


identity, scale, position, orientation, and shape of objects

in the environment. It is compact because it relies on a low-

dimensional latent encoding of the signed distance function

(SDF) to an object’s surface, allowing onboard storage of

large multi-category object maps.

Shape representation using SDF predicted by an autode-

coder network was proposed in DeepSDF [36] and Du-

alSDF [18]. In this paper, we extend the SDF prediction

network in prior works by proposing a bi-level object model

with a shared latent representation. Object primitive shapes

and SDF are predicted from a shared latent space. On the

coarse-level, an ellipsoid is used as a primitive shape to

constrain the overall shape scale. On the fine-level, an au-

todecoder similar to DeepSDF is used to preserve the object

shape details. To summarize, the main contribution of this

work is the design of

• a bi-level object model with coarse and fine levels, en-

abling joint optimization of object pose and shape. The

coarse-level uses a primitive shape for robust pose and

scale initialization, and the fine-level uses SDF resid-

ual directly to allow accurate shape modeling. The wo

levels are coupled via a shared latent space.

• a cost function to measure the mismatch between the

bi-level object model and the segmented RGB-D ob-

servations in the world frame.

2. Related Work

Several RGB-D SLAM approaches [33, 14, 23, 15, 47]

are able to generate accurate trajectory and a dense 3D

model of the environment. However, early RGB-D SLAM

techniques focus on obtaining a geometric map and over-

look the semantics. Later, object-level SLAM approaches

[34, 49] are proposed to model both geometry and seman-

tics. Those works focus on estimating the object pose ac-

curately, but have limited capabilities to model object shape

details due to the very simple geometric shape models used,

such as cuboids and quadrics.

Compared with other similar works [30, 10] on learning

implicit function for surface, DeepSDF [36] learns a contin-

uous metric function of distance instead of binary classifica-

tion function dividing inside or outside, which makes it suit-

able for gradient-based optimization in SLAM. Subsequent

works along the direction of DeepSDF include FroDO [41],

MOLTR [25], and DualSDF [18]. FroDO leverages both

point cloud and SDF representations, which defines sparse

and dense losses to optimize the object shape. An exten-

sion of FroDO is MOLTR, which reconstructs an object

shape by fusing multiple single-view shape codes to han-

dle both static and dynamic objects. Similar to the coarse-

to-fine shape estimation in FroDO and MOLTR, DualSDF

uses two levels of granularity to represent 3D shapes. A

shared latent space is employed to tightly couple the two

levels, and a Gaussian prior is imposed on the latent space

to enable sampling, interpolation, and optimization-based

manipulation. DeepSDF and the derivatives offer models

for accurate shape modeling but few of them consider ob-

ject pose estimation.

Object pose estimation is a critical step in the construc-

tion of an object level map. To estimate the transformation

between world frame and the object frame, Scan2CAD [4]

estimates the object pose and scale by establishing keypoint

correspondences between the objects in the scene and their

3D CAD models. The keypoints are annotated for the CAD

models and predicted by CNNs during inference. The Har-

ris keypoints are detected from the 3D scan to be matched

with those keypoints on the CAD models. However, both

keypoint annotation and model retrieval take a long time

for objects with complicated shapes, such as sofa. Later

on Avetisyan et al.[5] dramatically increased the efficiency

of the alignment process by utilizing a novel differentiable

Procrustes alignment loss. Firstly, a proposed 3D CNN is

used to identify objects in the 3D scan. Secondly, object

bounding boxes are used to establish correspondence be-

tween scan objects and the CAD models. Lastly, alignment-

informed correspondences are learnt via the differentiable

Procrustes alignment loss. Furthermore, multi-view con-

straints are introduced in Vid2CAD [28].

In the proposed ELLIPSDF, a learnt continuous SDF is

used to reconstruct the object at arbitrary resolutions, and

thus our approach has a more expressive object model in

comparison to [20, 44]. Furthermore, our model has two

levels of granularity that provide a coarse object prior to

optimize the object scale, which is different from FroDO

or [1]. Our system is online and more efficient, and unlike

prior works that focus on single object estimation, we also

present a large-scale, quantitative evaluation using a public

benchmark that has multiple objects.

3. Background

Rigid body orientation, pose, and similarity are repre-

sented using the SO(3), SE(3), and SIM(3) Lie groups, re-

spectively, defined as:

SO(3) ,
{
R ∈ R

3×3 | R⊤R = I, det(R) = 1
}
,

SE(3) ,

{[
R t

0⊤ 1

]

∈ R
4×4

∣
∣
∣
∣
R ∈ SO(3), t ∈ R

3

}

,

SIM(3) ,

{[
sR t

0⊤ 1

]

∈ R
4×4

∣
∣
∣
∣
R ∈ SO(3), t ∈ R

3, s ∈ R

}

.

(1)

We overload ξ× to denote a mapping from a vector in R
3 or

R
6 or R7 to the Lie algebra so(3), se(3), or sim(3), associ-
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ated with the Lie groups in (1), defined as:

so(3) ,






ξ× =





0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0





∣
∣
∣
∣
ξ ∈ R

3






,

se(3) ,

{

ξ× =

[
θ× ρ

0⊤ 0

] ∣
∣
∣
∣
ξ =

[
ρ

θ

]

∈ R
6

}

,

sim(3) ,






ξ× =

[
σI+ θ× ρ

0⊤ 0

] ∣
∣
∣
∣
ξ =





ρ

θ

σ



 ∈ R
7






.

(2)

We define an infinitesimal change of a Lie group element

T via a left perturbation exp
(
ξ×

)
T, using the exponential

map exp
(
ξ×

)
to retract a Lie algebra element ξ× to the Lie

group. Please refer to [6, Ch.7] or [16] for details.

The coarse shape of a rigid body is represented using a

quadric shape [19, Ch.3],
{
x ∈ R

3 | x⊤Qx ≤ 0
}

, where

x , [x⊤, 1]⊤ denotes the homogeneous coordinates of x

and Q ∈ R
4×4 is a symmetric matrix. An axis-aligned

ellipsoid centered at the origin:

Eu ,
{
x ∈ R

3 | x⊤U−⊤U−1x ≤ 1
}
, (3)

where U , diag(u) and the elements of the vector u ∈
R

3 specify the lengths of the semi-axes of Eu. An ellip-

soid Eu is a special case of a quadric shape with Q =
diag(U−2,−1). A quadric shape can also be defined in

dual form, as the set of planes π = Qx that are tangent to

the shape surface at each x. This dual quadric surface def-

inition is
{
π ∈ R

3 | π⊤Q∗π = 0
}

, where Q∗ = adj(Q)
is the adjugate of Q. A dual quadric defined by Q∗ can

be scaled, rotated, or translated by a similarity transform

T ∈ SIM(3) as TQ∗T⊤. Similarity, a dual quadric can

be projected to a lower-dimensional space by a projection

matrix P =
[
I 0

]
as PQ∗P⊤.

The fine shape of a rigid body is represented as
{
x ∈ R

3 | f(x) ≤ 0
}

using the signed distance field of a

set S ⊂ R
3:

f(x) =

{

−d(x, ∂S), x ∈ S,

d(x, ∂S), x /∈ S,
(4)

where d(x, ∂S) denotes the Euclidean distance from a point

x ∈ R
3 to the boundary ∂S of S .

4. Problem Formulation

Consider an RGB-D camera whose optical frame has

pose Ck ∈ SE(3) with respect to the global frame at dis-

crete time steps k = 1, . . . ,K. Assume that the camera

is calibrated and its pose trajectory {Ck}k is known, e.g.,

from a SLAM or SfM algorithm. At time k, the camera

provides an RGB image Ik : Ω2 7→ R
3
≥0 and a depth im-

age Dk : Ω2 7→ R≥0 such that Ik(p) and Dk(p) are the

color and depth of a pixel p ∈ Ω2 in normalized pixel

coordinates. The camera moves in an unknown environ-

ment that contains N objects O , {on}
N
n=1. Each object

on = (cn, in) is an instance in of class cn, defined below.

Definition. An object class is a tuple c , (ν, z, fθ, gφ),
where ν ∈ N is the class identity, e.g., chair, table, sofa,

and z ∈ R
d is a latent code vector, encoding the average

class shape. The class shape is represented in a canonical

coordinate frame at two levels of granularity: coarse and

fine. The coarse shape is specified by an ellipsoid Eu in (3)

with semi-axis lengths u = gφ(z) decoded from the latent

code z via a function gφ : Rd 7→ R
3 with parameters φ.

The fine shape is specified by the signed distance fθ(x, z)
from any x ∈ R

3 to the average shape surface, decoded

from the latent code z via a function fθ : R3 × R
d 7→ R

with parameters θ.

Definition. An object instance of class c is a tuple i ,

(T, δz), where T ∈ SIM(3) specifies the transformation

from the global frame to the object instance frame, and

δz ∈ R
d is a deformation of the latent code z, specifying

the average shape of class c.

We assume that object detection (e.g., [8]) and tracking

(e.g., [7]) algorithms are available to provide the class cn
and pixel-wise segmentation Ω2

n,k ⊆ Ω2 of any object n
observed by the camera at time k. Our goal is to estimate the

transformation and shape in := (Tn, δzn) of each observed

object n. We consider object instances independently and

drop the subscript n when it is clear from the context.

Given an object with multi-view segmentation Ω2
k, we

use the depth Dk(p) of each pixel p ∈ Ω2
k to obtain a set

of points Xk(p) along the ray starting from the camera op-

tical center and passing through p. The sets Xk(p) is used

to optimize the pose and shape of the object instance. For

each ray, we choose three points, one lying on the observed

surface, one a small distance ǫ > 0 in front of the surface,

and one a small distance ǫ behind. Given d ∈ {0,±ǫ}, we

obtain points y ∈ R
3 in the optical frame corresponding to

the pixels p ∈ Ω2
k:

Yk(p) ,

{

(y, d)

∣
∣
∣
∣
y =

(

Dk(p) +
d

‖p‖

)

p, d ∈ {0,±ǫ}

}

,

and project them to the global frame using the known cam-

era pose Ck:

Xk(p) ,

{

(x, d)

∣
∣
∣
∣
x = PCky, (y, d) ∈ Yk(p)

}

. (5)

We define an error function eφ to measure the discrep-

ancy between a distance-labelled point (x, d) ∈ Xk(p) ob-

served close to the instance surface and the coarse shape

Eu provided by u = gφ(z). Another error function eθ is

used for the difference between (x, d) and the SDF value
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Figure 2. ELLIPSDF Overview: A point cloud and initial pose (green) are obtained from RGB-D detections of a chair instance from known

camera poses (blue). A bi-level category shape description, consisting of a latent shape code, a coarse shape decoder, and a fine shape

decoder (orange), is trained offline using a dataset of mesh models. Given the observed point cloud, the pose and shape deformation of the

newly seen instance are optimized jointly online, achieving shape reconstruction in the global frame (red).

fθ(x, z) predicted by the fine shape model. The overall er-

ror function is defined as:

e(T, δz,θ,φ; {Xk(p)}) , αer(δz) (6)

+
K∑

k=1

∑

p∈Ω2

k

∑

(x,d)∈Xk(p)

βeθ(x, d,T, δz) + γeφ(x, d,T, δz),

where er(δz) is a shape deformation regularization term.

The coarse-shape error, eθ , fine-shape error, eφ, and the

regularization, er are defined precisely in Sec. 5.1.

We distinguish between a training phase, where we opti-

mize the parameters z, θ, φ of an object class using offline

data from instances with known mesh shapes, and a testing

phase, where we optimize the pose T and shape deforma-

tion δz of a previously unseen instance from the same cate-

gory using online distance data from an RGB-D camera.

In training, we generate points {Xn,k(p)} close to the

surface of each available mesh model n in a canonical coor-

dinate frame (with identity pose I4) and optimize the class

shape parameters via:

min
{δzn},θ,φ

∑

n

e(I4, δzn,θ,φ; {Xn,k(p)}). (7)

In testing, we receive points {Xk(p)} in the global

frame, generated by the RGB-D camera from the surface

of a previously unseen instance. Assuming known object

class, we fix the trained shape parameters z∗, θ∗, φ∗ and

optimize the unknown instance transform T ∈ SIM(3) and

shape deformation δz ∈ R
d:

min
T,δz

e(T, δz,θ∗,φ∗; {Xk(p)}). (8)

5. Object Pose and Shape Optimization

This section develops ELLIPSDF, an autodecoder model

for bi-level object shape representation. Sec. 5.1 presents

the model and defines the error functions for its parameter

optimization. Sec. 5.2 describes how a trained ELLIPSDF

model is used at test time for multi-view joint optimization

of object pose and shape. An overview is shown in Fig. 2.

5.1. Training an ELLIPSDF Model

Bi-level Shape Representation: The ELLIPSDF shape

model consists of two autodecoders gφ(z) and fθ(x, z), us-

ing a shared latent code z ∈ R
d. The first autodecoder pro-

vides a coarse shape representation with parameters φ, as

an axis-aligned ellipsoid Eu in a canonical coordinate frame

with semi-axis lengths u = gφ(z). The second autoencoder

provides a fine shape representation with parameters θ, as

an implicit SDF surface
{
x ∈ R

3 | fθ(x, z) ≤ 0
}

in the

same canonical coordinate frame. We implement gφ(z) and

fθ(x, z) as 8-layer perceptrons with one cross-connection,

as described in Sec. D in the supplementary material of Du-

alSDF [18]. The reparametrization trick [24] is used to

maintain a Gaussian distribution z = µ + diag(σ)ǫ over

the latent code with ǫ ∼ N (0, I). Thus, at training time,

the ELLIPSDF model parameters are the mean µ ∈ R
d and
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Mw = 0, where w = (v, β1, . . . , βk)
⊤, and M is defined

in (8) in [40]. This leads to a least squares system:

ŵ = argmin
w

‖Mw‖22 s.t. ‖w‖22 = 1, (14)

which can be solved by applying SVD to M, and taking

the right singular vector associated to the minimum singu-

lar value. The constraint ‖w‖22 = 1 avoids a trivial solution.

The first 10 entries of ŵ are v̂, which is a vectorized ver-

sion of the dual ellipsoid Q̂∗ in the global frame. To avoid

degenerate quadrics, a variant of the least squares system in

(14) is proposed in [17], which constrains the center of the

ellipse and the reprojection of the center of the 3D ellipsoid

to be close. Thus, we modify M using the version in (9) in

[17] to improve the estimation.

The object pose T̂−1 can be recovered by relating the

estimated ellipsoid Q̂∗ in global coordinates to the ellip-

soid Q∗
u in the canonical coordinate frame predicted by the

coarse shape decoder u = gφ(z) using the average class

shape z:

Q̂∗= T̂−1Q∗
uT̂

−⊤=

[
ŝ2R̂UU⊤R̂⊤ − t̂t̂⊤ −t̂

−t̂⊤ −1

]

.

The translation t̂ can be recovered from the last column of

Q̂∗. To recover the rotation, note that A , PQ̂∗P⊤ +
t̂t̂⊤ = ŝ2R̂UU⊤R̂⊤ is a positive semidefinite matrix. Let

its eigen-decomposition be A = VYV⊤, where Y is a

diagonal matrix containing the eigenvalues of A. Since

UU⊤ is diagonal, it follows that R̂ = V, while the scale

ŝ is obtained as ŝ = 1
3

√

tr(U−1YU−⊤). Note that al-

though the SIM(3) pose could also be recovered from the

object point cloud, other outlier rejection methods are re-

quired [48] when the point cloud is noisy.

Optimization: Given the initialized instance transforma-

tion T̂ and initial shape deformation δẑ = 0, we solve the

joint pose and shape optimization in (8) via gradient de-

scent. Note that the decoder parameters θ, φ and the mean

category shape code z are fixed during online inference.

Since T is an element of the SIM(3) manifold, the gradients

and gradient steps need to be computed by projecting to the

tangent sim(3) vector space and retracting back to SIM(3).

We introduce local perturbations T = exp
(
ξ×

)
T̂, δz =

δz̃+ δẑ and derive the Jacobians of the error function in (6)

with respect to ξ and δz̃.

Proposition 1. The Jacobian of eθ in (9) with respect to the

transformation perturbation ξ ∈ sim(3) is:

∂eθ
∂ξ

=
∂ρ(r)

∂r

(

ŝ[06, 1]fθ(x, δẑ) + ŝ∇xfθ(x, δẑ)
⊤P

[

T̂x
]⊙

)

∂eθ
∂δz̃

=
∂ρ(r)

∂r
ŝ∇zfθ(x, δẑ),

where fθ(x, δẑ) = fθ(PT̂x; z + δẑ) is defined in (9) and
∂ρ(r)
∂r

is the derivative of the Huber term in (10) evaluated

at r = ŝfθ(x, δẑ)− d:

∂ρ(r)

∂r
=

{
r |r| ≤ δ
sign(r)δ else.

The operator x⊙ is defined as:

x⊙ ,

[
I3 −x× x

0⊤ 0⊤ 0

]

∈ R
4×7.

Proof. Using the chain rule and the product rule:

∂eθ
∂ξ

=
∂eθ
∂r

∂r

∂ξ
=

∂eθ
∂r

(
∂s

∂ξ
fθ(x, δz) + s

∂fθ
∂Ox

∂Ox

∂ξ

)

,

where Ox = PTx is a point in the object frame. We

have ∂s
∂ξ

= eσ[06, 1] = s[06, 1]. The term s ∂fθ
∂
O
x

is the

gradient of the fine-level SDF decoder with respect to the

input s∇xfθ(x, δz), which could be obtained from auto-

differentiation. Finally, we have:

Ox = PTx ≈ P(I+ ξ×)T̂x

= PT̂x+Pξ×T̂x

= PT̂x+P[T̂x]⊙
︸ ︷︷ ︸

∂
O

x

∂ξ

ξ.

In the second equality in Prop. 1, the term
∂ρ(r)
∂r

ŝ∇zfθ(x, δẑ) is the gradient of the fine-level

SDF loss with respect to the input z and can be obtained

via auto-differentiation. The Jacobians of the coarse-level

SDF error
∂eφ
∂ξ

,
∂eφ
∂δz̃

can be obtained in a similar way.

After obtaining the Jacobians, the pose and latent shape

code can be optimized via:

Ti+1 , exp

(

−η1
∂e(T, δz,θ∗,φ∗; {Xk(p)})

∂ξ

)

Ti

δzi+1 , δzi − η2

(
∂e(T, δz,θ∗,φ∗; {Xk(p)})

∂δz

)

,

where η1, η2 are step sizes, δz0 = 0, and T0 = T̂ is ob-

tained from the initialization. During optimization, we add

regularization er(δz) = ‖δz‖22 to restrict the amount of la-

tent code deformation.

6. Evaluation

6.1. Training Details

The ELLIPSDF decoder model is trained on synthetic

CAD models from ShapeNet [9]. Each model’s scale is

normalized to be inside a unit sphere. We sample points

and calculate their SDF values using a uniform distribution

in the unit sphere for training the coarse-level shape decoder

gφ. Another set of points that are close to the model surface

are sampled for training the fine-level shape decoder fθ .
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Figure 4. Qualitive results. Column a): Ground-truth scene in ScanNet Sequence 0518 (upper row) and 0314 (lower row). Column b): The

RGB axes are the camera trajectory, point clouds are the ones obtained from RGB-D sensor with added pesudo points, and the ellipsoids

(black for chair, red for sofa, blue for monitor, brown for table) are the initialized objects. Column c): Reconstructed meshes using

ELLIPSDF, rendered from the optimized latent code and pose.

The following setting were used to train the decoder net-

works and the latent shape code z. We use the Adam op-

timizer with initial learning rate 5 × 10−4, 0.5 ratio decay

every 300/700 epochs for the coarse and fine level networks

separately. The total epoch number is 1500. The latent

code dimension is 64, and the network structure follows the

model in DualSDF [18].

6.2. Qualitative Results

We evaluate ELLIPSDF on the ScanNet dataset [13],

which provides 3D scans captured by a RGB-D sensor of

indoor scenes with chairs, tables, displays, etc. We segment

out objects from scene-level mesh using provided instance

labels, and sample points from object meshs to generate

point observations. Visualizations of shape optimization for

a chair are shown in Fig. 5. Optimization step improves the

scale and shape estimates notably, e.g. by transforming the

four-leg mean shape into an armchair. Larger scale qualita-

tive results are shown in Fig. 4, demonstrating the effective-

ness of joint shape and pose optimization. Optimized poses

are closer to the ground-truth, and optimized shapes resem-

ble the objects better than simple primitive shapes such as

cuboids or quadrics that lacks fine details. For example, the

successful reconstruction of an angle sofa is illustrated in

the upper row in Fig. 4, which deforms from an initial mean

sofa shape that does not have an angle. ELLIPSDF is also

able to deal with partial observations as seen in the lower

row in Fig. 4. Although the observed point clouds of the

displays and the chairs are sparse, our approach still recon-

structs those objects successfully. Nevertheless, the recon-

Figure 5. Intermediate ELLIPSDF stages. First column: RGB im-

age, depth image, instance segmentation (yellow), fitted ellipse

(red) for a chair in ScanNet scene 0461. Second column: mean

shape and ellipsoid with initialized pose. Third column: optimized

fine-level and coarse-level shapes with optimized pose.

struction is a square instead of rounded for the table due to

a severe occlusion of the observation that only less than half

of the table is observed.

6.3. Quantitative Results

This section presents quantitative evaluation against

other methods regarding both pose and shape estimation

accuracy. We also present ablation studies to showcase the

improvement of the optimization over initialization-only re-

sults, and the bi-level model over a one level model.
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Table 1. Quantitative results for pose estimation on ScanNet [13].
Scan2CAD [4] Vid2CAD [28] ELLIPSDF (init) ELLIPSDF (opt)

31.7 38.3 31.5 39.6

Table 2. Quantitative results for shape evlaution on ScanNet[13].
Method cabinet chair display table avg.

# intances 132 820 209 146 327

ELLIPSDF (fine) 88.4 88.3 90.6 76.2 85.9

ELLIPSDF (coarse+fine) 91.0 90.6 96.9 77.3 89.0

Evaluation on Object Pose: We obtain the ground-truth

object pose annotations from Scan2CAD [4] and follow the

pose evaluation metrics it defines, which decomposes a pose

T ∈ SIM(3) into rotation q, translation p and scale s. For

an accurate pose estimation, the error thresholds for trans-

lation, rotation, and scales are set as 0.2, 20◦ and 20% re-

spectively with respect to the ground-truth pose. The pose

evaluation is presented in Tab. 1, in which ELLIPSDF (init)

refers to the initialization-only step in Sec. 5.2, whereas EL-

LIPSDF (opt) refers using both the initialization and opti-

mization steps in Sec. 5.2. The last two columns in Tab. 1

show that adding optimization step using SDF residuals

improves the estimation by the initialization-only variant,

due to the additional SDF residuals to help estimate pose.

Moreover, ELLIPSDF (opt) outperforms both Scan2CAD

and Vid2CAD, which demonstrates the superiority of EL-

LIPSDF that employs a primitive ellipsoid shape tailored

for pose and scale estimation.

Evaluation on Object Shape: We evaluate ELLIPSDF for

shape prediction on ScanNet [13] dataset in Tab. 2. In-

stead of single object evaluation in FroDO [41], we eval-

uate on multiple objects, which is harder than the single-

object-scene due to clustering and partial observations. The

large scale evaluation verifies that our method can general-

ize across different sequences and objects. The object point

cloud sampled from the object mesh from [4] is used as the

ground truth Sgt, and the estimated point cloud Sest is gen-

erated from the optimized latent code z + δz. Given the

ground-truth point cloud Sgt and ELLIPSDF point cloud

Sest for an object, the fitting rate with inlier ratio is

fit(Sest,Sgt) =
|Sclose|

|Sest|
,

Sclose = {v ∈ Sest : df (v,Sgt) < λ},

(15)

where λ = 0.2(m). A distance function df (·, ·) is utilized

to measure the distance between a point v and a point cloud

S , which is the distance from the closest point u ∈ S to the

point v. In CAD-Deform [22], the distance function is set

to be L1 distance, while we use L2 distance.

We run ELLIPSDF (fine) and ELLIPSDF (coarse+fine)

on 150 validation sequences on ScanNet [13], where EL-

LIPSDF (fine) means only the fine level SDF residual is

used by setting γ = 0 in (6), and ELLIPSDF (coarse+fine)

Table 3. Comparison of 3D detection results on ScanNet [13].

mAP @ IoU=0.5 Chair Table Display

FroDO [41] 0.32 0.06 0.04

MOLTR [25] 0.39 0.06 0.10

ELLIPSDF (fine) 0.42 0.26 0.25

ELLIPSDF (coarse+fine) 0.43 0.27 0.31

means the bi-level SDF residuals are used. For each op-

timized object, we calculate the fitting rate and then aver-

age across all instances. In Tab. 2, we show the number

of instances and average fitting rates for 4 object classes.

ELLIPSDF (coarse+fine) achieves better results than EL-

LIPSDF (fine) across all classes, demonstrating an average

3% boost of fitting rate with the assistance of coarse model,

reaching nearly 90% accuracy. The results indicate the ef-

fectiveness of the coarse level error function for improving

the scale estimation.

Evaluation on 3D IoU: For a quantitative evaluation on

pose estimation, our approach is compared with FroDO [41]

and MOLTR [25] on ScanNet [13]. The ground-truth ob-

ject poses and shapes are from Scan2CAD [4], whereas

the estimated 3D bounding box is generated from the es-

timated point cloud. The evaluation metric is same as [25],

i.e. mean Average Precision (mAP), and the IoU threshold

is 0.5. The results are shown in Tab. 3. First, we com-

pare the bi-level model against the one-level model. From

the last two rows in Tab. 3, ELLIPSDF (coarse+fine) is

superior than ELLIPSDF (fine) in terms of 3D IoU, and

thus demonstrates that the bi-level model is beneficial by

providing additional cues to constrain the pose and shape.

The improvement is more significant for smaller objects,

e.g. the displays. This may be explained by the fact that

the initialization error is relatively larger for smaller ob-

jects, and thus requires a coarse shape residual to confine

its pose. Moreover, ELLIPSDF outperforms both FroDO

and MOLTR by a large margin for two probably reasons.

Firstly, 3D point clouds are used in the observation for EL-

LIPSDF, while the other two only rely on 2D observations.

Secondly, ELLIPSDF computes coarse level SDF residuals

using a primitive shape to aid the estimation of pose and

shape scale, whereas the other methods use SDF residuals

computed from fine shape details.

7. Conclusion

This work proposes ELLIPSDF, which a novel seman-

tic mapping approach for RGB-D sensors using a compact,

shared latent representation for a bi-level object model to

achieve joint pose and shape optimizaiton. Evaluation re-

sults on large-scale dataset demonstrate the superiority of

ELLIPSDF compared with other approaches. A future re-

search direction is to integrate ELLIPSDF into the pose

graph optimization for key-frame based SLAM.
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