useful going forward.

The next steps involve integrating the force and position

readings into the device architecture that includes other sen-

sors (pulse oximetry, bioimpedance, temperature, ultrasound)

(a) Position surface fit plot

(b) Position fit contour plot

(c) Position fit error distribution

Fig. 10: Planar surface fit for position calibration. The best fit surface is
plotted alongside (a) the measured data in 3D and (b) a 2D contour plot. The
distribution of the error between the measured and calculated jaw distance
for a given force-encoder pair is shown in (c).

and that will constitute the complete Smart Grasper. A force

controller must then be implemented to ensure that the

applied force at the Grasper tip stays within safe operation

limits. Once integrated, we will collect multi-modal data

from butcher meat. A machine learning algorithm will then

process the data, fusing the various sensor information into

an accurate tissue characterization.
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