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Abstract
The study of neuron morphology requires robust and comprehensive methods to quantify the differences between neurons 
of different subtypes and animal species. Several software packages have been developed for the analysis of neuron tracing  
results stored in the standard SWC format. The packages, however, provide relatively simple quantifications and their non-
extendable architecture prohibit their use for advanced data analysis and visualization. We developed nGauge, a Python toolkit 
to support the parsing and analysis of neuron morphology data. As an application programming interface (API), nGauge can be  
referenced by other popular open-source software to create custom informatics analysis pipelines and advanced visualiza-
tions. nGauge defines an extendable data structure that handles volumetric constructions (e.g. soma), in addition to the SWC 
linear reconstructions, while remaining lightweight. This greatly extends nGauge’s data compatibility.

Keywords Neuron reconstruction · Neuron morphometrics · Neuron visualization

Introduction

The comparative study of neuron morphology has been a 
definitive aspect of contemporary neuroscience (Ramón y 
Cajal, 1892). Recent technological advances have enabled 
huge increases in the number of neuron reconstructions  
that can be performed in a single study into the hundreds  

(BRAIN Initiative Cell Census Network (BICCN) 
et al., 2020; Gouwens et al., 2019, 2020; Jiang et al., 2021). 
Multispectral labeling (Li et al., 2020; Shen et al., 2020) and 
large-volumetric electron microscopy (Motta et al., 2019; 
Phelps et al., 2021; Yin et al., 2020), in principle, allow 
reconstructing many more neurons within one brain or within 
a single common coordinate system (Wang et al., 2020). As 
a result, analysis techniques must be developed which allow 
these data to be integrated, with specific focuses on the  
ability to customize, automate and quickly expand processing  
workflows to handle large batches of individual neurons, 
including those reconstructed from various methods.

Neuron reconstructions are commonly abstracted as con-
nected linear branches and stored using the SWC file format 
(Nanda et al., 2018). SWC files are light-weight and text-
formatted that contain tab-delimited lines. Each line repre-
sents a point in the neuronal tree structure, which contains 
the node ID, node type (i.e., soma, axon, dendrite, etc.), X 
coordinate, Y coordinate, Z coordinate, the radius of the 
point, and the ID of the parent node to which this node links. 
Previously, we have also defined a volumetric SWC format 
where soma records are defined as a series of X–Y contour 
tracings along the Z axis to allow a more precise represen-
tation of soma shape (Roossien et al., 2019). Notably, the 
parent–child branch linkages present in SWC files result in a 
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data model that can be understood as a directed graph, where 
no cycles are allowed to form. Many traditional data analysis 
tools do not take advantage of the underlying tree-like struc-
ture of the data, instead, treating the data as a “point-cloud”.

Despite this growing need, current tools for neuron mor-
phology calculations are largely limited to closed-form 
and predefined analyses, such as the popular L-Measure 
(Scorcioni et al., 2008) package and tools included with the 
various community (Cuntz et al., 2010; Peng et al., 2014; 
Roossien et al., 2019) or commercially-available (e.g. Neu-
rolucida, MBF Biosciences; Imaris, Bitplane) neuron recon-
struction software and plugins. Several libraries exist for the 
manipulation of neuron models after reconstruction, such 
as the TREES Toolbox (Cuntz et al., 2010) and the Neuro-
Anatomy Toolbox (NAT) (Bates et al., 2020), however, their 
APIs preclude beginner use due to their complexity. Several 
analysis toolkits have been introduced, such as BTMORPH 
(Torben-Nielsen, 2014), PyLMeasure,1 the  NAVis2 package, 
and python-Lmeasure,1 in order to enable the quantifica-
tion of neuron morphology inside of the Python program-
ming language, which has rapidly emerged as the lingua 
franca of machine learning and data science. However, all 
of these tools are either limited in extensibility or simply run 
other binaries in the background (which lead to large soft-
ware dependencies). The recent MorphoPy (Laturnus et al., 
2020a, b) package solves these problems by implementing 
many functions in native Python code, but has only limited 
ability to be extended to novel metric definitions, no stand-
ardized memory structure, and no ability to produce 3D vis-
ualizations. Several software packages, such as NeuroMor-
phoVis (Abdellah et al., 2018) and the recent Brainrender 
(Claudi et al., 2020) package provide tools to prepare SWC 
files for complex 3D rendered figures, however, these tools 
are not designed to also perform quantitative analysis in the 
native Python environment. This data integration process 
for larger projects largely relies on bespoke methodologies 
which are limited in their reuse and accessibility.

In this report, we present nGauge, a software library that 
serves as a Python toolkit for quantifying neuron morphol-
ogy. Included in the library are a collection of tools to per-
form standard and advanced morphometric calculations, 
manipulate reconstructed tree structures via SWC files, 
and generate visualizations within Python-native graphics 
libraries. We have applied nGauge to the analysis of sev-
eral collections of published reconstructions, demonstrating 
the ability to build easily parallelizable, easily understood, 
and reproducible bioinformatics pipelines. nGauge exposes 
a well-documented API, allowing complex morphometry 
analyses to be programmed quickly in conjunction with other 
popular bioinformatics Python software, making the library 
extensible and customizable to new applications. nGauge 
also operates within the Blender 3D modeling software, 
allowing the creation of publication-quality animations 

without the need for 3D rendering expertise. Finally, nGauge 
defines an extendable data structure to handle volumetric 
and linear neuronal constructions to greatly extend its data 
compatibility while remaining lightweight.

Materials and Methods

Library Implementation

nGauge was implemented in Anaconda Python 3.7.6 using 
standard object-oriented coding practices. The results 
presented herein are produced using the latest version of 
nGauge as of the time of writing (0.1.2). The library makes 
use of other numerical methods from dependencies NumPy 
(Harris et al., 2020) and SciPy (Virtanen et al., 2020). Addi-
tionally, the matplotlib (Hunter, 2007) library is used for 
library plotting functions.

We implemented 103 (at time of writing) API functions 
which consist of single- and multivariate morphometrics, 
utility functions, and data structures, as described in Results. 
All implemented methods were tested with the Python unit-
test library1 to ensure library self-consistency. We compared 
the results with the output from similar functions from two 
previously published tools to ensure their validity (Laturnus 
et al., 2020; Scorcioni et al., 2008). Selected comparisons 
are presented in Results.

Previously Published Data Access

Previously-published neuron reconstruction data was down-
loaded using the bulk downloading tools on the Neuromor-
pho.org (Ascoli et al., 2007) website in SWC format (Nanda 
et  al., 2018) from several previously-published articles 
(Fukunaga et al., 2012; Miyamae et al., 2017; Stokes et al., 
2014). The standardized version of these SWC files was used 
to ensure format adherence. Additional SWC and image data 
were obtained from our previous study (Li et al., 2020).

Cell Type Clustering

To provide a use case for how nGauge would be applied in a 
typical experiment, cell type clustering was performed using 
the above-referenced released datasets with custom python 
scripts. For each SWC file, the following vector of morpho-
logical parameters was calculated using nGauge: number 
of branch points, number of branch tips, cell dimensions, 
number of cell stems, average branch thickness, total path 
lengths, neuron volume, maximum neurite length, maximum 
branch order, path angle statistics, branch angle statistics, 

1 https:// docs. python. org/3/ libra ry/ unitt est. html

https://docs.python.org/3/library/unittest.html
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maximum branching degree, tortuosity statistics, and tree 
asymmetry. This collection of vectors was then used as input 
into the scikit-learn (Pedregosa et al., 2011) PCA implemen-
tation. Visual inspection of distributions was used to ensure 
individual clusters formed.

Cell Mask Generation

Our cell mask generation process contains two major steps. 
First, a minimum convex hull of all points in the SWC file 
is calculated using the implemented methods in SciPy  
(Virtanen et al., 2020), namely the quickhull algorithm 
(Barber et al., 1996). This hull represents a 3D polygon that 
includes all points in the SWC file, represented as a series 
of lines in 3D space. After the hull is generated, the second 
step runs a filling. This process is applied for each neuron 
with a different fill value, resulting in a single-color TIFF file 
that can be visualized as a segmentation mask of the same 
size as the original image, allowing it to easily be overlaid.

3D Neuron Visualization

All 3D visualizations were generated using the Blender 
2.82.2 (Blender Foundation; blender.org) software pack-
age, following a compositing method similar to previously 
described (Kent, 2014). Briefly, 3D models are exported 
by representing each segment in an SWC file as a series of 
rounded cylinders, after a percentile downsampling to reduce 
the total number of points rendered in the 3D mesh. A deci-
mation filter is applied to generated models to optimize the 
number of rendered surface points, reducing rendering time 
and storage requirements significantly. Standard Blender 
compositing techniques are then used to apply keyframes 
and animate scenes, as per the software documentation.

Visualizing of raw TIFF microscopy data (Fig.  8C) 
was performed as follows: First, individual z-slices were 
exported as RGB PNG files using a script in the Fiji 
(Schindelin et al., 2012) image analysis software. Each 
slice was mapped onto the 3D model using a custom Open 
Shader Language (OSL) plugin (see Information Sharing 
Statement). This allows the rendering engine to access 
individual z-slices without the requirement that the entire 
TIFF file be stored in memory.

Performance Testing

Measurement of calculation runtimes within Python was per-
formed with the timeit library2 to run each function 4 times and 
automatically calculate the standard deviation using custom test-
ing scripts. L-Measure performance was measured using the 

Linux time utility to time only the compiled lmeasure binary, 
with 4 runs manually recorded from the terminal. All tests were 
performed on a Ubuntu Linux 20.04 server with two AMD 
EPYC 7351 processors, 512 GB of RAM, and all data stored 
on SSDs to minimize bottlenecks.

Results

nGauge is the Center of a Complete Analysis 
Environment

Neuron reconstruction experiments include three primary steps 
(Fig. 1A). First, images are acquired containing the neurons 
of interest. Next, tracing software is used to reconstruct the 
neuron topology, and, finally, bioinformatic hypotheses can be 
tested from the resulting neuron reconstructions. These neuron 
reconstruction files are generally represented by the SWC for-
mat, which has been formally defined as a tabular linked list 
of the coordinates (Nanda et al., 2018). Because of the unique 
structure of this format, many general-purpose data science 
tools and data structures can not be efficiently applied for the 
analysis of neuron morphology. For this reason, we developed 
nGauge to simplify the wide variety of bioinformatics tasks, 
such as morphometry, model manipulation, visualization, as 
well as statistical analysis with the help of other python numeri-
cal libraries (Fig. 1B).

Fig. 1  Introduction to nGauge A Individual neuron morphologies that 
have been reconstructed are represented by SWC files. Each SWC file 
consists of a tabular list of individual points that make up the neuron 
tree structure; B The nGauge library serves as a facilitator for a vari-
ety of common Neuroinformatic tasks

2 https:// docs. python. org/3/ libra ry/ timeit. html

https://docs.python.org/3/library/timeit.html
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Library Structure

nGauge is implemented as 3 different modules, which can be 
installed in a single step from the Python package repository 
(Fig. 2A). Each module represents an abstraction of either a 
single neuron, a single line in an SWC file, or the collection of 
utility functions used throughout the library (Fig. 2B-D). The 
Neuron module (Fig. 2B) stores two primary data structures. 
The first is a dictionary map between all soma Z-coordinates 
and the points which make up that “slice” of the 3D model. 
This data model is adapted from (Roossien et al., 2019), where 
the SWC format was extended to store volumetric models 
of somata. The second data structure stores the locations of 
each branch’s root node, i.e. the point at which it contacts the 
soma. Because each branch is a directed linked list, the only 
node which is needed by the Neuron module for a complete 
model of each of its branches is the root node of the branch. 
The Tracing point class (Fig. 2C) is used to represent a single 
SWC entry, or what would be recorded in a single line of an 
SWC file (Fig. 1A), including the X, Y, and Z coordinates, as 
well as the point radius, and links to the Tracing point’s that 
serve as the parent and child nodes in the linked list. In effect, 
the Neuron and TracingPoint libraries serve as an in-computer-
memory representation of an SWC file, with the ability to be 
extended by Python object oriented programming techniques. 
This new memory organization allows traversal of the SWC file 
to be performed more effectively and efficiently than keeping 
data in the tabular SWC file format.

In Supplementary Table 1, we present a summarized 
list of 103 functions that are available in the current ver-
sion of nGauge. Functions are located such that their use 
can match industry-standard object-oriented programming 
practices, leading to more readable and maintainable code. 
Some methods’ scopes logically apply to both Neurons and 
TracingPoint structures (e.g., functions to calculate structure 
size) and are implemented in both classes.

Introduction to nGauge Usage

Care has been taken to make the use of nGauge as beginner-
friendly as possible. To demonstrate this, we analyzed a 
collection of neurons from (Li et al., 2020) with our library 
(Fig. 3). First, the library and data are loaded (Fig. 3A, B). 
Single-named morphometrics can be calculated easily by 
calling the methods associated with the Neuron class–in this 
case, the width and height of the loaded neuron (Fig. 3C). 
Creating a plot of the neuron is also a single command 
(Fig.  3D). While it is not shown here, plot axes and 
appearance parameters can be modified to get different views 
of the same data. Upon execution, matplotlib (Hunter, 
2007) is loaded, allowing plots to be customized. When 
analyzing entire experiments or sample groups, Python 
list comprehension can be used to generate whole figures 
quickly (Fig. 3E, F).

Comparison with L‑measure

We chose to first compare our tool with L-Measure 
(Scorcioni et al., 2008) because it is one of the most widely-
adopted and established tools for neuron morphology 
analysis (Fig. 4). Additionally, several existing Python tools, 
such as PyLMeasure and python-Lmeasure run L-measure 
binaries to perform calculations in the software backend. 
For this comparison, we downloaded the SWC files of 42 
neurons from (Stokes et al., 2014) and (Fukunaga et al., 
2012), which are curated on Neuromorpho.org (Ascoli 
et  al., 2007) (Fig.  4A, Methods). Three representative 
metrics were selected to compare the tools: the number of 
neurite tips in the entire neuron (Fig. 4B), the path distance 
of all segments of the neuron (Fig. 4C), and the total neuron 
width (Fig. 4D). As expected, the number of neurite tips 
and path distances are the same as calculated between 
the two tools (Fig. 4B, C). The result for the total neuron 
width (Fig. 4D) is more nuanced, however. The L-Measure 
width function is defined as the width after “eliminating 
the very outer points on the either ends by using the 95% 
approximation”, to prevent small structures from interfering 
with quantification. In nGauge, this is implemented as an 
explicit percentile calculation using an optional parameter 
that ranges from 0 to 100%. Finally, comparable methods 
between the two software packages perform faster in the 

Fig. 2   nGauge Library Schema A nGauge is a publicly-available 
python library that can be installed easily in one shell command. The 
library is composed of 3 separate modules: Neuron (B), TracingPoint 
(C), and util (D). These modules implement models for an entire 
Neuron, a single SWC datapoint, and utility/math functions, respec-
tively. Arrows represent cross-references between the module vari-
ables. Each module is labeled with the number of functions available 
at time of writing (see Supplementary Table 1 for more information).
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nGauge implementation, although the speed difference 
varies (Fig.  4 Insets). A more completed comparison 
analysis included 13 metrics calculated with both nGauge 
and LMeasure is shown in Supplementary Fig. 1.

Performing Advanced analysis With nGauge

In addition to quantifying basic morphometr ic 
parameters, nGauge includes comprehensive utility 

Fig. 3  nGauge Usage Exam-
ples Several code examples are 
included to demonstrate the 
processes of using nGauge. 
A Importing the library is a 
single command; B SWC files 
can be directly imported as 
Neuron objects; C morphomet-
rics can be easily calculated, 
in this case, neuron width and 
height (including 100% of 
neuron points) are calculated as 
members of the Neuron class; 
D Interaction with Python 
graphical libraries such as 
Matplotlib allows the generation 
of publication-quality figures; 
E, F Entire lists of files can be 
processed at once to run statisti-
cal analyses using python list 
comprehensions.

Fig. 4  Comparing nGauge with L-Measure A An overview of the 
comparison study; B, C Two example functions (tip node count and 
maximum path distance) produce identical output between nGauge 
and L-Measure; D Another example function (neuron width) pro-
duces similar output between nGauge and L-Measure, however, a dif-

ference of definitions produces a slight bias. Two parameter choices 
are shown for the nGauge result, as indicated by marker style; Inset 
for each plot nGauge scripts complete faster than their L-Measure 
equivalent (avg. ± std., n = 4 per script)
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functions for advanced neuroinformatics analysis 
(Supplementary Table  1). For instance, nGauge 
implements the widely used Principal Component 
Analysis (PCA) to identify the differences between 
vectors of morphometrics, which allows the classification 
of neuron morphological “subtypes” (Gouwens et al., 
2019; Laturnus et  al., 2020a, b). We performed PCA 
on a collection of pyramidal cells and basket cells 
(Miyamae et  al., 2017) (Fig.  5A) and a collection of 
tufted cells and mitral cells (Fukunaga et  al., 2012) 
(Fig. 5B). We find that both comparisons yield group 
separation along “principal component 1”, indicating that 
neuronal subtypes are divisible by their morphological 
differences, matching what has been reported in the 
previous literature.

Beyond single-value morphometrics, many tools have 
been integrated into nGauge for performing advanced 
analysis techniques. Influenced by recent work (Laturnus 
et al., 2020a, b), nGauge includes tools to calculate 2D 
morphometric histograms. Two example cells from 
(Miyamae et al., 2017) are shown to compare the location 
(distance from the soma) of bifurcation and the shape 
(branch angle) of bifurcation (Fig. 6). We can see that 
the mouse chandelier cell on the top (NeuroMorpho ID 
NMO_104470) has a much higher density of bifurcation 
points and its bifurcation points locate farther from the 
soma (Fig. 6, red dots) than the Basket cell at the bottom 
(NeuroMorpho ID NMO_104476). Plots like these can 
serve as “fingerprints” for any morphological properties of 
individual neurons, and allow comparison between cells for 
similarity in correlation between metrics.

Finally, we show an example to demonstrate that 
nGauge can be extended to work with other Python-based 
scientific computation packages to create complex sta-
tistics. Using the SciPy library combined with a simple 
nGauge script, we created a unique tool for the genera-
tion of TIFF 3D masks to represent the convex hulls that 
enclose the extent of individual neurons. This function 
enables the visualization and quantification of the spa-
tial “coverage” of each significant neuronal arbors (such 
as dendrites and axons). In Fig. 7, the tool is applied to 
identify the neurite fields of individual Drosophila ventral  
nerve cord serotonergic neurons reconstructed from (Li  
et al., 2020). This is of biological interest because, as ser-
otonin can act as a diffusive volume transmitter (Quentin  
et al., 2018), each neurite field may be used to estimate  
the range of that serotonergic neuron’s modulation. These 
TIFF masks can be used to directly quantify this range. 
The TIFF masks can also be used to quantify more com-
plex geometric properties. For instance, the intersection  
volume between two neurons’ projection fields can be  
calculated using NumPy (Harris et  al., 2020) as   
‘��.���( ��.���( �, �)) ‘, or using Fiji’s Image Calculator  

library (Schindelin et al., 2012). Figure 7E plots the total 
arbori-zation volume of each neuron as a bar chart of total 
voxels(bottom) and displays this intersection volume as a heat-
map between each pair of cells (top). Together, this dem- 
onstrates the utility of nGauge as a data structure API.

Fig. 5  nGauge for Cell Type Discrimination nGauge can be used to 
perform unbiased exploratory data analysis based on morphological 
parameters; A Pyramidal Cells are compared against Basket Cells 
(Miyamae et al., 2017); B Tufted Cells are compared against Mitral 
Cells (Fukunaga et al., 2012). We note that in both of these compari-
sons, groups form along PC1 based on cell type. Each comparison is 
displayed as a principal component scatter plot and a projection of 
each SWC file is shown adjacent to each datapoint.
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Blender and nGauge Enable Advanced Visualization

Visualizing neuron reconstructions in their physical context 
is highly valuable as it can create a direct perspective of 
how these neurons interact with each other and with other 

unreconstructed objects in the brain. We used nGauge’s API 
to create a script that renders publication-quality images 
and movies in the Blender 3D modeling software, which 
is an industry-standard open-source tool for 3D animation 
and visualization. We rendered the full tracing results of 

Fig. 6  2D Histograms of Cell 
Morphology Two cells (see 
Results for descriptions) are 
plotted as 2D histograms com-
paring the path distance from 
the soma to the branch angle 
for each bifurcation point in 
the neuron. Colorbar indicates 
the count for each square in the 
grid. To the left of each plot 
is a projection of the source 
SWC file, with the soma point 
highlighted in red

Fig. 7  Projection Field Mapping of Multiple Neurons We developed a 
novel tool for rendering the projection field volume of a specific SWC 
file. A A maximum projection of an example image from (Li et al., 
2020); B An overview of neuron tracing reconstructed in (Li et  al., 
2020); C 4 randomly-chosen neuron reconstructions; D nGauge’s 
domain mapping tool was used to identify volumes corresponding to 

each SWC file in C; E A heatmap of the volume overlap percentage 
between each pair of samples in the experiment. Nonnegative matrix 
values identify cells which have overlapping domains. Each square is 
normalized to the volume of the cell identified in the X-axis, which is 
depicted in the bar plot to the bottom of the figure
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182 Brainbow-labeled neurites from the CA1 region of the 
mouse hippocampus (Roossien et al., 2019) in two differ-
ent projections (Fig. 8A, B). These renderings, generated 
by only a few lines of code (available in the source reposi-
tory, Methods), visualize the density of the reconstruction, 
as well as how different somata in the reconstructed volume 
are positioned relative to each other. More advanced ren-
dering techniques were used (Li et al., 2020) to visualize 
reconstructed serotonergic neurons of the Drosophila ventral 
nerve cord (VNC) in the context of the Bitbow fluorescence 
microscopy data (Fig. 8C). Because Blender is designed 
for rendering still images and animations, it was possible 

to create a movie to display multiple angles of the neuron 
models (see Movie S2 in (Li et al., 2020) for example).

Discussion

In biomedical image processing, the Fiji package 
(Schindelin et  al., 2012) has simplified creating 
reproducible image processing protocols through an 
open environment of plugins and tools which use the Fiji 
data models to perform novel analyses. The development 
of extensible libraries such as nGauge are an important 

Fig. 8  3D Modeling with nGauge and Blender nGauge includes utili-
ties to render publication-quality images and movies in the Blender 
3D modeling software; A, B All somas and neurites (n = 182) recon-
structed in Roossien et al., 2019 are modeled. Each panel displays a 

separate view of the same data; C Data from (Li et al., 2020) is plot-
ted atop the raw data. A full animation of this figure is available as 
Movie S2 in (Li et al., 2020)
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step to produce the same standardization in the pipelines 
used to analyze neuron reconstruction experiments. In 
its current form, nGauge’s library implements more 
than 100 morphometric calculation functions as well 
as provides APIs for developing new informatics tools. 
Notably, this simplifies the number of software tools that 
need to be managed and connected together to complete 
morphometry analysis, which lowers the learning barrier 
and saves time for non-informatics specialists. Combined 
with visualization tools, nGauge empowers the creation 
of publication-quality figures with ease. In fact, during 
the development of the nGauge project, we have already 
applied all of the individual modules to produce results 
both in publication and in preparation, finding it to be a 
very effective toolkit for efficient data science (Dizaji 
et al., 2020; Duan et al., 2020; Li et al., 2020; Shen et al., 
2020).

We have demonstrated that nGauge is a powerful tool 
for neuroinformatics, however, it is not without limita-
tions. First, some tools, including L-Measure and TREEs 
toolbox, include graphical user interface (GUI) programs 
that make it possible to do analysis without ever touch-
ing code at all. While this is not the goal of nGauge, it 
is important to note that we do not include a GUI com-
ponent. Furthermore, there are some neuron reconstruc-
tions that are performed using volumetric reconstruction 
or mesh reconstruction. nGauge does not allow analysis 
of these data directly, because they are not describable 
as a SWC file.

Large-scale programs such as the NIH BRAIN Initia-
tive Cell Census Network (BICCN) are providing the neu-
roscience community with ever-expanding collections of 
reconstructed neuron morphology, like many other data 
types and modalities. Making use of this data will require 
a new generation of neuroinformatic data science tools 
that are optimized for contemporary programming tech-
niques and are easily extensible. We believe that nGauge 
represents a significant step toward this goal, by both pro-
viding an easy way to run a large collection of “canned” 
analyses and by providing a platform for the experimen-
tation and development of new metrics through a well-
documented data API. As a Python library, nGauge can 
be seamlessly integrated into the most popular machine 
learning and data science pipelines.

Conclusion

We have presented nGauge, a Python package for perform-
ing neuron morphology calculations. To demonstrate its 
utility, we performed various visualization and analysis 
experiments, including performing cell type clustering and 
volumetric analysis of dendritic fields. nGauge produces 

equivalent results to L-measure in a collection of morpho-
metrics. Finally, nGauge can be used as a data structure 
backend for developing, which can be used to integrate 
nGauge with Blender for 3D rendering.

In the future, we plan to continue the development of 
additional features for nGauge, such as adding tools for 
identifying synapse locations and performing connectiv-
ity analyses. Due to the lightweight data structure defini-
tion described here, it is straightforward to include new 
annotation types, such as volumetric segmentation (used 
in the soma here) or connectivity between tracing points 
in nGauge. We envision that nGauge’s open-source and 
expandability nature will attract contributions from the 
community to its public repository to make it an important 
toolkit of neuroscience research. Finally, we envision that 
nGauge can be used in future educational applications, such 
as building 3D print models for pedagogical purposes.

Information Sharing Statement

nGauge is developed for Python 3.7 and has been tested for 
compatibility on the most recent version of Python at the time  
of writing (Python 3.9). The library is available from the Python 
��� package manager by executing the following command in a  
terminal: ̀  ��� ������� ������ ̀. The source code, documentation  
which is automatically built with Sphinx,3 and issue tracker are 
also available from the following Github repo: https:// github. 
com/ Cai- Lab- at- Unive rsity- of- Michi gan/ nGauge. nGauge usage 
tutorials are provided in this repository. The provided Blender 
rendering tools are compatible with any version of Blender 
which uses a Python 3.8+ scripting interface. Installation 
instructions are included within the above-referenced GitHub 
repo. All data is available through the GitHub repository above 
or from the corresponding author upon reasonable request.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12021- 022- 09573-8.
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