
Vol.:(0123456789)1 3

Neuroinformatics
https://doi.org/10.1007/s12021-022-09573-8

SOFT WARE ORIGINAL ARTICLE

nGauge: Integrated and Extensible Neuron Morphology Analysis
in Python

Logan A. Walker1,2 · Jennifer S. Williams3 · Ye Li4 · Douglas H. Roossien5 · Wei Jie Lee3 · Nigel S. Michki1 ·
Dawen Cai1,4,6

Accepted: 7 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The study of neuron morphology requires robust and comprehensive methods to quantify the differences between neurons
of different subtypes and animal species. Several software packages have been developed for the analysis of neuron tracing
results stored in the standard SWC format. The packages, however, provide relatively simple quantifications and their non-
extendable architecture prohibit their use for advanced data analysis and visualization. We developed nGauge, a Python toolkit
to support the parsing and analysis of neuron morphology data. As an application programming interface (API), nGauge can be
referenced by other popular open-source software to create custom informatics analysis pipelines and advanced visualiza-
tions. nGauge defines an extendable data structure that handles volumetric constructions (e.g. soma), in addition to the SWC
linear reconstructions, while remaining lightweight. This greatly extends nGauge’s data compatibility.

Keywords Neuron reconstruction · Neuron morphometrics · Neuron visualization

Introduction

The comparative study of neuron morphology has been a
definitive aspect of contemporary neuroscience (Ramón y
Cajal, 1892). Recent technological advances have enabled
huge increases in the number of neuron reconstructions
that can be performed in a single study into the hundreds

(BRAIN Initiative Cell Census Network (BICCN)
et al., 2020; Gouwens et al., 2019, 2020; Jiang et al., 2021).
Multispectral labeling (Li et al., 2020; Shen et al., 2020) and
large-volumetric electron microscopy (Motta et al., 2019;
Phelps et al., 2021; Yin et al., 2020), in principle, allow
reconstructing many more neurons within one brain or within
a single common coordinate system (Wang et al., 2020). As
a result, analysis techniques must be developed which allow
these data to be integrated, with specific focuses on the
ability to customize, automate and quickly expand processing
workflows to handle large batches of individual neurons,
including those reconstructed from various methods.

Neuron reconstructions are commonly abstracted as con-
nected linear branches and stored using the SWC file format
(Nanda et al., 2018). SWC files are light-weight and text-
formatted that contain tab-delimited lines. Each line repre-
sents a point in the neuronal tree structure, which contains
the node ID, node type (i.e., soma, axon, dendrite, etc.), X
coordinate, Y coordinate, Z coordinate, the radius of the
point, and the ID of the parent node to which this node links.
Previously, we have also defined a volumetric SWC format
where soma records are defined as a series of X–Y contour
tracings along the Z axis to allow a more precise represen-
tation of soma shape (Roossien et al., 2019). Notably, the
parent–child branch linkages present in SWC files result in a

Logan A. Walker and Jennifer S. Williams contributed equally on
this work

 * Dawen Cai
 dwcai@umich.edu

1 Biophysics Program, University of Michigan LS&A,
Ann Arbor, MI, USA

2 Department of Computational Medicine and Bioinformatics,
University of Michigan Medical School, Ann Arbor, MI,
USA

3 Electrical Engineering and Computer Science, University
of Michigan Engineering, Ann Arbor, MI, USA

4 Cell and Developmental Biology, University of Michigan
Medical School, Ann Arbor, MI, USA

5 Department of Biology, Ball State University, Muncie, IN,
USA

6 Neuroscience Graduate Program, University of Michigan
LS&A, Ann Arbor, MI, USA

http://orcid.org/0000-0002-5378-3315
http://orcid.org/0000-0002-3541-2756
http://orcid.org/0000-0002-8647-384X
http://orcid.org/0000-0003-1184-2919
http://orcid.org/0000-0001-7591-0234
http://orcid.org/0000-0003-0403-0648
http://orcid.org/0000-0003-4471-2061
http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-022-09573-8&domain=pdf

 Neuroinformatics

1 3

data model that can be understood as a directed graph, where
no cycles are allowed to form. Many traditional data analysis
tools do not take advantage of the underlying tree-like struc-
ture of the data, instead, treating the data as a “point-cloud”.

Despite this growing need, current tools for neuron mor-
phology calculations are largely limited to closed-form
and predefined analyses, such as the popular L-Measure
(Scorcioni et al., 2008) package and tools included with the
various community (Cuntz et al., 2010; Peng et al., 2014;
Roossien et al., 2019) or commercially-available (e.g. Neu-
rolucida, MBF Biosciences; Imaris, Bitplane) neuron recon-
struction software and plugins. Several libraries exist for the
manipulation of neuron models after reconstruction, such
as the TREES Toolbox (Cuntz et al., 2010) and the Neuro-
Anatomy Toolbox (NAT) (Bates et al., 2020), however, their
APIs preclude beginner use due to their complexity. Several
analysis toolkits have been introduced, such as BTMORPH
(Torben-Nielsen, 2014), PyLMeasure,1 the NAVis2 package,
and python-Lmeasure,1 in order to enable the quantifica-
tion of neuron morphology inside of the Python program-
ming language, which has rapidly emerged as the lingua
franca of machine learning and data science. However, all
of these tools are either limited in extensibility or simply run
other binaries in the background (which lead to large soft-
ware dependencies). The recent MorphoPy (Laturnus et al.,
2020a, b) package solves these problems by implementing
many functions in native Python code, but has only limited
ability to be extended to novel metric definitions, no stand-
ardized memory structure, and no ability to produce 3D vis-
ualizations. Several software packages, such as NeuroMor-
phoVis (Abdellah et al., 2018) and the recent Brainrender
(Claudi et al., 2020) package provide tools to prepare SWC
files for complex 3D rendered figures, however, these tools
are not designed to also perform quantitative analysis in the
native Python environment. This data integration process
for larger projects largely relies on bespoke methodologies
which are limited in their reuse and accessibility.

In this report, we present nGauge, a software library that
serves as a Python toolkit for quantifying neuron morphol-
ogy. Included in the library are a collection of tools to per-
form standard and advanced morphometric calculations,
manipulate reconstructed tree structures via SWC files,
and generate visualizations within Python-native graphics
libraries. We have applied nGauge to the analysis of sev-
eral collections of published reconstructions, demonstrating
the ability to build easily parallelizable, easily understood,
and reproducible bioinformatics pipelines. nGauge exposes
a well-documented API, allowing complex morphometry
analyses to be programmed quickly in conjunction with other
popular bioinformatics Python software, making the library
extensible and customizable to new applications. nGauge
also operates within the Blender 3D modeling software,
allowing the creation of publication-quality animations

without the need for 3D rendering expertise. Finally, nGauge
defines an extendable data structure to handle volumetric
and linear neuronal constructions to greatly extend its data
compatibility while remaining lightweight.

Materials and Methods

Library Implementation

nGauge was implemented in Anaconda Python 3.7.6 using
standard object-oriented coding practices. The results
presented herein are produced using the latest version of
nGauge as of the time of writing (0.1.2). The library makes
use of other numerical methods from dependencies NumPy
(Harris et al., 2020) and SciPy (Virtanen et al., 2020). Addi-
tionally, the matplotlib (Hunter, 2007) library is used for
library plotting functions.

We implemented 103 (at time of writing) API functions
which consist of single- and multivariate morphometrics,
utility functions, and data structures, as described in Results.
All implemented methods were tested with the Python unit-
test library1 to ensure library self-consistency. We compared
the results with the output from similar functions from two
previously published tools to ensure their validity (Laturnus
et al., 2020; Scorcioni et al., 2008). Selected comparisons
are presented in Results.

Previously Published Data Access

Previously-published neuron reconstruction data was down-
loaded using the bulk downloading tools on the Neuromor-
pho.org (Ascoli et al., 2007) website in SWC format (Nanda
et al., 2018) from several previously-published articles
(Fukunaga et al., 2012; Miyamae et al., 2017; Stokes et al.,
2014). The standardized version of these SWC files was used
to ensure format adherence. Additional SWC and image data
were obtained from our previous study (Li et al., 2020).

Cell Type Clustering

To provide a use case for how nGauge would be applied in a
typical experiment, cell type clustering was performed using
the above-referenced released datasets with custom python
scripts. For each SWC file, the following vector of morpho-
logical parameters was calculated using nGauge: number
of branch points, number of branch tips, cell dimensions,
number of cell stems, average branch thickness, total path
lengths, neuron volume, maximum neurite length, maximum
branch order, path angle statistics, branch angle statistics,

1 https:// docs. python. org/3/ libra ry/ unitt est. html

https://docs.python.org/3/library/unittest.html

Neuroinformatics

1 3

maximum branching degree, tortuosity statistics, and tree
asymmetry. This collection of vectors was then used as input
into the scikit-learn (Pedregosa et al., 2011) PCA implemen-
tation. Visual inspection of distributions was used to ensure
individual clusters formed.

Cell Mask Generation

Our cell mask generation process contains two major steps.
First, a minimum convex hull of all points in the SWC file
is calculated using the implemented methods in SciPy
(Virtanen et al., 2020), namely the quickhull algorithm
(Barber et al., 1996). This hull represents a 3D polygon that
includes all points in the SWC file, represented as a series
of lines in 3D space. After the hull is generated, the second
step runs a filling. This process is applied for each neuron
with a different fill value, resulting in a single-color TIFF file
that can be visualized as a segmentation mask of the same
size as the original image, allowing it to easily be overlaid.

3D Neuron Visualization

All 3D visualizations were generated using the Blender
2.82.2 (Blender Foundation; blender.org) software pack-
age, following a compositing method similar to previously
described (Kent, 2014). Briefly, 3D models are exported
by representing each segment in an SWC file as a series of
rounded cylinders, after a percentile downsampling to reduce
the total number of points rendered in the 3D mesh. A deci-
mation filter is applied to generated models to optimize the
number of rendered surface points, reducing rendering time
and storage requirements significantly. Standard Blender
compositing techniques are then used to apply keyframes
and animate scenes, as per the software documentation.

Visualizing of raw TIFF microscopy data (Fig. 8C)
was performed as follows: First, individual z-slices were
exported as RGB PNG files using a script in the Fiji
(Schindelin et al., 2012) image analysis software. Each
slice was mapped onto the 3D model using a custom Open
Shader Language (OSL) plugin (see Information Sharing
Statement). This allows the rendering engine to access
individual z-slices without the requirement that the entire
TIFF file be stored in memory.

Performance Testing

Measurement of calculation runtimes within Python was per-
formed with the timeit library2 to run each function 4 times and
automatically calculate the standard deviation using custom test-
ing scripts. L-Measure performance was measured using the

Linux time utility to time only the compiled lmeasure binary,
with 4 runs manually recorded from the terminal. All tests were
performed on a Ubuntu Linux 20.04 server with two AMD
EPYC 7351 processors, 512 GB of RAM, and all data stored
on SSDs to minimize bottlenecks.

Results

nGauge is the Center of a Complete Analysis
Environment

Neuron reconstruction experiments include three primary steps
(Fig. 1A). First, images are acquired containing the neurons
of interest. Next, tracing software is used to reconstruct the
neuron topology, and, finally, bioinformatic hypotheses can be
tested from the resulting neuron reconstructions. These neuron
reconstruction files are generally represented by the SWC for-
mat, which has been formally defined as a tabular linked list
of the coordinates (Nanda et al., 2018). Because of the unique
structure of this format, many general-purpose data science
tools and data structures can not be efficiently applied for the
analysis of neuron morphology. For this reason, we developed
nGauge to simplify the wide variety of bioinformatics tasks,
such as morphometry, model manipulation, visualization, as
well as statistical analysis with the help of other python numeri-
cal libraries (Fig. 1B).

Fig. 1 Introduction to nGauge A Individual neuron morphologies that
have been reconstructed are represented by SWC files. Each SWC file
consists of a tabular list of individual points that make up the neuron
tree structure; B The nGauge library serves as a facilitator for a vari-
ety of common Neuroinformatic tasks

2 https:// docs. python. org/3/ libra ry/ timeit. html

https://docs.python.org/3/library/timeit.html

 Neuroinformatics

1 3

Library Structure

nGauge is implemented as 3 different modules, which can be
installed in a single step from the Python package repository
(Fig. 2A). Each module represents an abstraction of either a
single neuron, a single line in an SWC file, or the collection of
utility functions used throughout the library (Fig. 2B-D). The
Neuron module (Fig. 2B) stores two primary data structures.
The first is a dictionary map between all soma Z-coordinates
and the points which make up that “slice” of the 3D model.
This data model is adapted from (Roossien et al., 2019), where
the SWC format was extended to store volumetric models
of somata. The second data structure stores the locations of
each branch’s root node, i.e. the point at which it contacts the
soma. Because each branch is a directed linked list, the only
node which is needed by the Neuron module for a complete
model of each of its branches is the root node of the branch.
The Tracing point class (Fig. 2C) is used to represent a single
SWC entry, or what would be recorded in a single line of an
SWC file (Fig. 1A), including the X, Y, and Z coordinates, as
well as the point radius, and links to the Tracing point’s that
serve as the parent and child nodes in the linked list. In effect,
the Neuron and TracingPoint libraries serve as an in-computer-
memory representation of an SWC file, with the ability to be
extended by Python object oriented programming techniques.
This new memory organization allows traversal of the SWC file
to be performed more effectively and efficiently than keeping
data in the tabular SWC file format.

In Supplementary Table 1, we present a summarized
list of 103 functions that are available in the current ver-
sion of nGauge. Functions are located such that their use
can match industry-standard object-oriented programming
practices, leading to more readable and maintainable code.
Some methods’ scopes logically apply to both Neurons and
TracingPoint structures (e.g., functions to calculate structure
size) and are implemented in both classes.

Introduction to nGauge Usage

Care has been taken to make the use of nGauge as beginner-
friendly as possible. To demonstrate this, we analyzed a
collection of neurons from (Li et al., 2020) with our library
(Fig. 3). First, the library and data are loaded (Fig. 3A, B).
Single-named morphometrics can be calculated easily by
calling the methods associated with the Neuron class–in this
case, the width and height of the loaded neuron (Fig. 3C).
Creating a plot of the neuron is also a single command
(Fig. 3D). While it is not shown here, plot axes and
appearance parameters can be modified to get different views
of the same data. Upon execution, matplotlib (Hunter,
2007) is loaded, allowing plots to be customized. When
analyzing entire experiments or sample groups, Python
list comprehension can be used to generate whole figures
quickly (Fig. 3E, F).

Comparison with L‑measure

We chose to first compare our tool with L-Measure
(Scorcioni et al., 2008) because it is one of the most widely-
adopted and established tools for neuron morphology
analysis (Fig. 4). Additionally, several existing Python tools,
such as PyLMeasure and python-Lmeasure run L-measure
binaries to perform calculations in the software backend.
For this comparison, we downloaded the SWC files of 42
neurons from (Stokes et al., 2014) and (Fukunaga et al.,
2012), which are curated on Neuromorpho.org (Ascoli
et al., 2007) (Fig. 4A, Methods). Three representative
metrics were selected to compare the tools: the number of
neurite tips in the entire neuron (Fig. 4B), the path distance
of all segments of the neuron (Fig. 4C), and the total neuron
width (Fig. 4D). As expected, the number of neurite tips
and path distances are the same as calculated between
the two tools (Fig. 4B, C). The result for the total neuron
width (Fig. 4D) is more nuanced, however. The L-Measure
width function is defined as the width after “eliminating
the very outer points on the either ends by using the 95%
approximation”, to prevent small structures from interfering
with quantification. In nGauge, this is implemented as an
explicit percentile calculation using an optional parameter
that ranges from 0 to 100%. Finally, comparable methods
between the two software packages perform faster in the

Fig. 2 nGauge Library Schema A nGauge is a publicly-available
python library that can be installed easily in one shell command. The
library is composed of 3 separate modules: Neuron (B), TracingPoint
(C), and util (D). These modules implement models for an entire
Neuron, a single SWC datapoint, and utility/math functions, respec-
tively. Arrows represent cross-references between the module vari-
ables. Each module is labeled with the number of functions available
at time of writing (see Supplementary Table 1 for more information).

Neuroinformatics

1 3

nGauge implementation, although the speed difference
varies (Fig. 4 Insets). A more completed comparison
analysis included 13 metrics calculated with both nGauge
and LMeasure is shown in Supplementary Fig. 1.

Performing Advanced analysis With nGauge

In addition to quantifying basic morphometr ic
parameters, nGauge includes comprehensive utility

Fig. 3 nGauge Usage Exam-
ples Several code examples are
included to demonstrate the
processes of using nGauge.
A Importing the library is a
single command; B SWC files
can be directly imported as
Neuron objects; C morphomet-
rics can be easily calculated,
in this case, neuron width and
height (including 100% of
neuron points) are calculated as
members of the Neuron class;
D Interaction with Python
graphical libraries such as
Matplotlib allows the generation
of publication-quality figures;
E, F Entire lists of files can be
processed at once to run statisti-
cal analyses using python list
comprehensions.

Fig. 4 Comparing nGauge with L-Measure A An overview of the
comparison study; B, C Two example functions (tip node count and
maximum path distance) produce identical output between nGauge
and L-Measure; D Another example function (neuron width) pro-
duces similar output between nGauge and L-Measure, however, a dif-

ference of definitions produces a slight bias. Two parameter choices
are shown for the nGauge result, as indicated by marker style; Inset
for each plot nGauge scripts complete faster than their L-Measure
equivalent (avg. ± std., n = 4 per script)

 Neuroinformatics

1 3

functions for advanced neuroinformatics analysis
(Supplementary Table 1). For instance, nGauge
implements the widely used Principal Component
Analysis (PCA) to identify the differences between
vectors of morphometrics, which allows the classification
of neuron morphological “subtypes” (Gouwens et al.,
2019; Laturnus et al., 2020a, b). We performed PCA
on a collection of pyramidal cells and basket cells
(Miyamae et al., 2017) (Fig. 5A) and a collection of
tufted cells and mitral cells (Fukunaga et al., 2012)
(Fig. 5B). We find that both comparisons yield group
separation along “principal component 1”, indicating that
neuronal subtypes are divisible by their morphological
differences, matching what has been reported in the
previous literature.

Beyond single-value morphometrics, many tools have
been integrated into nGauge for performing advanced
analysis techniques. Influenced by recent work (Laturnus
et al., 2020a, b), nGauge includes tools to calculate 2D
morphometric histograms. Two example cells from
(Miyamae et al., 2017) are shown to compare the location
(distance from the soma) of bifurcation and the shape
(branch angle) of bifurcation (Fig. 6). We can see that
the mouse chandelier cell on the top (NeuroMorpho ID
NMO_104470) has a much higher density of bifurcation
points and its bifurcation points locate farther from the
soma (Fig. 6, red dots) than the Basket cell at the bottom
(NeuroMorpho ID NMO_104476). Plots like these can
serve as “fingerprints” for any morphological properties of
individual neurons, and allow comparison between cells for
similarity in correlation between metrics.

Finally, we show an example to demonstrate that
nGauge can be extended to work with other Python-based
scientific computation packages to create complex sta-
tistics. Using the SciPy library combined with a simple
nGauge script, we created a unique tool for the genera-
tion of TIFF 3D masks to represent the convex hulls that
enclose the extent of individual neurons. This function
enables the visualization and quantification of the spa-
tial “coverage” of each significant neuronal arbors (such
as dendrites and axons). In Fig. 7, the tool is applied to
identify the neurite fields of individual Drosophila ventral
nerve cord serotonergic neurons reconstructed from (Li
et al., 2020). This is of biological interest because, as ser-
otonin can act as a diffusive volume transmitter (Quentin
et al., 2018), each neurite field may be used to estimate
the range of that serotonergic neuron’s modulation. These
TIFF masks can be used to directly quantify this range.
The TIFF masks can also be used to quantify more com-
plex geometric properties. For instance, the intersection
volume between two neurons’ projection fields can be
calculated using NumPy (Harris et al., 2020) as
‘��.���(��.���(�, �)) ‘, or using Fiji’s Image Calculator

library (Schindelin et al., 2012). Figure 7E plots the total
arbori-zation volume of each neuron as a bar chart of total
voxels(bottom) and displays this intersection volume as a heat-
map between each pair of cells (top). Together, this dem-
onstrates the utility of nGauge as a data structure API.

Fig. 5 nGauge for Cell Type Discrimination nGauge can be used to
perform unbiased exploratory data analysis based on morphological
parameters; A Pyramidal Cells are compared against Basket Cells
(Miyamae et al., 2017); B Tufted Cells are compared against Mitral
Cells (Fukunaga et al., 2012). We note that in both of these compari-
sons, groups form along PC1 based on cell type. Each comparison is
displayed as a principal component scatter plot and a projection of
each SWC file is shown adjacent to each datapoint.

Neuroinformatics

1 3

Blender and nGauge Enable Advanced Visualization

Visualizing neuron reconstructions in their physical context
is highly valuable as it can create a direct perspective of
how these neurons interact with each other and with other

unreconstructed objects in the brain. We used nGauge’s API
to create a script that renders publication-quality images
and movies in the Blender 3D modeling software, which
is an industry-standard open-source tool for 3D animation
and visualization. We rendered the full tracing results of

Fig. 6 2D Histograms of Cell
Morphology Two cells (see
Results for descriptions) are
plotted as 2D histograms com-
paring the path distance from
the soma to the branch angle
for each bifurcation point in
the neuron. Colorbar indicates
the count for each square in the
grid. To the left of each plot
is a projection of the source
SWC file, with the soma point
highlighted in red

Fig. 7 Projection Field Mapping of Multiple Neurons We developed a
novel tool for rendering the projection field volume of a specific SWC
file. A A maximum projection of an example image from (Li et al.,
2020); B An overview of neuron tracing reconstructed in (Li et al.,
2020); C 4 randomly-chosen neuron reconstructions; D nGauge’s
domain mapping tool was used to identify volumes corresponding to

each SWC file in C; E A heatmap of the volume overlap percentage
between each pair of samples in the experiment. Nonnegative matrix
values identify cells which have overlapping domains. Each square is
normalized to the volume of the cell identified in the X-axis, which is
depicted in the bar plot to the bottom of the figure

 Neuroinformatics

1 3

182 Brainbow-labeled neurites from the CA1 region of the
mouse hippocampus (Roossien et al., 2019) in two differ-
ent projections (Fig. 8A, B). These renderings, generated
by only a few lines of code (available in the source reposi-
tory, Methods), visualize the density of the reconstruction,
as well as how different somata in the reconstructed volume
are positioned relative to each other. More advanced ren-
dering techniques were used (Li et al., 2020) to visualize
reconstructed serotonergic neurons of the Drosophila ventral
nerve cord (VNC) in the context of the Bitbow fluorescence
microscopy data (Fig. 8C). Because Blender is designed
for rendering still images and animations, it was possible

to create a movie to display multiple angles of the neuron
models (see Movie S2 in (Li et al., 2020) for example).

Discussion

In biomedical image processing, the Fiji package
(Schindelin et al., 2012) has simplified creating
reproducible image processing protocols through an
open environment of plugins and tools which use the Fiji
data models to perform novel analyses. The development
of extensible libraries such as nGauge are an important

Fig. 8 3D Modeling with nGauge and Blender nGauge includes utili-
ties to render publication-quality images and movies in the Blender
3D modeling software; A, B All somas and neurites (n = 182) recon-
structed in Roossien et al., 2019 are modeled. Each panel displays a

separate view of the same data; C Data from (Li et al., 2020) is plot-
ted atop the raw data. A full animation of this figure is available as
Movie S2 in (Li et al., 2020)

Neuroinformatics

1 3

step to produce the same standardization in the pipelines
used to analyze neuron reconstruction experiments. In
its current form, nGauge’s library implements more
than 100 morphometric calculation functions as well
as provides APIs for developing new informatics tools.
Notably, this simplifies the number of software tools that
need to be managed and connected together to complete
morphometry analysis, which lowers the learning barrier
and saves time for non-informatics specialists. Combined
with visualization tools, nGauge empowers the creation
of publication-quality figures with ease. In fact, during
the development of the nGauge project, we have already
applied all of the individual modules to produce results
both in publication and in preparation, finding it to be a
very effective toolkit for efficient data science (Dizaji
et al., 2020; Duan et al., 2020; Li et al., 2020; Shen et al.,
2020).

We have demonstrated that nGauge is a powerful tool
for neuroinformatics, however, it is not without limita-
tions. First, some tools, including L-Measure and TREEs
toolbox, include graphical user interface (GUI) programs
that make it possible to do analysis without ever touch-
ing code at all. While this is not the goal of nGauge, it
is important to note that we do not include a GUI com-
ponent. Furthermore, there are some neuron reconstruc-
tions that are performed using volumetric reconstruction
or mesh reconstruction. nGauge does not allow analysis
of these data directly, because they are not describable
as a SWC file.

Large-scale programs such as the NIH BRAIN Initia-
tive Cell Census Network (BICCN) are providing the neu-
roscience community with ever-expanding collections of
reconstructed neuron morphology, like many other data
types and modalities. Making use of this data will require
a new generation of neuroinformatic data science tools
that are optimized for contemporary programming tech-
niques and are easily extensible. We believe that nGauge
represents a significant step toward this goal, by both pro-
viding an easy way to run a large collection of “canned”
analyses and by providing a platform for the experimen-
tation and development of new metrics through a well-
documented data API. As a Python library, nGauge can
be seamlessly integrated into the most popular machine
learning and data science pipelines.

Conclusion

We have presented nGauge, a Python package for perform-
ing neuron morphology calculations. To demonstrate its
utility, we performed various visualization and analysis
experiments, including performing cell type clustering and
volumetric analysis of dendritic fields. nGauge produces

equivalent results to L-measure in a collection of morpho-
metrics. Finally, nGauge can be used as a data structure
backend for developing, which can be used to integrate
nGauge with Blender for 3D rendering.

In the future, we plan to continue the development of
additional features for nGauge, such as adding tools for
identifying synapse locations and performing connectiv-
ity analyses. Due to the lightweight data structure defini-
tion described here, it is straightforward to include new
annotation types, such as volumetric segmentation (used
in the soma here) or connectivity between tracing points
in nGauge. We envision that nGauge’s open-source and
expandability nature will attract contributions from the
community to its public repository to make it an important
toolkit of neuroscience research. Finally, we envision that
nGauge can be used in future educational applications, such
as building 3D print models for pedagogical purposes.

Information Sharing Statement

nGauge is developed for Python 3.7 and has been tested for
compatibility on the most recent version of Python at the time
of writing (Python 3.9). The library is available from the Python
��� package manager by executing the following command in a
terminal: ̀ ��� ������� ������ ̀. The source code, documentation
which is automatically built with Sphinx,3 and issue tracker are
also available from the following Github repo: https:// github.
com/ Cai- Lab- at- Unive rsity- of- Michi gan/ nGauge. nGauge usage
tutorials are provided in this repository. The provided Blender
rendering tools are compatible with any version of Blender
which uses a Python 3.8+ scripting interface. Installation
instructions are included within the above-referenced GitHub
repo. All data is available through the GitHub repository above
or from the corresponding author upon reasonable request.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12021- 022- 09573-8.

Acknowledgements JSW received support from the University of
Michigan Women in Science and Engineering Residence Program
(WISE-RP) Judith Cram Memorial Fund Research Award. WJL
received support from the Magnificent Michigan Fellowship. LAW
and DC received support from NSF-1707316 (Neuronex-MINT), NIH-
RF1MH123402, and NIH-RF1MH124611. The authors thank Fred Shen
for his comments on an early version of the library. LAW thanks Chris
Midkiff for his comments on figure design and example code clarity.

Author Contributions LAW and DC conceptualized the nGauge
library, which was then implemented by LAW and JSW. YL and DR
provided imaging and neuron reconstruction datasets which were used
in library testing. LAW, JSW, YL, WJL, and NM contributed to beta
testing of early versions of nGauge and provided comments on the
library design. LAW, JSW, and DC wrote the manuscript, which was
edited and approved by all authors.

https://github.com/Cai-Lab-at-University-of-Michigan/nGauge
https://github.com/Cai-Lab-at-University-of-Michigan/nGauge
https://doi.org/10.1007/s12021-022-09573-8

 Neuroinformatics

1 3

References

Abdellah, M., Hernando, J., Eilemann, S., Lapere, S., Antille, N.,
Markram, H., & Schürmann, F. (2018). NeuroMorphoVis: A col-
laborative framework for analysis and visualization of neuronal
morphology skeletons reconstructed from microscopy stacks.
Bioinformatics, 34(13), i574–i582.

Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.
Org: a central resource for neuronal morphologies. The Journal of
neuroscience: the official journal of the Society for Neuroscience,
27(35), 9247–9251.

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull
algorithm for convex hulls. ACM transactions on mathematical
software. Association for Computing Machinery, 22(4), 469–483.

Bates, A. S., Manton, J. D., Jagannathan, S. R., Costa, M., Schlegel,
P., Rohlfing, T., & Jefferis, G. S. (2020). The natverse, a versatile
toolbox for combining and analysing neuroanatomical data. eLife,
9. https:// doi. org/ 10. 7554/ eLife. 53350

BRAIN Initiative Cell Census Network (BICCN), Adkins, R. S.,
Aldridge, A. I., Allen, S., Ament, S. A., An, X., et al. (2020,
October 21) A Multimodal Cell Census and Atlas of the
Mammalian Primary Motor Cortex. Biorxiv. https:// doi. org/ 10.
1101/ 2020. 10. 19. 343129

Claudi, F., Tyson, A. L., & Branco, T. (2020, February 25). Brainren-
der. A python based software for visualisation of neuroanatomical
and morphological data. bioRxiv. https:// doi. org/ 10. 1101/ 2020.
02. 23. 961748

Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to
grow them all: a general theory of neuronal branching and its
practical application. PLoS computational biology, 6(8). https://
doi. org/ 10. 1371/ journ al. pcbi. 10008 77

Dizaji, A. S., Walker, L. A., & Cai, D. (2020). TraceMontage: A
method for merging multiple independent neuronal traces. Jour-
nal of neuroscience methods, 332, 108560.

Duan, B., Walker, L. A., Roossien, D. H., Shen, F. Y., Cai, D., &
Yan, Y. (2020, June 8). Unsupervised Neural Tracing in Densely
Labeled Multispectral Brainbow Images. Biorxiv. https:// doi. org/
10. 1101/ 2020. 06. 07. 138941.

Fukunaga, I., Berning, M., Kollo, M., Schmaltz, A., & Schaefer, A. T.
(2012). Two distinct channels of olfactory bulb output. Neuron,
75(2), 320–329.

Gouwens, N. W., Sorensen, S. A., Baftizadeh, F., Budzillo, A., Lee, B. R.,
Jarsky, T., et al. (2020). Integrated Morphoelectric and Transcriptomic
Classification of Cortical GABAergic Cells. Cell, 183(4), 935-953.e19.

Gouwens, N. W., Sorensen, S. A., Berg, J., Lee, C., Jarsky, T., Ting, J.,
et al. (2019). Classification of electrophysiological and morpho-
logical neuron types in the mouse visual cortex. Nature Neurosci-
ence, 22(7), 1182–1195.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., et al. (2020). Array programming
with NumPy. Nature, 585(7825), 357–362.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Comput-
ing in Science Engineering, 9(3), 90–95.

Jiang, S., Wang, Y., Liu, L., Zhao, S., Chen, M., Zhao, X., et al. (2021, June
10). Petabyte-Scale Multi-Morphometry of Single Neurons for Whole
Brains. Biorxiv. https:// doi. org/ 10. 1101/ 2021. 01. 09. 426010.

Kent, B. R. (2014). 3D Scientific Visualization with Blender. Morgan
& Claypool Publishers.

Laturnus, S., Kobak, D., & Berens, P. (2020). A Systematic Evalua-
tion of Interneuron Morphology Representations for Cell Type
Discrimination. Neuroinformatics. https:// doi. org/ 10. 1007/
s12021- 020- 09461-z

Laturnus, S., von Daranyi, A., Huang, Z., & Berens, P. (2020). Mor-
phoPy: A python package for feature extraction of neural mor-
phologies. Journal of Open Source Software, 5(52), 2339.

Li, Y., Walker, L. A., Zhao, Y., Edwards, E. M., Michki, N. S., Cheng, H. P.
J., et al. (2020, April 9). Bitbow: a digital format of Brainbow enables
highly efficient neuronal lineage tracing and morphology reconstruction
in single brains. bioRxiv. https:// doi. org/ 10. 1101/ 2020. 04. 07. 030593

Miyamae, T., Chen, K., Lewis, D. A., & Gonzalez-Burgos, G. (2017).
Distinct Physiological Maturation of Parvalbumin-Positive Neu-
ron Subtypes in Mouse Prefrontal Cortex. The Journal of Neu-
roscience: THe Official Journal of the Society for Neuroscience,
37(19), 4883–4902.

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M.,
Loomba, S., et al. (2019). Dense connectomic reconstruction in
layer 4 of the somatosensory cortex. Science. https:// doi. org/ 10.
1126/ scien ce. aay31 34

Nanda, S., Chen, H., Das, R., Bhattacharjee, S., Cuntz, H., Torben-Nielsen,
B., et al. (2018). Design and implementation of multi-signal and time-
varying neural reconstructions. Scientific data, 5, 170207.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., et al. (2011). Scikit-learn: Machine Learning in
Python. Journal of machine learning research: JMLR, 12(85),
2825–2830. Accessed 25 Jan 2021

Peng, H., Bria, A., Zhou, Z., Iannello, G., & Long, F. (2014). Extensi-
ble visualization and analysis for multidimensional images using
Vaa3D. Nature Protocols, 9(1), 193–208.

Phelps, J. S., Hildebrand, D. G. C., Graham, B. J., Kuan, A. T.,
Thomas, L. A., Nguyen, T. M., et al. (2021). Reconstruction of
motor control circuits in adult Drosophila using automated trans-
mission electron microscopy. Cell, 184(3), 759-774.e18.

Quentin, E., Belmer, A., & Maroteaux, L. (2018). Somato-Dendritic
Regulation of Raphe Serotonin Neurons; A Key to Antidepressant
Action. Frontiers in Neuroscience, 12, 982.

Ramón y Cajal, S. (1892). La rétine des vertébrés. Lierre [etc.]: Van
In [etc.].

Roossien, D. H., Sadis, B. V., Yan, Y., Webb, J. M., Min, L. Y., Dizaji,
A. S., et al. (2019). Multispectral tracing in densely labeled mouse
brain with nTracer. Bioinformatics, 35(18), 3544–3546.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., et al. (2012). Fiji: An open-source platform for
biological-image analysis. Nature Methods, 9(7), 676–682.

Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: A
web-accessible tool for the analysis, comparison and search of
digital reconstructions of neuronal morphologies. Nature Proto-
cols, 3(5), 866–876.

Shen, F. Y., Harrington, M. M., Walker, L. A., Cheng, H. P. J., Boyden,
E. S., & Cai, D. (2020). Light microscopy based approach for
mapping connectivity with molecular specificity. Cold Spring
Harbor Laboratory. https:// doi. org/ 10. 1101/ 2020. 02. 24. 963538

Stokes, C. C. A., Teeter, C. M., & Isaacson, J. S. (2014). Single den-
drite-targeting interneurons generate branch-specific inhibition.
Frontiers in Neural Circuits, 8, 139.

Torben-Nielsen, B. (2014). An efficient and extendable python library to
analyze neuronal morphologies. Neuroinformatics, 12(4), 619–622.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nature methods, 17(3), 261–272.

Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., et al.
(2020). The Allen Mouse Brain Common Coordinate Framework:
A 3D Reference Atlas. Cell, 181(4), 936-953.e20.

Yin, W., Brittain, D., Borseth, J., Scott, M. E., Williams, D., Perkins,
J., et al. (2020). A petascale automated imaging pipeline for map-
ping neuronal circuits with high-throughput transmission electron
microscopy. Nature Communications, 11(1), 4949.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7554/eLife.53350
https://doi.org/10.1101/2020.10.19.343129
https://doi.org/10.1101/2020.10.19.343129
https://doi.org/10.1101/2020.02.23.961748
https://doi.org/10.1101/2020.02.23.961748
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1101/2020.06.07.138941
https://doi.org/10.1101/2020.06.07.138941
https://doi.org/10.1101/2021.01.09.426010
https://doi.org/10.1007/s12021-020-09461-z
https://doi.org/10.1007/s12021-020-09461-z
https://doi.org/10.1101/2020.04.07.030593
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1101/2020.02.24.963538

	nGauge: Integrated and Extensible Neuron Morphology Analysis in Python
	Abstract
	Introduction
	Materials and Methods
	Library Implementation
	Previously Published Data Access
	Cell Type Clustering
	Cell Mask Generation
	3D Neuron Visualization
	Performance Testing

	Results
	nGauge is the Center of a Complete Analysis Environment
	Library Structure
	Introduction to nGauge Usage
	Comparison with L-measure
	Performing Advanced analysis With nGauge
	Blender and nGauge Enable Advanced Visualization

	Discussion
	Conclusion
	Information Sharing Statement
	Acknowledgements
	References

