

1 CONULARIIDS FROM THE SILURIAN (LATE TELYCHIAN) WAUKESHA
2 LAGERSTÄTTE, WISCONSIN
3

4 April A. Miller¹, Sarah M. Jacquet^{1*}, Evan P. Anderson^{1,2}, & James D. Schiffbauer^{1,3}
5

6 ¹ Department of Geological Sciences, University of Missouri, Columbia, MO, 65211;

7 ²Department of Physical and Biological Sciences, Columbia College, Columbia, MO, 65216;

8 ³X-ray Microanalysis Core Facility, University of Missouri, Columbia, MO, 65211
9

10 *Corresponding author: jacquets@missouri.edu
11
12

13 The Silurian (late Telychian) Brandon Bridge Formation, Wisconsin, USA, **is renowned for**
14 **hosting the Waukesha Konservat-Lagerstätte, in** which **several rare**, enigmatic constituents
15 have received detailed taxonomic and taphonomic study. **However**, more common species **from**
16 **this deposit** remain poorly **described**. This study provides the first systematic description of two
17 conulariid species **documented** from the Waukesha Konservat-Lagerstätte—*Conularia*
18 *niagarensis* and *Metaconularia* cf. *manni*—and assesses their general taphonomy and preservation
19 within this deposit. Specimens were examined using a combination of light microscopy, scanning
20 electron microscopy, and energy dispersive X-ray spectroscopy to assist in taxonomic,
21 taphonomic, and compositional analyses. Conulariid specimens display an array of preservational
22 modes, **primarily** diagenetic phosphatization **and** kerogenization, **with** minor associated
23 pyritization. This **result** suggests a taphonomic **history involving** post-burial demineralization

24 **associated with falling** pH conditions, subsequent compression with minimal breakage, and
25 **finally** diagenetic **mineralization** of the compressed **thecae by francolite**.

26

27

28 **Keywords:** Conulariid, Silurian, taxonomy, taphonomy, Waukesha, Lagerstätte

29

30

31 **Introduction**

32

33 Konservat-Lagerstätten represent sites of exceptional preservation containing fossils with non-
34 biomineralized ‘soft’ tissues, offering a rare glimpse into ancient ecosystems and their biodiversity
35 (Allison, 1988; Allison & Briggs, 1993; Schiffbauer & Laflamme, 2012). Such sites exhibit an
36 uneven temporal distribution in conjunction with marked shifts in environmental conditions under
37 which exceptional preservation may occur (Muscente *et al.*, 2017). Among the known Silurian
38 Konservat-Lagerstätten from North America, the Waukesha Lagerstätte of the Brandon Bridge
39 Formation is the most diverse assemblage, including representatives of the leperditicopids
40 (Mikulic *et al.*, 1985a), phyllocarids (Jones *et al.*, 2015), synziphosurines (Moore *et al.*, 2005,
41 2011), thylacocephalans (Haug *et al.*, 2014), trilobites (Mikulic *et al.*, 1985a; Wendruff *et al.*,
42 **2020a**), putative myriapods (Wendruff *et al.*, **2020a**), and a superficially scorpion-like arthropod
43 (Wendruff *et al.*, 2020a, b, but see Anderson *et al.* 2021a). Other fossil groups that have not
44 received formal taxonomic assessment include several annelids (polychaetes), brachiopods,
45 mollusks, echinoderms, conulariids (Mikulic *et al.*, 1985a, b; **Van Iten, 1999**; Wendruff *et al.*,
46 **2020a**), euconodontophylea (Smith *et al.*, 1987), graptolites (Kluessendorf, 1994), and non-

47 biomineralizing algae (LoDuca *et al.*, 2003). With the limelight **focused** on the exceptional soft-
48 bodied taxa, the less remarkable biomineralizing taxa have been overlooked for systematic study
49 and are often only briefly mentioned as a biotic component.

50 Preservational pathways observed in the Waukesha Lagerstätte assist in the description and
51 characterization of organisms not usually seen in contemporaneous deposits. Initially it was
52 thought that this site **might** be similar to Burgess Shale-type (BST) deposits, **in which fossils are**
53 **typically preserved as two-dimensional** carbonaceous compressions with secondary pyritization,
54 aluminosilicification, and minor, often anatomically restricted phosphatization (Mikulic *et al.*,
55 1985a, Orr *et al.*, 1998; Gaines, 2014). **While also compressed, the** Waukesha Biota, however,
56 are primarily preserved via phosphatization and kerogenization, **though some are also expressed**
57 **as carbonaceous compressions** (Wendruff *et al.*, 2020a)—at least **in** the case **of** the soft-bodied
58 components (Mikulic *et al.*, 1985a, b; Kluessendorf & Mikulic, 1996; Moore *et al.*, 2005; Jones *et*
59 *al.*, 2015; Wendruff *et al.*, 2020a). However, like their taxonomy, **the preservational details of**
60 the biomineralizing organisms at this site have received little focus, and further investigation into
61 their taphonomic pathways is undoubtedly warranted. In part, taphonomic studies of the shelly
62 constituents of the Waukesha **Biota** have been limited by their scarcity, as organisms typical of
63 normal marine conditions (corals, bryozoans, brachiopods, mollusks, and echinoderms, among
64 others) are rare or absent **within** the **deposit** (Wendruff *et al.*, 2020a). When **present**, many
65 benthic calcareous taxa in the Waukesha **Lagerstätte** show evidence of pervasive decalcification
66 (e.g., Mikulic *et al.*, 1985a), but the processes involved in demineralization of shelly taxa and
67 (re)mineralization of both shelly and soft-**bodied** taxa in this deposit remain poorly documented.

68 Conulariids are a rare exception to the general trend observed in the biomineralized
69 constituent of the Waukesha Biota in that they are relatively abundant within the assemblage,

70 possess an originally phosphatic theca, and are predominantly sessile. Here, we provide the first
71 formal systematic **treatment** of the two known species, *Conularia niagarensis* Hall, 1852 and
72 *Metaconularia* cf. *manni* (Roy, 1935), in conjunction with a thorough investigation of the
73 taphonomic features of these two taxa. The results of combined light microscopy, scanning
74 electron microscopy, and energy dispersive X-ray spectroscopy, in combination with our
75 assessment of biostratinomic processes, provide a framework to develop a taphonomic model
76 specific to this taxonomic group in the context of the Waukesha **Lagerstätte**.

77

78 **Material and methods**

79

80 **Material**

81 **This present study is based on examination of 39 crack-out conulariid specimens housed in**
82 **the invertebrate paleontology collection of the University of Wisconsin-Madison Geology**
83 **Museum (specimen prefix UWGM). Of the specimens examined, only three represent part**
84 **and counter-part pairs. UWGM 3042 and 4265 have respective pairs registered under the**
85 **same catalogue number and are herein distinguished by stating 'CP' for the counter-part**
86 **specimen after the catalog number. However, UWGM 3130 and 3172 represent a part and**
87 **counterpart pair, respectively, and their numbers are retained for curatorial posterity. In**
88 **instances where there is more than one specimen on a sample, a lower-case letter is used to**
89 **distinguish between them and is included after the catalog number. Specimens were**
90 **photographed using both a Nikon D600 camera attached to a Nikon SMZ1500 binocular**
91 **microscope for photomicrographs and a GIGAmacro Magnify2 Robotic Imaging System with**
92 **Canon EOS Rebel T6i DSLR and Nikon T1 1x and 3x objectives to acquire gigapixel resolution**

93 photomosaics. **Photomicrographs were processed with open-source software digiCamControl**
94 **v. 2.1 (István, 2018)** and **images were prepared** and traced using Affinity Photo and Affinity
95 Designer software (Serif Ltd., v.1.6.1.104).

96

97 **Locality and geologic setting**

98 The Silurian (Llandovery Series; late Telychian Stage) Waukesha Lagerstätte is found within the
99 basal Brandon Bridge Formation of southeast Wisconsin, USA. In the Milwaukee area, the unit
100 regionally wedges out overlying the southward-facing paleoslope of the Manistique Formation,
101 below the predominantly dolomitized Waukesha Formation (Fig. 1A–C) (Mikulic, 1977; Mikulic
102 *et al.*, 1985a, b; Kluessendorf, 1990; Kluessendorf & Mikulic, 1996; Kleffner *et al.*, 2018).
103 Exposures of the Lagerstätte-hosting unit are limited, with sampling having been constrained to
104 two active quarries including the Waukesha Lime & Stone Co, quarry (43.03° N, 88.21° W) and
105 the Franklin Aggregate Inc. Quarry (42.91° N, 87.99° W). However, since the fossiliferous units
106 now sit either ~30 meters above the present-day quarry floor (former locality) or beneath
107 overgrown rubble (latter locality), collection of new material is no longer possible (Pulsipher *et*
108 *al.*, in press).

109 Karstification of the underlying Manistique Formation during periods of subaerial
110 exposure created localized troughs and scallops on a paleoscarp surface along the intracratonic
111 carbonate platform on the western edge of the Michigan Basin (Kluessendorf & Mikulic, 1996;
112 Grathoff & Moore, 2002). Deposition of the Brandon Bridge Formation occurred within a peritidal
113 setting during a subsequent transgression (Kluessendorf, 1990; Kluessendorf & Mikulic, 1996).
114 The irregular karstified surface created anoxic sediment traps wherein organisms derived from the
115 shallow shelf were deposited and preserved (Mikulic *et al.*, 1985a, b; Grathoff & Moore, 2002).

116 Fossil specimens described herein are mostly derived from a 12 cm-thick layer of thinly bedded,
117 planar, light green to pink argillaceous dolomudstone, characteristic of the Brandon Bridge
118 Formation, located approximately 2 m above the disconformity surface at the Waukesha Lime &
119 Stone Co. quarry (Fig. 1C) (Mikulic *et al.*, 1985a, b; Smith *et al.*, 1987; Grathoff & Moore, 2002;
120 Moore *et al.*, 2005; Haug *et al.*, 2014; Jones *et al.*, 2015; Wendorff *et al.*, 2020a).

121

122 [Insert Fig. 1 here]

123

124 **SEM and EDS analysis**

125 **Selected** conulariid specimens (**UWGM 2754**, 2787ab, & 2825a) exhibiting a range of
126 preservational modes were analyzed using scanning electron microscopy (SEM) and energy
127 dispersive X-ray spectrometry (EDS) at the University of Missouri X-ray Microanalysis Core
128 facility. SEM imaging was conducted using a Zeiss Sigma 500 VP scanning electron microscope
129 with a beam accelerating voltage of 20 keV and current of 40 nA, an aperture size of 60 μ m, and
130 at a chamber vacuum of 20 Pa (chamber atmosphere = 99.999% nitrogen). Specimens were
131 secured to the sample stage with copper foil tape, grounding the surface electrical charge to
132 minimize charging during electron imaging (e.g., Orr *et al.*, 2002, 2009). Working distance varied
133 because of sample thickness and topographic variation but was generally maintained at 16 mm \pm
134 1 mm for all samples. All EDS analyses were conducted with dual Bruker energy dispersive x-ray
135 spectrometers at operating conditions identical to **those for** SEM imaging, but with an aperture
136 size of 120 μ m to improve x-ray count rate (~150 kilocounts per second with both EDS detectors
137 used in tandem). Large composite SEM imaging, using both backscattered (BSE; high-definition

138 5-segment backscatter detector) and secondary (SE; cascade current low-vacuum secondary
139 detector) electron detection, was conducted using the ATLAS workflow (Fibics Inc.).

140

141 **Systematic palaeontology**

142 Terminology of conulariid characters principally follows that established by Sinclair (1952),
143 Moore and Harrington (1956), and Van Iten *et al.* (1996). Attempts have been made to clarify the
144 terminology used in the definition of conulariid features (Babcock & Feldmann, 1986ab; Brood,
145 1995; Van Iten *et al.*, 1996); however, some ambiguity remains and has changed to reflect the
146 revised taxonomic placement of these organisms. We refer to the entire conulariid shell
147 (mineralized and organic portions) as the *theca* and **distinguish between phosphatic and organic**
148 **microlamellae when appropriate**. Terminology pertaining to ornamentation has been
149 particularly convoluted in prior literature. Herein, we refer to **(i) nodes** (Babcock & Feldmann,
150 1986b; Babcock *et al.*, 1987; Brood, 1995; Van Iten *et al.*, 1996, **2006a, b**, 2008, 2013, 2014, 2016,
151 2018; Simões *et al.*, 2003; Van Iten & Südkamp, 2010; Lucas, 2012; Robson & Young, 2013; Ford
152 *et al.*, 2016, Bruthansová & Van Iten, 2020) over ‘papillae’ (John *et al.*, 2010) or ‘tubercles’
153 (Slater, 1907; Fletcher, 1938; Hughes *et al.*, 2000; Mergl *et al.*, 2016); **(ii) interspace ridges and**
154 **interspace furrows** (Thomas, 1969; Van Iten *et al.*, 1996, 2005, **2006a, 2013**; Simões *et al.*,
155 **2003**; Robson & Young, 2013; Ford *et al.*, 2016; Mergl *et al.*, 2016) over ‘longitudinal striae’
156 (Billings, 1866; McKee, 1935; Fletcher, 1938; Van Iten *et al.*, 1996, **2006a**), ‘spines’ (Babcock &
157 Feldmann, 1986b; Babcock *et al.*, **1987b**; Ivantsov & Fedonkin, 2002; Van Iten *et al.*, 2008;
158 Robson & Young, 2013; Mergl *et al.*, 2016), ‘ridges’ (Simões *et al.*, 2003; Van Iten *et al.*, 1996,
159 2005, **2006a**, 2008, 2013, 2014; Van Iten & Südkamp, 2010; Robson & Young, 2013) or
160 ‘interridge’ (Babcock & Feldmann, 1986b; Babcock *et al.*, **1987b**); and **(iii) transverse ribs**

161 (Thomas, 1969; Van Iten *et al.*, 1996, 2005, **2006a**, 2008, 2013, 2016; Simões *et al.*, 2003; Leme
162 *et al.*, 2008; John *et al.*, 2010; Sendino *et al.*, 2011; Robson & Young, 2013; Ford *et al.*, 2016;
163 Mergl *et al.*, 2016) over ‘transverse rods’ (Babcock & Feldmann, 1986b; Babcock *et al.*, **1987b**). In
164 the case of the genus *Metaconularia* Foerste, 1928, ornamentation is arranged in regular transverse
165 and vertical rows of nodes (John *et al.*, 2010). Paired midline lineations mark the position of two
166 vertical internal septa. For additional details of the characters used herein refer to Mergl *et al.* 2016
167 fig. 2 and Simões *et al.* 2003 fig. 3. Note, in the systematic paleontology section below where
168 original taxonomic diagnoses use **antiquated** or alternative terminology, we have provided the
169 equivalent **but updated** term in brackets thereafter.

170

171 Phylum **Cnidaria** Hatschek, 1888

172 Subphylum **Medusozoa** Peterson, 1979

173 Class **Scyphozoa** Götte, 1887

174 Order **Conulariida** Miller and Gurley, 1896

175 Family **Conulariidae** Walcott, 1886

176

177 Genus **Conularia** Miller, *in* Sowerby 1821

178

179 **Type species.** *Conularia quadrisulcata* Miller *in* Sowerby, 1821 (TAB. CCLX, fig. 4)

180

181 **Remarks:** The genus *Conularia* was erected by Miller (*in* Sowerby, 1821) and originally included
182 two new species: *Conularia quadrisulcata* (figs. 3–6) and *Conularia teres* (figs. 1–2). Sowerby

183 designated *C. quadrisulcata* the genotype of *Conularia*, and *C. teres* was later redescribed as an
184 orthocone nautiloid (Barrande, 1867).

185 Since the erection of the genus, the taxonomic history, specifically as it concerns the
186 attribution of the genotype, has become a topic of much confusion and subject to several attempts
187 of clarification (see Fletcher, 1938; Sinclair, 1940; Sendino & Darrel, 2009). In sum, the type
188 specimen of the genus (Sowerby, 1821, pl. 260, fig. 4) was lost according to Sinclair (1940),
189 though one of the remaining specimens from Sowerby's original publication figured as a syntype
190 (Sowerby, 1821, pl. 260, fig. 3) remains in the collections of the British Natural History Museum
191 (NHM 43843). This specimen, refigured by Sendino & Darrel (2009, fig. 3), had been previously
192 reassigned to *Conularia subtilis* Salter (*in* Sedgwick & McCoy, 1855). Consequently, no physical
193 specimen of the genotype remains and hence a lectotype needs to be assigned. Systematic revision
194 of the genotype is **also** desperately needed, but outside the scope of the discussion here.

195 In lieu of the missing holotype, *Conularia niagarensis* Hall, 1852 has been suggested as
196 representing a North American reference taxon as it is purported to bear close similarity to the
197 original type species (Sinclair, 1940; Babcock & Feldmann, 1986b).

198

199 ***Conularia niagarensis* Hall, 1852**

200 **(Figures 2, 4–11)**

201

202 1843 *Conularia quadrisulcata* Hall: 110, pl. 40, fig. 2.

203 1852 *Conularia niagarensis* Hall: 294, pl. 65, fig. 1a–h.

204 1889 *Conularia niagarensis* Hall; Foerste: 286, pl. 5, fig. 16.

205 **1890 *Conularia quichua* Ulrich *in* Steinmann & Doderlein: 343, figs. 395d–e.**

206 1892 *Conularia quichua* Ulrich; Ulrich: 34-36, pl. 3, figs. 7a-b.

207 1893 *Conularia niagarensis* Foerste: 547, pl. 30, fig. 16.

208 1895 *Conularia quichua* Ulrich; Bernard: fig. 265C.

209 1897 *Conularia quichua* Ulrich?; Kayser: 288, pl. 11, figs. 1-2.

210 1901a *Conularia niagarensis* Hall; Grabau: 214, fig. 145.

211 1901b *Conularia niagarensis* Hall; Grabau: 214, fig. 145.

212 1904 *Conularia quichua* Ulrich; Reed: 248, pl. 30, figs. 10-10a.

213 1904 *Conularia* cf. *undulata* Conrad; sensu Reed: 248-249, pl. 31, figs. 1-1a.

214 1905 *Conularia quichua* Ulrich; Thomas: 254-255, pl. 12, fig. 19.

215 1913 *Conularia quichua* Ulrich; Clarke: 163.

216 1920 *Conularia quichua* Ulrich; Douglas: 37-38, pl. 1, fig. 3.

217 1923 *Conularia niagarensis* Hall; Schwartz: 494, figs. 26 & 27.

218 1923 *Conularia quichua* Ulrich; Kozłowski: 69-70, pl. 7, fig. 6.

219 1925 *Conularia quichua* Ulrich; Reed: 107.

220 1929 *Conularia quichua* Ulrich in Steinmann: figs. 21D-E.

221 1937 *Conularia quichua* Ulrich; Kiderlen: fig. 10.

222 1939 *Conularia (Mesoconularia) quichua* Ulrich; Bouček: fig. 2e.

223 1948 *Mesoconularia quichua* Ulrich; Sinclair: 119.

224 1960 *Conularia quichua* Ahlfeld & Braniša: pl. 4, figs. 4, 10-10a.

225 1960 *Conularia* cf. *quichua* Ulrich; Ahlfeld & Braniša: pl. 4, fig. 9.

226 1962 *Conularia quichua* Ulrich; Hansman et al.: 21.

227 1962 *Conularia* cf. *undulata* Conrad; Hansman et al.: 21-22.

228 1965 *Conularia quichua* var. nov. Braniša: pl. 43, fig. 2.

229 **1965** *Conularia* sp. B Braniša: pl. 43, fig. 5.

230 **1965** *Conularia* sp. C Braniša: pl. 43, fig. 6.

231 **1965** *Conularia quichua* Ulrich; Braniša: pl. 43, figs. 1, 3–4, pl. 45, figs. 2–4, 6–12.

232 **1987a** *Conularia quichua* Ulrich; Babcock et al: figs. 4E–M, 7A, table 1.

233 **1987b** *Conularia niagarensis* Hall; Babcock et al.: 219, fig. 5.

234 **2003** *Conularia quichua* Ulrich; Simões et al.: figs 5–6.

235 2020 *Conularia niagarensis* Hall; Wendruff et al.: 7, fig. 6a.

236

237 **Type specimens.** *Conularia niagarensis* Hall, 1852 (AMNH 31625, lectotype), from an undefined shale member, likely equivalent to the Rochester Shale (Silurian) in Lockport, Rochester, and 238 Wolcott County; and “lower part of the limestone at **Rochester**” (Hall, 1852), Niagara County; 239 New York, USA.

241

242 **Original diagnosis.** “Broad, pyramidal, tapering abruptly; angles with deep abrupt channels; 243 center of each side with a shallow scarcely defined depression, which produces a more abrupt 244 bending of the striae; transverse striae fine and closely arranged, directed from the angles obliquely 245 to the center, where they are more abruptly bent in crossing the slight depression; striae papillose 246 granulate, intermediate spaces marked by longitudinal striae, and grooves which alternate with the 247 points upon the transverse striae.” (Hall, 1852, p. 294).

248

249 **Emended diagnosis.** *Conularia niagarensis* is pyramidal, **tapering toward aperture**; corner 250 **sulcus deep and no impression at midline.** Transverse ribs are fine, closely arranged and 251 chevron-like; form obtuse angle pointed apertureward at midlines; cross faces without interruption

252 or offset **and are deflected towards aperture at corner grooves**. Ribs marked by round nodes
253 along their length; **interspaces** crossed by **ridges** extending perpendicularly toward apex from
254 nodes. Node and **interspace ridge** pairs are slightly offset from pairs in preceding transverse ribs
255 and interspaces.

256

257 **Description.** Two-dimensionally compressed specimens tapering from aperture to **apical region**
258 (**Fig. 2A–C**). **Specimens** measure between 6–40 mm long (n = 39) and individual face widths
259 measure between 3–15 mm (n = 39) at aperture. Faces are equal in width with apical angle of 20–
260 29°. Corner **sulcus** defined by deep channels (**Fig. 2F**); apex **missing, terminating in blunt**
261 **margin due to breakage.** Aperture gently convex outward, often diffuse, **with** short apertural
262 lappets (**Fig. 2A–C**).

263 Chevron-like transverse ribs form obtuse angles (113–161°) pointed apertureward and
264 cross the faces **at inferred midline and corner sulcus uninterrupted; no bifurcation of ribs**
265 **apparent (Fig. 2C, D, G, I).** Larger specimens may show minor inflection of transverse rib
266 **adjacent to corner sulcus.** Angles vary longitudinally with smaller angles (113–130°) closer to
267 the apex, becoming notably obtuse within the top ~10% of the theca (137–161°). Midline diverges
268 **by 1–12%** from geometric longitudinal center of face. Ribs number **between 32–51** per
269 **centimeter**, becoming densely spaced closest to the aperture.

270 **Interspaces** approximately 2–3 times the width of the transverse ribs; **crossed by**
271 **prominent bar-like interspace ridges** (Fig. 2E). Node and **interspace ridges** are offset from
272 pairs in adjacent transverse ribs (Fig. 2E). **The center line of the interspace furrows, which are**
273 **about as wide as the interspace ridges, is marked by a very slender ridge that appears to**
274 **originate from a node at its apertural end. Relief of the interspace ridges is best-defined in**

275 **the middle to apertural region of the theca (Fig. 2A, D, E), and is relatively subdued in the**
276 **apical portion (Fig. 2G).** Nodes are minute (0.03–0.1 mm diameter, **Fig. 2E, G, H**) and closely
277 **spaced, ranging from 5–10 per mm. Nodes are well-developed across the entire theca and**
278 **best-preserved along the corner sulci (Fig. 2F);** often worn on faces (Fig. 2G).

279

280 Studied material. **38** specimens in total. Figured and measured (UWGM **2655a**, 2754, **2755**,
281 **2787b**, **2792**, 2825, 3021, 3042a, **b**, **d**, **e** [part and counterpart], **3054**, 3130 [part] & 3172
282 [counterpart], 3174, 3185, 3233, 3626, 3729, **4006**, 4265 [part and counterpart], 4638a); only
283 **measured (UWGM 2655b 2787a, 3042c, f–h [part], 3053, 3804, 3966, 4011, 4638b–d);** 26 are
284 complete and 12 are incomplete.

285

286 Occurrence. Devonian: Belén, Icla and Sicasica formations of Bolivia (Emsian–?early Eifelian
287 Stage); Bokkeveld Series of South Africa; Talacasto Formation, Argentina (Lochkovian–Pragian
288 Stage); Ponta Grossa Formation, Brazil (Pragian–Emsian Stages); Zorritos Formation, Quebrada
289 Zorritos, Chile; Paraguay and Peru. Early Silurian: Rochester Shale in the vicinity of Lockport
290 (Niagara County), Rochester (Monroe County), and Wolcott (Wayne County), New York; Clinton
291 Group, Todd's Fork in the vicinity of Wilmington, Ohio and “upper shaly courses” in Huffman’s
292 Quarry, Dayton, Ohio; Rochester Formation at Rose Hill east of Tonoloway (Calvert County),
293 Maryland; late Llandovery Series (Telychian Stage): Brandon Bridge Formation (Waukesha
294 County Wisconsin; this study).

295

296 **Remarks.** Since this taxon was originally erected by Hall (1852), *Conularia niagarensis* has
297 received minimal in-depth systematic analysis in over 100 years. Occurrences of the species have

298 been documented periodically, typically as a minor component or singletons within a more
299 comprehensive faunal assessment of a specific locality (Foerste, 1889; Grabau & Letson, 1901a,
300 b; Wendorff *et al.*, 2020a). Among the more recent contributions documenting *C. niagarensis* are
301 a comprehensive reassessment of North American conulariids from the Devonian and
302 Mississippian provided by Babcock and Feldmann (1986a). Therein, the authors note that *C.*
303 *niagarensis* had been proposed as a North American reference species, *fide* Sinclair (1940), within
304 the context of the genotype *Conularia quadrisulcata*, though the systematic implication of this
305 statement is never discussed. In a separate revision of Devonian conulariids from Bolivia, Babcock
306 *et al.* (1987b) reveal that only four of the five original *C. niagarensis* syntypes illustrated by Hall
307 (1852) are known. In the absence of a designated holotype, the authors chose a new lectotype
308 (AMNH 31625) based on the best-preserved material and imaged the specimen (Babcock *et al.*,
309 1987b, fig. 5). The paucity of type material, documentation in the literature, and passage of several
310 decades since its initial description warrant a detailed systematic revision.

311 The material described herein agrees with the original description of Hall (1852); however,
312 the reporting of **biometric** characteristics such as the apical angle and the distribution of transverse
313 ribs were not commonplace at the time of publication, hence much of our comparison relies on
314 examination of the limited illustrated material (Hall, 1852, pl. 65, fig. 1a–h). The most diagnostic
315 characteristics of *C. niagarensis* are the closely spaced, chevron-like transverse ribs, their nodose
316 ornamentation, and alternating interspace **ridges**. **All** of these features are observed in the
317 **specimen documented herein. Moreover, the range in apical angle of 22–25° recorded from**
318 **the refigured lectotype (Babcock *et al.*, 1987b, fig. 5) overlaps with the Waukesha Lagerstätte**
319 **material.** Other occurrences of *C. niagarensis* include a single specimen from the Silurian of Ohio
320 and a single specimen attributed from the Waukesha Lagerstätte of Wisconsin (Foerste, 1889, pl.

321 5, fig.16; Wendorff *et al.*, 2020a, fig. 6B). Schwartz (1923) attributes a broken piece of the
322 conulariid **theca** from a Silurian deposit in Maryland, to *C. niagarensis* based on the similarity in
323 ornament (transverse ribs and nodes); however, the illustration appears only to show the
324 alternation of the nodes and not the **interspace ridges** (Schwartz, 1923, p. 30, figs 26–27). All
325 other accounts of the species in the synonyms above are based on Hall's specimens (incl. Grabau
326 & Letson, 1901a, b), and prior to Babcock *et al.* 1987b the species had not been illustrated with
327 photographs.

328 Sinclair (1940) suggested that *C. niagarensis* bears a close resemblance to specimens of
329 *Conularia quadrisulcata* from the Silurian (Wenlock Series) of England and should be considered
330 a North American reference to the genotype. However, nomenclatural issues surrounding the
331 genotype (see Sendino & Bochmann, 2021), **compounded** by the absence of lectotype or syntype
332 specimens make comparison highly problematic. Slater (1907) provides the first documentation of
333 the dimensions of *C. quadrisulcata*, stating specimens vary significantly in size (60–200 mm long)
334 and ornamentation. Notably, this far exceeds the average length of the *C. niagarensis* specimens
335 observed in this study (6–40 mm long). *C. quadrisulcata* has equal faces with an apical angle of
336 14° (compared to *C. niagarensis* with 20–28°) and 16–20 transverse ribs per cm which is far fewer
337 than **the 45 ribs per cm** of *C. niagarensis*. The nodose transverse ribs are another trait that may
338 indicate a close affinity between the two species, though the interarea of *C. quadrisulcata* is
339 notably smooth and devoid of **interspace ridges** (Slater, 1907, pl. 3, figs. 2–6; Fig. 2), unlike that
340 of *C. niagarensis*.

341 Comparable *Conularia* species which possess the diagnostic transverse ribs oriented in a
342 chevron-like arrangement include *C. cancellata* Sandberger, 1847; *C. formosa* Miller and Dyer,
343 1878; *C. milwaukeensis* Cleland, 1911; *C. porcella* (Robson & Young, 2013); *C. trentonensis*

344 Hall, 1847; *C. quichua* Ulrich in Steinmann and Döderlein, 1890; *C. rugosa* (Spencer, 1884); and
345 *C. wilkinsi* (Spencer, 1884). The number of shared traits among some of these species and
346 their tendency to exhibit differential preservational pathways (i.e., compressed and non-
347 compressed specimens) introduces potential for the erection of ‘taphotaxa’. For instance,
348 Simões *et al.* (2003) observed the variability of biometric (i.e., apical angle, distribution of
349 transverse ribs and interspace) and morphological traits in *C. quichua* across a range of
350 different taphonomic modes. The authors note that taphonomic artefacts can cause
351 significant discrepancies between specimens of the same species and caution that conulariids
352 should be assessed within the broader context of a taphonomic spectrum. However, this is
353 often complicated by small sample sizes and limited taphonomic variability at any one site.

354 Species most reminiscent of *C. niagarensis* are *C. formosa* reported from Middle–Late
355 Ordovician limestones of Indiana, Ohio, Michigan, and Ontario (Richardson & Babcock,
356 2002), and *C. quichua* from Devonian strata in Bolivia and Brazil (Babcock *et al.* 1987b;
357 Simões *et al.*, 2003). Unfortunately, with the exception of the holotype, specimens of *C.*
358 *formosa* have been reported from mostly isolated or incomplete specimens. Based on the
359 original description and illustration of *C. formosa* (Miller and Dyer, 1878, fig. 12, 12a), both
360 the Ordovician species and *C. niagarensis* are essentially identical in gross morphology and
361 ornamentation. Notably the description by Miller and Dyer (1878) predates the inclusion of
362 biometric data such as apical angle and distribution of transverse ribs and interspaces. Acid
363 residues originally reported by Clark *et al.* (1999) contain exoskeleton fragments attributed
364 to *C. formosa* that possess 5–7 transverse ribs per cm, and one interspace ridge and node per
365 mm (Richardson & Babcock, 2002). Though these fall outside the range observed in the
366 Waukesaha specimens, we would caution against comparing features based on exoskeleton

367 fragments alone. One compressed specimen from the Whitewater Formation (Upper
368 Ordovician), Ohio (Richardson & Babcock, 2002, fig. 1.4), does retain morphological detail
369 of the broader theca, with an apical angle of ~11° and obtuse angles between 120–127° for the
370 transverse ribs. Given the broad overlap in characteristics, we consider *C. formosa* as closely
371 related to *C. niagarensis*. We are cautious to assign synonymy, however, given the limited
372 material from which to make an informed assessment.

373 *Conularia quichua* from the Middle Devonian has previously been noted to share
374 several traits with *C. niagarensis*. Babcock *et al.* (1987b) provided a thorough synthesis of the
375 similarities between the two species based on material derived from the early Devonian Icla,
376 Belén, and Sicasica formations in Bolivia. The Waukesha Lagerstätte specimens support
377 these observations. *Conularia quichua* is a larger species, up to 290 mm in length, as opposed
378 to the maximum of ~40 mm in *C. niagarensis* from the Waukesha Lagerstätte. The Bolivian
379 species exhibits a smaller apical angle (between ~11–24°) and looser packing of transverse
380 ribs (21–32 per cm) compared to the North American species (20–28° and 32–51 ribs per cm,
381 respectively), though this could be due to taphonomic processes. The most obvious similarity
382 is the ornament, with both taxa displaying chevron-like transverse ribs that are more bell-
383 shaped towards the apical and adapertural portions of the theca respectively (Babcock *et al.*,
384 1987b, fig. 4a–e; Fig. 2). It has been suggested that these two taxa were closely related
385 (Babcock *et al.*, 1987b), though the Waukesha Lagerstätte material exhibits a greater degree
386 of variation as seen by the distribution of the ribs and nodes. Simões *et al.* (2003) document
387 *C. quichua* from the Devonian (Pragian-Emsian Stages) Ponta Grossa Formation in Brazil
388 and suggest that *C. niagarensis* represents a taphomorph of the former species. Akin to the
389 Bolivian material, there is little to distinguish the specimens documented herein from the

390 **Brazilian species besides the apical angle (as noted by Babcock *et al.*, 1987b), which has likely**
391 **been altered due to compressional flattening. Considering the close resemblance between**
392 **these species, the most parsimonious approach would be to assign these as synonyms, with**
393 **priority given to the senior North American species, *C. niagarensis*.**

394 *Conularia cancellata* was erected by Sandberger, 1847 to distinguish specimens described
395 from the Silurian (Wenlock Series) of England from others attributed to *C. quadrisulcata* from the
396 Carboniferous. However, as noted by Sendino & Bochmann (2021), who attempted to resolve the
397 problematic taxonomy of the genotype, *C. cancellata* species has been attributed to several
398 conulariid forms, principally those with **interspace ridges** possessing a cancellate grid-like
399 pattern, despite variations in other characteristic features. The tumultuous history of the taxonomic
400 literature surrounding this species (and possible synonymies with the genotype) are summarized
401 therein (Sendino & Bochmann, 2021; see fig. 9) and emphasize the need for revision of these
402 cancellate forms.

403 Limited comparison is afforded with *C. niagarensis* by a specimen attributed to *C. aff.*
404 *cancellata* from the Upper Ordovician Macrourus Limestone in northeast Germany. This specimen
405 is closely comparable with *C. niagarensis*, based on the overlap in size, asymmetry in the position
406 of the midline, and most notably the shared chevron transverse ribs ornamented with nodes
407 connected by **interspace ridges** (Sendino & Bochmann, 2021, figs 6, 7). However, *C. aff.*
408 *cancellata* exhibits an apical angle (12–16°) below the range of *C. niagarensis*, and the midline is
409 also offset to a greater extent in the former (one third of the face width). Moreover, there is only
410 minimal discrepancy in the angle and spacing of transverse ribs between the middle and apertural
411 portion in *C. aff. cancellata* (Sendino & Bochmann, 2021, fig 6b), with more obtuse angles in the
412 midsection. This is distinct from *C. niagarensis* where the adapertural portion possesses ribs with

413 more obtuse angles, and are **additionally** very closely spaced, to the point it can be difficult to
414 distinguish them.

415 *Conularia milwaukeensis* from the Lindwurm Member of the Middle Devonian (Givetian
416 Stage) Milwaukee Formation of southeastern Wisconsin exhibits characteristic chevron-like ribs
417 close to the apex (within ~10mm). However, this ornament is not consistent across the specimen,
418 instead forming low asymmetrical curves across much of the faces (Van Iten *et al.*, 2006a, fig.
419 1.1). In addition, the transverse ribs are more closely spaced in *C. milwaukeensis* (80–90 ribs per
420 cm) as opposed to the **Silurian** specimens (on average 45 ribs per cm). As for *Conularia porcella*
421 from the Upper Ordovician (middle Katian Stage) Cat Head Member of the Red River Formation,
422 Canada, this species can be distinguished by a significantly narrower (12–17°) and distinctly
423 pointed terminal apex (Robson & Young, 2013, figs 2.1–2.2) compared to the broader (20–28°)
424 blunt apex of *C. niagarensis*. Furthermore, *C. porcella* has far fewer transverse ribs (17–27 per
425 cm) and nodes (4 per mm) compared to *C. niagarensis*.

426 ***Conularia trentonensis* from the Trenton limestone at Middleville, Jacksonburgh,
427 Trenton Falls, and other locations were documented to share some similarities with *C.
428 formosa* (Miller and Dyer, 1878). The main difference was the presence of nodes along the
429 surface of the transverse ribs, even in samples showing minimal taphonomic alteration.
430 Notably, *C. trentonensis* is also reported to have an impressed midline that is absent in *C.
431 niagarensis*. However, this latter feature not evident from the specimen illustrated by Van
432 Iten *et al.* (1996, pl. 1, fig. 2, pl. 3, fig. 1) which lacks such a depression. Based on *C.
433 trentonensis* specimens from the upper Ordovician, Maquoketa Formation (Elgin Member),
434 several features are comparable with *C. niagarensis*. For instance, in both species, transverse
435 ribs are deflected aperturally before the corner sulci and are confluent across the corners.**

436 Only minor differences in biometric features are observed, with *C. trentonensis* recording an
437 apical angle of 15–25°, 20–50 ribs per cm, and 4–9 nodes per mm. This partially overlaps
438 with the range of features observed in *C. niagarensis*: apical angle of 20–29°, 32–51 ribs per
439 cm, and 5–10 nodes per mm. Though these species share a close overlap in biometric features,
440 they can be distinguished by shape of their transverse ribs. On the one hand, *C. trentonensis*
441 specimens exhibit a distinct angle at the midline (145–162°) with transverse ribs roughly
442 straight up until the slight deflection at the corner sulci. On the other hand, specimens of *C.*
443 *niagarensis* documented herein exhibit a gentle curvature in the transverse ribs (Fig. 2A–C)
444 and the angle at the midline (113–161°) is not as pronounced. Nevertheless, these two species
445 appear to be closely related.

446 Spencer (1884) reported several Silurian *Conularia* species derived from the Niagara
447 Limestone, in the vicinity of Hamilton, Ontario. Among these, *C. magnifica* (Spencer, 1879; see
448 Spencer, 1884) was distinguished from *C. niagarensis* based on the following traits: the significant
449 difference in size (240 mm length compared to 6–40 mm in *C. niagarensis*); the closer spacing of
450 the transverse ribs and **interspace ridges**; the lack of the chevron-like ornamentation; deeper
451 corner **sulcus**; and some distinction between the depth of the space between the **interspace ridges**
452 (Spencer, 1884, pl. 9, fig. 1 & figs. 1a–b; Fig. 2). Each of these observations justified the separation
453 between *C. magnifica* and *C. niagarensis* and conforms with our analysis that the Waukesha
454 **Lagerstätte** material belongs to the latter species. In the same report, Spencer (1884) described
455 one incomplete specimen of *C. rugosa* from an internal cast from the same stratigraphic interval
456 as *C. magnifica*. The fragment is 130 mm long and 50 mm wide, and hence notably larger than *C.*
457 *niagarensis*. In addition, this species has far fewer transverse ribs per cm than the **Silurian**
458 specimens (10 ribs per cm as opposed to 45 ribs per cm). Based on the illustration provided,

however, *C. rugosa* bears chevron-like transverse ribs comparable to those of *C. niagarensis* (Spencer, 1884, pl. 8–9, fig. 2; Fig. 2) in conjunction with alternating **interspace ridges** (Spencer, 1884, pl. 8–9, fig. 2a). The last species from this locality is *C. wilkinsi*, measuring 20–30 mm long with 30–40 transverse ribs per cm, which is comparable to *C. niagarensis*. Unfortunately, *C. wilkinsi* was erected based on one incomplete specimen (Spencer, 1884, pl. 9, fig. 3), and has not been documented since. Given the similarities between these taxa, it is likely that they may be synonymous. However, without direct observation of the specimen and additional material we cannot make any conclusions regarding the relation of *C. wilkinsi* to *C. niagarensis*.

467

468 [Insert Fig. 2 here]

469

470 Genus *Metaconularia* Foerste, 1928

471

472 **Type species.** *Conularia aspersa* Lindström, 1884 from the Silurian (Wenlock Series),
473 Vattenfallet, Visby, Gotland.

474

475 **Diagnosis.** “Midlines flanked by paired internal septae, often expressed as paired ridges or
476 lineations flanking midline on the external surface. Periderm pliable, generally less than 0.1 mm
477 thick, and covered in rows and columns of small (<0.25 mm diameter), rounded, equant papillae.”
478 (John *et al.*, 2010, p. 9)

479

480 *Metaconularia cf. manni* (Roy, 1935)

481 (Figure 3A-C)

482

483 **Description.** Single incomplete, two-dimensionally compressed specimen missing apical region
484 and aperture (Fig. 3A). Specimen large for the Waukesha **Lagerstätte, measuring 24 mm in**
485 **length and 17 mm wide across the two exposed** faces. Estimated complete length and width
486 measure 40 mm long from apex to aperture and 25 mm wide at aperture, with individual faces
487 approximately 12 mm wide. Faces equal in width with an estimated apical angle of 16–21° (range
488 given due to uncertainty). Pronounced paired midline lineations expressed as shallow rounded
489 **depressions** (Fig. 3B). Rows of nodes arch evenly from corner to corner and continue across the
490 midline **and corner sulcus** without interruption (Fig. 3C). Fine (0.03–0.07 mm diameter) rounded
491 nodes organized in a grid-like pattern with 13–15 rows per mm and 11–16 columns per mm (Fig.
492 3C).

493

494 **Material.** One incomplete specimen; UWGM 2755 (Fig. 3A–C).

495

496 **Occurrence.** Lower Silurian, late Llandovery Series (Telychian Stage): Brandon Bridge
497 Formation, Wisconsin.

498

499 **Remarks.** A single specimen (UWGM 2755) of this taxon was present within the material
500 examined in this study. Previously, Wendruff *et al.* (2020, fig. 6a) reported and figured the
501 counterpart of this specimen (UWGM 2448) and attributed it to *Metaconularia* cf. *manni*, though
502 no systematic discussion accompanied this placement and hence is provided herein. Though
503 specimen UWGM 2755 is incomplete and exhibits primarily moldic preservation it is possible to
504 assess several taxonomic features. For instance, **this sample does share** traits with the Silurian

505 species *Metaconularia manni* (Roy, 1935), originally described from the Early Upper Silurian
506 (Gorstian Stage) Lockport Formation (Lechthaylus shale) Blue Island, IL, and Lower Silurian
507 (Wenlock Series), Scotch Grove Formation, Shaffton Quarry, IA (John *et al.*, 2010). A key
508 similarity is the apically convex **crosshatch** rows and columns composed of closely spaced nodes
509 (John *et al.*, 2010, fig. 23.3; Fig. 3C). In our specimen, the nodes and lineations are expressed as
510 depressions and hence, less conspicuous (Fig. 3C). Our specimen has 13–15 rows per mm, 11–16
511 columns per mm, and nodes measure 0.03–0.06 mm in diameter. This is comparable to *M. manni*
512 which measures 9–11 rows per mm, 13–15 columns per mm, and a node diameter of 0.03–0.07
513 mm. Given the incomplete nature of our material, ornamentation serves as the most diagnostic
514 feature for identification. The apical angle of *Metaconularia* cf. *manni*, based on **part and**
515 **counterpart is between 16–21°** (Wendruff *et al.*, 2020a, fig. 6a); **however, this** does not fall
516 within the known range of *Metaconularia manni* between 35–42° (Roy, 1935; John *et al.*, 2010).
517 **Hence** our attribution of the specimen documented here remains tentative.

518 Other possible affinities for the specimen include *Metaconularia perglabra* (Ruedemann,
519 1925), an Upper Silurian species from North Buffalo, NY. This species has similarly been
520 described based on a poorly preserved specimen (John *et al.*, 2010), though it bears some
521 resemblance to *M. cf. manni*. *Metaconularia perglabra* measures 35–50 mm in length with an
522 apical angle of 15°, comparable to the Waukesha **Lagerstätte** specimen, which measures
523 approximately 40 mm long with an estimated apical angle of 16–21°. The paired midline lineations
524 of *M. perglabra* also bear some similarly to those of *M. cf. manni* (John *et al.*, 2010, fig. 20.1; Fig.
525 3A). However, most of the ornamentation of *M. perglabra* has been lost due to the poor
526 preservation of the specimen, which **hinders** further comparison. Given the limited sample size

527 and poor preservation of *M. perglabra* we cannot make any additional conclusions regarding the
528 relationship between this species and the material **herein**.

529 *Metaconularia multipuncta* (Ringueberg, 1886), a Lower Silurian species from the Niagara
530 Shale of Rockport, NY, is also worthy of comparison given several shared features with the
531 specimen documented herein. *M. multipuncta* is small (17–18 mm long and 10 mm wide) with an
532 apical angle of 30° and closely spaced nodes that arch across each face convex toward the apex.
533 Ornamentation of the Rockport species is characterized by a nodose **crosshatch** pattern, with the
534 range of columns per mm overlapping that of the Waukesha **Lagerstätte** specimen, though the
535 concentration of rows is not as closely spaced (only 8 per mm). Both species also share a pair of
536 ridges flanking the midline of each face (John *et al.*, 2010, fig. 29 1–3; Fig. 3A). However, the
537 Rockport species is based on a single specimen that is poorly preserved, providing little additional
538 information for proper systematic comparison.

539

540 [Insert Fig. 3 here]

541

542 **Results**

543

544 **Light microscopy**

545 Conulariid specimens exhibit a spectrum along which the quality of preservation progresses
546 observationally from a recrystallized phosphatic **theca** to carbonaceous films and kerogen patches.
547 Many specimens also exhibit moldic impressions of the external ornament in the marl matrix of
548 the host rock (**Figs 3; 4A–C; 5A–C**). Approximately 30% of the conulariid specimens exhibit
549 dominant patches of white to blue-white phosphatic material preserved as francolite with little to

550 no secondary mineral overgrowth (**Figs 2A–C; 4A–B**). Roughly 20% have visible kerogenization
551 with or without fragments of the phosphatic **theca** overlying or underlying the carbonaceous
552 material (**Figs 4C; 6A–F, I**). Conulariid specimens that are preserved as impressions and exhibit
553 little to no phosphatic material (**Figs 4D; 5; 6G, H**) are prevalent in the Waukesha **Lagerstätte**,
554 comprising ~50% of the observed fossil samples.

555

556 [Insert Fig. 4 here]

557

558 It is important to note however, that the specimens herein often lack counterparts and that
559 the presence of phosphatic material on any one specimen may relate to the mechanical fracturing
560 of the rock, as observed in other Waukesha **Lagerstätte** samples. That is, whilst one part may
561 preserve patches of phosphate, the opposing counterpart may only exhibit kerogenized films and/or
562 moldic impressions of exterior ornament (compare to Anderson *et al.*, 2021a, fig. 1d–e, f–g). This
563 is evident in select conulariid specimens, where the negative impressions of external ornament
564 preserve phosphatic material in the transverse ribs and nodes (**Figs 4C ; 6A, B**). In other specimens
565 however, including those for which both part and counterpart exist (e.g., UWGM 3042 [**Fig. 4D**]
566 and UWGM 4265 [**Fig. 6G, H**]), there is evidence that **minimal or** no phosphatic material
567 remained suggesting true taphonomic **or diagenetic processes** could have occurred (i.e.,
568 dissolution).

569 Fidelity of the external ornamentation across the face surfaces, including transverse ribs
570 and nodes, is retained across most of the specimens. Some specimens preserve clearly discernible
571 features with topographic relief characteristic of the phosphatic **theca** (e.g., **Figs 2C; 4A, B**), while
572 others lacking a mineralized **theca** preserve ornament as external molds (**Figs 3A; 4D, E; 5**). There

573 is evidence in some specimens that the conulariid theca was partially infilled with sediment prior
574 to compaction, as demonstrated by specimens where part of the infill has been removed displaying
575 the external mold from the opposing faces of the theca (e.g. **Fig. 2A**). In specimens that lack a
576 phosphatic **theca** and show little to no evidence of sediment infilling, the transverse ribs often
577 appear to overlay those of the opposing side of the conulariid (**Fig. 5A, B**). Compressional offset
578 is also observed along transverse ribs and corner **sulci** between two flattened faces, wherein the
579 overlying corner **sulcus** expressed as negative topographic relief can be distinguished from the
580 underlying **sulcus**, which shows positive relief (**Fig. 5A, C**).

581

582 **[Insert Fig. 5 here]**

583

584 Optically, kerogenization of the conulariid specimens is easily differentiated from the
585 surrounding matrix due to the areas of darker coloration (**Fig. 6A–F**). In rare cases, kerogenized
586 patches and thin films appear outside the confines of the **theca** (**Fig. 6G, H**). Upon investigation
587 of the sedimentary laminae, the clotted textures appear to occur on a surface above the conulariid
588 specimen, indicating the presence of an overlying microbial film and associated decay halo. The
589 general appearance of the kerogen in these specimens ranges from dark (almost black) solid
590 patches to diffuse light brown patches (**Fig. 6A–G**) and can preserve fine details of the external
591 ornament. Kerogenization replicating the external ornament is typically associated with the
592 topographically raised features of the **theca**, such as transverse ribs, nodes, and marginal corners
593 bracketing the corner **sulcus**, though there is a large degree of variability between and within
594 individual specimens.

595

596 [[Insert Fig. 6 here]

597

598 **SEM-EDS**

599 Compositional BSE imaging via SEM can further distinguish phosphatic material and
600 carbonaceous films from the host rock (Figs 7A–C). The brightest material **corresponds to**
601 **relatively higher atomic number elements, here representing** the phosphatic **theca** of the
602 conulariid, as **contrasted with** the **relatively darker and lower atomic number** material
603 representing carbonaceous films (Fig. 7B, C). Residual phosphatic material in well-preserved
604 specimens is often present within the impressions of transverse ribs left in the host clay matrix
605 where much of the **theca** is no longer present (Figs 7B, C; 8F). Notably, not all regions of dark
606 staining observed under light microscopy were readily visible in BSE imaging (compare Figs 2A
607 **and 7B, C), plausibly resulting from diffuse, interstitial carbonaceous material.**

608

609 [Insert Fig. 7 here]

610

611 EDS analysis of conulariid samples show that the host rock is composed of high
612 concentrations of Si and Al in addition to K, Mg, Na, and Fe, matching the composition of clay
613 minerals and quartzose silt grains as documented previously (Jones *et al.*, 2015; Anderson *et al.*
614 2021a; Figs 7F, K; 8B, D, E; 9D, F, G). The carbonaceous film, indicated by a dark patch on the
615 organism where the **mineralized portion of the theca** is absent, has a similar elemental
616 composition to the matrix with the addition of a carbon signal (Figs 7E, J; 8C; 9E). As with BSE
617 imaging, only relatively robust carbonaceous films return a carbon signal with EDS (compare to
618 Lieberman *et al.* 2017; Anderson *et al.*, 2021a).

619

620 [Insert Fig. 8 here]

621

622 The conulariid **theca** shows enhanced P and Ca signals in conjunction with a weak S signal
623 (Figs 7G, H, L, M; 8B, F, H, I; 9D, H, J), and correspondingly exhibits spatial lows in Al, K, Si,
624 Mg, Na, and Fe (Figs 7F, K; 8B, D, E, G; 9D, F, G). Combined BSE and EDS analysis show
625 overlap of localized Fe and S signals in specimens UWGM 2825 (Fig. 8G, H) and UWGM 2787b
626 (Fig. 9I) indicative of disseminated pyrite framboids and crystals. The distribution of pyrite is
627 particularly evident in association with an overlapping specimen of *Parioscorpio venator*
628 Wendluff *et al.*, 2020a (Fig. 9A, I).

629

630 [Insert Fig. 9 here]

631

632 Discussion

633

634 Conulariid fossils occur in abundance throughout the Waukesha Lagerstätte: **these occur as**
635 **flattened theca** with low topographic relief (Fig. 7A) **lying** parallel to bedding. Brittle fracture is
636 **rare and occurs mostly** along the corner **sulci** (e.g., Figs 5C; 6I), which may have concentrated
637 **compressive stresses**. Preservation of **the theca** is variable, **reflecting differences between the**
638 **conulariids in** taphonomic pathways. Due to the circumstances of **collection (and perhaps also**
639 **lithology), the material examined typically constitutes a single specimen preserved on**
640 **individual slabs** with limited surrounding matrix. **Consequently**, most contextual information
641 regarding **spatial** distribution and orientation **across the bedding plane** has been lost. **A single**

642 **sample among the observed material preserves** multiple conulariids (**n = 5**) **on the same slab**;
643 positioned close together **but with apparently random orientations and no evidence of clustering**
644 (Fig. 4D, E). **Together, the prone position and truncated apical ends typical of specimens—**
645 **which in life were attached to hard biological substrates** (e.g., Babcock & Feldmann, 1987b;
646 Van Iten, 1991a, b, 1996, 2016; Vinn *et al.*, 2019)—**suggest that the conulariids underwent**
647 **postmortem** transport.

648

649 **Biostratinomy**

650 Much like other records of the fauna from the Waukesha Lagerstätte (Mikulic *et al.*, 1985b;
651 LoDuca *et al.*, 2003; Jones *et al.*, 2015; Wendorff *et al.*, 2020a, b), none of the conulariids appear
652 to be preserved *in situ* or attached to any surface. Neither are associated epibionts preserved
653 attached to their conulariid hosts, despite the abundant evidence of their presence from holdfast
654 scars (Fig. 2D). It is reasonable to assume conulariids were transported to the anoxic sediment
655 traps within the Brandon Bridge Formation from an adjacent environment. **Currents passing over**
656 **these traps may have created localized eddies that served to capture material transported off**
657 **the paleo-slope (Kluessendorf, 1994; Moore *et al.*, 2005; Jones *et al.*, 2015; Wendorff *et al.*,**
658 **2020a, b).** This is consistent with the fact that conulariid specimens may be overlain by other
659 **soft-bodied organisms, as is the case in one such example involving *P. venator* (Fig. 9).**

660 Among the specimens examined herein, there is minimal to no evidence of damage caused
661 by excessive transport (e.g., fragmentation or abrasion), as **indicated** by the preservation of fine
662 ornament, including nodes, of the conulariid **theca**. **The** limited transportation **that** was involved
663 prior to burial of the conulariids, **however, may** have been sufficient to dislodge attached
664 epibionts, which might explain their pervasive absence in the fossil assemblage.

665

666 **Preservation of conulariid soft-bodied tissues**

667 Despite the exceptional preservation of numerous soft-bodied organisms within the Waukesha
668 **Biota** (Mikulic *et al.*, 1985a, b; LoDuca *et al.*, 2003; Moore *et al.*, 2005, 2011; Haug *et al.*, 2014;
669 Jones *et al.*, 2015; Wendruff *et al.*, 2020a, b), features of conulariid soft tissues within the theca
670 are apparently not preserved in any recognizable fashion **at this locality. The absence of such**
671 **preserved soft tissues is likely** linked to a combination of biological attributes and taphonomic
672 processes.

673 The **Waukesha Lagerstätte does capture soft tissues in other taxa, however. This**
674 **differential soft-tissue taphonomy in organisms such as arthropods and polychaetes as**
675 **compared to** the conulariids may be grounded in **histological distinctions between diploblastic**
676 **and organ-grade, triploblastic organisms** (Van Iten *et al.*, 1996, 2006b; Hughes *et al.*, 2000;
677 Ivantsov & Fedonkin, 2002; Van Iten & Südkamp, 2010; John *et al.*, 2010; Sendino *et al.*, 2011;
678 Lucas, 2012; Ford *et al.*, 2016). **For example, in** recent decay experiments, Gibson *et al.* (2018)
679 noted rapid and preferential loss of the most labile tissues, such as tentacles, **of diploblastic model**
680 **organisms (i.e., *Condylactis gigantea*).** Similarly, Hancy and Antcliffe (2020) **concluded** that
681 cnidarian tissues **(i.e., *Actinia equina*) showed substantial** decay relatively rapidly, within the 20-
682 hour duration of the experiment, across a range of oxic, anoxic, and reducing conditions.
683 Moreover, the fidelity of cnidarian preservation, particularly with respect to external features,
684 appears to be closely tied to the timing of epidermis rupture and subsequent lithification, such that
685 early rupturing is closely followed by the decay of the mesenteries and tentacles, as bacterial decay
686 operates faster on external **and exposed** features than autolysis does on internal structures (Hancy
687 & Antcliffe, 2020). Additionally, the rate of decay observed in external features such as the

688 tentacles is impacted by their relative position postmortem. For instance, tentacles retracted within
689 the ectodermal collar **decay at a rate** similar to other internal tissues, whereas if extended, they
690 begin to decay very early. Though anoxic conditions slowed decay by approximately two hours
691 compared to oxic conditions, diagnostic features such as the tentacles, hypostome, and mesenteries
692 **became** unrecognizable within 24 hours (Hancy & Antcliffe, 2020).

693 Altogether, the inferred **biostratinomic and** taphonomic processes in the Waukesha
694 **Lagerstätte** that preceded **final** deposition of the conulariid specimens (e.g., minor transportation)
695 **do** not conform with immediate burial upon the death of the organism. Hence, the taphonomic
696 pathways experienced by the Waukesha **Lagerstätte** conulariids were not conducive to the
697 preservation of cnidarian-grade external soft tissues based on information **obtained** from decay
698 experiments, regardless of purported oxygen levels or **the presence of** microbial entombment
699 (Wendruff *et al.*, 2020a).

700 It is worth noting that the presence of **relict** conulariid soft **parts** remains highly
701 speculative, with the few reports identifying enigmatic structures. X-rays of pyritized specimens
702 from the Hunsrück Slate were said to exhibit ambiguous internalized structures (Van Iten &
703 **Südkamp, 2010**). Babcock and Feldmann (1986c) identified tubular structures with a ‘contracted
704 mass’ replaced by iron oxide in the interior portion of up to eight specimens of *Paraconularia*
705 *subulata* (Hall, 1858). The authors suggested these features may represent internal organs, though
706 these specimens warrant further examination to determine whether these structures are truly
707 representative of original soft tissues or are instead a taphonomic artefact.

708 While conulariids **of the Waukesha Lagerstätte** do not preserve soft **parts such as**
709 **circumoral tentacles, they do** exhibit **variation in the location of** kerogenized patches and
710 carbon films within the **outlines** of the **theca**. These kerogenized patches could have been derived

711 from decayed organic material of the conulariid **theca**, internal soft tissues, or microbial films. For
712 the most part, specimens **show** no discernable pattern in the distribution of kerogenized patches,
713 and those that do constitute only a small **percentage of the total** number of **conulariids examined**.
714 For instance, specimen UWGM 3174 (Fig. 6A) shows a clear patch of mottled carbonaceous
715 material in the **apertural half** of the **theca** separated from a more distinct solid patch in the **apical**
716 **half**. There are also **a few** specimens that have circular to ovoid '**windows**' of no carbonaceous
717 material close to the corner **sulcus** along the length of the specimens (Fig. 6A, D–F). **The origin**
718 **of the 'windows' remains unclear, possibly related to differential soft-tissue preservation**
719 **within the theca that could undergo kerogenization. Alternatively**, conulariids are known to
720 possess an internalized **septum**-like feature, known as a schott, which manifests as a thin, convex,
721 transverse wall **at the end of a truncated theca**. It is possible that such a feature might have
722 restricted degradation to the upper portion of the **theca**, **serving as a barrier to keep degrading**
723 **soft tissue or microbes out of the lower portions of the theca**. Breakage of this feature
724 postmortem may have allowed organic material to infiltrate the rest of the conulariid. However,
725 the **lack of preservation** of such a **schott** or any compressional anomalies associated with it in *C.*
726 *niagarensis* or *M. cf. manni* seems to contradict this suggestion.

727 **Outside the 'windows', the origin for the kerogen of carbonaceous materials could**
728 **vary in source.** Adaperturally, amorphous, decayed soft-bodied tissue could contribute to
729 kerogenization, while adapically, the closing angles of the faces, and the closer proximity of the
730 thickened **theca** associated with the corner **sulci** (Van Iten, 1992) would provide greater amounts
731 of organic material in the phosphatized lamellae (Van Iten *et al.*, 1992; Muscente & Xiao, 2015b;
732 Ford *et al.*, 2016) and **theca** for kerogenization. More typically, the internal soft-bodied matter

733 may have spilled into the whole internal cavity of the **theca**, or decayed entirely, preventing the
734 preservation of such ‘windows’ (Figs 2B, C; 6B, C, G–I)

735 EDS analysis corroborates that kerogenized patches are likely to have been sourced from
736 the conulariid itself and not solely from the microbial mats which are pervasive in the deposit. For
737 instance, the weak carbon signal observed in association with the conulariid is likely residual
738 organics from the theca (Figs 7J; 8C). The comparatively depleted carbon signal in the host rock
739 seems to suggest that microbial activity was limited, and rather than representing a thick mat was
740 instead a thin film (Figs 7E, J; 8C). The only instance with strong evidence for the influence of
741 microbial mats on the preservation of carbonaceous material is seen in **part and** counterpart
742 **specimens UWGM 4265, exhibiting** blotchy patches of material just outside the vicinity of the
743 conulariid **theca** (Fig. 6G, H). Establishing whether this was microbially induced or the result of
744 decayed organic matter escaping during the compression of the organism is difficult to determine
745 through optical and electron microscopy.

746 We identified two other instances where EDS analysis revealed carbon signals that were
747 not directly associated with the conulariids. One conulariid specimen (UWGM 2787b, Fig. 9)
748 shows a strong carbon signal on the apical end of the specimen in association with overlapping
749 remains of **the** soft-bodied arthropod, *P. venator*. In this case, the primary source of carbon **was**
750 **likely the** *P. venator* **individual**, which also served to promote localized pyrite formation (Fig. 9I,
751 J), likely induced by the activity of sulfate reducing bacteria degrading the soft tissues.

752

753 **Preservation of the conulariid theca and phosphate dissolution**

754 SEM-EDS analyses **reveal** the carbonate-rich apatite **of the conulariid theca** (Van Iten, 1992a;
755 Wendruff *et al.*, 2020a), though the presence of a weak sulfur signal across the **theca** indicates

756 these specimens have subsequently been altered to francolite $[(\text{Ca, Mg, Sr, Na})_{10}(\text{PO}_4, \text{SO}_4,$
757 $\text{CO}_3)_6\text{F}_{2-3}]$ during diagenesis. Moreover, conulariid specimens exhibit a clear taphonomic
758 continuum, ranging from the preservation of a phosphatic **theca** to kerogenization without
759 phosphatization, to full dissolution of the phosphatic **theca** without appreciable kerogen (Fig. 4A–
760 E). The degree to which dissolution of the conulariid **theca** proceeds is controlled by **several**
761 **interconnected factors, including:** i) the composition, microstructure, and thickness of the **theca**;
762 and ii) the chemistry of **burial environment, including** the pH and **ionic strength of pore fluids**
763 **and the saturation levels of calcium and phosphorus/phosphate** (e.g., Muscente & Xiao, 2015b).

764 **Theca** thickness and microstructure play an important role in the extent of dissolution and
765 quality of preservation observed in the shelly constituent of the Waukesha **Biota. However, due**
766 **to the limited available material within the collection and inability to resample the original**
767 **site, consumptive sampling was not permissible on the material examined, precluding certain**
768 **preparation and analytical techniques.** Though we were unable to observe the microstructure of
769 the Waukesha **Lagerstätte** conulariids **in thin section**, the genus *Conularia* is known to possess
770 relatively thick **theca** by comparison to other genera, including *Metacomularia* (Brood, 1995). In
771 *C. niagarensis*, ornamentation is best preserved at the **shoulders of the corner sulci** where the
772 **theca** is thickest due to internalized carinae, thereby making it more resistant to demineralization
773 (Figs 2B, D, F; 6C–F, I) (Van Iten, 1992b; Brood, 1995). Even in specimens that are otherwise
774 pervasively demineralized, the **shoulders of the corner sulci** may be topped with slivers of
775 phosphate (Fig. 5C). Transverse ribs and nodes provide areas of **theca** thickening and are
776 frequently mineralized (Figs 2D–H; 8F), whereas adjacent **interspaces** seem most prone to
777 dissolution. The single specimen of *M. cf. manni* is pervasively demineralized, which thus
778 precludes examination of the phosphatic **theca** (Wendruff *et al.* 2020a, fig. 6A; Fig. 3).

779 Transverse ornamentation and paired internal carinae are still recognizable via both kerogenization
780 and external molds. Given that this genus is characterized by a thinner **theca** (Brood, 1995), it is
781 plausible that *Metaconularia* specimens would be less likely to preserve the **theca** than *Conularia*
782 specimens in the Waukesha **Lagerstätte**.

783 **Ultrastructural organization** of the conulariid **theca** revealed by HCl acid etching
784 experiments in previous studies reveals alternating phosphate-rich and organic-rich lamellae, with
785 the latter estimated to constitute more than 50% of the overall theca (Ford *et al.*, 2016). This
786 predominance of organic material is not evident from EDS analyses of the conulariid **theca**
787 surfaces herein, which reveal a relatively faint carbon signal (Figs 7E, J; 8C). Instead, the strongest
788 carbon signal is preserved as kerogenized patches on or below the **theca**. **Differentiating** between
789 residual carbon derived from the organic matrix of the **theca**, as opposed to the internal soft-bodied
790 tissues, is difficult to confirm with confidence. **However**, the strength of the carbon signal **as well**
791 **as the distribution and texture of remnant carbonaceous material** may provide some indication
792 as to which is which. For instance, kerogenization replicating the **theca** ornament as light brown
793 patches **appears** distinct from more randomly distributed mottled and solid darker patches which
794 may represent poorly preserved soft-bodied material (e.g., Fig. 6A) or microbial films (e.g., Fig.
795 6G, H). That the light brown patches may represent residual organic carbon of the theca is
796 corroborated by taphonomic experiments that were conducted on the organophosphatic **test** of
797 *Sphenothallus* fossils from the Lower Cambrian of South China, which used a series of HCl
798 solutions to replicate the process of demineralization (Muscente & Xiao, 2015b). Provided that
799 kerogenization of the organic materials of the **test** preceded the loss of the biomineralized **portion**,
800 removal via HCl treatments or (by analogy) diagenetic demineralization of the test still retained
801 insoluble carbonaceous material (Muscente & Xiao, 2015b). Thicker kerogenized deposits

802 associated with soft-bodied material or microbial mats could also be explained by relatively
803 recalcitrant extracellular polymeric substances (EPS) associated with degrading microbes or the
804 mats, respectively.

805

806 **Taphonomic model**

807 We propose a taphonomic model including pre- and post-burial processes based on the taphonomic
808 continuum observed in conulariids from the Waukesha **Lagerstätte**. *Conularia niagarensis* was
809 used for this model (Fig. 10A) to show the variations in orientation, demineralization, and
810 kerogenization observed in the **38 conulariid** specimens used in this study.

811 The timing between the death and deposition of the organism is **challenging** to constrain
812 in the specimens **observed herein**, though the lack of obvious abrasion and fragmentation seems
813 to suggest relatively little transportation. Despite this, given that cnidarian tissues are known to
814 preserve poorly in oxic and anoxic conditions on a timescale of only 24 hours (Hancy & Antcliffe,
815 2020), the conditions required to preserve non-biomineralized tissue would have to involve very
816 rapid burial. Microbial decay of remaining soft tissues likely ensued soon after transportation and
817 deposition.

818 Deposition of conulariids within the anoxic troughs of the quiet, restricted paleoscarp
819 surface allowed for the development of microbial films which entombed individual specimens. As
820 decay proceeded, **and while** the films were **still** tenuous, sediments may have partly infilled the
821 theca, forming a relatively thin layer before final burial. In other specimens there is virtually no
822 sediment infilling (**Figs 4C–E; 5**), potentially due to rapid sediment entombment prior to decay,
823 or robust microbial films preventing sediment from entering the aperture. Extended exposure of
824 the theca at the sediment surface likely promoted initial degradation of the organic lamellae of the

825 **theca**, thereby weakening the biomineralized portion of the organism. Organic acids produced by
826 microbial films may also have lowered pH (e.g., Sagemann *et al.*, 1999; Anderson *et al.*, 2021b).
827 The extent of demineralization during this phase depends on pH conditions as well as phosphate
828 concentration of the ambient water column and top layer of the sediment (Muscente & Xiao,
829 2015b). Given that most of the other calcified taxa within the Waukesha **Biota** also **experienced**
830 extensive demineralization, we assume conditions were conducive to the dissolution of soluble
831 biominerals such as calcite and phosphate, suggesting a localized reduction in pH (Wendruff *et*
832 *al.*, 2020a).

833 Subsequently, during burial the theca collapsed in a rhombic fashion, flattening along two
834 of the faces (Fig. 10B, C). **This style of preservation is comparable to other conulariid**
835 **specimens exhibiting compressed thecae with articulated faces from the Ordovician Cat**
836 **Head Member of the Red River Formation in southern Manitoba, Canada (Robson &**
837 **Young, 2013) and the Silurian Welton Member, Scotch Grove Formation at Shaffton**
838 **Quarry, Iowa (John *et al.*, 2010).** The flexible nature of the organic-rich microlamellar structure
839 of *Conularia* is supported by the rare occurrence of breakage or fracture in the **theca** (Ford *et al.*,
840 2016). However, compression of the **theca** was likely influenced by partial demineralization prior
841 to burial, and also very early in the taphonomic process, **during which the conulariids were**
842 **buried under multiple sub-millimetric lamellae and microbial mats (Fig. 11A).** During this
843 phase there is evidence to suggest protracted periods of sedimentation, as indicated by repeated
844 sub-millimetric-scale laminae bounded by interlaminar partings, at least some of which are likely
845 microbial mats (Fig. 11A). These do not show evidence of draping around a three-dimensional
846 **theca** which collapsed later but appear to be of relatively even thickness. Thus, the **theca** likely
847 collapsed, before it could be deeply buried.

848 Specimen UWGM 2792, a partially vertically oriented specimen, confirms the readily
849 collapsible nature of the **theca** during compaction (John *et al.*, 2010). It shows vertical
850 compression that is preserved across up to five laminae, with the apical portion transecting at least
851 four laminae and the apertural portion on the uppermost lamina (Fig. 11B). This specimen also
852 possesses a taphonomic gradient from the lower apical region to the apertural region, its phosphatic
853 material gradually decreasing in abundance, presumably due to the prolonged exposure of the
854 **theca** above the sediment water-interface (Fig. 11B).

855

856 [Insert Fig. 10-11 here]

857

858 Post-compression, the **theca** underwent taphonomic and diagenetic alterations along a
859 continuum. In instances where the **theca** remains, it has been recrystallized to francolite as
860 indicated by EDS analyses and the prevalence of sulfur throughout the **theca**. Though the relative
861 thickness of the **theca** differs across specimens, it also appears to influence the preservation of
862 carbonaceous films. For example, cross-sections of specimens with thicker or **clean** patches of
863 recrystallized phosphate tend to exhibit darker and more robust kerogenous films (Fig. 10D). Such
864 films are typically preserved on the external mold of the specimens (Fig. 10E, F), but in rare cases
865 are found on the intervening sediment infill of the interior **theca** surface (Fig. 10D). Specimens
866 that preserve an extremely thin layer of phosphate and a laminar layer of sediment infill display
867 evidence of kerogenization on the external mold surface (Fig. 10E). These specimens may be
868 linked to earlier dissolution in the pre-burial phase. Finally, in instances where the phosphatic theca
869 is not preserved and sediment infill is lacking, the external mold shows kerogenization reduced to
870 a brown carbonaceous film on the sediment (Fig. 10F). In **some** specimens, this later stage is

871 artificially caused by mechanical breakage along the exterior surface of the preserved theca as seen
872 in specimen UWGM 3130, where the sediment infill has been partly removed (Fig. 10E).

873 The observed taphonomic pathways of the Waukesha **Lagerstätte** conulariids may be
874 compared to **those of** the organophosphatic tests of *Sphenothallus* from the lower Cambrian
875 Shuijingtuo and Niutitang formations in the Hubei and Hunan provinces (respectively) of South
876 China (Muscente & Xiao, 2015b). Complete demineralization of the South China *Sphenothallus*
877 material **is manifested** as carbonaceous material with no mineralized test present. In comparison,
878 pervasive demineralization of the conulariid **theca** leaves a carbonaceous impression or mold in
879 the clay matrix (**Figs 3, 4C–E; 5A–C**). Partial demineralization of the South China *Sphenothallus*
880 is described as compositionally intermediate between fully shelly and carbonaceous (Muscente &
881 Xiao, 2015b). Most of our material resembles this description, with conulariids that retain some of
882 their phosphatic **theca**, but which are primarily preserved as external molds in the host rock with
883 carbonaceous films (e.g., Fig. 6A).

884

885

886 **Conclusions**

887 *Conularia niagarensis* and *Metaconularia* cf. *manni* from the Silurian Waukesha Lagerstätte
888 (**southeastern Wisconsin**) **underwent a complex taphonomic history, elements of which are**
889 **shared with conulariids from other rock units and localities such as the Silurian Scotch**
890 **Grove Formation of east-central Iowa. The Waukesha specimens variably exhibit**
891 **recrystallization of phosphatic microlamellae, kerogenization of organic microlamellae, and**
892 **complete dissolution of the phosphatic component. Mineralized microlamellae are composed**
893 **of carbonate apatite with trace amounts of sulfur, suggesting alteration to francolite. Prior to**

894 **final burial, the conulariids underwent limited transport, as indicated by their alignment**
895 **parallel to bedding, the absence of the apical attachment disc, and the apparent random**
896 **trend of specimen orientations. Following final burial, the soft tissues of the conulariids**
897 **decayed rapidly, unlike the soft parts of associated arthropods and annelids. This observation**
898 **lends additional weight to the hypothesis that the soft parts of conulariids were similar in**
899 **composition and preservation potential to those of extant cnidarians.**

900 Based on our findings, we propose a taphonomic model **involving a sequence of**
901 **processes** similar to that demonstrated **for** other deposits preserving phosphatic shelly faunas
902 **(John *et al.*, 2010; Robson & Young, 2013; Muscente *et al.*, 2019).** Following **transport** and
903 **deposition of the conulariids in anoxic sediment traps, the organisms were partially entombed**
904 **within** microbial films, **initiating bacterial** decay of the soft tissues. The **extent of dissolution**
905 **of the phosphatic microlamellae was** controlled by the composition, microstructure, and
906 **thickness of the theca** as well as **by** the chemistry of the **sediment pore water** and **water**
907 **column.** Kerogenization may **have occurred concomitantly** with demineralization, leaving
908 carbonaceous material on both the interior and, particularly, exterior surfaces **of the theca.**

909 Finally, our investigation adds to a growing body of literature across the geological
910 **time scale documenting the influence on paleontology of both “minor” lagerstätten and taxa**
911 **that have been relegated to relative obscurity for being problematic, or not as “showy” as**
912 **some better-preserved or character-rich taxa. However, conulariids are one of the most**
913 **abundant skeletonized components at the Waukesha Lagerstätte, and are common at many**
914 **other deposits, too.** The relative plentitude of conulariids also makes them good
915 **investigatory tools as to the taphonomy of organophosphatic skeletal components, as the**
916 **spectrum of preservation at the Waukesha Lagerstätte demonstrates.** It is our hope that

917 this work will spark further interest in this group that still has much to contribute to
918 paleobiology.

919

920 **Acknowledgements**

921

922 We thank Carrie Eaton, Museum Curator of the University of Wisconsin Geology Museum for
923 access and loan of the specimens. **We are also particularly grateful to Heyo Van Iten and Nigel**
924 **Hughes for their constructive comments on an earlier version of the manuscript.** Research
925 presented herein was supported by National Science Foundation (NSF) CAREER Award 1652351
926 (JDS) and NSF Earth Sciences Postdoctoral Fellowship Award (ER-PF) 1725762 (EPA). AAM
927 and SMJ were supported by NSF Sedimentary Geology and Paleobiology Award (EAR-SGP)
928 1917031. JDS and the X-ray Microanalysis Core were also supported by NSF Instrumentation and
929 Facilities (EAR/IF) 1636643.

930

931 **ORCID**

932

933 Sarah M. Jacquet <http://orcid.org/0000-0001-6673-4929>

934 Evan. P. Anderson <https://orcid.org/0000-0003-2122-2035>

935 James D. Schiffbauer <http://orcid.org/0000-0003-4726-0355>

936

937 **References**

938

939 **Allison, P. A.** 1988. Konservat-Lagerstätten: Cause and classification. *Paleobiology*, **14**(4), 331–
940 344. <https://doi.org/10.1017/S0094837300012082>

941 **Allison, P. A. & Briggs, D. E. G.** 1993. Exceptional fossil record: Distribution of soft-tissue
942 preservation through the Phanerozoic. *Geology*, **21**(6), 527–530.
943 [https://doi.org/10.1130/0091-7613\(1993\)021<0527:EFRDOS>2.3.CO;2](https://doi.org/10.1130/0091-7613(1993)021<0527:EFRDOS>2.3.CO;2)

944 **Anderson, E. P., Schiffbauer, J. D., Jacquet, S. M., Lamsdell, J. C., Kluessendorf, J., &**
945 **Mikulic, D. G.** 2021a. Stranger than a scorpion: a reassessment of *Parioscorpio venator*, a
946 problematic arthropod from the Llandoveryan Waukesha Lagerstätte. *Palaeontology*, **64**(3),
947 429–474. <https://doi.org/10.1111/pala.12534>

948 **Anderson, E. P., Rosbach, S. A., Deadwyler, H., Ericsson, A., & Schiffbauer, J. D.** 2021b.
949 Experimental taphonomy with wet-chemistry microsensors and genetic analyses cracks a
950 taphonomic window ajar. *Geological Society of America Annual Meeting*. Portland, Oregon.

951 **Babcock, L. E., & Feldmann, R. M.** 1986a. Devonian and Mississippian Conulariids of North
952 America. Part A. General Description and *Conularia*. *Annals of the Carnegie Museum*. **55**,
953 349–410.

954 **Babcock, L. E., & Feldmann, R. M.** 1986b. The phylum Conulariida. *in* Hoffman A., &
955 Nitecki, M. H. (eds.), *Problematic Fossil Taxa*. Oxford University Press: Oxford, 135–147
956 pp.

957 **Babcock, L. E., Feldmann, R. M., Wilson, M. T., & Suarez-Riglos, M.** 1987. Devonian
958 conulariids of Bolivia. *National Geographic Research*, **3**, 210–231.

959 **Barrande, J.** 1867. *Système Silurien du centre de la Bohème. Ière Partie: Recherches*
960 *Paléontologiques*, vol.3, *Classe des Mollusques, Ordre des Ptéropodes*. Prague and Paris,
961 179 pp.

962 **Billings, E.** 1866. Catalogues of the Silurian fossils of the Island of Anticosti: with descriptions
963 of some new genera and species. *Geological Survey of Canada, Separate Report*.
964 *Publication No. 427*, 93 pp. [doi:10.5962/bhl.title.15136](https://doi.org/10.5962/bhl.title.15136)

965 **Bouček, B.** 1939. Conularida. In Schindewolf, O. H. (Ed.), *Handbuch der Paläozoologie*. Vol.
966 2A, Verlag von Gebrüder Borntraeger, Berlin, 113–131 pp.

967 **Brood, K.**, 1995. Morphology, structure, and systematics of the conulariids. *GFF*, **117**(3), 121–
968 137. [doi:10.1080/11035899509546208](https://doi.org/10.1080/11035899509546208)

969 **Bruthansová, J., & Van Iten, H.** 2020. Invertebrate epibionts on Ordovician conulariids from
970 the Prague Basin (Czech Republic, Bohemia). *Palaeogeography, Palaeoclimatology,*
971 *Palaeoecology*, **558**, 109963. [doi:10.1016/j.palaeo.2020.109963](https://doi.org/10.1016/j.palaeo.2020.109963)

972 **Butterfield, N. J., & Nicholas, C. J.** 1996. Burgess Shale-Type Preservation of Both Non-
973 Mineralizing and 'Shelly' Cambrian Organisms from the Mackenzie Mountains,
974 Northwestern Canada. *Journal of Paleontology*, **70**(6), 893–899.

975 **Cardoso, A. R., Romero, G. R., Osés, G. L. & Nogueira, A. C. R.** 2020. Taphonomy of
976 lacustrine fish fossils of the Parnaíba Basin, northeastern Brazil: Spatial and causative
977 relations of Konservat Lagerstätten in West Gondwana during Jurassic–Cretaceous.
978 *Palaeogeography, Palaeoclimatology, Palaeoecology*, **542**, 109602.
979 [doi:10.1016/j.palaeo.2020.109602](https://doi.org/10.1016/j.palaeo.2020.109602).

980 **Clarke, J. M.** 1913. Fosseis Devonianos do Paraná. *Servico Geologico e Mineralogico do*
981 *Brasil, Monographias*, 1, 1-353.

982 **Clark, D. L., Sorenson, J. K., Ladd, N., & Freheit, J. R.** 1999. Probable microvertebrates,
983 vertebrate-like fossils, and weird things from the Wisconsin Ordovician. *Journal of*
984 *Paleontology*, 73, 1201–1209.

985 **Cleland, H. F.** 1911. The fossils and stratigraphy of the Middle Devonian of Wisconsin.
986 *Wisconsin Geological and Natural History Survey, Bulletin*, 21, 1–222.
987 <http://digital.library.wisc.edu/1711.dl/EcoNatRes.WGB21Sci6>

988 **d'Archiac, A., & de Verneuil, É.** 1842. On the fossils of the older deposits of the Rhenish
989 Provinces. *Transactions of the Geological Society of London*, 6(2), 303–410.

990 **Douglas, J. A.** 1920. Geological sections through the Andes of Peru and Bolivia: II. From
991 the Port of Mollendo to the Inambari River. *Quarterly Journal of the Geological Society of*
992 *London* 76, pt. 1 (301), 1-61.

993 **Fletcher, H. O.** 1938. A revision of the Australian Conulariae. *Records of the Australian*
994 *Museum*, 20(3), 235–255. [doi:10.3853/j.0067-1975.20.1938.573](https://doi.org/10.3853/j.0067-1975.20.1938.573)

995 **Foerste, A. F.** 1889. Notes on Clinton Group fossils, with special reference to collections from
996 Indiana, Tennessee and Georgia. *in* Proceedings of the Boston Society of Natural History,
997 24, 263–355.

998 **Foerste, A. F.** 1893. Fossils of the Clinton Group in Ohio and Indiana. *in* Report of the
999 Geological Survey of Ohio, *The Laning PTG Co, State Printers, Norwalk*, 7, 516–601.

1000 **Foerste, A. F.** 1928. American Arctic and Related Cephalopods. Denison University Bulletin,
1001 *Journal of the Scientific Laboratories*, **23**, 1–110.

1002 **Forchielli, A., Steiner, M., Hu, S., Lüter, C., & Keupp, H.** 2014. Taphonomy of the earliest
1003 Cambrian linguliform brachiopods. *Acta Palaeontologica Polonica*, **59**(1), 185–207.
1004 [doi:10.4202/app.2011.0182](https://doi.org/10.4202/app.2011.0182).

1005 **Ford, R. C., Van Iten, H., & Clark II, G. R.** 2016. Microstructure and composition of the
1006 periderm of conulariids. *Journal of Paleontology*, **90**(3), 389–399, [doi:10.1017/jpa.2016.63](https://doi.org/10.1017/jpa.2016.63).

1007 **Fu, D., Tong, G., Dai, T., Liu, W., Yang, Y., Zhang, Y., Cui, L., Li, L., Yun, H., Wu, Y.,**
1008 **Sun, A., Liu, C., Pei, W., Gaines, R. R., & Zhang, X.** 2019. The Qingjiang Biota—A
1009 Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. *Science*,
1010 **363**(64332), 1338–1342. [doi:10.1126/science.aau8800](https://doi.org/10.1126/science.aau8800)

1011 **Gaines, R. R.** 2014. Burgess Shale-Type Preservation and its Distribution in Space and Time.
1012 *The Palaeontological Society Papers*, **20**, 123–146. [doi:10.1017/S1089332600002837](https://doi.org/10.1017/S1089332600002837)

1013 **Gibson, B. M., Schiffbauer, J. D., & Darroch, S. A. F.** 2018. Ediacaran-style decay
1014 experiments using mollusks and sea anemones. *Palaios*, **33**, 185–203.
1015 <https://doi.org/10.2110/palo.2017.091>

1016 **Götte, A.** 1887. Entwicklungsgeschichte der *Aurelia aurita* und *Cotylorhiza tuberculata*.
1017 Abhandlungen zur Entwicklungsgeschichte der Tiere. Viertes Heft. Verlag von Leopold
1018 Voss. Hamburg und Leipzig, 79 p.

1019 **Grabau, A. W., & Letson, E. J.** 1901a. Guide to the Geology and Paleontology of Niagara Falls
1020 and Vicinity. *Bulletin of the Buffalo Society of Natural Sciences*, vol. 7, 284 pp.

1021 **Grabau, A. W., & Letson, E. J.** 1901b. Guide to the Geology and Paleontology of Niagara Falls
1022 and Vicinity. *Bulletin of the New York State Museum*, vol. 9, 284 pp.

1023 **Grathoff, G. H., & Moore, D. M.** 2002. Characterization of the Waukesha Illite: A mixed-
1024 polytype illite in the Clay Mineral Society repository. *American Mineralogist*, 87(11–12),
1025 1557–1563. <https://doi.org/10.2138/am-2002-11-1205>

1026 **Hall, J.** 1843. Geology of New-York: Part IV, Comprising the Survey of the Fourth Geological
1027 District. *Carroll and Cook*, Albany, 683 pp.

1028 **Hall, J. 1847. Paleontology of New York: C. Van Benthuyzen**, Albany, 338 pp.

1029 **Hall, J.** 1852. Palaeontology of New York Volume II. Containing Descriptions of the Organic
1030 Remains of the Lower Middle Division of the New-York System. *Natural History of New*
1031 *York*, Part 6: New York, D. Appleton & Co. and Wiley & Putnam; Boston, Gould, Kendall,
1032 & Lincoln, 362 pp.

1033 **Hall, J.** 1858. Chapter 8. Palaeontology of Iowa, *in* Hall, J., & Whitney, J. D. Report of the
1034 Geological Survey of the state of Iowa. Embracing the results of investigations made during
1035 portions of the years 1855, 56 & 57, v. 1, part II; *Palaeontology*, p. 437–724.

1036 **Hancy, A. D., & Antcliffe, J. B.** 2020. Anoxia can increase the rate of decay for cnidarian
1037 tissue: Using *Actinia equina* to understand the early fossil record. *Geobiology*, 18(2): 167–
1038 184. [doi:10.1111/gbi.12370](https://doi.org/10.1111/gbi.12370)

1039 **Hansman, R. H., Shaw, F. C., & Pettyjohn, W. A. 1962. Supplement to the Catalog of the**
1040 **Type Specimens of Fossils in the University of Cincinnati Museum. *University of***
1041 ***Cincinnati Press, Cincinnati, OH.***

1042 **Harvey, T. H. P., & Butterfield, N. J. 2011. Macro- and Microfossils of the Mount Cap**
1043 **Formation (Early and Middle Cambrian, Northwest Territories). *Geoscience Canada*, **38**,**
1044 **165–173.**

1045 **Harvey, T. H. P., Ortega-Hernández, J., Lin, J. P., Yuanlong, Z., & Butterfield, N. J. 2012.**
1046 **Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou**
1047 **Province, China. *Acta Palaeontologica Polonica*, **57**(2), 423–436.**

1048 <https://doi.org/10.4202/app.2011.0028>

1049 **Hatschek, B. 1888. *Lehrbuch der Zoologie, eine morphologische Übersicht des Thierreiches zur***
1050 ***Einführung in das Studium dieser Wissenschaft.* Gustav Fischer, Jena, 432 pp.**

1051 **Haug, C., Briggs, D.E.G., Mikulic, D.G., Klussendorf, J., & Haug, J.T. 2014.**
1052 **The implications of a Silurian and other thylacocephalan crustaceans for the functional**
1053 **morphology and systematic affinities of the group. *BMC Evolutionary Biology*. **14**(159): 1–**
1054 **15. [doi:10.1186/s12862-014-0159-2](https://doi.org/10.1186/s12862-014-0159-2)**

1055 **Hughes, N. C., Gunderson, G. O., & Weedon, M. J. 2000. Late Cambrian Conulariids From**
1056 **Wisconsin and Minnesota. *Journal of Paleontology*, **74**(5), 828–838. [doi:10.1666/0022-3360\(2000\)074<0828:lccfwa>2.0.co;2](https://doi.org/10.1666/0022-3360(2000)074<0828:lccfwa>2.0.co;2)**

1058 **Huntley, J. W., & Scarponi, D.** 2021. Parasitism and host behavior in the context of a changing
1059 environment: The Holocene record of the commercially important bivalve *Chamelea*
1060 *gallina*, northern Italy. *PLoS ONE*, **16**, 1–21. [doi:10.1371/journal.pone.0247790](https://doi.org/10.1371/journal.pone.0247790)

1061 **Iniesto, M., Buscalioni, Á. D., Carmen Guerrero, M., Benzerara, K., Moreira, D., & López-**
1062 **Archilla, A. I.** 2016. Involvement of microbial mats in early fossilization by decay delay
1063 and formation of impressions and replicas of vertebrates and invertebrates. *Scientific*
1064 *Reports*, **6**, 25716. [doi:10.1038/srep25716](https://doi.org/10.1038/srep25716)

1065 **Iniesto, M., Villalba, I., Buscalioni, A. D., Guerrero, M. C., & López-Archilla, A. I.** 2017.
1066 The Effect of Microbial Mats in The Decay of Anurans with Implications for Understanding
1067 Taphonomic Processes in The Fossil Record. *Scientific Reports*, **7**, 45160.
1068 [doi:10.1038/srep45160](https://doi.org/10.1038/srep45160)

1069 **István, D.** 2018. digiCamControl v. 2.1.1.0. <http://www.digicamcontrol.com/>

1070 **Ivantsov, A. Y., & Fedonkin, M. A.** 2002. Conulariid-like fossil from the Vendian of Russia: A
1071 metazoan clade across the Proterozoic/Palaeozoic boundary. *Palaeontology*, **45**(6), 1219–
1072 1229. [doi:10.1111/1475-4983.00283](https://doi.org/10.1111/1475-4983.00283)

1073 **John, D. L., Hughes, N. C., Galaviz, M. I., Gunderson, G. O., & Meyer, R.** 2010. Unusually
1074 preserved *Metaconularia manni* (Roy, 1935) from the Silurian of Iowa, and the systematics
1075 of the genus. *Journal of Paleontology*, **84**(1), 1–31. [doi: 10.1666/09-025.1](https://doi.org/10.1666/09-025.1).

1076 **Jones, W. T., Feldmann, R. M., & Schweitzer, C. E.** 2015. *Ceratiocaris* from the Silurian
1077 Waukesha Biota, Wisconsin. *Journal of Paleontology*, **89**(6), 1007–1021.
1078 [doi:10.1017/jpa.2016.22.](https://doi.org/10.1017/jpa.2016.22)

1079 **Kayser, F. H. E.** 1897. Beiträge zur Kenntniss einiger paläozischer Faunen Sud-Amerikas.

1080 *Deutsche geologische Gesellschaft, Zeitschrift*, 49(2), 274-317.

1081 **Kiderlen, H.** 1937: Die Conularien. Über Bau und Leben der ersten Scyphozoa. *Neues Jahrbuch*

1082 *für Mineralogie, Beilage Band*, 77, 113–169.

1083 **Kleffner, M. A., Norby, R. D., Kluessendorf, J., & Mikulic, D. G.** 2018. Revised conodont

1084 biostratigraphy of Lower Silurian strata of southeastern Wisconsin. Paper-No. 6–2. *Paper*

1085 *presented at GSA North-Central 2018 Annual Meeting, Ames, United States.*

1086 <https://doi.org/10.1130/abs/2018NC-312921>

1087 **Kluessendorf, J.** 1990. *Depositional and taphonomic aspects of a Silurian (Brandon Bridge, Llandovery-Wenlock) fossil Konservat Lagerstätte from Waukesha, Wisconsin (U.S.A.), predictability of North American Silurian fossil Konservat Lagerstätten, and some insights into ichnofacies*. Unpublished PhD thesis, University of Illinois at Urbana-Champaign, 115 pp.

1092 **Kluessendorf, J.** 1994. Predictability of Silurian Fossil-Konservat-Lagerstätten in North

1093 America. *Lethaia*. 27(4): 337–344. [doi:10.1111/j.1502-3931.1994.tb01584](https://doi.org/10.1111/j.1502-3931.1994.tb01584)

1094 **Kluessendorf, J., & Mikulic, D. G.** 1996. An Early Silurian Sequence Boundary in Illinois

1095 and Wisconsin. in Witzke, B.J., Ludvigson, G.A., Day, J. (eds.), *Paleozoic Sequence*

1096 *Stratigraphy: Views from the North American Craton*. *Geological Society of America*

1097 *Special Paper*, vol. 306, 177–185 pp.

1098 **Kozłowski, R.** 1923. *Faune Devonienne de Bolivie*. *Annales de Paléontologie*, 12(1/2), 1-112.

1099 **Leme, J. D. M., Simões, M. G., Marques, A. C., & Van Iten, H.** 2008. Cladistic analysis of the
1100 suborder conulariina Miller and Gurley, 1896 (Cnidaria, Scyphozoa; Vendian-Triassic).
1101 *Palaeontology*, **51**(3), 649–662. <https://doi.org/10.1111/j.1475-4983.2008.00775.x>

1102 **Lindström, G.** 1884. On the Silurian Gastropoda and Pteropoda of Gotland. *Kongliga Svenska
1103 Vetenskaps-Akademien*, **19**, 250 pp.

1104 **LoDuca, S., Kluessendorf, J., & Mikulic, D.** 2003. A new noncalcified dasycladalean alga from
1105 the Silurian of Wisconsin. *Journal of Paleontology*, **77**(6), 1152–1158. [doi:10.1666/0022-3360\(2003\)0772.0.CO;2](https://doi.org/10.1666/0022-3360(2003)0772.0.CO;2)

1107 **Lucas, S. G.** 2012. The extinction of the conulariids. *Geosciences (Switzerland)*, **2**(1), 1–10.
1108 [doi:10.3390/geosciences2010001](https://doi.org/10.3390/geosciences2010001)

1109 **Martí Mus, M.** 2014. Interpreting “shelly” fossils preserved as organic films: The case of
1110 hyolithids. *Lethaia*, **47**(3), 397–404. <https://doi.org/10.1111/let.12066>

1111 **McKee, E. D.** 1935. A Conularia from the Permian of Arizona. *Journal of Paleontology*, **9**(5),
1112 427–429.

1113 **Mergl, M., Ferrová, L., & Frýda, J.** 2016. Armoured test of Early Devonian *Mesoconularia*
1114 (Conulariida) from the Prague Basin (Czech Republic): probable adaptation to increased
1115 predation pressure. *Bulletin of Geosciences*, **91**(3), 561–581.
1116 <https://doi.org/10.3140/bull.geosci.1601>

1117 **Meyer, R. C., & Gunderson, G. O.** 1986. Discovering a New Silurian Soft-Bodied Fauna.
1118 *Rocks & Minerals*, **61**, 310–319. [doi:10.1080/00357529.1986.11768462](https://doi.org/10.1080/00357529.1986.11768462).

1119 **Mikulic, D. G.** 1977. A preliminary revision of the Silurian stratigraphy of southeastern
1120 Wisconsin. *in* Nelson, K. G. (ed), Geology of Southeastern Wisconsin. *41st Annual Tri-*
1121 *State Field Guidebook*, Milwaukee, WI. University of Wisconsin-Milwaukee, A6–A34 pp.

1122 **Mikulic, D. G., Briggs, D. E. G., & Kluessendorf, J.** 1985a. A new exceptionally preserved
1123 biota from the Lower Silurian of Wisconsin, U.S.A. *Philosophical Transactions of the Royal*
1124 *Society of London*, **311**, 75–85. [doi:10.1098/rstb.1985.0140](https://doi.org/10.1098/rstb.1985.0140)

1125 **Mikulic, D. G., Briggs, D. E. G., & Kluessendorf, J.** 1985b. A Silurian Soft-Bodied Biota.
1126 *Science*, **228**(4700), 715–717. [doi:10.1126/science.228.4700.715](https://doi.org/10.1126/science.228.4700.715).

1127 **Miller, S. A., & Dyer, C. B.** 1878. **Description of New Genera, and Species of Fossils.**
1128 *Cincinnati Society of Natural History*, **1**(1), 24–38.

1129 **Miller, S. A. & Gurley, W. F. E.** 1896. New species of Paleozoic invertebrates from Illinois and
1130 other states. *Illinois State Museum of Natural History, Bulletin*, **11**, 1–50.

1131 **Moore, R.C. & Harrington, H.J.** 1956. Conulata. F54–F66. *in* Moore, R. C. (ed.): Treatise on
1132 Invertebrate Paleontology, Part F, Coelenterata. *University of Kansas Press*, Boulder,
1133 Colorado and Lawrence, Kansas, 498 pp.

1134 **Moore, R. A., Briggs, D. E. G., Braddy, S. J., Anderson, L. I., Mikulic, D. G., &**
1135 **Kluessendorf, J.** 2005. A new Synziphosurine (Chelicerata: Xiphosura) from the late
1136 Llandovery (Silurian) Waukesha Lagerstätte, Wisconsin USA. *Journal of Paleontology*,
1137 **79**(2), 242–250. [doi:10.1666/0022-3360\(2005\)079<0242:anscxf>2.0.co;2](https://doi.org/10.1666/0022-3360(2005)079<0242:anscxf>2.0.co;2).

1138 **Moore, R. A., Briggs, D. E. G., Braddy, S. J., & Shultz, J. W.** 2011. Synziphosurines
1139 (Xiphosura: Chelicerata) from the Silurian of Iowa. *Journal of Paleontology*, **85**(1), 83–91.
1140 [doi:10.1666/10-057.1](https://doi.org/10.1666/10-057.1).

1141 **Muscente, A. D., & Xiao, S.** 2015a. Resolving three-dimensional and subsurficial features of
1142 carbonaceous compressions and shelly fossils using backscattered electron scanning
1143 electron microscopy (BSE-SEM). *Palaios*, **30**(6), 462–481. [doi:10.2110/palo.2014.094](https://doi.org/10.2110/palo.2014.094)

1144 **Muscente, A. D., & Xiao, S.** 2015b. New occurrences of *Sphenothallus* in the lower Cambrian
1145 of South China: Implications for its affinities and taphonomic demineralization of shelly
1146 fossils. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **437**, 141–164.
1147 [doi:10.1016/j.palaeo.2015.07.041](https://doi.org/10.1016/j.palaeo.2015.07.041)

1148 **Muscente, A. D., Schiffbauer, J. D., Broce, J., Laflamme, M., O'Donnell, K., Boag, T. H.,**
1149 **Meyer, M., Hawkins, A. D., Huntley, J. W., McNamara, M., MacKenzie, L. A., Stanley,**
1150 **G. D., Hinman, N. W., Hofmann, M. H. & Xiao, S.** 2017. Exceptionally preserved fossil
1151 assemblages through geologic time and space. *Gondwana Research*, **48**, 164–188, [doi:10.1016/j.gr.2017.04.020](https://doi.org/10.1016/j.gr.2017.04.020).

1153 **Muscente, A. D., Martindale, R. C., Schiffbauer, J. D., Creighton, A. L. & Bogan, B. A.**
1154 2019. Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya ha Tinda (Alberta,
1155 Canada) and its significance for exceptional fossil preservation during oceanic anoxic
1156 events. *Palaios*, **34**(11), 515–541. [doi:10.2110/palo.2019.050](https://doi.org/10.2110/palo.2019.050).

1157 **Orr, P. J., Briggs, D. E. G., Kearns, S. L.** 1998. Cambrian Burgess Shale animals replicated in
1158 clay minerals. *Science*, **281**(5380), 1173–1175. [doi:10.1126/science.281.5380.1173](https://doi.org/10.1126/science.281.5380.1173)

1159 **Orr, P. J., Kearns, S. L. & Briggs, D. E. G.** 2002. Backscattered electron imaging of fossils
1160 exceptionally preserved as organic compressions. *Palaios*, **17**(1), 110–117.
1161 [doi:10.1669/0883-1351\(2002\)017%3C0110:BEIOFE%3E2.0.CO;2](https://doi.org/10.1669/0883-1351(2002)017%3C0110:BEIOFE%3E2.0.CO;2)

1162 **Orr, P. J., Kearns, S. L., Briggs, D. E. G.** 2009. Elemental mapping of exceptionally preserved
1163 ‘carbonaceous compression’ fossils. *Palaeogeography, Palaeoclimatology, Palaeoecology*,
1164 **277**(1–2), 1–8. [doi:10.1016/j.palaeo.2009.02.009](https://doi.org/10.1016/j.palaeo.2009.02.009)

1165 **Pang, K., Tang, Q., Schiffbauer, J. D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z. and**
1166 **Xiao, S.** 2013. The nature and origin of nucleus-like intracellular inclusions in
1167 Paleoproterozoic eukaryote microfossils. *Geobiology*, **11**(6), 499–510.
1168 [doi:10.1111/gbi.12053](https://doi.org/10.1111/gbi.12053)

1169 **Peterson, K. W.** 1979. Development of coloniality in Hydrozoa. *in* Larwood, G. & Rosen, B. R.
1170 (eds.) *Biology and Systematics of Colonial Organisms*. Academic Press, London, 105–139
1171 pp.

1172 **Pulsipher, M.A., Anderson, E.P., Wright, L.S., Kluessendorf, J., Mikulic, D.G., and**
1173 **Schiffbauer, J.D.** In press. Description of *Acheronauta* gen. nov., a vermiform basal
1174 mandibulate from the Silurian Waukesha Lagerstätte, Wisconsin, USA. *Journal of*
1175 *Systematic Paleontology*.

1176 **Reed, F. R. C.** 1904. **Mollusca from the Bokkeveld Beds.** *South African Museum, Annals*, **4**,
1177 239–274.

1178 **Reed, F. R. C.** 1925. **Revision of the fauna of the Bokkeveld Beds.** *South African Museum,*
1179 *Annals*, **22**, 27–225.

1180 **Richardson, J. G., & Babcock, L. E.** 2002. Weird things from the Middle Ordovician of
1181 North America interpreted as conulariid fragments. *Journal of Paleontology*, 76(2),
1182 391–393. [https://doi.org/10.1666/0022-3360\(2002\)076<0391:wtftmo>2.0.co;2](https://doi.org/10.1666/0022-3360(2002)076<0391:wtftmo>2.0.co;2)

1183 **Ringueberg, E. N. S.** 1896. New Genera and Species of Fossils from the Niagara Shales. in
1184 Bulletin of the Buffalo Society of Natural Sciences, Volume V, *Buffalo Society of Natural
1185 Sciences*, 5–22 pp.

1186 **Robson, S. P. & Young, G. A.** 2013. Late Ordovician conulariids from Manitoba, Canada.
1187 *Journal of Paleontology*, 87(5), 775–785. [doi:10.1666/12-0370](https://doi.org/10.1666/12-0370).

1188 **Roy, S. K.** 1935. A new Niagaran Conularia. *Field Museum of Natural History*, 6, 148–154.

1189 **Sagemann, J., Bale, S. J., Briggs, D. E. G., & Parkes, R. J.** 1999. Controls on the formation of
1190 authigenic minerals in association with decaying organic matter: an experimental approach,
1191 *Geochimica et Cosmochimica Acta*, v. 63, 1083-1095 pp.

1192 **Sandberger, G.** 1847. Die Flossenfüsser oder Pteropoda der ersten Erd- bildungs-Epoche.
1193 Conularia und Coleoptrion. Neues Jahrbuch für Mineralogie, Geognosie, *Geologie und
1194 Petrefaktenkunde* 1847, 8–25.

1195 **Schiffbauer, J.D., & Laflamme, M.** 2012. Lagerstätten through time: A collection of
1196 exceptional preservational pathways from the terminal Neoproterozoic through today.
1197 *Palaios*, 27, 275-278. Doi:10.2110/palo.2012.SO3

1198 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1199 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J.,**

1200 **Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A.** 2012. Fiji: An open-source
1201 platform for biological-image analysis. *Nature Methods*, **9**, 676–682.
1202 [doi:10.1038/nmeth.2019](https://doi.org/10.1038/nmeth.2019).

1203 **Schwartz, C. K.** 1923. Silurian: Geologic relations and geographic distribution of the Silurian of
1204 Maryland. *Maryland Geological Survey*, 794 pp.

1205 **Sedgwick, A. & McCoy, F.** 1855. A Synopsis of the Classification of the British Palaeozoic
1206 Rocks, with a Systematic Description of the British Palaeozoic Fossils in the Geological
1207 Museum of the University of Cambridge. *London: Cambridge University Press*, 644 pp.

1208 **Sendino, C., & Darrell, J.** 2009. History of Conulariid Research. *Journal of the*
1209 *Palaeontological Society of India*, **54**(2), 121–133.

1210 **Sendino, C., Zágoršek, K., & Vyhlasová, Z.** 2011. The aperture and its closure in an
1211 Ordovician conulariid. *Acta Palaeontologica Polonica*, **56**(3), 659–663.
1212 [doi:10.4202/app.2010.0028](https://doi.org/10.4202/app.2010.0028)

1213 **Simões, M. G., Rodrigues, S. C., Leme, J. M., & Van Iten, H.** 2003. Some Middle Paleozoic
1214 Conulariids (Cnidaria) as Possible Examples of Taphonomic Artifacts. *Journal of*
1215 *Taphonomy*, **1**(3), 165–186.

1216 **Sinclair, G. W.** 1940. A discussion of the genus *Metaconularia* with descriptions of new species.
1217 *Transactions of the Royal Society of Canada*, **34**, 101–121.

1218 **Sinclair, G. W. 1948. The Biology of the Conularida.** Ph.D. thesis, McGill University,
1219 Montreal, Que.

1220 **Sinclair, G. W.** 1952. A classification of the Conularida. *Fieldiana Geology*, **10**, 135–145.

1221 **Slater, I. L.** 1907. A Monograph of British Conulariae. *Palaeontographical Society*, **61**(295), 1–
1222 40. <https://doi.org/10.1080/02693445.1907.12035533>

1223 **Smith, M. P., Briggs, D. E. G., Aldridge, R. J.** 1987, A conodont animal from the lower
1224 Silurian of Wisconsin, USA, and the apparatus architecture of panderodontid conodonts. in
1225 Aldridge, R.J. (ed.), *Paleobiology of Conodonts*, *Ellis Horwood, Chichester*, 91–104 pp.

1226 **Sowerby, J.** 1821. The mineral conchology of Great Britain, or coloured figures and descriptions
1227 of those remains of testaceous animals or shells, which have been preserved at various times
1228 and depths in the Earth. Volume 3. *B. Meredith, London*, 167–108 pp.
1229 <https://www.biodiversitylibrary.org/bibliography/14408>

1230 **Spencer, J.W.** 1884, Niagara Fossils: Bulletin of the Museum of the University of the State of
1231 Missouri, Columbia, MO, v. 1, 1-61 pp. (Reprinted as *Transactions of the Academy of
1232 Science, St Louis*, v. 4, no. 4, 555-610, 1886 pp.)

1233 **Steinmann, G.** 1929. *Geologie von Perú*. Carl Winters Universitätsbuchhandlung,
1234 Heidelberg.

1235 **Steinmann, G., & Döderlein L.** 1890. *Elemente der Paläontologie*. *Verlag von Wilhelm
1236 Engelmann, Leipzig*, 848 pp.

1237 **Thomas, G. A.** 1969. Notoconularia, a New Conularid Genus from the Permian of Eastern
1238 Australia. *Journal of Paleontology*, **43**(5), 1283–1290. <https://www.jstor.org/stable/1302442>

1239 **Thomas, I.** 1905. Neue Beiträge zur Kenntnis der devonischen Fauna Argentiniens.

1240 *Deutsche Geologische Gesellschaft, Zeitschrift*

1241 **Ulrich, A.** 1892, Palaeozoische Versteinerungen aus Bolivien. Steinmann, G., editor:

1242 Beiträge zur Geologie und Paläontologie von Sudamerika, I. Neues Jahrbuch für

1243 Mineralogie, *Geologie und Paläontologie*, 8, 5-116.

1244 **Van Iten, H.** 1991a. Evolutionary affinities of conulariids, *in* A. M. Simonetta & S. Conway

1245 Morris (eds). **The Early Evolution of Metazoa and the Significance of Problematic**

1246 **Fossil Taxa**, *Cambridge University Press, Cambridge*, p. 145-155.

1247 **Van Iten, H.** 1991b. Anatomy, patterns of occurrence, and nature of the conulariid schott.

1248 *Palaeontology*, 34(4), 939–954.

1249 **Van Iten H.** 1992a. Microstructure and growth of the conulariid test: implications for conulariid

1250 affinities. *Palaeontology* 35, 359–372.

1251 **Van Iten H.** 1992b. Morphology and phylogenetic significance of the corners and midlines of

1252 the conulariid test. *Palaeontology* 35, 335–358.

1253 **Van Iten, H., & Südkamp, W. H.** 2010. Exceptionally preserved conulariids and an

1254 edrioasteroid from the Hunsrück Slate (Lower Devonian, SW Germany). *Palaeontology*,

1255 53(2), 403–414. [doi:10.1111/j.1475-4983.2010.00942.x](https://doi.org/10.1111/j.1475-4983.2010.00942.x)

1256 **Van Iten, H., Fitzke, J. A. & Cox, R. S.** 1996. Problematical fossil cnidarians from the Upper

1257 Ordovician of the north-central USA. *Palaeontology*, 39, 1037–1064.

1258 **Van Iten, H., Leme, J. D. M., Rodrigues, S. C., & Simões, M. G.** 2005. Reinterpretation of a
1259 conulariid-like fossil from the Vendian of Russia. *Palaeontology*, **48**(3), 619–622.

1260 <https://doi.org/10.1111/j.1475-4983.2005.00471.x>

1261 **Van Iten, H., Leme, J. D. M., Rodrigues, S. C., & Simões, M. G.** 2006a. New Data on the
1262 Anatomy of *Conularia Milwaukeeensis* Cleland, 1911 (Middle Devonian, Iowa and
1263 Wisconsin). *Journal of Paleontology*, **80**(2), 392–395. [https://doi.org/10.1666/0022-3360\(2006\)080\[0392:NDOTAO\]2.0.CO;2](https://doi.org/10.1666/0022-3360(2006)080[0392:NDOTAO]2.0.CO;2)

1264

1265 **Van Iten, H., Leme, J. M., Simões, M. G., Marques, A. C., and Collins, A.** 2006b.
1266 **Reassessment of the phylogenetic position of conulariids in the subphylum Medusozoa**
1267 **(phylum Cnidaria).** *Journal of Systematic Palaeontology*, **4**(2), 109–118.
1268 <https://doi.org/10.1017/S1477201905001793>

1269 **Van Iten, H., Konate, M., & Moussa, Y.** 2008. Conulariids of the Upper Talak Formation
1270 (Mississippian, Visean) of Northern Niger (West Africa). *Journal of Paleontology*, **82**(1),
1271 192–196. <https://doi.org/10.1666/06-083.1>

1272 **Van Iten, H., Muir, L. A., Botting, J. P., Zhang, Y. D. & Lin, J. P.** 2013. Conulariids and
1273 *Sphenothallus* (Cnidaria, Medusozoa) from the Tonggao Formation (Lower Ordovician,
1274 China). *Bulletin of Geosciences*, **88**(4), 713–722. [doi:10.3140/bull.geosci.1400](https://doi.org/10.3140/bull.geosci.1400).

1275 **Van Iten, H., Burkey, M., Leme, J. D. M., & Marques, A. C.** 2014. Cladistics and mass
1276 extinctions: the example of conulariids (Scyphozoa, Cnidaria) and the End Ordovician
1277 Extinction Event. *GFF*, **136**(1), 275–280. <https://doi.org/10.1080/11035897.2014.880506>

1278 **Van Iten, H., Muir, L., Simões, M. G., Leme, J. M., Marques, A. C., & Yoder, N.** 2016.

1279 Palaeobiogeography, palaeoecology and evolution of Lower Ordovician conulariids and

1280 *Sphenothallus* (Medusozoa, Cnidaria), with emphasis on the Fezouata Shale of southeastern

1281 Morocco. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **460**, 170–178.

1282 [doi:10.1016/j.palaeo.2016.03.008](https://doi.org/10.1016/j.palaeo.2016.03.008)

1283 **Van Iten, H., Gutiérrez-Marco, J. C., Muir, L. A., Simões, M. G., & Leme, J. M.** 2018.

1284 Ordovician conulariids (Scyphozoa) from the Upper Tiouririne Formation (Katian), eastern

1285 Anti-Atlas Mountains, southern Morocco. *Geological Society, London, Special*

1286 *Publications*, **485**, 23 pp. [doi:10.1144/sp485.5](https://doi.org/10.1144/sp485.5)

1287 **Vinn, O., Ernst, A., Wilson, M. A. & Toom, U.** 2019. Symbiosis of conulariids with

1288 trepostome bryozoans in the Upper Ordovician of Estonia (Baltica). *Palaeogeography,*

1289 *Palaeoclimatology, Palaeoecology*, **518**, 89–96. doi: [10.1016/j.palaeo.2019.01.018](https://doi.org/10.1016/j.palaeo.2019.01.018).

1290 **Walcott, C. D.** 1886. Second contribution to the studies on the Cambrian faunas of North

1291 America. *United States Geological Survey, Bulletin*, **30**, 369 pp.

1292 **Wendruff, A. J., Babcock, L. E., Kluessendorf, J. & Mikulic, D. G.** 2020a. Paleobiology and

1293 taphonomy of exceptionally preserved organisms from the Waukesha Biota (Silurian),

1294 Wisconsin, USA. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **546**,

1295 [doi:10.1016/j.palaeo.2020.109631](https://doi.org/10.1016/j.palaeo.2020.109631).

1296 **Wendruff, A. J., Babcock, L. E., Wirkner, C. S., Kluessendorf, J. & Mikulic, D. G.** 2020b. A

1297 Silurian ancestral scorpion with fossilised internal anatomy illustrating a pathway to

1298 arachnid terrestrialisation. *Scientific Reports*, 10(14), 1–6. doi:10.1038/s41598-019-

1299 56010-z.

1300 1301 Wiman, C. 1895 Paläontologische Notizen 1–2. *Bulletin of the Geological Institution of Upsala*, 3(2) 1–9.

1302 1303 Young, G. A. & Hagadorn, J. W. 2010. The fossil record of cnidarian medusae. *Palaeoworld*, 19(3–4), 212–221. doi:10.1016/j.palwor.2010.09.014.

1304 1305 1306 1307 Zatoń, M., & Wrzolek, T. 2020. Colonization of rugose corals by diverse epibionts: dominance and syn vivo encrustation in a Middle Devonian (Givetian) soft-bottom habitat of the Holy Cross Mountains, Poland. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 556, 109899. doi:10.1016/j.palaeo.2020.109899

1308

1309 1310 1311 1312 1313 Figure 1. Geologic setting of the Waukesha Lagerstätte. A. Map showing the approximate location of quarry sites of Waukesha Lagerstätte, WI (green circle). B. Uppermost Ordovician and lower Silurian stratigraphic column of southeast Wisconsin (after Wendruff *et al.*, 2020a, Reused from Pulsipher *et al.* in press). C. Idealized stratigraphic column of the Brandon Bridge Formation (after Kluessendorf, 1990, reused from Pulsipher *et al.* in press).

1314

1315 1316 1317 1318 Figure 2. Light photomicrographs of *C. niagarensis* Hall, 1852 from the Silurian (Llandovery, Telychian) Waukesha Lagerstätte, Wisconsin. A. UWGM 2754. B. UWGM 4006. C. UWGM 3021. D. Magnification of inset in A, showing the geometry of several transverse ribs in the vicinity of the midline. E. Magnification of inset in D showing details of external ornament. F.

1319 **Magnification of corner sulcus and ornament (inset shown in B). G. Magnification of nodes**
1320 **and reduced interspace ridges in apical half of the theca (inset shown in B). H. Nodes and**
1321 **transverse ribs preserved close to the aperture (inset shown in B). I. Magnification of inset in**
1322 **C showing the geometry of the transverse ribs. White arrow indicates the corner sulcus, UWGM**
1323 **3021. H= holdfast scars, IR= interspace ridges; TR = transverse rib; Nd = node; CG = corner**
1324 **sulcus. Scale bars = 2 mm (A–F); 1 mm (G–I).**

1325

1326 **Figure 3.** *Metaconularia* cf. *manni* (Roy, 1935), UWGM 2755 from the Silurian (Llandovery,
1327 Telychian) Waukesha Lagerstätte, Wisconsin. White arrows indicate features of note. **A.** View
1328 of entire specimen, CG = corner groove. **B.** Magnification of boxed area in A; PML = paired midline
1329 lineations. **C.** Magnified view of boxed area in B, Nd = node. Scale bars = 2 mm (A); 1 mm (B);
1330 0.5 mm (C).

1331

1332 **Figure 4.** Reflected-light images of *C. niagarensis* demonstrating key preservation styles. Inset
1333 in A–C gives broader context of specimen in normal light. **A.** UWGM 2825 showing a
1334 phosphatic theca and partial kerogenization. **B.** UWGM 2655 showing evidence of wrinkling
1335 within interspaces on theca. **C.** UWGM 4638a showing partial demineralization of the
1336 phosphatic theca with kerogenous material. **D–E.** UWGM 3042a, b, d, e (part [E] and
1337 counterpart [D]) showing multiple demineralized conulariid specimens with random orientation.
1338 Scale bars = 2 mm (A–C); 5 mm (D–E).

1339

1340 **Figure 5.** Reflected-light images of *C. niagarensis* showing evidence of compressional offset.
1341 **A. UWGM 3042a.** **B.** Magnified image of boxed area in A showing overlapping transverse ribs.
1342 Black arrows indicate surficial transverse ribs with positive relief and white arrows indicate
1343 underlying ribs with negative relief. **C. UWGM 3054** with white arrows showing offset corner
1344 **sulci** with opposing relief polarities; black arrow indicates fracture. Scale bars = 2 mm (A, C); 1
1345 mm (B).

1346

1347 **Figure 6.** Reflected-light images of *C. niagarensis* with varying amounts of kerogenized material
1348 preserved. White arrows indicate examples of mottled carbonaceous texture; black arrows with
1349 white outline indicate solid carbonaceous textures; ‘windows’ are indicated by **areas** within the
1350 dotted **lines**. Solid black arrows indicate fractures. **A. UWGM 3174.** **B. UWGM 3729.** **C. UWGM**
1351 **4006.** **D. UWGM 3185.** **E–F. UWGM 3130 part [E] and UWGM 3172 counterpart [F].** **G–H.**
1352 **UWGM 4265 part [G] and counterpart [H]** with decay halo. **I. UWGM 2792 shows evidence**
1353 **of vertical compression**, progressive demineralization from apex to aperture, **and** some breakage
1354 **along the corner sulci.** All scale bars = 2 mm.

1355

1356 **Figure 7.** SEM-EDS images of *C. niagarensis*, **UWGM 2754.** **A.** Mosaic C2D-SEM image. **B.**
1357 Mosaic BSE-SEM image. **C.** Mosaic SEM composite image. **D–M.** SEM-EDS elemental maps
1358 scanned at 20 keV **from beam voltage locations indicated by boxed areas shown in C.**
1359 **Elemental maps show** carbon (green), silicon (magenta), phosphorus (orange), and calcium
1360 (blue). Scale bars = 2 mm (A–C); 500 µm (D–M).

1361

1362 **Figure 8.** EDS analysis of *C. niagarensis*, UWGM 2825. **A.** BSE-SEM image. **B.** EDS map
1363 composite of aluminum, silicon, phosphorous, and calcium. **C–I.** Individual EDS elemental maps
1364 of view B showing carbon (green), aluminum (teal), silicon (magenta), phosphorus (orange),
1365 iron (red), sulfur (yellow), and calcium (blue). All scale bars = 1 mm.

1366

1367 **Figure 9.** EDS analysis of *C. niagarensis*, UWGM 2787b overlapping a specimen of
1368 *Parioscorpio venator* Wendruff *et al.*, 2020b. **A.** Reflected-light image showing inferred
1369 boundaries of *P. venator* and the conulariid specimen (solid and dashed white lines). **B.** BSE-
1370 SEM composite of A. C–K. Magnified view of boxed area in B. **C.** BSE-SEM image. **D.** EDS
1371 map composite of carbon (green), aluminum (teal), iron (red), and phosphorous (orange). **E–K.**
1372 EDS elemental maps of carbon (green), aluminum (teal), silicon (magenta), phosphorus
1373 (orange), iron (red) and sulfur (yellow) together, and calcium (blue). Scale bars = 2 mm (A–
1374 B); 1 mm (C–K).

1375

1376 **Figure 10.** Taphonomic model of the preservation of conulariids at the Waukesha Lagerstätte. **A.**
1377 Conulariid in life position. **B.** Conulariid after transportation and deposition. **C.** Conulariid
1378 specimen compressed two dimensionally. **D–F.** Cross section views of compressed specimens of
1379 *C. niagarensis*. **D.** UWGM 3233 showing phosphatic theca with infilled sediment. **E.** UWGM
1380 3130 showing phosphatic theca with considerable infilled sediment. **F.** UWGM 3174 with a
1381 fully demineralized theca. White arrows indicate phosphatic material; solid black arrows indicate
1382 carbonaceous material; grey arrows with white outline indicate sediment infill. All scale bars =
1383 0.5 mm.

1385 **Figure 11.** Laminae with distinct interlamellar partings preserved in two specimens of *C.*
1386 *niagarensis*. Black arrows indicate individual interlamellar partings. **A. UWGM 3626** showing
1387 several flat laminae above a conulariid specimen. **B. UWGM 2792**, exhibiting a taphonomic
1388 gradient **in phosphatic dissolution** from the apical to apertural region as it intersects up to 5
1389 individual interlamellar partings. All scale bars = 1 mm.