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Safe Control Synthesis with Uncertain Dynamics and Constraints

Kehan Long1 Vikas Dhiman2 Melvin Leok1 Jorge Cortés1 Nikolay Atanasov1

Abstract—This paper considers safe control synthesis for
dynamical systems with either probabilistic or worst-case un-
certainty in both the dynamics model and the safety constraints.
We formulate novel probabilistic and robust (worst-case) control
Lyapunov function (CLF) and control barrier function (CBF)
constraints that take into account the effect of uncertainty
in either case. We show that either the probabilistic or the
robust (worst-case) formulation leads to a second-order cone
program (SOCP), which enables efficient safe and stable control
synthesis. We evaluate our approach in PyBullet simulations of
an autonomous robot navigating in unknown environments and
compare the performance with a baseline CLF-CBF quadratic
programming approach.

I. INTRODUCTION

A
Utonomous robotic systems are increasingly employed

in warehouse and home automation, transportation, and

security applications. A crucial aspect of successfully deploy-

ing such systems is the satisfaction of safety and stability

requirements, even in the presence of uncertainty in the

system model or constraints. The notion of safety in the

context of program correctness was first introduced in the

1970’s [1]. Around the same time, Artstein [2] introduced

control Lyapunov functions (CLFs) to enforce stability in the

context of nonlinear system control. The seminal work of

Sontag [3] established a universal formula for constructing

feedback control laws that stabilize nonlinear systems. In the

2000’s, barrier certificates were proposed to formally prove the

safety of closed-loop nonlinear and hybrid systems [4], [5].

Control barrier functions (CBFs) were developed to support

task-independent safe control synthesis, serving as a barrier

certificate for a closed-loop nonlinear system [6].

A key observation is that, for control-affine systems, the

CLF and CBF conditions are linear in the control input,

allowing a formulation of safe and stable control synthesis as

a quadratic program (QP) [7]–[9]. CLF-CBF-QP techniques

have been successfully employed in a variety systems, includ-

ing aerial robots [10], walking robots [11], and automotive

systems [12]. Most existing work, however, assumes complete

knowledge of the system dynamics and control barrier func-

tions. In reality, the dynamics model and safety constraints are

obtained using noisy sensor data and simplifying assumptions,
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leading to uncertainty and errors that should be captured when

ensuring safety and stability.

Capturing system-model and barrier-function estimation er-

rors impacts the formulation of CLF and CBF constraints, and

no longer give rise to QPs. Our main contribution is to show

that such uncertainty-aware stability and safety constraints can

still be formulated as convex constraints under two different

models of uncertainty: probabilistic and worst-case. To capture

probabilistic uncertainty, we specifically consider Gaussian

Process (GP) regression as an example approach for modeling

a probability distribution over a function space. When the

estimated barrier function and system dynamics are described

by a GP, we aim to ensure probabilistic safety and stability up

to a user-specified risk tolerance. We compute the distribution

of the CLF and CBF constraints, and use Cantelli’s inequality

[13] to bound the computed means with a margin dependent

on the variances and the desired risk-tolerance. The control

input appears linearly in the mean and quadratically in the

variance of the CLF and CBF constraints. This allows us

to restate the probabilistic constraints as second-order cone

constraints, leading to a second-order cone program (SOCP),

which is convex and can be solved efficiently online.

When worst-case error bounds on the system dynamics,

barrier function and its gradient are given, we formulate

a robust safe control synthesis problem. Under worst-case

disturbances, we show that the input appears both linearly and

within a norm term in the CLF and CBF constraints. Like

the probabilistic formulation, the original QP problem can be

reformulated as a convex SOCP for safe control synthesis.

We demonstrate our safe control synthesis techniques in

mobile robot navigation simulations. We consider a robot

tasked to follow a desired path in an unknown environment,

relying on online noisy obstacle sensing and offline dynamic

model estimation to ensure safety and stability. We show

that both the probabilistic and the robust CLF-CBF-SOCP

formulation allows the robot to safely track the deisred path.

In summary, we make the following contributions. First, we

formulate novel probabilistic safety and stability constraints

by considering stochastic uncertainty in the barrier functions

and system dynamics. Second, we formulate novel robust

safety and stability constraints by considering worst-case error

bounds in the barrier functions and system dynamics. Finally,

we show that either the probabilistic or the worst-case formu-

lations lead to a (convex) SOCP, enabling efficient synthesis

of safe and stable control.

II. RELATED WORK

This section reviews recent works on safe control synthesis

that address uncertainty due to unmodeled dynamics, input

disturbances, and barrier function estimation.

Jankovic [14] considers worst-case disturbance bounds on

the system dynamics and proposes robust CBF formulations.
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Eman et al. [15] utilize convex hulls to model disturbances in

a CBF-based safety framework. Clark [16] considers stochas-

tic control systems with incomplete information and derives

sufficient conditions for ensuring safety on average. Nguyen

and Sreenath [17] formulate a robust CLF-CBF QP by in-

troducing robust constraints to guarantee stability and safety

under model uncertainty. Hewing et al. [18] present a model

predictive control (MPC) approach that integrates a nominal

system with a residual part modeled as a GP. Compared to

our formulation, this approach enables optimizing the control

performance over a longer future horizon but requires time

discretization and convexification of the safety constraints.

In contrast, our formulations operate in continuous time and

handle general safe set descriptions. Ahmadi et al. [19]

introduce a conditional value-at-risk (CVaR) barrier function

to ensure safety for systems with stochastic uncertainty. The

approach guarantees safety with high probability even for

worst-case scenarios but the computation cost is high and

the formulation is restricted to linear systems. Our approach

enables efficient control synthesis for general control-affine

systems. Another line of research formulates safe control

synthesis as trajectory optimization. Alcan and Kyrki [20]

employ differential dynamics programming (DDP) to enforce

safety under additive uncertainty. In [21], the DDP idea is

combined with CBF to introduce a barrier state formulation

for safety of discrete-time systems.

Input-to-state safety (ISSf) was introduced in [22] to handle

input disturbances and was used in [23] to enlarge a safe set

by modifying a CBF. Alan et al. [24] introduce a tunable ISSf-

CBF for safe control synthesis while reducing conservatism.

Cosner et al. in [25] introduce measurement-robust CBFs

to account for uncertainty in state estimation and conduct

experiments on a Segway.

Srinivasan et al. [26] estimate barrier functions online

using a Support Vector Machine and solve a CLF-CBF QP

to generate safe control inputs. Zhang et al. [27] construct

robust output CBFs from safe expert demonstrations while

considering worst-case error bounds in the measurement map

and system dynamics.

This paper unifies and extends our prior work [28], [29]

by considering safe control synthesis with uncertainty in the

system dynamics and the barrier function simultaneously and

studying two separate cases of probabilistic and worst-case

uncertainty. In contrast, [28] only considered probabilistic

uncertainty in the dynamics using Gaussian process regression,

while [29] only considered worst-case error bounds in the

barrier function. We show that in either case the safe control

synthesis problem is a convex SOCP, which enables efficient

safe and stable control synthesis online.

III. PROBLEM FORMULATION

Consider a robot with dynamics model:

ẋ = f(x) + g(x)u = [f(x) g(x)] ·
[

1
u

]

=∆ F (x)u, (1)

where x ∈ X ⊆ R
n is the robot state and u ∈ U = {1}×R

m

is the control input.1 We assume f : Rn 7→ R
n and g : Rn 7→

R
n×m are continuously differentiable.

Definition III.1. A continuously differentiable function V :
R

n 7→ R≥0 is a control Lyapunov function (CLF) for the

system (1) if there exists a class K function αV such that:

inf
u∈U

CLC(x,u) ≤ 0, ∀x ∈ X , (2)

where the control Lyapunov condition (CLC) is:

CLC(x,u) =∆ LfV (x) + LgV (x)u+ αV (V (x))

= [∇xV (x)]⊤F (x)u+ αV (V (x)).
(3)

A CLF V may be used to encode a variety of control ob-

jectives, including path following [29], adaptive cruise control

[12], and bipedal robot walking [11].

To define safety requirements for the control objective,

consider a continuously differentiable function h : Rn 7→ R,

which implicitly defines a (closed) safe set of system states

S =∆ {x ∈ X | h(x) ≥ 0}. The following definition is a useful

tool to ensure that S is forward invariant, i.e., the robot state

remains in S throughout its evolution.

Definition III.2. A continuously differentiable function h :
R

n 7→ R is a control barrier function (CBF) on X ⊆ R
n for

(1) if there exists an extended class K∞ function αh with:

sup
u∈U

CBC(x,u) ≥ 0, ∀x ∈ X , (4)

where the control barrier condition (CBC) is:

CBC(x,u) =∆ Lfh(x) + Lgh(x)u+ αh(h(x))

= [∇xh(x)]
⊤F (x)u+ αh(h(x)).

(5)

According to [7], [9], any Lipschitz-continuous controller

k : X 7→ U that satisfies CBC(x,k(x)) ≥ 0 for all x ∈ X
renders the set S forward invariant for the system (1).

A. Safety and Stability with Known System Dynamics and

Barrier Function

When the system dynamics F (x) and barrier function h(x)
are known, a safe controller can be synthesized by combining

CLF and CBF constraints in a quadratic program:

min
u∈U,δ∈R

‖L(x)⊤(u− k̃(x))‖2 + λδ2,

s.t. CLC(x,u) ≤ δ, CBC(x,u) ≥ 0.
(6)

The term k̃(x) is a baseline controller and may be used

to specify additional control requirements, such as desirable

velocity or orientation. This term may be set to k̃(x) ≡ e1 if

minimum control effort is the main objective. The term L(x)
is a weighting matrix penalizing deviation from the baseline

controller. The term δ ≥ 0 is a slack variable that relaxes the

CLF constraints to ensure the feasibility of the QP, controlled

1Notation: We denote by In ∈ R
n×n the identity matrix and ∂A the

boundary of a set A ⊂ R
n. For a vector x and a matrix X, we use

‖x‖ and ‖X‖ to denote the Euclidean norm and the spectral norm. We use
vec(X) ∈ R

nm to denote the vectorization of X ∈ R
n×m, obtained by

stacking its columns. We denote by ∇ the gradient and LfV = ∇V · f
the Lie derivative of a differentiable function V along a vector field f . We
use ⊗ to denote the Kronecker product and GP(µ(x),K(x,x′)) to denote
a Gaussian Process distribution with mean function µ(x) and covariance
function K(x,x′). A continuous function α : [0, a) → [0,∞) is of class
K if it is strictly increasing and α(0) = 0, and it is of class K and
limr→∞ α(r) = ∞.
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by the scaling factor λ > 0. The QP formulation in (6)

modifies the baseline controller k̃(x) online to ensure safety

and stability via the CBF and CLF constraints.

We focus on enforcing safety and stability for the control-

affine system in (1) when the system dynamics F (x) and the

barrier function h(x) are unknown and need to be estimated

from data. We present an approach for estimating the system

dynamics and barrier functions from data in Sec.VI-A and

Sec.VI-B, respectively. Our main goal is to develop techniques

for safe and stable control synthesis with the estimated F (x)
and h(x). We consider two scenarios, depending on whether

probabilistic or worst-case error descriptions of the dynamics

and barrier functions are available.

B. Safety and Stability with Gaussian Process Distributed

System Dynamics and Barrier Function

When the system dynamics and barrier functions can be

described as GPs, we consider the following probabilistic

control synthesis problem.

Problem 1 (Safety and stability under Gaussian uncer-

tainty). Given an estimated distribution on the unknown

system dynamics vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x
′))

and an estimated distribution on the barrier function h(x) ∼
GP(h̃(x),Kh(x,x

′)), design a feedback controller k such

that, for each x ∈ X :

P(CLC(x,k(x)) ≤ δ) ≥ p, P(CBC(x,k(x)) ≥ 0) ≥ p,

where p ∈ (0, 1) is a user-specified risk tolerance.

C. Safety and Stability with Worst-Case Uncertainty in System

Dynamics and Barrier Function

Many robotic systems require instead the guarantee that

safety and stability hold under all possible error realizations,

which motivates us to also consider the following problem.

Problem 2 (Safety and stability under worst-case uncer-

tainty). Given estimated system dynamics F̃ (x) with known

error bound eF (x),

‖F (x)− F̃ (x)‖ ≤ eF (x), ∀x ∈ X , (7)

and estimated barrier function h̃(x) and gradient ∇h̃(x) with

known error bounds eh(x) and e∇h(x), i.e., for all x ∈ X ,

|h(x)− h̃(x)| ≤ eh(x), ‖∇h(x)−∇h̃(x)‖ ≤ e∇h(x), (8)

design a feedback controller k such that, for each x ∈ X :

CLC(x,k(x)) ≤ δ, CBC(x,k(x)) ≥ 0.

IV. PROBABILISTIC SAFE CONTROL

This section presents our solution to Problem 1. Inspired

by the design (6) when the dynamics and the barrier function

are known, we formulate the control synthesis problem via the

following optimization problem:

min
u∈U,δ∈R

‖L(x)⊤(u− k̃(x))‖2 + λδ2, (9)

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p.

The uncertainty in F and h affects the linearity in u of the

CLC and CBC conditions in the constraints of (9), making

this optimization problem no longer a QP. Here, we justify

that nevertheless the optimization can be solved efficiently. To

show this, we start by analyzing the distributions of CBC(x,u)
and CLC(x,u) in detail.

Proposition IV.1 (Mean and Variance for CBC). As-

sume h is a CBF with a linear function αh, i.e.,

αh(z) = a · z for a ∈ R≥0. Given independent distri-

butions h(x) ∼ GP(h̃(x),Kh(x,x
′)) and vec(F (x)) ∼

GP(vec(F̃ (x)),KF (x,x
′)), the mean and variance of

CBC(x,u) satisfy

E[CBC(x,u)] = E[p(x)]⊤u (10a)

Var[CBC(x,u)] = u⊤Var[p(x)]u, (10b)

where p(x) := F⊤(x)[∇xh(x)] +
[

ah(x) 0⊤
m

]⊤ ∈ R
m+1

and E[p(x)], Var[p(x)] are computed in (16).

Proof. The control barrier condition can be written as:

CBC(x,u) = [∇xh(x)]
⊤f(x) + [∇xh(x)]

⊤g(x)u+ ah(x)

=
[

[∇xh(x)]
⊤F (x)+

[

ah(x) 0⊤
m

] ]

u = p(x)⊤u.

Note that ∇xh(x) is a GP because the gradient of a GP with

differentiable mean function and twice-differentiable covari-

ance function is also a GP, cf. [28, Lemma 6],

∇xh(x) ∼ GP(∇xh̃(x),Hx,x′Kh(x,x
′)),

where Hx,x′Kh(x,x
′) =

[

∂2Kh(x,x
′)

∂xi,∂x
′

j

]n,n

i=1,j=1
is finite for all

(x,x′) ∈ R
2n. Since vec(ABC) = (C⊤ ⊗ A)vec(B) for

appropriately sized matrices A, B, C, we can write

Var(F (x)u) = Var((u⊤ ⊗ In)vec(F (x)))

= (u⊤ ⊗ In)KF (x,x)(u⊗ In).
(11)

For brevity, we let KF := KF (x,x
′) and Kh := Kh(x,x

′)
and p1 = F⊤(x)[∇xh(x)]. The term [∇xh(x)]

⊤F (x)u
is an inner product of two independent GPs, ∇xh(x)
and F (x)u. Thus, using [28, Lemma 5], (11), and that

Cov(∇xh(x), F (x)u) = 0, p⊤
1 u corresponds to a distribution

with mean and variance:

E[p⊤
1 u] = [∇xh̃(x)]

⊤F̃ (x)u,

Var[p⊤
1 u] = [∇xh̃(x)]

⊤(u⊤ ⊗ In)KF

(u⊗ In)∇xh̃(x) + u⊤F̃⊤(x)Hx,x′KhF̃ (x)u.

(12)

To factorize u from the variance expression, we apply the

property (A⊗B)(C⊗D) = AC⊗BD two times,

(u⊗ In)[∇xh̃(x)] = (u⊗ In)(1⊗ [∇xh̃(x)])

= u⊗∇xh̃(x) = (Im+1 ⊗∇xh̃(x))u.
(13)

By substituting (13) in (12), we can factorize out u to get,

Var[p1] = (Im+1 ⊗ [∇xh̃(x)]
⊤)KF (Im+1 ⊗∇xh̃(x))

+ F̃⊤(x)Hx,x′KhF̃ (x). (14)

Next, we write Cov(h(x),p⊤
1 u) using [28, Lemma 5] and

Cov(h(x), F (x)u) = 0,

Cov(h(x),p⊤
1 u) = Cov(h(x),∇xh(x))F̃ (x)u
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=
[

[∇xKh]
⊤f̃(x) [∇xKh]

⊤g̃(x)
]

u. (15)

Using (12), (14) and (15), we write the mean and variance,

E[p(x)] = [∇xh̃(x)]
⊤F̃ (x) + a[h̃(x) 0⊤

m]⊤

Var[p(x)] = F̃⊤(x)Hx,x′KhF̃ (x)

+ (Im+1 ⊗∇xh̃(x)
⊤)KF (Im+1 ⊗∇xh̃(x)) (16)

+

[

a2Kh + 2a[∇xKh]
⊤f(x) a[∇xKh]

⊤g(x)
ag(x)⊤[∇xKh] 0m×m

]

,

from which the statement follows.

Next, we describe the distribution of CLC(x,u).

Proposition IV.2 (Gaussian distribution for CLC). Given

the distribution vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x
′)), the

CLC(x,u) is Gaussian with mean and variance:

E[CLC(x,u)]=E[q(x)]⊤u (17a)

Var[CLC(x,u)]=u⊤Var[q(x)]u, (17b)

where q(x) := F⊤(x)[∇xV (x)] + [αV (V (x)) 0⊤
m]⊤ ∈

R
m+1 and E[q(x)], Var[q(x)] are computed in (18).

Proof. We can write the control Lyapunov condition as

CLC(x,u) = [∇xV (x)]⊤F (x)u+αV (V (x)) = q⊤(x)u. We

use the Kronecker product property vec(ABC) = (C⊤ ⊗
A)vec(B) to rewrite first term in q(x) as:

[∇xV (x)]⊤F (x) = (Im+1 ⊗ [∇xV (x)]⊤)vec(F (x)).

Since [∇xV (x)], αV (V (x)) are known and deterministic and

vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x
′)), we can express the

distribution of q(x) as follows:

E[q(x)]= F̃⊤(x)[∇xV (x)] + [αV (V (x)) 0⊤
m]⊤ (18)

Var[q(x)]=(Im+1 ⊗ [∇xV (x)]⊤)KF (Im+1 ⊗ [∇xV (x)]).

The result follows from plugging (18) into CLC(x,u).

We use the mean and variance of CBC(x,u) and CLC(x,u)
obtained above to approximate the probabilistic safety and

stability constraints in (9).

Proposition IV.3 (Probabilistic CLF-CBF SOCP). Given a

user-specified risk tolerance p ∈ [0, 1), let c(p) =
√

p
1−p

. The

optimization problem (9) can be formulated as the following

second-order cone program:

min
u∈U ,δ∈R,l∈R

l

s.t. δ − E[q(x)]⊤u ≥ c(p)
√

u⊤Var[q(x)]u,

E[p(x)]⊤u ≥ c(p)
√

u⊤Var[p(x)]u,

l + 1 ≥
√

‖2L(x)⊤(u− k̃(x))‖2 + (2
√
λδ)2 + (l − 1)2

(19)

where p, q are defined in Propositions IV.1 and IV.2, resp.

Proof. To deal with the probabilistic constraints in (9), we

employ Cantelli’s inequality [13]. For any scalar γ ≥ 0,

P(CBC(x,u) ≥ E[CBC(x,u))]− γ|x,u) ≥

1− Var[CBC(x,u)]

Var[CBC(x,u)] + γ2
.

Given this inequality, and since we want P(CBC(x,u) ≥ 0) ≥
p, we choose γ = E[CBC(x,u)] and require the lower bound

to be greater than or equal to p, i.e., 1− Var[CBC(x,u)]
Var[CBC(x,u)]+γ2 ≥ p.

The equation can be rearranged into

E[CBC(x,u)] = γ ≥
√

p

1− p
Var[CBC(x,u)],

which corresponds to the safety constraint in (19).

Next, we show that this is a second-order cone (SOC)

constraint. By (10), given that h̃, ∇h̃ and F̃ are known and

deterministic, the expectation E[CBC(x,u)] = E[p(x)]⊤u is

affine in u. Since Var[p(x)] is positive semi-definite,

√

Var[CBC(x,u)] =
√

u⊤Var[p(x)]u = ‖D(x)u‖ (20)

where D(x)⊤D(x) = Var[p(x)]. Acccording to [30], the

safety constraint in (19) is a valid SOC constraint.

For stability, the CLC condition can be constructed using a

similar approach with Cantelli’s inequality, resulting in (19).

By (17), we know that the expectation is affine in u and the

variance is quadratic in terms of u, similar to (20). This shows

that the CLC condition is also a valid SOC constraint.

Our last step is to reformulate the minimization of the

objective function as a linear objective with an SOC constraint,

resulting in the standard SOCP in (19). We introduce a new

variable l so that the problem in (9) is equivalent to

min
u∈U,δ∈R,l∈R

l

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p,

‖L(x)⊤(u− k̃(x))‖2 + λδ2 ≤ l. (21)

The last constraint in (21) corresponds to a rotated second-

order cone, Qn
rot := {(xr, yr, zr) ∈ R

n+2 | ‖xr‖2 ≤
yrzr, yr ≥ 0, zr ≥ 0}, which can be converted into a standard

SOC constraint [30],

∥

∥

∥

[

2xr yr − zr
]⊤

∥

∥

∥
≤ yr + zr. Let

yr = l, zr = 1 and consider the constraint ‖L(x)⊤(u −
k̃(x))‖2 + λδ2 ≤ l. Multiplying both sides by 4 and adding

(l − 1)2, makes the constraint equivalent to

4‖L(x)⊤(u− k̃(x))‖2 + 4λδ2 + (l − 1)2 ≤ (l + 1)2.

Taking a square root on both sides, we end up with
√

‖2L(x)⊤(u− k̃(x))‖2 + (2
√
λδ)2 + (l − 1)2 ≤ l + 1,

which is equivalent to the third constraint in (19).

Remark IV.4 (Effects of risk-tolerance p and variance).

When p = 0, the probabilistic CLF-CBF-SOCP (19) reduces

to the original CLF-CBF-QP (6). As p and/or Var[p(x)],
Var[q(x)] increase, the feasible region of (19) gets smaller,

and the optimal value worsens, cf. Fig. 1b for an illustration.

V. ROBUST SAFE CONTROL

In this section, we develop a solution to Problem 2. Let F̃
denote the estimated system dynamics, h̃, ∇h̃ the estimated

barrier function and its gradient, and let eF : Rn×(m+1) 7→
R≥0, eh : R 7→ R≥0, and e∇h : Rn 7→ R≥0 be associated

error bounds. For convenience, for each x ∈ X , we denote
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DF (x) := F (x) − F̃ (x), dh(x) := h(x) − h̃(x) and

d∇h(x) := ∇h(x)−∇h̃(x). By (7) and (8), we have

‖DF (x)‖ ≤ eF (x), |dh(x)| ≤ eh(x), ‖d∇h(x)‖ ≤ e∇h(x).
(22)

Using this notation, we can rewrite CBC(x,u) as

CBC(x,u) = [∇h(x)]⊤F (x)u+ αh(h(x))

= [∇h̃(x)]⊤F̃ (x)u+ d⊤
∇h(x)F̃ (x)u+ [∇h̃(x)]⊤DF (x)u

+ d⊤
∇h(x)DF (x)u+ αh(h̃(x) + dh(x)).

Let p̃(x) := F̃⊤(x)∇h̃(x). We group the error term in

the expression for CBC(x,u) in the variable dCBC(x,u) :=
CBC(x,u)− p̃(x)⊤u. Thus, CBC(x,u) ≥ 0 is satisfied if

min
DF ,d∇h,dh

CBC(x,u) = p̃(x)⊤u+ min
DF ,d∇h,dh

dCBC(x,u) ≥ 0.

Similarly, let q̃(x) := F̃⊤(x)∇V (x) + [αV (V (x)) 0⊤
m]⊤

and dCLC(x,u) := [∇V (x)]⊤DF (x)u, a robust version of the

stability constraint CLC(x,u) ≤ δ can be written as:

max
DF

CLC(x,u) = q̃(x)⊤u+max
DF

dCLC(x,u) ≤ δ. (23)

This leads us to the following robust reformulation of the

original control synthesis problem in (6),

min
u∈U ,δ∈R,l∈R

l

s.t. q̃(x)⊤u+max
DF

dCLC(x,u) ≤ δ

p̃(x)⊤u+ min
DF ,dh,d∇h

dCBC(x,u) ≥ 0

l + 1 ≥
√

‖2L(x)⊤(u− k̃(x))‖2 + (2
√
λδ)2 + (l − 1)2.

(24)

Note that we used the same approach as in the proof of

Proposition IV.3 to reformulate the original quadratic objective

with a linear objective plus a SOC constraint. The second

constraint in (24) requires solving minDF ,dh,d∇h
dCBC(x,u)

subject to (22). In general, this is a non-convex constrained

quadratic program which does not have a closed-form expres-

sion of the minimizer as a function of u. Instead, we make the

second constraint in (24) more conservative using the Cauchy-

Schwarz inequality, which leads to a convex SOCP, whose

optimal solution is guaranteed to be feasible for (24).

Proposition V.1 (Robust CLF-CBF SOCP). Let F̃ , h̃, ∇h̃
denote estimates of the system dynamics and barrier function,

with error bounds in (22). Then, the feasible set of the

following SOCP is included in the feasible set of (24):

min
u∈U ,δ∈R,p∈R,q∈R,l∈R

l

s.t. δ − q̃(x)⊤u ≥ eF (x)‖∇V (x)‖‖u‖,
p ≥ e∇h(x)‖F̃ (x)u‖,
q ≥

(

eF (x)‖∇h̃(x)‖+ e∇h(x)eF (x)
)

‖u‖,

[∇h̃(x)]⊤F̃ (x)u+ αh(h̃(x)− eh(x)) ≥ p+ q,

l + 1 ≥
√

‖2L(x)⊤(u− k̃(x))‖2 + (2
√
λδ)2 + (l − 1)2

(25)

Proof. The stability constraint in (24) is reformulated using:

max
‖DF (x)‖≤eF (x)

dCLC(x,u) = eF (x)‖∇V (x)‖‖u‖.

For the safety constraint in (24), note that

min
DF ,dh,d∇h

dCBC(x,u)

= min
DF ,d∇h

(

d⊤
∇h(x)F̃ (x)u+ [∇h̃(x)]⊤DF (x)u+

d⊤
∇h(x)DF (x)u

)

+min
dh

αh(h̃(x) + dh(x)). (26)

Since eh(x) ≥ 0 and αh is an extended class K∞ function,

min
|dh(x)|≤eh(x)

αh(h̃(x) + dh(x))=αh(h̃(x)− eh(x)). (27)

Applying the Cauchy-Schwarz inequality on each term,

min
DF ,dh,d∇h

dCBC(x,u) ≥ −‖d∇h‖‖F̃ (x)u‖

− ‖∇h̃(x)‖‖DF (x)u‖ − ‖d∇h(x)‖‖DF (x)u‖
+ αh(h̃(x)− eh(x))

≥ −e∇h(x)‖F̃ (x)u‖ − eF (x)‖∇h̃(x)‖‖u‖−
e∇h(x)eF (x)‖u‖+ αh(h̃(x)− eh(x)).

In the last step, we minimized each term independently, so the

lower bound is not tight. We write the safety constraint as

e∇h(x)‖F̃ (x)u‖+ (eF (x)‖∇h̃(x)‖+ e∇h(x)eF (x))‖u‖
≤ [∇h̃(x)]⊤F̃ (x)u+ αh(h̃(x)− eh(x)). (28)

Constraints of the form ‖Az−a‖+ ‖Bz− b‖ ≤ c
⊤z can be

replaced by the set of constraints ‖Az−a‖ ≤ p, ‖Bz−b‖ ≤ q,

p+q ≤ c
⊤z combined. Thus, (28) is equivalent to the second,

third, and fourth constraints in (25) together.

Remark V.2 (Effects of error bounds). If there are no errors

in either the dynamics or the barrier function (eF ≡ eh ≡
e∇h ≡ 0), then the robust CLF-CBF SOCP (25) reduces to a

CLF-CBF QP (6). If eF ≡ 0 while eh(x), e∇h(x) > 0, the

result in Proposition V.1 recovers [29, Proposition 2]. As the

error bounds eF , eh, e∇h increase, the feasible region of (25)

gets smaller and the optimal solution worsens. Also, note that

the choice of kernel function, KF (x,x) =
e2F (x)
c2(p) I(m+1)n,

reduces the inequality for stability in (19) to that in (25).

VI. EVALUATION

In this section, we present an approach to estimate the

unknown dynamics of a mobile robot, and construct CBF

constraints online. Then, we evaluate our safe control synthesis

using the estimated robot dynamics and CBFs in autonomous

navigation tasks in 10 simulated environments, containing

obstacles a priori unknown to the robot.

A. System Dynamics Estimation

We consider a Turtlebot robot simulated in the PyBullet

simulator [31] (see Fig. 1a). We first present a learning

approach to model the unknown dynamics of the TurtleBot

using training data collected from the PyBullet simulator. The

robot state and input are x := [x, y, µ]⊤ ∈ R
2 × [−π, π)
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see that the robust CLF-CBF-SOCP controller is most conser-

vative as it has the largest Fréchet distance values while the

probabilistic CLF-CBF-SOCP controller is less conservative if

we set the user-specified risk tolerance p = 0.8. By lowering

the risk tolerance value (p = 0.2/0.4), the robot with the

probabilistic controller follows the reference path better while

facing a higher risk of collision. A qualitative result is shown

in Fig. 2b, where larger p values indicates higher probability of

being safe for the robot. The trajectory generated by the CLF-

CBF-QP controller has the smallest Fréchet distance values,

but fails in several environments.

Finally, to demonstrate the efficiency of the proposed for-

mulations, we compare the average time needed for solving

the QP, probabilistic SOCP, and robust SOCP formulations

per control synthesis along the trajectory tracking task. All

optimization problems are solved using the Embedded Conic

Solver in CVXPY [35] with an Intel i7 9700K CPU. The

time needed for solving one QP instance is 0.00863s while

the times needed for solving the proposed probabilistic and

robust SOCPs are 0.0109s and 0.0122s. As expected, our

SOCP formulations require slightly more time than the original

QP but are still suitable for online robot navigation.

VII. CONCLUSION

We considered the problem of enforcing safety and sta-

bility of unknown robot systems operating in unknown en-

vironments. We showed that accounting for either Gaussian

or worst-case error bounds in the system dynamics and

safety constraints leads to a novel CLF-CBF-SOCP formu-

lation for control synthesis. We validated our formulations

in autonomous navigation tasks, simulating a ground robot

in several unknown environments. Some drawbacks of our

formulations include that large model error bounds may lead

to infeasibility of the robust SOCP, and that the assumption

that system dynamics and barrier functions are GPs may not

be true in practice. Future work will implement the proposed

formulations on a real robot, consider object category pre-

training of the SDF neural network, and explore adaptive

techniques for safe control synthesis given varying uncertainty

levels and robot objectives.

REFERENCES

[1] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. on Software Engg., vol. SE-3, no. 2, pp. 125–143, 1977.

[2] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis-
theory Methods & Applications, vol. 7, pp. 1163–1173, 1983.

[3] E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on
nonlinear stabilization,” Systems & Control Letters, vol. 13, no. 2,
pp. 117–123, 1989.

[4] S. Prajna, “Barrier certificates for nonlinear model validation,” in Con-
ference on Decision and Control, pp. 2884–2889, 2003.

[5] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Hybrid Systems: Computation and Control,
pp. 477–492, Springer Berlin Heidelberg, 2004.
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