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Weak measurements of a superconducting qubit produce noisy voltage signals that are weakly correlated
with the qubit state. To recover individual quantum trajectories from these noisy signals, traditional
methods require slow qubit dynamics and substantial prior information in the form of calibration
experiments. Monitoring rapid qubit dynamics, e.g., during quantum gates, requires more complicated
methods with increased demand for prior information. Here, we experimentally demonstrate an alternative
method for accurately tracking rapidly driven superconducting qubit trajectories that uses a long short-term
memory (LSTM) artificial neural network with minimal prior information. Despite few training
assumptions, the LSTM produces trajectories that include qubit-readout resonator correlations due to a
finite detection bandwidth. In addition to revealing rotated measurement eigenstates and a reduced
measurement rate in agreement with theory for a fixed drive, the trained LSTM also correctly reconstructs
evolution for an unknown drive with rapid modulation. Our work enables new applications of weak
measurements with faster or initially unknown qubit dynamics, such as the diagnosis of coherent errors in
quantum gates.
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I. INTRODUCTION

Weak measurements allow the observer to reconstruct
the dynamics of a quantum system and to track the evolu-
tion of a wave function before its collapse to an eigenstate.
For superconducting quantum circuits, in particular, recon-
structing individual quantum trajectories [1–10] has served
as a tool to monitor quantum jumps [11–14], track diffusion
statistics [15–18], generate entanglement via measurement
[19,20], coherently control quantum evolution using feed-
back [21–25], and implement continuous quantum error
correction [26–29]. In weak measurements with super-
conducting qubits coupled to a readout resonator, the

dynamics of the latter are typically much faster than the
former. Therefore, the field exiting the resonator is a direct
measure of the qubit dynamics, which can be readily
computed using quantum filters built on generalizations
of Bayes’ rule [9,10], Markovian stochastic master equa-
tions [8,30], or stochastic path integrals [31]. However,
such quantum filters are not well suited to cases where the
qubit dynamics are necessarily fast, such as during a rapid
entangling gate or syndrome measurement in an error-
correction scheme [29]. Interpreting the output cavity
field in this non-Markovian regime for the qubit is
challenging.
A quantum filter obtained by training a long short-term

memory (LSTM) neural network [32] is an attractive
alternative for reconstructing trajectories in more challeng-
ing regimes. An LSTM is a variant of recurrent neural
network with persistent memory, which is well suited for
time series data with long temporal correlations [33]. They
have recently found applications in quantum physics [34]
ranging from quantum state tomography [35,36] to qubit
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noise spectroscopy [37,38]. The first application of an
LSTM quantum filter to weak measurements successfully
tracked slower qubit dynamics with a fidelity comparable
to a standard quantum filter [32]. We build upon this initial
success to show that LSTM-based filters are not con-
strained to slow qubit dynamics, but can learn rapid and
nontrivial dynamics robustly without additional prior
information (e.g., from calibration measurements) which
would be required by traditional methods.
In this work, we demonstrate that an LSTM accurately

reconstructs quantum state trajectories of a driven super-
conducting qubit coupled to a readout resonator, even for
qubit dynamics faster than the relaxation timescale of the
resonator. Our LSTM trains entirely on experimental
observations, compensates for the delays and correlations
originating from the limited detection bandwidth, and
outperforms conventional reconstruction methods in
the case of fast qubit dynamics. By extracting and sepa-
rating the coherent dynamics and measurement backaction
learned by the LSTM, we observe nontrivial drive-
dependent corrections consistent with theory that includes
the joint dynamics of the qubit and resonator (information
not given to the LSTM). The dominant corrections include
a rotation of the measured eigenstates and a reduction in the
effective measurement rate with increasing drive. Finally,
we demonstrate that the trained LSTM can correctly
identify and track a priori unknown time dependencies
in the dynamics produced by modulating the drive, despite
no prior examples of such behavior in the training data. Our
results suggest that LSTM-based filters may enable novel
applications of continuous monitoring to previously unob-
tainable regimes.
Compared with the first implementation of an LSTM

filter to weak measurements [32], our LSTM operates in a
challenging regime, where input data are more strongly
correlated, making it more difficult to interpret the physics
embedded in the LSTM. Our work further extends the
techniques of Ref. [32] by introducing a time-windowed
analysis method for parameter estimation of time-dependent
Hamiltonians. Finally, we show that the LSTMcan faithfully
reconstruct heterodyne measurement backaction (in contrast
to homodyne measurement in Ref. [32]).

II. EXPERIMENTAL SYSTEM

Our qubit-resonator system [Fig. 1(a) and Appendixes A
and B] consists of a superconducting transmon qubit
(frequency ωge=2π¼ 5.473GHz) capacitively coupled to a
superconducting coplanar waveguide resonator (ωres=2π ¼
6.679 GHz). The interaction Hamiltonian in this regime is
dispersive,

Hint ¼ ℏχa†aσz; ð1Þ

whereℏ is the reduced Planck’s constant, χ=2π ¼ 0.47 MHz
is the qubit-dependent resonator frequency shift, a† (a) is

the creation (annihilation) operator for the readout resonator,
and σz is the qubit Pauli z operator. We additionally
drive the qubit (at its Stark-shifted transition frequency) to
induce Rabi oscillations about the x axis at a variable Rabi
frequency Ω.
To continuously monitor this system we apply a weak

probe tone to the resonator at the frequency midpoint
between qubit-shifted resonances, which populates the
resonator with an approximate mean photon number of
n̄ ≈ 0.3. After interacting with the qubit, the resonator field
escapes the resonator at a rate κ=2 ≈ 2π × 0.8 MHz. We
amplify both in-phase (I) and quadrature (Q) parts of this
field using a traveling wave parametric amplifier (TWPA),
perform a heterodyne measurement of its complex ampli-
tude, and digitize the resulting pair of noisy quadrature
voltages with a 1 ns sampling time. After a chosen
monitoring duration 0 < Tm < 8 μs of variable length
[Fig. 1(c)] we turn off the Rabi drive and projectively
measure the qubit along one of the cardinal axes of the Bloch
sphere (σx;y;z). We use this final projectivemeasurement as a
training label and for verification via conditioned final state
tomography.
Our phase-preserving detection technique [16,39] gives

rise to two distinct types of measurement backaction: non-
unitary partial collapse from information that distinguishes
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FIG. 1. Monitoring fast qubit dynamics using an LSTM
artificial neural network. (a) During weak measurement of a
strongly driven qubit, the qubit state (green arrow) evolves due to
a coherent Rabi drive (black, rate Ω) and backaction from both
quadratures of a heterodyne measurement (purple arrows). If Ω
exceeds the resonator relaxation rate κ=2, memory effects such as
delay and qubit-resonator correlations can no longer be ignored
when reconstructing trajectories. (b) The LSTM learns the
stochastic, dissipative qubit dynamics, mapping elements of
each noisy voltage record (I,Q) to a qubit Bloch vector trajectory
(x, y, z). The cell state ck and hidden state hk can encode long-
term correlations in the measurement record. (c) Sample record
with corresponding qubit trajectory output by the trained LSTM.
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the qubit states, and unitary phase drift from fluctuations in
resonator photon number [10]. Our detection technique is
robust to drifts in amplifier gain, spans several gigahertz, and
in contrast to phase-sensitive detection of just the informa-
tional quadrature [32], allows for simultaneous weak meas-
urement of multiple qubits [19] in future experiments.
Before passing a monitoring record into a quantum filter,

we digitally filter it to remove qubit-independent high-
frequency noise, then coarse grain it into longer time bins
while ensuring rapidly driven qubit dynamics is not under-
sampled. We then pass the coarse-grained digital record
fðIk;QkÞgnk¼0 into both the LSTM filter and a more
traditional Bayesian quantum filter, and compare the
resulting qubit trajectories expressed in the Bloch co-
ordinates fðxk; yk; zkÞgnk¼0.
We train the LSTM [Fig. 1(b)] to reconstruct trajectories

by feeding it a subset of experimental records fðIk; QkÞgnk¼0

reserved for training, which are of varying length Tm and
labeled by their final projective measurement basis and
outcome. During training the LSTM adjusts its network
parameters to minimize the cross-entropy loss, which is
computed from predictions at t ¼ Tm and associated
projective measurement outcomes (for details see
Appendix D). We have found that the LSTM network
converges better than a simple feed forward neural net-
work, which we attribute to the LSTM’s ability to track
long correlations in the cell state. After the LSTM con-
verges we feed the trained model individual measurement
records [Fig. 1(c)] from separate datasets not used for
training. In the rest of this work, we analyze the trajectories
fðxk; yk; zkÞgnk¼0 predicted by the trained network from
such test data.

III. QUBIT TRAJECTORY RECONSTRUCTION
WITH A NEURAL NETWORK

Qubit dynamics faster than the resonator relaxation rate
κ=2 can prevent the conditioned coherent steady states in
the resonator from adiabatically following their associated
qubit states [10]. To investigate the onset of this non-
adiabatic behavior beyond the coherent-state approxima-
tion [8,10], we experimentally vary the rate of the qubit
dynamics by tuning Rabi frequency Ω from slow dynamics
(2Ω=κ ≪ 1) to fast dynamics that are well outside the
adiabatic regime (2Ω=κ > 1), training the LSTM to predict
trajectories for each Rabi frequency independently.
We first use the LSTM to reconstruct qubit dynamics

with a weak Rabi drive (2Ω=κ ¼ 0.2), where conventional
steady-state methods can still accurately reconstruct
trajectories. A histogram of reconstructed trajectories
[Fig. 2(a)] shows oscillations due to the Rabi drive as well
as diffusion due to measurement backaction, which slowly
collapses the trajectories toward j � Zi. The competition
between (i) the Rabi drive, (ii) trajectory collapse and
diffusion at rate ηΓm, and (iii) trajectory dephasing at rate
2ð1 − ηÞΓm confines trajectories to a Bloch sphere with

reduced radius [dashed lines in Fig. 2(a); see also
Appendix E] set by the measurement efficiency η. Here,
Γm is defined as the single quadrature measurement
dephasing rate which is set by the amplitude of the weak
measurement tone.
When comparing individual trajectories, the LSTM

produces trajectories similar to a conventional Bayesian
filter approach. This Bayesian filter method sequentially
estimates the quantum state from a measurement record
using a well-known initial state and calibrated values for Ω,
the ensemble decay rate, and qubit-conditioned resonator
output fields. We quantify the error of both methods self-
consistently by averaging projective measurement results
of trajectories with similar predictions [16,17,32]. The
averaged tomography results closely follow the LSTM
predictions for all three Bloch coordinates [Fig. 2(b)] with
rms error ðεLSTMx ;εLSTMy ;εLSTMz Þ¼ð4.0;4.9;4.3Þ×10−2 [defi-
nition in Eq. (F1)]. This error largely reflects our imperfect
knowledge of the true quantum state from a finite number
of projective measurements; see Appendix F. More training
data are likely to improve both the estimate of the true
quantum state and the LSTM accuracy, since the LSTM
training loss does not saturate when training on increasing
fractions of available training data. We expect this satu-
ration for a dataset size of Oð106Þ voltage records [40].
Nevertheless, even with a finite-size training dataset con-
sidered here (∼4 × 105 voltage records), the LSTM learns
an accurate representation of the reduced qubit dynamics,
with a lower bound on the accuracy of 1−εLSTMav =2¼0.978.
For large Rabi frequencies the LSTM trajectories remain

faithful, even when the qubit dynamics exceeds the
relaxation rate of the resonator κ=2 [Figs. 2(c) and 2(d)].
In contrast, the Bayesian filter’s validation error increases
sharply past 2Ω=κ ≈ 1, because this method is sensitive
to two errors related to the sampling time of voltage
records, dt. The first error, due to stepwise application
of fast coherent dynamics, grows with Ωdt [41], whereas
the second error due to temporal correlations grows for
dt < 2=κ [42]. Consequently, for fast Rabi frequencies
2Ω=κ > 1 there is no choice of dt for which the standard
Bayesian filter produces accurate trajectories.
Experimentally the breakdown of the Bayesian filter

coincides with a notable delay between oscillations in the
measured voltage records and the qubit coordinate zðtÞ
(see Fig. 12), which occurs because the resonator retains
photons for a time κ−1. In addition, the coherent oscillation
amplitude in the voltage record reduces significantly for
2Ω=κ > 1, because instead of measuring the instantaneous
qubit state, photons measure the time-averaged measure-
ment operator [43]. This effect is similar to the suppression
of current oscillations in a semiconducting point contact
detector [44].
As a first-order correction of the resonator memory

effects, we adjust the Bayesian filter based on indepen-
dent master equation simulations of the resonator field
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amplitudes conditioned on the qubit states [Fig. 2(d),
“BFþ numerics,” and further details in Appendix G].
While this reduces the rms error at moderate Rabi frequen-
cies, the average error remains large for 2Ω=κ > 1. Only
after an analytic treatment of the resonator memory, and
including calibrated parameters such as χ and κ, does the
Bayesian filter reach similar error as the LSTM for all Rabi
frequencies [Fig. 2(d), “BF+analytics,” and further details
in Appendix K]. This indicates that with enough prior
information the Bayesian filter with analytic correction
reproduces the essential ingredients of the LSTM trajecto-
ries. However, the LSTM offers an accurate reconstruction
method requiring no prior knowledge of coupling rates to
the environment.

IV. RESONATOR MEMORY CORRECTIONS
TO QUBIT TRAJECTORIES

To gain further insight into why the LSTM outperforms
the Bayesian filter for 2Ω=κ > 1, we perform statistical

analysis on the LSTM trajectories. First, we bin the LSTM
trajectories inside the Bloch sphere [Fig. 3(a)] and calculate
the Bloch vector increments dr ¼ rtþ1 − rt for each bin,
where r ¼ ðx; y; zÞ. Since the Rabi drive confines most of
the interesting qubit dynamics to the yz plane, we restrict our
analysis to two dimensions. Therefore, each bin contains a
set of Bloch vector increments fðdyk; dzkÞgmk¼0, where each
pair can be seen as a random variable due to the stochastic
nature of the measurement backaction [Fig. 3(b), dots].
Next, we compute the average drift ðdȳ; dz̄Þ and diffusion
from the sample mean and covariance matrix on
fðdyk; dzkÞgmk¼0, respectively. The coviarance matrix,

Cðy; zÞ ¼
�

σ2dy σdy;dz

σdy;dz σ2dz

�
; ð2Þ

σ2dy ¼
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FIG. 2. Breakdown of adiabatic trajectory reconstruction. (a) The histogram of weakly driven trajectories of length Tm ¼ 8.0 μs
(reconstructed by the LSTM with dt ¼ 40 ns) shows rapid trajectory diffusion due to measurement backaction. The color bar represents
the trajectory probability density at each time step. The LSTM produces trajectories (example in red) comparable to those from a steady-
state Bayesian filter (yellow). (b) LSTM validation based on tomographic measurements immediately following the LSTM prediction,
for the trajectories shown in (a) where 2Ω=κ ¼ 0.2. The dashed line with slope 1 indicates perfect validation. The inset shows the
Bayesian filter validation for the same dataset with slightly smaller rms error ðεBFx ; εBFy ; εBFz Þ ¼ ð2.3; 3.2; 2.5Þ × 10−2. This is partly
because εBFx;y;z are computed using the entire dataset, whereas εLSTMx;y;z only have access to trajectories not used for training. (c) For fast
qubit dynamics (2Ω=κ ¼ 2.0) outside the adiabatic regime the predictions of the steady-state Bayesian filter and LSTM diverge
(trajectory dt ¼ 20 ns). (d) Validation errors averaged over the three qubit coordinates versus Rabi frequency 2Ω=κ, showing a
breakdown of the steady-state Bayesian filter for 2Ω=κ > 1 (dots, BF), while the LSTM validation error (squares) remains small. The
performance of the Bayesian filter improves with additional numerical prior information of the expected evolution of the z-conditioned
resonator fields (BFþ numerics; see Appendix G), and improves even further when adding analytical corrections to the measurement
backaction (BFþ analytics; see Appendix K). Importantly, the LSTM performance stays consistent without additional prior
information. Arrows mark the data shown in (a)–(c).
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σdy;dz ¼
1

m

Xm
k¼0

ðdyk − dȳÞðdzk − dz̄Þ; ð4Þ

σ2dz ¼
1

m

Xm
k¼0

ðdzk − dz̄Þ2; ð5Þ

is convenient to quantify diffusion since its largest eigen-
value λmax represents the magnitude of the backaction,
and the associated eigenvector ξ indicates the direction of
the backaction. The vector v ¼ ðvy; vzÞ ¼ λmaxξ thus quan-
tifies diffusion magnitude and direction, and is visualized in
Fig. 3(b). By separating the drift and diffusion as described
above, we can separately compare the average drift to
Lindbladian dynamics, and the diffusion to themeasurement
backaction dynamics.
In the limit of a weak Rabi drive, the expected drift and

diffusion can be directly calculated from the stochastic
master equation in Eqs. (E1)–(E3). Therefore, in the plane
of the Rabi drive (x ¼ 0), we expect the average drift to
take on the form

dȳ ¼ −ΓdydtþΩzdt; ð6Þ

dz̄ ¼ −Ωydt: ð7Þ

Similarly, the expected diffusion is

VarðdyÞ ¼ −2ηΓmzydt; ð8Þ

VarðdzÞ ¼ 2ηΓmð1 − z2Þdt: ð9Þ

Here, Γd is the ensemble average dephasing, Γm is the
single quadrature measurement rate, and η is the total
measurement efficiency. In the remainder of this section we
first study the effect of the increasing Rabi drive on the
average drift, and then study deviations from the backaction
model of Eqs. (8) and (9).

In Fig. 3(c) we show an example of the average drift for
2Ω=κ ¼ 0.6. The trajectory drift (red arrows) shows good
agreement with the expected drift from the Hamiltonian
H ¼ Ωσx=2 and dissipation pulling trajectories toward the
origin at a rate Γd=2π (gray arrows). From a fit of the
average drift to Eqs. (6) and (7), using Ω and Γd as free
parameters, we find Γd=2π ¼ 0.188� 0.007 MHz. For
increasing Rabi drive strengths, Eqs. (6) and (7) continue
to fit the average drifts. Interestingly, we observe a
monotonic decrease in Γd=2π [Fig. 3(d)], which we
attribute to decoupling of the qubit from the weak meas-
urement when the Rabi splitting of the dressed qubit
exceeds the cavity linewidth [43]. This decoupling behav-
ior is well captured by a master equation simulation of the
qubit-resonator system [Fig. 3(d), solid line]. This master
equation simulation also correctly shows a small Rabi drive
asymptote Γd → 2Γm due to measurement dephasing [46]
and another asymptote Γd → 3Γ1=4 [45] due to natural
relaxation, when qubit and resonator are completely
decoupled.
Since the average drift follows the expected Lindbladian

dynamics even for fast Rabi rates, we now shift our
attention to the measurement backaction, which we visu-
alize by plotting the scaled eigenvectors v [Fig. 3(b)] of
Cðy; zÞ. At low Rabi frequencies (2Ω=κ ¼ 0), we find both
informational backaction, vanishing at the poles j � Zi of
the Bloch sphere, and phase backaction, consistent with a
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parameters. (d) The decay rate Γd=2π (red squares) falls from the expected measurement dephasing rate 2Γm toward the bare qubit
relaxation rate [45], as the qubit and resonator decouple. A master equation simulation of the qubit-resonator system (solid line) agrees
qualitatively with the LSTM trajectories.
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dispersive heterodyne measurement (see Appendix H).
Furthermore, a fit of the extracted diffusion ðvy; vzÞ to
Eqs. (8) and (9), along with Γd=2π ¼ 0.175 MHz deter-
mined from Fig. 13(d), gives the efficiency of the meas-
urement chain η ¼ 2Γm=Γd ¼ 0.185� 0.002. This value is
in agreement with an independent calibration measurement
[η ¼ 0.188� 0.003 (see Fig. 13].
For large Rabi drives, we observe two significant

corrections to the expected measurement backaction of
Eqs. (8) and (9): a tilt of the measurement poles in the plane
of the Rabi drive toward j � Yi and a reduced trajectory
diffusion rate 2ηΓm [Fig. 4(a)]. These corrections compli-
cate extracting the diffusion rate. Therefore, we first
determine the rotation θ from the average angle between
v and the z axis from bins near the origin [Fig. 4(a), shaded
square]. Next, we apply a coordinate rotation ðy0; z0Þ ↦
ðy cos θ − z sin θ; y sin θ þ z cos θÞ to undo the observed
rotation, which now allows us to fit the diffusion ðvy0 ; vz0 Þ

to Eqs. (8) and (9). The fit results for θ and the measure-
ment rate 2ηΓm are shown in Fig. 4(c), squares. Intuitively,
the tilt occurs because the Rabi drive drags the qubit state
counterclockwise in the yz plane while photons in the
resonator measure the qubit z coordinate for a characteristic
time τc. This simple picture results in a delay between qubit
state and measurement record which is proportional to Ωτc,
consistent with the linear increase in θ for small Rabi
frequencies in Fig. 4(c).
To explain the effects of the slow measurement beyond

small Ω=κ, we derive an analytical model for the resonator
mode â in terms of the Bloch coordinate z, taking into
account the resonator memory (see Appendix K). For a
constant Rabi drive in the yz plane the weak measurement
no longer acts purely along ẑ, but along

ẑeff ¼
Z

t

0

zðt − τÞdPðτÞ ¼ ffiffiffiffiffiffi
ηav

p ½cos θẑ − sin θŷ�; ð10Þ

where P is the inverse Fourier transform of the Lorentzian
resonator spectrum,

θ ¼ arctanðΩτcÞ ð11Þ

is the measurement axis tilt, τc ¼
R
τPðτÞdτ ¼ 2=κ is the

predicted delay time, and ηav captures the reduction in
measurement rate in the yz plane:

ΓmðΩÞ ¼ ηavΓmð0Þ ¼
Γmð0Þ

1þ ðΩτcÞ2
: ð12Þ

From a simultaneous fit of both quantities in Fig. 4(c) to
Eqs. (11) and (12), we find the resonator memory time
τc ¼ 0.20� 0.01 μs, which agrees with the relaxation time
2=κ ¼ 0.2 μs from spectroscopic measurements. For Rabi
frequencies exceeding 2Ω=κ ≈ 2.0 the rate of trajectory
diffusion in the yz plane is greatly suppressed, showing that
a fast Rabi frequency protects the qubit from measurement
backaction [43].
The results of Fig. 3 and 4 demonstrate accurate

estimation of various decay rates, measurement effi-
ciency, and the memory time of the system from a simple
trajectory decomposition that requires no prior knowl-
edge of the resonator memory. This makes the LSTM a
useful tool in the context of parameter estimation
from weak measurements [40,47]. In addition, the cor-
rections to the measurement backaction shed further
light on the breakdown of Baysian filters for trajectory
reconstruction.

V. UNCOVERING HIDDEN TIME
DEPENDENCIES

A major advantage of the LSTM is that trajectory
reconstruction does not require prior knowledge of system
and environment parameters, which may fluctuate or may

(a)

y

z

x

(b)

(c)

Experiment + LSTM Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Scaled Rabi frequency 2

0

10

20

30

M
ea

s.
 r

at
e 

2
m

/2
   

(k
H

z)

0

20

40

60

80

M
ea

su
re

m
en

t a
xi

s 
til

t 
 (

de
g)

FIG. 4. Resonator memory corrections to the measurement
backaction from LSTM trajectories. (a) Trajectory diffusion map
for 2Ω=κ ¼ 0.6, obtained by computing the eigenvectors of the
covariance matrix Eq. (2) for trajectories binned in the yz plane.
See also Figs. 3(a) and 3(b). The tilt toward j � Yi in the plane of
the Rabi drive is in contrast to the prediction from Eq. (8) and (9).
(b) The theory prediction, detailed in Appendix L, includes
resonator memory effects and reproduces the tilt. (c) For small
Ω=κ the measurement axis tilts linearly with the Rabi frequency
θ ¼ 2Ω=κ (dashed line). The experimental tilt of the measure-
ment eigenstates in the yz plane (red squares) is accompanied by
a decrease in measurement rate (blue squares). Solid lines are fits
to Eq. (11) (red) and Eq. (12) (blue), respectively. The error bars
for θ are estimated from the imprecision in determining the tilt
angle. The error bars for the measurement rate obtained from
fitting are smaller than the markers.

G. KOOLSTRA et al. PHYS. REV. X 12, 031017 (2022)

031017-6



be hard to calibrate. To highlight this advantage, we
perform a new set of weak measurements where we vary
the Rabi frequency sinusoidally with a period of 1.8 μs,
thereby obscuring the prior information necessary
for traditional trajectory reconstruction methods. The
ability to reconstruct trajectories with a priori unknown
time dependencies is important for a wide range of experi-
ments, such as continuous quantum error correction
or weak measurements of a highly non-Markovian
environment [48].
The resulting histogram of LSTM trajectories [Fig. 5(a)]

shows alternating periods of trajectory bunching, where the
trajectories are protected from measurement backaction,
and diffusion, where the weak measurement clearly imparts
stochastic kicks to the qubit. We unravel this nontrivial
dynamics by dividing the LSTM trajectories in 0.2-μs-long
time windows and analyze the average drift and diffusion

as described in the previous section. During each 0.2 μs
window, the trajectories only partly cover the yz plane, but
we can still extract the Rabi frequency from the average
drift and measurement rate from the diffusion [Fig. 5(b)].
Without prior knowledge of the time dependence of Ω, Γd,
or Γm, we correctly recover the sinusoidal applied Rabi
frequency [Fig. 5(b), blue], and find that it anticorrelates
strongly with the extracted measurement rate [Fig. 5(b),
red], consistent with the results in Fig. 4(c). A sinusoidal fit
to the instantaneous measurement rate shows a delay of
Δt ¼ 0.14� 0.06 μs with respect to the instantaneous
Rabi frequency, consistent with the resonator relaxation
time 2=κ. The results of Fig. 5 demonstrate that the LSTM
correctly reconstructs trajectories with hidden time depend-
encies, and that parameters can be extracted with high
time resolution, ultimately limited by the time step dt of the
voltage record.

VI. CONCLUSIONS

We have shown that LSTM recurrent neural networks
can outperform standard quantum filters if the qubit
dynamics is faster than the resonator linewidth. In this
previously unexplored regime of weak measurement, the
LSTM correctly recovers Lindbladian dynamics and dis-
torted measurement backaction without prior knowledge of
the resonator memory. For the strongest Rabi drives the
LSTM validation error remains low; however, in this case
the resonator temporally averages most of the qubit signal,
reducing the best trajectory estimate to an ensemble-
averaged trajectory. Therefore, the LSTM is most useful
in the intermediate regime 2Ω=κ < 2, where the measure-
ment backaction is distorted, but the backaction strength
is nonzero and trajectories are therefore nontrivial. We
further showed that the LSTM is not constrained to
constant Hamiltonians. Even when underlying parameters
vary on a submicrosecond timescale the LSTM accurately
recovers quantum trajectories, which allows parameter
estimation with high time resolution, and may enable
trajectory reconstruction for qubits connected to strong
non-Markovian environments [38,49] where coupling rates
can vary with time.
To further improve the LSTM accuracy for applications

such as parameter estimation, it is possible to add physical
constraints to the LSTM loss function [40,50,51]. In
addition, other neural network architectures such as tensor
networks or models based on dilated causal convolutions
[52] may improve prediction accuracy, though such com-
parisons require more training data. Finally, a possible
extension of our LSTM is state tracking in larger Hilbert
spaces. This requires more projective measurement pulses
(e.g., at least 4 for single qutrits or 9 for two qubits)
compared with the single qubit state tracking, which only
requires 3 tomography axes. Given the single qubit data
acquisition time of approximately 3 h, extending our LSTM
tracking to single qutrits or two qubits seems feasible,
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FIG. 5. Uncovering hidden time dependencies from trajectories
subject to sinusoidal Rabi drive modulation. (a) A histogram
of the reconstructed z coordinate shows periods of increased
and decreased diffusion, also visible in two sample trajectories
(red and blue). (b) Repeated analysis of the LSTM trajectories
for successive 0.2-μs-long time windows. For each window we
extract the instantaneous Rabi frequency and measurement rate
by fitting the average drift to Eqs. (6) and (7) and diffusion to
Eqs. (8) and (9), respectively. The extracted measurement rate
2ηΓm=2π (red squares) shows maxima during periods of large
diffusion in (a). The solid red line is a simple sinusoidal fit to the
red squares. The instantaneous Rabi frequencies (blue dots),
obtained from fitting trajectories to the Lindbladian part of the
reduced qubit master equation, are consistent with the applied
drive amplitude (solid blue line). Fit results for t < 1 μs are not
shown, since early during the evolution trajectories have not
spread sufficiently for accurate fit results.
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though optimizing data transfer from the digitizer to
computer memory may be desirable to keep data acquis-
ition efficient.

The code and data used for training are available on
Github [53].
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APPENDIX A: EXPERIMENTAL SETUP

The experiments in this work were performed with a chip
of 8 superconducting transmon qubits, cooled to 10 mK in a
BlueFors XLD dilution refrigerator. Room-temperature and
cryogenic electronics for qubit control and measurement
are shown in Fig. 6. Qubit control pulses are generated by
up-conversion of intermediate frequency (IF) pulses gene-
rated by a Keysight PXI arbitrary waveform generator
(AWG) via in-phase quadrature (IQ) modulation of a
continuous wave (cw) local oscillator (LO) tone, sourced
by a Keysight MXG N5183B at 5.415 GHz. Both I and Q
components are sourced at 1 GS/s between 66 and
261 MHz. The phase and dc offsets between the I and
Q waveforms are tuned to eliminate the opposite sideband
and LO leakage due to mixer nonidealities, while bandpass
filtering at room temperature reduces noise from the AWG.
Readout pulses are generated with the same AWG and are
similarly up-converted with a 6.83 GHz LO tone from a
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separate Keysight MXG N5183B. Control pulses are
passed through a dc block, and all pulses traveling to
the sample are attenuated at each stage, with a further K&L
low-pass filter at the base stage. The up-conversion chain
schematic for both the qubit control and readout lines is
detailed in the inset labeled “ctrl” and “RO.”
Reflected measurement signals are redirected by a

circulator to a measurement chain outfitted with super-
conducting coaxial cable, where they are amplified by a
traveling wave parametric amplifier at 10 mK, a high
electron mobility transistor (HEMT) at 4 K, and a low-
noise room-temperature amplifier, before being down-
coverted to IQ IF components with the same 6.83 GHz
LO tone used for RO up-conversion. The down-converted
signals are then amplified and filtered to reduce high-
frequency amplifier noise before being digitized at 1 GS/s
by an Alazar analog-to-digital converter (ADC) and
demodulated in software. The down-conversion chain
schematic is detailed in the inset labeled “Demod.”
The TWPA is pumped with a cw tone, sourced by a

Hittite HMC M2100 at 7.42 GHz and 16.5 dBm before
being attenuated and filtered by low-pass K&L and copper
powder filters.

APPENDIX B: DEVICE PARAMETERS
AND STABILITY

Table I summarizes the relevant parameters of the qubit
and readout resonator used in this work. We obtain the
resonator frequency ωres and cavity linewidth κ=2π through
spectroscopic measurements, and we measure the qubit
frequency ωge, the anharmonicity α=2π, and T2;Ramsey

through repeated Ramsey measurements on the g-e tran-
sition (ωge, T2;Ramsey) and e-f transition (α=2π). Lastly, we
fit the weak measurement strength ε=2π by comparing the
measured Rabi decay time as function of Rabi frequency to

a master equation simulation using QuTiP [54]. The error bar
on ε is due to uncertainty in the fit.
Acquiring a training dataset (i.e., one initial qubit state

with three tomography axes) for a single Rabi frequency
takes approximately 3 h. As the neural network learns a
representation of the qubit Hamiltonian, it is important that
the parameters remain stable during the acquisition. In
Sec. III we have shown that the accuracy of the LSTM is
currently limited by the dataset size. However, as the cross-
entropy loss saturates for larger datasets, we expect
experimental instabilities to play a bigger role in limiting
LSTM accuracy. Therefore, we briefly discuss two known
sources of instabilities: coherence fluctuations and readout
fidelity fluctuations.
Since readout infidelity and unexpected decay or dephas-

ing directly affect the training labels, we have characterized
the stability of T1, T2;Ramsey as well as the readout fidelity
over a 3 h time span. For T1 and T2;Ramsey we observe
fluctuations on the order of 10%–15% of their respective
values, which is likely due to nearby two-level systems that
couple weakly to the qubit. Since the fluctuations are
modest, and average values of 61 and 70 μs remain much
larger than the maximum trajectory length of 8.0 μs, we do
not expect decay time fluctuations to affect the current
performance of the neural network.
We characterize readout infidelity by repeatedly prepar-

ing the qubit in the ground and excited state followed by a
measurement of the qubit state. We only observe small
fluctuations of the correctly classified state over a 3 h
window and find average correctly classified probabilities
Pð0j0Þ ¼ 0.995� 0.005 and Pð1j1Þ ¼ 0.984� 0.004.
We expect that the average readout infidelity of
1 − 1

2
½Pð0j0Þ þ Pð1j1Þ� ¼ 1.0%may introduce a small bias

to the trained neural network, but fluctuations in this
quantity do not play a significant role.
The qubit studied in this work is part of a larger 8-qubit

quantum processor, and is capacitively coupled to two
neighboring qubits, each via a coupling bus with an
effective coupling strength of approximately 2 MHz. To
avoid any undesired qubit dynamics due to the neighboring
qubits, we postselect the voltage records, conditioning on
all qubits starting in the ground state before the Rabi
sequence, and the neighboring qubits remaining in the
ground state after the Rabi sequence. Typically the post-
selection removes 5% of the voltage records.

APPENDIX C: PROCESSING
OF MEASUREMENT RECORDS

Traditional processing of weak measurement records
includes digital filtering and choosing a coarse-grained dt
that minimizes temporal correlations in the measurement
record, to ensure that the appropriate stochastic master
equation can be applied faithfully to the measured data
[16,17]. As explained in the main text, for fast qubit
dynamics it becomes impossible to coarse grain the record

TABLE I. Calibrated resonator and qubit parameters for the
device used in this work. Note that ωres and ωge are the bare
readout resonator and qubit frequencies, respectively, and that T1

and T2;Ramsey were measured without a weak measurement
tone (ε=2π ¼ 0). The error bars on T1 and T2;Ramsey reflect
the standard deviation of 100 repeated measurements during
a 3 h window.

Parameter Description Measured value

ωres=2π Bare cavity frequency 6679 MHz
κ=2π Cavity linewidth 1.56 MHz
ωge=2π Transmon frequency (empty cavity) 5473 MHz
α=2π Transmon anharmonicity −270 MHz
T1 Transmon relaxation time (Ω ¼ 0) 61� 7 μs
T2;Ramsey Ramsey dephasing time

(empty cavity)
70� 9 μs

χ=2π Half of the dispersive cavity shift 0.47 MHz
ε=2π Weak measurement strength 0.43�0.01MHz

MONITORING FAST SUPERCONDUCTING QUBIT DYNAMICS … PHYS. REV. X 12, 031017 (2022)

031017-9



in a way that produces uncorrelated measurement records
without undersampling the data. We strike a balance
between undersampling and correlation by coarse graining
the measurement records as listed in Table II. Note that all
records are sampled faster than the uncorrelated condition
dt > 2=κ ¼ 0.2 μs, and the two fastest datasets are sampled
more finely than all others (dt ¼ 20 ns). Feeding the
Bayesian quantum filter correlated measurement records
is expected to contribute to the rms error in Fig. 2(d).
Interestingly, the Bayesian filter remains surprisingly accu-
rate up to 2Ω=κ ≈ 1.

APPENDIX D: TRAINING OF THE
NEURAL NETWORK

1. Training data acquisition details

The pulse sequence for training data acquisition is given
in Fig. 7(a). For each experimental run, the qubit is
heralded in the ground state j0iwith a strong measurement,
resulting in a large mean photon occupation number n̄ in
the cavity. The measurement tone amplitude is then
reduced to the weak measurement setpoint (n̄ ≈ 0.3), and
a 5 μs idling time allows n̄ to reach steady state. Next, we
prepare the qubit in one of the cardinal points of the Bloch
sphere with a 30 ns preparation pulse, which is detuned
from ωge to account for the Stark shift [55] induced by the
nonzero cavity n̄. At t ¼ 0 we introduce σx dynamics by
quickly ramping up the Rabi drive (ramp time 5 ns), while
continuing to weakly measure the qubit along σz. This
yields voltage records (In, Qn) of variable duration Tm,
which ranges between 0 and 8 μs. Finally, a projective
measurement along one of the principal axes of the Bloch
sphere σx;y;z is performed by first applying a single qubit
gate to rotate the qubit and then a strong measurement
(n̄ ≫ 1). The projective measurement results are binary
variables Pi ∈ f0; 1g and represent the training labels for
the neural network.

2. Training details

In this work we use a long short-term memory recurrent
neural network, a model that recurrently updates a layer of
virtual neuronlike nodes as it processes a time-serialized
input, and features a memory cell to retain past information
of the time series [56,57]. At time t, the layer is encoded in
a vector  ht, and propagates to time tþ 1.
A typical dataset with single initial qubit state, and a

single Rabi frequency, consists of N ≈ 4 × 103 repetitions
of M ¼ 40 different length voltage records, repeated for
three tomography axes. We use 90% of the approximately
3MN ¼ 4 × 105 voltage records for training and the
remaining 10% for cross validation (see Table II).
The training code uses the Tensorflow 2 library in

PYTHON and consists of several epochs where training
samples are fed forward and backward through the neural
network in minibatches of size Nb ¼ 512. During the
training weights and biases of the network are adjusted
to minimize a cost functionL, which contains the following
three components (similar to Ref. [40]).

(i) A cross-entropy loss associated with the projective
measurement result at the end of a voltage record,

LCE ¼ −
1

Nb

XNb

i¼1

Pi logðsiÞ þ ð1 − PiÞ logð1 − siÞ;

where Pi and si are the tomography result (0 or 1)
and probability assigned by neural network
(0 ≤ si ≤ 1) for voltage record i in the minibatch,
respectively.

(ii) A mean-squared error for deviating from the known
initial state at time t ¼ 0, Linit.

(iii) A rectified linear unit activation on the purity of the
quantum state Lpurity at all times, which tries to
enforce that the Bloch vector does not lie outside the
Bloch sphere for all t.

TABLE II. Properties of the datasets used for Figs. 2–4 in the main text. The column header “Initial qubit state” refers to the prepared
initial qubit state. “Dataset size” is the total number of trajectories available for each dataset, which includes a fraction of trajectories
used for analysis (“Trajectories for LSTM analysis”). The subsequent columns describe the longest Rabi drive duration (Tm), the
sampling increment of the Rabi drive duration, and the coarse graining of the voltage records. Finally, “Sequence length” refers to the
number of samples in each voltage record, which is given by the ratio of the longest Tm and dt. Note that all voltage records within a
dataset have equal sequence length, since sequences with Rabi drive durations smaller than Tm are zero padded.

2Ω=κ
Initial qubit

state Dataset size
Trajectories for
LSTM analysis Longest Tm (μs) Tm increment (ns) dt (ns)

Sequence
length

0.0 j þ Yi 454 × 103 46 579 8.0 200 40 200
0.0 j − Yi 454 × 103 46 540 8.0 200 40 200
0.2 j þ Zi 283 × 103 29 027 8.0 200 40 200
0.6 j þ Zi 283 × 103 29 029 8.0 200 40 200
1.0 j þ Zi 283 × 103 29 014 8.0 200 40 200
1.4 j þ Zi 283 × 103 29 062 8.0 200 40 200
2.0 j þ Zi 353 × 103 36 054 5.0 100 20 250
3.2 j þ Zi 354 × 103 36 118 5.0 100 20 250
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We construct the loss function as a weighted sum of the
components above, but note that the main contribution to
the loss function comes from LCE.
We use the ADAM optimizer [58] to obtain the LSTM

parameters that minimize the cost function L, and adjust
the step size of the stochastic gradient descent (i.e., learning
rate) ξ in a cyclical fashion [Fig. 7(b)] to prevent getting
stuck in local minima [59]. We have experimented with
adding dropout and regularization, techniques which aim to
improve generalization on unseen data [60], but have not
observed improvements in L computed on the validation
dataset. Since dropout randomly resets a fraction of train-
able parameters between epochs, it destroys temporal
correlations between successive LSTM cells which may
be hard to learn from the training data. In addition, we
believe that the lack of improvement could be due to the
noisy nature of the voltage records and to the stochastic
nature of the projective measurements (training labels),
which could prevent overfitting even in the absence of
dropout and regularization.
During the training process we monitor the value of L

for both the training and cross-validation samples [for an
example, see Fig. 7(b)]. The neural network is converged
when L computed on the training dataset no longer
decreases after an annealing cycle [33]. The cross-valida-
tion samples are then passed through the network once
more and we use the resulting trajectories in Figs. 2–5 of
the main text. For our largest dataset of 0.8 × 105 voltage
records, the entire training process completes within
approximately 20 min thanks to the processing power of
the graphics processing unit (NVidia GeForce RTX
2080 Ti).

APPENDIX E: TRAJECTORY HISTOGRAMS

The trajectory histograms shown in Fig. 2(a) of the
main text show that for t ≫ Γ−1

d trajectories never cross
a threshold in z, and therefore seem constrained to a

reduced-radius Bloch sphere. In this appendix, we derive
this effect from the stochastic master equation.
We consider the stochastic master equation (in Itô form)

for heterodyne measurement of a driven qubit, where the
Rabi drive is applied in the yz plane [61]:

dx ¼ −Γdxdt −
ffiffiffiffiffiffiffiffiffiffiffi
2ηΓm

p
zxdW1 −

ffiffiffiffiffiffiffiffiffiffiffi
2ηΓm

p
ydW2; ðE1Þ

dy ¼ −Γdydtþ Ωzdt −
ffiffiffiffiffiffiffiffiffiffiffi
2ηΓm

p
zydW1 þ

ffiffiffiffiffiffiffiffiffiffiffi
2ηΓm

p
xdW2;

ðE2Þ

dz ¼ −Ωydtþ
ffiffiffiffiffiffiffiffiffiffiffi
2ηΓm

p
ð1 − z2ÞdW1: ðE3Þ

These equations include informational backaction (dW1)
causing trajectories to collapse to the poles j � Zi at a rate
ηΓm, phase backaction (dW2) at an equal rate due to the
quantum fluctuations in the cavity photon number n̄, and
dephasing toward the origin of the Bloch sphere at a rate
2ð1 − ηÞΓm. Note that we define Γm as the decoherence rate
due to measurement of a single quadrature, and since we
measure both I and Q quadratures, the total dephasing rate
includes a factor of 2. Further note that for a unit efficiency
measurement setup, individual trajectories diffuse quickly
but remain pure. Therefore, the reduced radius is due to
limited measurement efficiency η.
To further quantify the reduced radius observed in the

experimental trajectories, we calculate the mean change of
the purity, defined as jrj2 ¼ x2 þ y2 þ z2:�

djrj2
dt

�
¼ −2½ð1 − ηÞΓm þ Γm�ðjrj2 − z2Þ

þ 2ηΓmð1 − 2z2Þ þ 2ηΓmjrj2z2: ðE4Þ

We can simplify this expression in the fast Rabi regime
(Ω ≫ Γm), where z2 ≈ jrj2=2 evaluated over one Rabi
cycle. This yields
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�
djrj2
dt

�
¼ −2ηΓm − ð2þ ηÞΓmjrj2 þ ηΓmjrj4: ðE5Þ

From Eq. (E5) we calculate the steady-state solution for
the reduced radius,

jrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ η

2η
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2þ η

2η

�
2

− 2

svuut ; ðE6Þ

which depends entirely on the measurement efficiency, and
requires a small correction if the environmental dephasing
rate is nonzero. Using the efficiency calibration from
Appendix J, we find that the predicted radius jrj agrees
well with the observed trajectories histogram shown in
Fig. 8 for 2Ω=κ ¼ 2.0. While the same physics applies to
the histogram in Fig. 2 of the main text, the predicted jrj is
inaccurate for this moderate Rabi rate Ω=Γm ≈ 1, since the
approximation Ω ≫ Γm is invalid. In this regime further
corrections to Eq. (E5) are necessary, but these are beyond
the scope of this work.

APPENDIX F: ACCURACY OF THE PREDICTED
TRAJECTORIES BY THE LSTM

In Fig. 2(b) of the main text, we demonstrate the
accuracy of the LSTM trajectories for a slow Rabi drive
2Ω=κ ¼ 0.2. The purpose of this appendix is to define the
accuracy and to discuss error sources.
To quantify the LSTM accuracy, we bin all predictions

immediately before a projective measurement associated
with each trajectory and average the projective measure-
ment results for trajectories with similar predictions.
This technique is frequently used to experimentally verify
an estimate of the qubit state with an independent meas-
urement [15,62]. We use the following definition of
the weighted root-mean-square error for the x coordinate
(y and z are similar):

εx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNx

i¼1

Ni

 
xLSTM;i|fflfflffl{zfflfflffl}

LSTM prediction

− hxproj;ii|fflfflffl{zfflfflffl}
av tomography

!
2�XNx

i¼1

Ni

vuuut ;

ðF1Þ

where Nx is the number of bins, xLSTM;i ∈ ½−1; 1� is the
predicted value by the LSTM for bin i, and hxproj;ii is
the average of projective measurements for predictions
within δ ¼ 2=Nx of xLSTM;i. The definition of Eq. (F1)
captures any inaccuracy caused by the LSTM (e.g.,
inefficient model, insufficient training data) but is also
sensitive to the uncertainty in our best estimate of the
ground truth hxproj;ii, which scales as 1=

ffiffiffiffiffi
Ni

p
. This

becomes a problem for rare predictions, when the number
of trajectories Ni is small. Therefore, by weighing each
bin by the number of predictions in that bin Ni, εx
becomes less sensitive to limited statistics for rare
predictions.
In Fig. 9 we show that the uncertainty in the projective

measurement dominates any errors caused by the LSTM,
since the absolute error jðxLSTM;i − hxproj;iiÞj closely
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d ). The inner
circle is a prediction for the purity of individual trajectories from
Eq. (E6) with η calibrated from Appendix J.
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FIG. 9. Comparison of the LSTM prediction error (dots) and expected uncertainty in the estimate of the ground truth hxproj;ii
[histograms calculated from Eq. (F2)] for Bloch coordinates x (a), y (b), and z (c). εx;y;z are the weighted rms errors calculated from
LSTM predictions, and εproj is calculated from Eq. (F1) while setting xLSTM;i − hxproj;ii ¼ σhxproj;ii. εproj thus represents the weighted rms
error in case of perfect LSTM predictions and 1σ statistical fluctuation in hxproj;ii due to a limited number of trajectories. Since both
quantities follow similar trends and their magnitudes εx;y;z and εproj are consistent, we conclude that our accuracy measure is limited by
the number of trajectories.
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follows the expected uncertainty in hxproj;ii, estimated from
the Bernoulli distribution:

σhxproj;ii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hxproj;ii2

Ni

s
: ðF2Þ

We observe similar trends in the absolute error and the
uncertainty estimated from Eq. (F2) for all Bloch coor-
dinates [Figs. 9(a)–9(c)], and error magnitudes are con-
sistent. In other words, our ability to quantify the LSTM
error is limited by our knowledge of the true quantum state.
To further assess the LSTM performance, more trajectories
are needed to reduce our uncertainty in the estimate of the
true quantum state. Alternatively, it is possible to train the
LSTM on simulated trajectories for which the true quantum
state is known [40].

APPENDIX G: CAVITY CORRECTIONS
TO THE BAYESIAN FILTER

Quantum trajectory theory describes how an observer’s
estimate of a quantum state evolves as it is updated with a
weak measurement record [8,62]. The measurement record
is translated to quantum state evolution by first applying the
unitary evolution and then updating the state with the
measurement record at each time step, as the backaction of
the measurement on the state can be derived [25]. Thus,
with knowledge of the initial state and the Hamiltonian
driving unitary evolution, the density matrix ρijðtiÞ can be
repeatedly updated.
We follow the procedure outlined in Refs. [10,63]. For

each time ti in the voltage record, we first apply the
Lindbladian dynamics,

ρ0ðtiÞ ¼ expðiλdtÞρðtiÞ; ðG1Þ

where λ is a 4 × 4 matrix and ρðtiÞ ¼ ðρ00; ρ01; ρ10; ρ11Þ.
Including a Rabi drive detuning Δ and a Rabi drive
misalignment Ωy, λ takes the form

λ ¼

0
BBBBB@

0
Ωþ
2

− Ω−
2

−iΓ1

Ω−
2

−Δ 0 − Ω−
2

− Ωþ
2

0 Δ Ωþ
2

0 − Ωþ
2

Ω−
2

iΓ1

1
CCCCCA; ðG2Þ

Ω� ¼ Ωx � iΩy; ðG3Þ
Δ ¼ ωge − ωRabi ≈ 0; ðG4Þ

Γ1 ¼
1

T1

: ðG5Þ

Note that λ describes the same Lindbladian dynamics
that leads to Eqs. (E1)–(E3) provided Ωy ¼ 0, and
dt ¼ tiþ1 − ti is the time increment of the voltage record.

The parameters Ωx;y, Δ, and Γ1 are obtained from a fit to
the projective measurement results. Next, we update the
density matrix taking into account measurement record
½IðtiÞ; QðtiÞ� and the partially updated density matrix ρ0ðtiÞ:

ρ11ðtiþ1Þ ¼
ρ011ðtiÞ=ρ000ðtiÞeαi

1þ ρ011ðtiÞ=ρ000ðtiÞeαi
; ðG6Þ

ρ00ðtiþ1Þ ¼ 1 − ρ11ðtiþ1Þ; ðG7Þ

ρ10ðtiþ1Þ ¼ ρ010ðtiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ11ðtiþ1Þρ00ðtiþ1Þ
ρ011ðtiÞρ000ðtiÞ

s
e−iβi e−2ð1−ηÞΓmdt;

ðG8Þ

ρ01ðtiþ1Þ ¼ ρ†10ðtiþ1Þ; ðG9Þ

where αi ¼ ĨiΔI=σ2, βi ¼ Q̃iΔI=2σ2, σ2 is the variance of
the noise in the voltage record, and finally,

Ĩi ¼ IðtiÞ −
ðI0 þ I1Þ

2
; ðG10Þ

Q̃i ¼ QðtiÞ −Q0; ðG11Þ

ΔI ¼ I1 − I0: ðG12Þ

I0 and I1 are the steady-state coherent-state amplitudes
conditioned on the qubit in the ground state and excited
state, respectively. These state update equations are exact in
the absence of a Rabi drive, and if the qubit decay rates are
small compared with κ [10]. Figure 2(d) in the main text
shows that these equations accurately reconstruct trajecto-
ries up to 2Ω=κ ≈ 1 even though they do not contain the
cavity.
While ΔI can be obtained with a simple calibration

measurement when Ω ¼ 0, it is impossible to calibrate ΔI
in the presence of a Rabi drive, since the measurement term
(σz) and Rabi drive (σx) do not commute. One might
assume that ΔI does not change with the applied Rabi
frequency, but this leads to a relatively large rms error even
at moderate Rabi drives. We can improve the performance
of the Bayesian filter reconstruction at moderate Rabi drive
by adjusting ΔI based on prior information obtained from
a QuTiP numerical simulation which includes qubit and
coupling to a cavity. From these simulations [Fig. 10(a)] we
find that the steady-state coherent-state amplitudes con-
ditioned on the qubit state (αg;e) substantially decrease as
the Rabi frequency increases. Therefore, to correct for
cavity effects, we scale ΔI by the steady-state value of
αeðΩÞ − αgðΩÞ=½αeð0Þ − αgð0Þ� [Fig. 10(b)], which yields
the triangles in Fig. 2(d) of the main text with substantially
smaller rms error.
While the scaling factor for ΔI partially corrects for

the cavity memory effect, the rms error remains large for
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2Ω=κ ≫ 1, since temporal correlations in the voltage
record are large. In this case the simple steady-state
Bayesian state update equations are no longer valid, and
the most straightforward way to further reduce the vali-
dation error is by including the full cavity in the stochastic
master equation. However, as stated in the main text, this
requires precise knowledge of coupling rates to the cavity,
which can be hard to calibrate and may depend on the Rabi
frequency (similar to ΔI). In addition, it is difficult to
experimentally verify whether the cavity modes are tracked
accurately, as this would require cavity-state tomography.
In Fig. 2(d) we show a further improvement in validation

error of the standard Bayesian filter after incorporating the
two main effects of the resonator memory in the state
update equations (based on Appendix L). We label this
method as “BF+analytics” accordingly. In addition to a
reduced measurement backaction, which was already
included in the BFþ numerics method described above,
this method also takes into account the rotation of the
measurement eigenstates resulting in a much better filter for
fast qubit dynamics. This simple correction assumes that
the Rabi drive changes the measured observable appreci-
ably over the timescale of the resonator decay, effectively
averaging it along a Rabi oscillation segment. This
assumption is valid only for faster drives that can outpace

the total measurement dephasing rate. Slower drives (with
Ω < 2Γd) will have their dynamics dominated by the
quantum Zeno effect instead, where the measurement
rapidly pins the state to an eigenstate mixture and prevents
coherent Rabi evolution from occurring [64]. Thus, our
expectation is that the BFþ analytics method should
perform less well than the standard steady-state filter for
smaller drives within this quantum Zeno regime, which is
supported by the data for the two drive strengths, Ω=2π ≈ 0
and 0.2 MHz, smaller than the quantum Zeno threshold
of 2Γd=2π ≈ 0.4 MHz.

APPENDIX H: VERIFICATION OF
HETERODYNE MEASUREMENT BACKACTION

A phase-preserving measurement technique gives rise
to both informational and phase backaction. In Fig. 11,
we verify that the undriven trajectories reconstructed
by the LSTM indeed show the signatures predicted by
Eqs. (E1)–(E3).
We analyze the measurement backaction for dynamics

in the x ¼ 0, y ¼ 0, and z ¼ 0 planes separately and
the plots show good agreement with the expected meas-
urement backaction, since we observe phase backaction in
the xy plane and informational backaction in the xz and yz
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FIG. 10. (a) QuTiP master equation simulation of a driven qubit dispersively coupled to the readout cavity, showing coherent state
amplitudes versus time, conditioned on the qubit state. We show two pairs of αg and αe for 2Ω=κ ¼ 0.4 and 2Ω=κ ¼ 2.0 obtained from
the expectation value αg ≈ Trðρqþcajgihgj=PgÞ, where a is the cavity photon annihilation operator and ρqþc is the joint qubit-cavity
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FIG. 11. Comparison between theoretical heterodyne measurement backaction (gray quiver maps) and reconstructed measurement
backaction by the LSTM (red quiver maps) for an undriven qubit initially prepared in j � Yi. The theory is obtained by setting z, y,
x ¼ 0 in the measurement backaction term of Eqs. (E1)–(E3) for backaction in the xy, xz, and yz plane, respectively. The reconstructed
quiver maps do not cover the full xy and xz plane due to the limited measurement efficiency η but agree qualitatively with the theory.
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planes. This suggests that the LSTM accurately predicts
heterodyne measurement backaction from experimental
observations, and that the parametrization of the mea-
surement backaction correctly describes the experiment
for 2Ω=κ ≪ 1.

APPENDIX I: COMPARISON BETWEEN
VOLTAGE RECORDS AND RECONSTRUCTED

TRAJECTORIES

To further understand the breakdown of the Bayesian
filter reconstruction demonstrated in Fig. 2(c) of the main
text it is helpful to compare the averaged voltage records
with the averaged qubit trajectories reconstructed by the
LSTM. For fast qubit dynamics [Fig. 12(c)] we observe a
large phase difference between the oscillations in the
voltage record and those in zðtÞ, because the cavity memory
delays photons escaping to the transmission line while the
qubit rotates quickly. Conventional stochastic master equa-
tions or Bayesian filters that do not include the cavity
memory assume photons measure the qubit state zðtÞ
instantaneously and, therefore, this phase difference signals
the breakdown of those methods. Note that this phase
difference already becomes noticeable at intermediate Rabi

frequencies [Fig. 12(b)], consistent with the increase in rms
error at 2Ω=κ ¼ 0.6 shown in Fig. 2(d) of the main text.

APPENDIX J: EFFICIENCY CALIBRATION

To verify whether the LSTM correctly captures the
measurement backaction we compare the extracted
measurement rate from the LSTM with an independent
calibration measurement, which extracts the separation
S¼ðΔV=σÞ2 of conditional qubit histograms [Fig. 13(a)]
after weak measurement of variable duration Tm. The
characteristic measurement time measures how quickly
we gain information about the qubit state in the presence
of experimental inefficiencies, and is defined by the time it
takes to reach a histogram separation of ΔV ¼ 2σ:

τm ¼ 4

�
dS
dTm

�
−1
: ðJ1Þ

In the undriven case where the coherent states in the cavity
have reached steady state, the single quadrature measure-
ment rate Γm is given by [61]

Γm ¼ 1

2ητm
; ðJ2Þ
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where η is the total efficiency of the measurement chain. In
addition, from the definition of the measurement rate we
have η ¼ 2Γm=Γd [32], where the factor of 2 accounts for
both quadratures and Γd is the decay rate of the ensemble
average [Fig. 13(c)]. The results of the calibration are
shown in Figs. 13(b) and 13(c), and from Eq. (J1) we find
τm ¼ 4.85� 0.08 μs and Γd=2π ¼ 0.175 MHz, which
gives η ¼ 0.188� 0.003. This value agrees with the
value found from analyzing the stochastic map at Ω ¼ 0
(η ¼ 0.185� 0.002). Note that this efficiency calibration is
not valid when the coherent states of the cavity are not in
equilibrium, for example, when the qubit is subject to a
Rabi drive or when Γd > κ. In those cases the methods
presented in Ref. [65] could offer a way to calibrate the
efficiency, but this is beyond the scope of this work.

APPENDIX K: DERIVATION OF THE
CORRECTIONS TO THE MEASUREMENT

BACKACTION

1. Problem setup

A superconducting transmon is measured by coupling
it to a strongly detuned readout resonator, which shifts
and splits the resonator frequency by a contrast of 2χ
between the two qubit-state-conditioned resonances. The
ratio 2χ=κ of this contrast to the resonance half-width κ=2
characterizes the distinguishability between resonances,
and thus the amount of qubit information per resonator
photon that can be stored in correlations. More precisely,
given an input drive d̂ðtÞe−iωdt tuned to the midpoint
between qubit resonances, photons in the resonator
mode â encode this qubit information in their relative
phase, which follows from the Heisenberg evolution
of the resonator mode in the rotating frame of the drive,
â0ðtÞ ¼ −ðκ=2Þ½1þ ið2χ=κÞẑðtÞ�âðtÞ þ ffiffiffi

κ
p

d̂ðtÞ.

2. General derivation

When the qubit ẑ is stationary and the drive hd̂i ¼
−iε=

ffiffiffi
κ

p
fluctuates around a constant mean, the resulting

steady state âSS ¼ −i
ffiffiffī
n

p
expð−iϕ̂Þ has a Lorentzian mean

photon number n̄ ¼ j2ε=κj2=½1þ ð2χ=κÞ2� and qubit-
dependent phase ϕ̂ ¼ arctan½ð2χ=κÞẑ�, with a maximum
phase contrast of Δϕmax ¼ 2 arctanð2χ=κÞ. A homodyne
measurement aligned with the quadrature of maximum
separation thus has a maximum amplitude contrast
Δāmax ¼ 2

ffiffiffī
n

p
sinðΔϕmax=2Þ ¼

ffiffiffī
n

p ð4χ=κÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2χ=κÞ2

p
that sets the rate γm ¼ ðηκ=2ÞjΔāmaxj2 ¼ ηð8χ2n̄=κÞ=½1þ
ð2χ=κÞ2� at which maximally separated steady states can be
distinguished by the photon amplitudes escaping the
resonator at rate κ=2 and being successfully collected
with efficiency η. The uncollected photons and residual
qubit-resonator entanglement further contribute to a
total qubit ensemble-dephasing rate due to measure-
ment Γm ≈ γm=η.

In the presence of a qubit drive, the resonator response
additionally filters the evolution of ẑðtÞ to produce an
effectively adiabatic response to a time-ordered geometric
series of its delay averages. That is, with a similarly
constant drive hd̂i ¼ −iε=

ffiffiffi
κ

p
and t ≫ 2=κ to let transients

decay, the resonator evolution has the recurrence relation,

âðtÞ ¼ −i
2ε

κ
− i

2χ

κ

Z
t

0

ẑðt − τÞâðt − τÞ κe
−κτ=2dτ
2

; ðK1Þ

which implies

âðtÞ ¼ −i
2ε

κ
T
X∞
n¼0

	
−i

2χ

κ

Z
t

0

ẑðt − τÞdPðτÞ


n
: ðK2Þ

The convolution kernel in the Green’s function is an
exponential probability distribution dPðτÞ ¼ κe−κτ=2dτ=2
over delay times τ, normalized as

R
∞
0 dPðτÞ ¼ 1 with mean

and variance both equal to the time constant τc ¼ 2=κ.
When ẑ varies slowly on the timescale τc it can be

approximately pulled outside the integral of Eq. (K1)
to yield the standard steady-state solution but with a
time-dependent phase ϕ̂ðtÞ ¼ arctan½ð2χ=κÞẑðtÞ� that
adiabatically tracks the qubit evolution. The next-order
approximation treats the evolution as approximately linear
within the exponential envelope ẑðt − τÞ ≈ ẑðtÞ − ẑ0ðtÞτ,
which additionally delays the response to the qubit by the
mean delay time τc ¼ 2=κ to produce the effective phase
ϕ̂ðtÞ ¼ arctan½ð2χ=κÞẑðt − τcÞ�. For more rapid evolution,
part of the evolution is averaged, thus reducing the
measurement contrast while rotating the measurement
basis.

3. Applying the theory to constant Rabi drive

In the case of a constant Rabi drive, the delay average in
Eq. (K1) can be computed directly. Assuming dominant
harmonic evolution _̂z ¼ Ωŷ, _̂y ¼ −Ωẑ, repeated integration
by parts of the delay-averaged ẑðtÞ when t ≫ τc yields a
pair of geometric series defining an effective ẑeffðtÞ
characterized by an adiabaticity parameter ð2Ω=κÞ:

ẑeffðtÞ ¼
Z

t

0

ẑðt − τÞdPðτÞ

¼ 1

1þ ð2Ω=κÞ2 ẑðtÞ −
ð2Ω=κÞ

1þ ð2Ω=κÞ2 ŷðtÞ

¼ ffiffiffiffiffiffi
ηav

p ½cos θẑðtÞ − sin θŷðtÞ�: ðK3Þ

The averaging both attenuates the eigenvalue contrast of ẑ
by an efficiency factor ηav and rotates the observable
coupled to the resonator by an angle θ in the yz plane.
The tilt angle and efficiency are thus

θ ¼ arctanðΩτcÞ ¼ arctanð2Ω=κÞ; ðK4Þ
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ffiffiffiffiffiffi
ηav

p ¼ cos θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2Ω=κÞ2

p : ðK5Þ

At longer times t ≫ τc the geometric series in Eq. (K1)
then yields the standard steady state, but with a phase angle
that depends upon the effective delay-averaged observable
ẑeffðtÞ that is rotated by θ and with eigenvalues reduced by
ẑ2eff ¼ ηav. This tilt can be understood equivalently as two
simultaneous measurements along z and y with differing
measurement rates γz ¼ ηavγm cos2 θ and γy ¼ ηavγm sin2 θ,
that compete to rotate the effective measurement poles.
In the main text we fit the tilt angle and measurement

rate extracted from the LSTM to the expressions for θ and
γy þ γz ¼ ηavγm from Eq. (K5). These results are shown
in Fig. 4(c).

APPENDIX L: DERIVATION OF MEASUREMENT
BACKACTION MAPS WITH CAVITY EFFECTS

To predict measurement backaction statistics shown in
Fig. 4(b), it is convenient to analyze an unnormalized
Bloch-vector description  s ¼ ðy; z; pÞ restricted to the yz
plane, where p ∈ ð0; 1� is the total probability and the
standard Bloch coordinates are obtained after renorma-
lization,  S ¼ N ð  sÞ ¼ ðy=p; z=pÞ. Focusing on the infor-
mational part of the measurement, a collected signal scaled
to a measured observable ẑ will have the form rdt ¼
hẑidtþ ffiffiffi

τ
p

dW integrated over a small time bin dt, where
τ ¼ 1=2ηΓm is a characteristic timescale, Γm is the induced
ensemble-dephasing rate, η ∈ ½0; 1� is the efficiency, and
dW with hdWi ¼ 0 and hdW2i ¼ dt is a Weiner increment
of zero-mean Gaussian noise.
Observing such a signal r induces a partial state collapse

that has the form of a hyperbolic boost matrix [66,67]:

 s ⟶
ðr;dt;τÞ

M̂zðr; dt; τÞ  s; ðL1Þ

M̂zðr; dt; τÞ≡

2
664
1 0 0

0 coshðrdt=τÞ sinhðrdt=τÞ
0 sinhðrdt=τÞ coshðrdt=τÞ

3
775: ðL2Þ

Similarly, the measurement of a rotated observable ẑðθÞ
that is tilted by an angle θ in the yz plane and further
attenuated by an efficiency η2 is readily obtained using a
rotation matrix:

M̂zðθÞðr; dt; τ; η2Þ≡ R̂xðθÞM̂zðr; dt; τ=η2ÞR̂−1
x ðθÞ; ðL3Þ

R̂xðθÞ≡

2
664

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

3
775: ðL4Þ

Computing the normalized state increment to linear order
in rdt yields the expected stochastic state increment:

d  Sðr;dt;τ;η2;θÞ≡N ðM̂zðθÞ  s−  sÞ ¼
	
dy

dz




¼ η2
rdt
τ

	
−yzcosθþð1− y2Þsinθ
−zy sinθþð1− z2Þcosθ



þOðrdtÞ2: ðL5Þ

Ensemble averaging the signal r produces its mean hri ¼
hẑðθÞi ¼ z cos θ þ y sin θ, yielding the mean backaction,

hd  Si¼
	hdyi
hdzi




≈η2
dt
τ
ðzcosθþysinθÞ

	
−yzcosθþð1−y2Þsinθ
−zysinθþð1− z2Þcosθ



;

ðL6Þ

from collapse, suppressing the distinct ensemble-dephasing
terms appearing at second order, hðrdtÞ2i ¼ τdtþOðdt2Þ.
To compute the variance of this informational back-

action, it is convenient to decompose the random variable r
into a convex mixture, rdt ¼ ðþ1dtþ ffiffiffi

τ
p

dWþÞpþ þ
ð−1dtþ ffiffiffi

τ
p

dW−Þð1 − pþÞ of two independent zero-
mean Gaussian random variables, dWþ and dW−, condi-
tioned on definite eigenvalues � of ẑðθÞ. Because
of the linear prefactor of r in Eq. (L5), the variances can
be readily computed using the conditional variance rule:
the variance of the mixture is the mixture of the condi-
tional variances plus the variance of the mixture
means, VarðYÞ ¼ hVarðYjXÞiX þ hðYjXÞ2iX − ðhYjXiXÞ2.
Computing VarðrdtÞ, keeping the lowest order in dt,
and taking the square root then yields the standard
deviation:

s:d:ðd  SÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd  SÞ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffi
2η2

dt
τ

r 	
−yz cos θ þ ð1 − y2Þ sin θÞ
−zy sin θ þ ð1 − z2Þ cos θ



: ðL7Þ

Note that the directionality of the standard deviation has
been preserved when taking the square root.
Using the tilt angle θ ¼ −θ ¼ − arctanð2Ω=κÞ and the

additional time-averaging efficiency factor η2 ¼ ηav ¼
cos2 θ ¼ 1=½1þ ð2Ω=κÞ2� outlined in the previous section
produces the variance vector plots in Fig. 4(b) of the
main text.
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