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Abstract— Adaptive control is a critical component of
reliable robot autonomy in rapidly changing operational
conditions. Adaptive control designs benefit from a dis-
turbance model, which is often unavailable in practice.
This motivates the use of machine learning techniques to
learn disturbance features from training data offline, which
can subsequently be employed to compensate the distur-
bances online. This paper develops geometric adaptive
control with a learned disturbance model for rigid-body sys-
tems, such as ground, aerial, and underwater vehicles, that
satisfy Hamilton’s equations of motion over the SE(3) man-
ifold. Our design consists of an offline disturbance model
identification stage, using a Hamiltonian-based neural or-
dinary differential equation (ODE) network trained from
state-control trajectory data, and an online adaptive con-
trol stage, estimating and compensating the disturbances
based on geometric tracking errors. We demonstrate our
adaptive geometric controller in trajectory tracking sim-
ulations of fully-actuated pendulum and under-actuated
quadrotor systems.

Index Terms— Adaptive control, Identification for control,
Machine learning.

I. INTRODUCTION

A
UTONOMOUS mobile robots assisting in transportation,

search and rescue, and environmental monitoring ap-

plications face complex and dynamic operational conditions.

Ensuring safe operation depends on the availability of accu-

rate system dynamics models, which can be obtained using

system identification [1] or machine learning techniques [2]–

[5]. When disturbances and system changes during online

operation bring about new out-of-distribution data, it is often

too slow to re-train the nominal dynamics model to support

real-time adaptation to environment changes. Instead, adaptive

control [6], [7] offers efficient tools to estimate and compen-

sate for disturbances and parameter variations online.

A key technical challenge in adaptive control is the design

of an adaptation law that estimates the disturbance online [6].

The disturbance can be non-parametric [8]–[12] or parametric

[13]–[16], e.g. a linear combinations of known nonlinear

features, and is updated based on the state errors with stability

obtained by sliding-mode theory [13]–[15], assuming zero-

state detectability [15], [16] or L1-adaptation [8]–[10]. If the

system evolves on a manifold (e.g., when the state contains
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orientation), an adaptation law is designed based on geometric

errors, derived from the manifold constraints [17], [18]. A

disturbance observer [11], [12] use the state errors introduced

by the disturbances to design an asymptotically stable observer

system that estimates the disturbance online. A disturbance

adaptation law is paired with a nominal controller, derived

using Lagrangian dynamics with feedback linearization [13],

[19], Hamiltonian dynamics with energy shaping [15], [20],

or model predictive control [10], [21].

Recently, there has been growing interest in applying ma-

chine learning techniques to design adaptive controllers. As

the nonlinear disturbance features are actually unknown in

practice, they can be estimated using Gaussian processes [9],

[22] or neural networks [23], [24]. The features can be learned

online in the control loop [9], [23], which is potentially slow

for real-time operation, or offline via meta-learning from past

state-control trajectories [25] or system dynamics simulation

[24]. Given the learned disturbance features, an adaptation law

is designed to estimate the disturbances online, e.g. using L1-

adaptation [9] or by updating the last layer of the feature neural

network [23], [24], [26].

This paper develops data-driven adaptive control for rigid-

body systems, such as unmanned ground vehicles (UGVs),

unmanned aerial vehicles (UAVs), or unmanned underwater

vehicles (UUVs), that satisfy Hamilton’s equations of motion

on position and orientation manifold SE(3). While adaptation

laws have been developed to work with non-parametric uncer-

tainties in the related work, we consider linearly parameterized

disturbances, i.e. linear combinations of unknown nonlinear

features. While recent techniques for disturbance feature learn-

ing and data-driven adaptive control are restricted to systems

whose states evolve in Euclidean space, a unique aspect of

our adaptive control design is the consideration of geometric

tracking errors on the SE(3) manifold. Compared to existing

SE(3) geometric adaptive controllers specifically designed for

quadrotors with a known disturbance model [17], [18], we

develop a general adaptation law that can be used for any

rigid-body robot, such as a UGV, UAV, or UUV, and learn

disturbance features from trajectory data instead of assuming

a known model. Specifically, given a dataset of state-control

trajectories with different disturbance realizations, we learn

nonlinear disturbance features using a Hamiltonian-based neu-

ral ODE network [5], where the disturbances are represented

by neural networks, connected in an architecture that respects

the Hamiltonian dynamics. We develop a geometric adaptation

law to estimate the disturbances online and compensate them

by a nonlinear energy-shaping tracking controller.



In summary, our contribution is a learning-based adaptive

geometric control for SE(3) Hamiltonian dynamics that

• learns disturbance features offline from state-control tra-

jectories using an SE(3) Hamiltonian-based neural ODE

network, and

• employs energy-based tracking control with adaptive

disturbance compensation online based on the learned

disturbance model and the geometric tracking errors.

We verify our approach using simulated fully-actuated pen-

dulum and under-actuated quadrotor systems, and compare

with a disturbance observer method to highlight the benefit

of learning disturbance features from data.

II. PROBLEM STATEMENT

Consider a system modeled as a single rigid body with

position p ∈ R
3, orientation R ∈ SO(3), body-frame linear

velocity v ∈ R
3, and body-frame angular velocity ω ∈ R

3.

Let q = [p⊤ r⊤1 r⊤2 r⊤3 ]
⊤ ∈ SE(3) be the generalized

coordinates, where r1, r2, r3 are the rows of the rotation

matrix R. Let ζ = [v⊤ ω⊤]⊤ ∈ R
6 be the generalized

velocity. The generalized momentum of the system is defined

as p = M(q)ζ ∈ R
6, where M(q) ∈ R

6×6 is the generalized

mass matrix. The state is defined as x = (q, p) and its

evolution is governed by the system dynamics:

ẋ = f(x,u,d), (1)

where u is the control input and d is a disturbance signal. The

disturbance d is modeled as a linear combination of nonlinear

features W(x) ∈ R
6×p:

d(t) = W(x(t))a∗, (2)

where a∗ ∈ R
p are unknown feature weights.

A mechanical system obeys Hamilton’s equations of motion

[27, Chapter 7]. The Hamiltonian, H(q, p) = T (q, p) + V (q),
captures the total energy of the system as the sum of the kinetic

energy T (q, p) = 1
2p

⊤M(q)−1p and the potential energy

V (q). The dynamics in (1) are determined by the Hamiltonian

and re-formulated as a port-Hamiltonian system [5], [28]:

[

q̇

ṗ

]

=

[

0 q×

−q×⊤ p×

]

[

∂H
∂q
∂H
∂p

]

+

[

0

g(q)

]

u+

[

0

d

]

, (3)

where g(q) is the input gain and the disturbance d appears as

an external force applied to the system. The operators q× and

p× are defined as:

q
× =

[

R⊤ 0 0 0

0 r̂⊤1 r̂⊤2 r̂⊤3

]⊤

, p
× =

[

pv

pω

]×

=

[

0 p̂v

p̂v p̂ω

]

,

where the hat map (̂·) : R
3 7→ so(3) constructs a skew-

symmetric matrix from a 3D vector. Note that the equation

q̇ = q×
∂H
∂q

in (3) exactly specifies the SE(3) kinematics,

ṗ = Rv and Ṙ = Rω̂, with the rotation part written row-by-

row.

Consider a collection D = {D1,D2, . . . ,DM} of system

state transitions Dj , each obtained under a different unknown

disturbance realization a∗j , for j = 1, . . . ,M . Each Dj =

{x
(ij)
0 ,u(ij),x

(ij)
f , τ (ij)}

Dj

i=1 consists of Dj state transitions,

each obtained by applying a constant control input u(ij) to

the system with initial condition x
(ij)
0 and sampling the state

x
(ij)
f := x(ij)(τ (ij)) at time τ (ij). Our objective is to approx-

imate the disturbance model in (2) by d̄θ(t) = Wθ(x(t))aj ,

where θ parameterizes the shared disturbance features and the

parameters {aj}
M
j=1 model each disturbance realization. To

optimize θ, {aj}, we predict the dynamics evolution starting

from state x
(ij)
0 with control u(ij) and minimize the distance

between the predicted state x̄
(ij)
f and the true state x

(ij)
f from

Dj , for j = 1, . . . ,M . Since the approximated disturbance d̄θ

does not change if the features Wθ and the coefficients aj
are scaled by constants γ and 1/γ, respectively, we add the

norms of Wθ(x
(ij)
0 ) and {aj}

M
j=1 to the objective function as

regularization terms.

Problem 1. Given D = {{x
(ij)
0 ,u(ij),x

(ij)
f , τ (ij)}

Dj

i=1}
M
j=1,

find disturbance parameters θ, {aj}
M
j=1 that minimize:

min
θ,{aj}

M
∑

j=1

Dj
∑

i=1

ℓ(x
(ij)
f , x̄

(ij)
f )+

λθ

M
∑

j=1

Dj
∑

i=1

‖Wθ(x
(ij)
0 )‖2 + λa

M
∑

j=1

‖aj‖
2

s.t. ˙̄x(ij)(t) = f(x̄(ij)(t),u(ij), d̄
(ij)
θ

(t)), (4)

d̄
(ij)
θ

(t) = Wθ(x̄
(ij)(t))aj ,

x̄(ij)(0) = x
(ij)
0 , x̄

(ij)
f = x̄(ij)(τ (ij)),

∀i = 1, . . . , Dj , ∀j = 1, . . . ,M,

where ℓ is a distance metric on the state space.

After the offline disturbance feature identification in Prob-

lem 1, we design a controller u = π(x,x∗,a;θ) that

tracks a desired state trajectory x∗(t), using the dynamics

f and the learned disturbance model Wθ(x). To handle a

disturbance signal d(t) = Wθ(x(t))a
∗ with an unknown

realization a∗, we augment the tracking controller with an

adaptation law ȧ = ρ(x,x∗,a;θ), estimating a∗ online, so

that lim supt→∞ ℓ(x(t),x∗(t)) is bounded.

III. TECHNICAL APPROACH

We present our approach in two stages: disturbance feature

learning to solve Problem 1 (Sec. III-A) and geometric adap-

tive control design for trajectory tracking (Sec. III-B).

A. SE(3) Hamiltonian-based disturbance feature learning

To address Problem 1, we use a neural ODE network

[29] whose structure respects Hamilton’s equations in (3)

with known generalized mass M(q), potential energy V (q)
and the input gain g(q). We introduce a disturbance model,

d = Wθ(q, p)a, where Wθ(q, p) is a neural network, and

estimate its parameters θ from disturbance-corrupted data.

The training data Dj = {x
(ij)
0 ,u(ij),x

(ij)
f , τ (ij)}

Dj

i=1 may be

obtained using an odometry algorithm [30] or a motion capture

system. The data collection can be performed using an existing

baseline controller or a human operator manually controlling



the system under different disturbance conditions (e.g., wind,

ground effect, etc. for a UAV).

We define the geometric distance metric ℓ in Problem 1 as

a sum of position, orientation, and momentum errors:

ℓ(x, x̄) = ℓp(x, x̄) + ℓR(x, x̄) + ℓp(x, x̄), (5)

where ℓp(x, x̄) = ‖p − p̄‖22, ℓp(x, x̄) = ‖p − p̄‖22,

ℓR(x, x̄) = ‖
(

log(R̄R⊤)
)∨

‖22, log : SE(3) 7→ so(3) is the

inverse of the exponential map, associating a rotation matrix

to a skew-symmetric matrix, and (·)∨ : so(3) 7→ R
3 is the

inverse of the hat map (̂·). Let L(θ, {aj};D) be the total loss

in Problem 1. To calculate the loss, for each dataset Dj with

disturbance d̄
(ij)
θ

(t) = Wθ(x̄
(ij)(t))aj , we solve an ODE:

˙̄x(ij) = f(x̄(ij),u(ij), d̄
(ij)
θ

), x̄(ij)(0) = x
(ij)
0 , (6)

using an ODE solver. This generates a predicted state x̄
(ij)
f at

time τ (ij) for each i = 1, . . . , Dj and j = 1, . . . ,M :

x̄
(ij)
f = ODESolver

(

x
(ij)
0 , f , τ (ij);θ

)

, (7)

sufficient to compute L(θ, {aj};D). The parameters θ and

{aj} are updated using gradient descent by back-propagating

the loss through the neural ODE solver using adjoint states

y = ∂L
∂x̄

[29]. An augmented state s =
(

x̄,y, ∂L
∂θ

,
{

∂L
∂aj

})

satisfies ṡ = fs =
(

f ,−y⊤ ∂f
∂x̄

,−y⊤ ∂f
∂θ

,
{

−y⊤ ∂f
∂aj

})

. The

gradients ∂L
∂θ

and
{

∂L
∂aj

}

are obtained by a call to a reverse-

time ODE solver starting from sf = sf (τ
(ij)) [29]:

s0 =

(

x̄0,a0,
∂L

∂θ
,

{

∂L

∂aj

})

= ODESolver(sf , fs, τ
(ij)). (8)

B. Data-driven geometric adaptive control

Given the learned disturbance model Wθ(x) and a desired

trajectory x∗(t), we develop a trajectory tracking controller

u = π(x,x∗,a;θ) that compensates for disturbances and

an adaptation law ȧ = ρ(x,x∗,a;θ) that estimates the

disturbance realization online.

Our tracking controller for the Hamiltonian dynamics in (3)

is developed using interconnection and damping assignment

passivity-based control (IDA-PBC) [31]. Consider a desired

pose-velocity trajectory (q∗(t), ζ∗(t)). Since the momentum

p is defined in the body inertial frame, the desired momen-

tum p∗(t) should be computed by transforming the desired

velocity ζ∗ = [v∗⊤ ω∗⊤]⊤ to the body frame as p∗ =

M(q)

[

R⊤R∗v∗

R⊤R∗ω∗

]

. The Hamiltonian of the system (3) is not

necessarily minimized along x∗(t) = (q∗(t), p∗(t)). The key

idea of an IDA-PBC design is to choose the control input

u(t) so that the closed-loop system has a desired Hamiltonian

Hd(q, p), which is minimized along x∗(t). Using quadratic

errors in the position, orientation, and momentum, we design

the desired Hamiltonian:

Hd(q, p) =
1

2
kp(p− p∗)⊤(p− p∗) (9)

+
1

2
kR tr(I−R∗⊤R) +

1

2
(p− p

∗)⊤M−1(q)(p− p
∗),

where kp and kR are positive gains. We solve a set of matching

conditions, described in [5], [31], between the original dynam-

ics (3) with Hamiltonian H(q, p) and the desired dynamics

with Hamiltonian Hd(q, p) in (9) to arrive at a tracking

controller u = π(x,x∗,a;θ). The controller consists of an

energy-shaping term uES , a damping-injection term uDI , and

a disturbance compensation term uDC :

uES = g†(q)

(

q
×⊤ ∂V

∂q
− p

×M−1(q)p− e(q, q∗) + ṗ
∗

)

,

uDI = −Kdg
†(q)M−1(q)(p− p

∗), (10)

uDC = −g†(q)W(q, p)a,

where g†(q) =
(

g⊤(q)g(q)
)−1

g⊤(q) is the pseudo-inverse

of g(q) and Kd = diag(kvI, kωI) is a damping gain with

positive terms kv, kω . The controller utilizes a generalized

coordinate error between q and q∗:

e(q, q∗) =

[

ep(q, q
∗)

eR(q, q∗)

]

=

[

kpR
⊤(p− p∗)

1
2kR

(

R∗⊤R−R⊤R∗
)∨

]

(11)

and a generalized momentum error pe = p− p∗:

pe = M(q)

[

ev(x,x
∗)

eω(x,x
∗)

]

= M(q)

[

v −R⊤R∗v∗

ω −R⊤R∗ω∗

]

. (12)

Please refer to [5] for a detailed derivation of uES and uDI .

The disturbance compensation term uDC in (10) requires

online estimation of the disturbance feature weights a. Inspired

by [17], we design an adaptation law which utilizes the

geometric errors (11), (12) to update the weights a:

ȧ = ρ(x,x∗,a;θ)

= W⊤
θ (q, p)

[

cpep(q, q
∗) + cvev(x,x

∗)
cReR(q, q∗) + cωeω(x,x

∗)

]

,
(13)

where cp, cv, cR, cω are positive coefficients. The stability

of our adaptive controller (π,ρ) is shown in Theorem 1,

under the assumption that the learned disturbance features Wθ

converge to the true ones W(q, p) after the training process.

Theorem 1. Consider the Hamiltonian dynamics in (3) with

disturbance model in (2). Suppose that the parameters g(q),
M(q), V (q) and W(q, p) are known but the disturbance

feature weights a∗ are unknown. Let x∗(t) be a desired

state trajectory with bounded angular velocity, ‖ω∗(t)‖ ≤ γ.

Assume that the initial system state lies in the domain T =
{x ∈ T ∗SE(3) | Ψ(R,R∗) < α < 2, ‖eω(x,x

∗)‖ < β} for

some positive constants α and β, where Ψ(R,R∗) = 1
2 tr(I−

R∗⊤R). Consider the tracking controller in (10) with adapta-

tion law in (13). Then, there exist positive constants kp, kR,

kv, kω , cp = cR = c1, cv = cω = c2 such that the tracking

errors e(q, q∗) and pe defined in (11) and (12) converge to

zero. Also, the estimation error ea = a − a∗ is stable in the

sense of Lyapunov and uniformly bounded. An estimate of the

region of attraction is R = {x ∈ T | V(x) ≤ δ}, where:

V(q, p) = Hd(q, p) +
c1
c2

e⊤pe +
1

2c2
‖ea‖

2
2 (14)

and δ < λmin(Q1)min(α(2− α)k2R, β2λ2
min(M(q)))/2 for

Q1 =

[

min
{

k−1
p , k−1

R

}

−c1/c2
−c1/c2 λmin(M

−1(q))

]

. (15)







The desired trajectory is specified by the desired position p∗(t)
and the desired heading ψ∗(t). We construct an appropriate

choice of R∗ and ω∗ from ψ∗(t), as described in [5], [17], to

be used with the adaptive controller. The tracking controller

in (10) with gains kp = 0.135, kv = 0.0675, kR = 1.0,
and kω = 0.08, is used to obtain the control input u that

compensates for the disturbances. The disturbances d are

estimated by updating the weights a using the adaptation law

(13) with gains cp = cR = 0.08, cv = cω = 0.04.

We test the controller with wind dw, rotors 1 and 2 that

become defective from the beginning (scenario 1) or during

flight at t = 8 s (scenario 2), and near-ground, drag, and

downwash effects enabled in PyBullet. We track diamond-

shaped and spiral trajectories 100 times with wx and wy uni-

formly sampled from [0, 0.075] and δ1 and δ2 drawn uniformly

from [80%, 99%]. Table II shows the mean and standard

deviation of the tracking errors with and without adaptation

from the 100 flights. The errors with adaptation are ∼ 5 times

lower than without adaptation, illustrating the benefit of our

adaptive control design. For dw =
[

0.075 0.075 0
]

and

(δ1, δ2) = (80%, 80%), the quadrotor in scenario 1 without

adaptation drifts while our adaptive controller estimates the

disturbances online after a few seconds and successfully tracks

the trajectory as seen in Fig. 2a, 2b and 3 (left). For the same

wind, the quadrotor in scenario 2 with our controller starts to

track the trajectory, then drops down at t = 8 s, due to the

rotors becoming defective, but recovers as our adaptation law

updates the disturbances accordingly, as seen in Fig. 2c and

3 (right). The velocity error spikes in Fig. 2c are caused by

sharp turns in the diamond-shaped trajectory and the defective

rotors at t = 8 s. Without adaptation, the quadrotor drops to

the ground at t ≈ 12.5 s, shown in Fig. 3 (right). In Fig. 2 and

3, the tracking errors with adaptation stabilize close to but not

exactly 0 because of the disturbance feature approximation

gap between Wθ(q, p) and W(q, p), and the control input

discretization in time.

V. CONCLUSION

This paper introduced a neural ODE network for distur-

bance feature learning using disturbance-corrupted trajectory

data from a rigid-body system with Hamiltonian dynamics.

To enable trajectory tracking with online disturbance com-

pensation, we designed a passivity-based tracking controller

and augmented it with an adaptation law that compensates

disturbances relying on the learned features and geometric

tracking errors. Our evaluation showed that our adaptive con-

troller quickly estimates disturbances online and successfully

tracks desired trajectories, outperforming adaptation methods

without learned disturbance features. Future work will focus

on deploying the proposed controller on real robot systems.
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