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A generic low-energy prediction of string theory is the existence of a large collection of axions,
commonly known as a string axiverse. Axions also have a natural cosmological production mechanism,
vacuum misalignment, making them well-motivated dark matter (DM) candidates. Much work on axion
production has considered the case of a single free axion, but in a realistic axiverse, string axions are
expected to be distributed densely over many orders of magnitude in mass and to interact with one another
through their joint potential. In this paper, we show that nonlinearities in this potential lead to a new type of
resonant energy transfer between axions with nearby masses. This resonance generically transfers energy
from axions with larger decay constants to those with smaller decay constants and leads to a multitude of
signatures. These include enhanced direct detection prospects for a resonant pair comprising even a small
subcomponent of dark matter, and boosted small-scale structure if the pair is the majority of DM. Near-
future iterations of experiments such as ADMX and DM Radio will be sensitive to this scenario, as will
astrophysical probes of DM substructure.

DOI: 10.1103/PhysRevD.105.055005

I. INTRODUCTION

Among the best-motivated extensions of the Standard
Model (SM) are axions, periodic pseudoscalar fields with
an approximate shift symmetry that protects their mass
from radiative corrections.1 The most well-known example
is the QCD axion, which was originally proposed as a
solution to the puzzling smallness of the neutron’s electric
dipole moment [1–4]. This is not the only type of axion that
can exist though: Axions can be quite generic in UV
completions of the SM with compact extra dimensions and
nontrivial topologies, the principle example of which is
string theory [5–7]. The combined motivation of the QCD
axion and string theory leads to predictions of a plenitude
of string axions with mass scales spanning many orders of
magnitude, a possibility referred to as the string axi-
verse [8].
A light axion ϕ with potential VðϕÞ has a natural

production mechanism known as the misalignment

mechanism [9–12], whereby the axion field is effectively
initialized at some finite displacement from the minimum
of its potential, and it undergoes subsequent classical
evolution.2 These potentials are generally expected to be
periodic and, at leading order, are often well approximated
by a cosine:

VðϕÞ ¼ m2f2
!
1 − cos

!
ϕ
f

""
: ð1Þ

Here, f is the axion decay constant, which is expected to
suppress all couplings of the axion field to the SM [20–22].
The periodicity of the axion potential provides a natural
measure on the space of initial conditions. In the absence of
any dynamic [23–29] or anthropic [30,31] considerations, a
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1The term “axionlike particles” is also used in the literature.

2In the sub-eV axion mass range we consider, and because the
axion is a bosonic particle, phase-space occupation numbers are
very large, and the cosmological axion field can be described
by solving the classical equations of motion of a condensate
[13–16]. This is the mean-field approximation in which one
replaces the quantum field operator ϕ̂ by its central value (i.e.,
ϕ̂ → hϕ̂i≡ ϕ) in the Heisenberg equations of motion, resulting in
the classical field equations. As stressed in Ref. [15], one does the
same thing when using Maxwell’s equations to describe the
electromagnetic field as the collective behavior of a large number
of photons, and indeed, the mean-field approximation constitutes
the standard treatment in scalar field models of inflation and dark
matter (see, for example, Refs. [13–19] and the many references
therein).
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reasonable expectation is that the initial condition ϕ0 is
drawn effectively randomly from the interval ½−πf; πfÞ.
Defining Θ0 ≡ ϕ0=f, we can then compute the present-day
energy density in the axion field, yielding

Ωax ≈ 0.4
!
Θ0

π=2

"
2
!

m
10−17 eV

"
1=2

!
f

1016 GeV

"
2

; ð2Þ

which receives corrections as jΘ0j gets very close to π
[32–38]. At these large misalignments, self-interactions
from the cosine potential can play a significant role in the
field’s evolution at early times, leading, in extreme cases, to
exponential growth of spatial perturbations and a plethora
of associated signatures [32–38].
The above discussion of the misalignment mechanism

applies to the case of a single axion uncoupled from all
other particles in the spectrum. However, the generic
prediction of the axiverse is actually many axions, spanning
orders of magnitude in both mass m and decay constant f.
A more realistic picture of the axiverse is then a sector
consisting of N pseudoscalar fields that pick up non-
perturbative contributions to their collective potential from
M instantons. We typically expect M ≫ N [39], so no
axion is expected to be massless. This results in a generic
potential of the form

Vðϕ1;…;ϕNÞ ¼
XM

i¼1

Λ4
i

#
1 − cos

!XN

j¼1

Qij
ϕj

fj
þ δi

"$
; ð3Þ

where δi are arbitrary constant phases, fi are the various
decay constants, and Qij are rational numbers associated
with the axion charges under each instanton [39–45]. The
energy scales Λi are typically exponentially suppressed
relative to the UV string scale Λstr by instanton actions Si:
Λi ∼ Λstre−λSi , where λ is an Oð1Þ coupling constant.
In the absence of strong priors on the instanton actions,

the axions are expected to have an approximately log-flat
distribution in mass [8], an expectation that has been
confirmed in specific orientifold compactifications of
type-IIB string theory [39,46]. The range of axion masses
can easily span several dozen orders of magnitude, from
smaller than the current Hubble rate H0 to order MPl. The
decay constants, meanwhile, are typically more narrowly
distributed but can still range over a few orders of
magnitude, f ∼ 1012–1019 GeV [8,39,47]. The number of
axions in these compactifications is proportional to the
Hodge number of the orientifold and thus can easily be
Oð100sÞ, making “coincidences” in axion mass a common
occurrence: Oð100Þ axions distributed log-flat over Oð60Þ
orders of magnitude in mass imply that each axion is, on
average, only a factor of a few away from an axion with a
similar mass. By chance, some pairs of axions will be even
closer, and as we will show, these coincident pairs can be
significantly more visible than other axions in the axiverse.

For concreteness, in this paper, we consider a sector
consisting of two axions receiving two instanton contribu-
tions to their potential:

VðϕL;ϕSÞ ¼ Λ4
1

!
1 − cos

!
ϕS

fS
þ ϕL

fL

""

þ Λ4
2

!
1 − cos

ϕL

fL

"
; ð4Þ

where we focus on the case where the axion masses are
within a factor of Oð2Þ from each other but the decay
constants are not necessarily close. This potential can be
shown in a nicer form by transforming to angular variables
θS ≡ ϕS

fS
and θL ≡ ϕL

fL
and then writing the instanton scales as

Λ4
1 ≡m2f2, Λ4

2 ≡ μ2F 2m2f2, yielding

VðθL; θSÞ ¼ m2f2½ð1 − cos ðθS þ θLÞÞ
þ μ2F 2ð1 − cos θLÞ&: ð5Þ

Letting f ≡ fS and F ≡ fL
fS
, the mass of ϕS is mS ≡m, and

that of ϕL is mL ≡ μm. We focus on the case where the
parameters are in the range 0.75≲ μ < 1 and F ≫ 1. We
term such a similar-mass pair “friendly” and refer to ϕL and
ϕS as the “long” and “short” axions, respectively, in
reference to the size of their decay constants. We note
that ϕL and ϕS are not exact mass eigenstates, but as
discussed in Appendix A, they are very nearly mass
eigenstates when F ≫ 1. We thus neglect this subtlety
for the current qualitative discussion but correctly account
for it in the main text below.
In the absence of the axion interactions, Eq. (2) would

suggest that, for similar masses and Oð1Þ misalignments,
the long axion will always dominate the late-time energy
density of the pair because of its larger decay constant. This
is true for μ≲ 0.75, but when the axion masses get within
roughly 25% of each other, a new effect occurs and can
result in highly efficient energy transfer from the long axion
to the short axion. We identify this new phenomenon as an
instance of autoresonance, a well-known effect in the
mechanics of classical oscillators that has found broad
applications across the nonlinear sciences.3

Near the bottom of the potential, both axions oscillate
with a frequency approximately given by their mass: the
long axion at μm and the short axion at m. However,

3Autoresonance in nonlinear systems is a fascinating topic in
its own right. Although the concept can be traced to the first
synchrotron accelerators [48–50], it has recently received little
attention in the high-energy theory community. First principles
treatments are in Refs. [51–54]. References [55,56] review
modern scientific applications. Specific applications exist for
atomic and molecular systems [57,58], rigid rotators [57],
plasmas [59–62], Bose-Einstein condensates [63], planetary
systems [55], and control theory and sensing [64–68].
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because the short axion has a nonlinear potential, its
oscillation frequency receives corrections depending on
its amplitude. At Oð1Þ amplitudes (such as those that may
be expected from a random initial misalignment angle), its
oscillation frequency can become so detuned from m that it
lines up instead with μm. At this point, the small interaction
with the long axion can resonantly drive the short axion and
hold it at this fixed amplitude, effectively counteracting the
damping effects of Hubble friction. Locking onto this
autoresonance is not a guaranteed process, and it depends
on the initial misalignment angles; however, once it has

been established, it is extremely stable and persists until
nearly all energy has been transferred out of the long axion
and into the short axion. This is by no means a tuned
occurrence: As a representative example, for μ ∼ 0.8 and
F ∼ 20, roughly half of the possible combinations of initial
misalignment angles result in autoresonance, leading to the
late-time energy density of the sector being dominated by
the short axion.
The signatures of a period of autoresonance are quite

dramatic. Axion couplings to the SM are generically
suppressed by their decay constant; for example, they

FIG. 1. Summary of parameter space, constraints, and signatures for a pair of friendly axions undergoing autoresonance. The lower
black solid line (“Θ0 ¼ π=2 Misalignment”) corresponds to the decay constant that produces the correct relic abundance for an initial
misalignment angle of π=2with the simple cosine potential of Eq. (1). Autoresonance allows an axion whose parameters lie near this line
(i.e., an axion that would produce the proper DM abundance in the absence of interactions via misalignment) to efficiently transfer its
energy to an axion with a much smaller decay constant. The blue region (“Attractive Autoresonance”) labels the parameter space
accessible to the simple model of Eq. (5). For even smaller values of f, nonperturbative structure growth quenches the autoresonant
energy transfer in this simple model (see Sec. III), but axion DM with these parameters can still be generated for slightly more
complicated axion potentials that include repulsive self-interactions to prevent structure growth (Sec. V). These regions of parameter
space are labeled “Repulsive Autoresonance.”We also show constraints and projections for various experimental efforts to detect axions
and axion DM through the axion-photon coupling gaγγ [73–129], where we have assumed gaγγ ≃ α

4πf. In the friendly scenario, axion DM
can be produced with untuned initial misalignment angles and with much stronger couplings to the SM than would be expected based on
the decay constant predicted by Eq. (2). We note that these direct detection signatures persist even when the friendly axions make up
only a subcomponent of DM (Sec. IVA). The region labeled “Gravitational Signatures” can be probed using DM substructures
generated during autoresonance (Sec. IV B). The horizontal axis of this plot refers to the overall mass scale of the two axions [i.e., the
parameter m in our potential Eq. (5)], while the precise axion masses in the mass basis have additional small dependence on the
parameters μ andF . As explained in Sec. IV C, the exclusions from black hole spin measurements extend to arbitrarily small values of f
only when viewed as constraints on the specific scenario of the pair of axions being Oð1Þ of dark matter.
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are expected to have couplings to the photon of the form
[20–22,69–72]

L ⊃ −
gaγγ
4

ϕFμνF̃μν; ð6Þ

where gaγγ ∼ α
4πf with α≡ e2

4π the QED fine-structure con-
stant. The short axion (with the smaller decay constant) is
thus typically coupled more strongly to the SM than the
long axion. Autoresonance efficiently transfers an axion
sector’s energy density into a form more easily probed
experimentally. As we summarize in Fig. 1, much of the
short-axion parameter space will be probed with existing
and upcoming experiments. We emphasize that this
enhancement can be observable regardless of whether
the friendly pair in question comprises the totality of the
DM or only a subcomponent.
In addition, a long period of autoresonance means that

the short axion spends a long time under the influence of its
nonlinearities. As shown in Ref. [38] in the context of a
single axion model, this can lead to a parametric resonant
enhancement in the growth of spatial inhomogeneities of
the axion field. If the axion makes up all of the DM, such
inhomogeneities eventually collapse into gravitationally
bound dark matter minihalos that can be probed purely
through their gravitational effects. For simple axion poten-
tials such as Eq. (1), Ref. [38] found that this required initial
misalignments of the order jΘ0 − πj≲ 10−5. Such a tuning
can be motivated by anthropics or dynamical mechanisms
[28,29], and in broader classes of axion potentials, it can be
avoided entirely [38]; however, similar minihalo phenom-
enology and signatures can also be reproduced by a
friendly autoresonating pair of axions with untuned initial
conditions, provided the friendly pair comprises the
entirety of the DM.
The structure of the rest of this paper is as follows: In

Sec. II, we outline the dynamics of autoresonance for the
spatially homogeneous components of the axion fields in
greater detail. In Sec. III, we extend our analysis to
inhomogeneities in both fields and show that those in
the short axion grow due to a parametric resonance
instability. In extreme cases, inhomogeneities can grow
nonperturbatively large during autoresonance, quenching
the transfer of energy between the axions. We then move to
discussing signatures of autoresonance in Sec. IV, going
over both the significant effects on direct detection param-
eter space and the astrophysical and cosmological probes
of dense minihalos. In Sec. V, we broaden our scope
somewhat to potentials with repulsive self-interactions,
which do not lead to structure growth but can still support
autoresonance. Finally, in Sec. VI, we summarize the
results of this paper and discuss its implications and future
directions.
To streamline the presentation, we have placed several

useful results and derivations in the appendixes. In

Appendix A, we discuss the difference between the mass
and interaction bases for the coupled axion system and
show that it has only marginal effects on our analysis. In
Appendix B, we give a lengthier analytic treatment of
autoresonance for a pair of friendly axions, and we do the
same for aspects of perturbative structure growth in
Appendix C. Appendix D concludes with a detailed
description and discussion of the numerical simulations
used to study the case of nonperturbative structure growth.
Throughout this paper, we work in units where

ℏ ¼ c ¼ 1, and we use the reduced Planck mass
MPl ≡ ðG=8πÞ−1=2 ≈ 2.4 × 1018 GeV. We use the Planck
2018 results [130] for our cosmological parameters,
taking the dark matter fraction of the universe to be
ΩDM ¼ 0.23, the scale factor at matter radiation equality
aeq ¼ 1=3388, the present-day Hubble parameter
H0 ¼ 67.66 ðkm=sÞ=Mpc, and the Hubble parameter at
matter-radiation equality Heq ¼ 2.2 × 10−28 eV. We work
with a mostly negative metric signature ðþ;−;−;−Þ.

II. FRIENDLY ZERO-MODE DYNAMICS

At energies well below its instanton scale, an axion in an
expanding universe is well approximated by a damped
harmonic oscillator. Its amplitude decays because of
Hubble friction as a−3=2, while its energy density falls as
a−3. The dynamics of our model [Eq. (5)] differ from this
simple picture in two important ways. First, at early times,
the axion field has enough energy that attractive self-
interactions of the cosine potential are important, and each
axion behaves as a damped nonlinear oscillator, with
oscillation frequency that is smaller than its rest mass.
Second, the axions are coupled to one another, allowing
energy to flow between them. These two facts lead to the
possibility of autoresonance, wherein a driven axion may
dynamically adjust its frequency to match that of a driver
axion. During autoresonance, the driven axion can receive
most of the driver’s energy, leading to new late-time
signatures.
We begin by taking appropriate limits of the two-axion

model [Eq. (5)] to reduce to the equation for a single driven
pendulum, which exhibits the same essential behavior. The
equations of motion for the axions θS and θL specified by
the potential Eq. (5) in a FLRW (Friedmann-Lemaître-
Robertson-Walker) background are

□

m2
θL þ 1

F 2
sinðθS þ θLÞ þ μ2 sin θL ¼ 0; ð7aÞ

□

m2
θS þ sinðθS þ θLÞ ¼ 0; ð7bÞ

where □≡ ∂2
t þ 3H∂t − ∇2

a2 for a scalar field in FLRW and
H ¼ 1

2t during radiation domination. In this section, we
focus on the homogeneous component of both fields, so we
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neglect the spatial derivatives and denote the homogeneous
components of the fields by ΘS and ΘL. In addition, we
measure time in units ofm−1, allowing us to write these in a
simpler form:

∂2
tΘLþ

3

2t
∂tΘLþ

1

F 2
sinðΘSþΘLÞþμ2 sinΘL ¼ 0; ð8aÞ

∂2
tΘS þ

3

2t
∂tΘS þ sinðΘS þ ΘLÞ ¼ 0: ð8bÞ

In the large-F limit, the equation of motion forΘL decouples
from ΘS, causing the ΘL field to behave as an independent
nonlinear oscillator subject only to Hubble friction. The
solution to such an equation for anOð1Þ initial misalignment
ΘL;0 and t ≫ 1 is well known: ΘLðtÞ ∝ ΘL;0t−3=4 cosðμtÞ,
and at late times, this becomes small. If we expand the ΘS
equation of motion in small ΘL, we obtain

∂2
tΘS þ

3

2t
∂tΘS þ sinΘS ≈ −ΘL cosΘS: ð9Þ

Provided the amplitude ofΘS is not too large, cosΘS will be
reasonably close to 1, and we can approximate4

∂2
tΘS þ

3

2t
∂tΘS þ ΘS −

1

6
Θ3

S ≈ −ΘL; ð10Þ

which is the equation of motion for a damped, driven
pendulum in the small-amplitude limit, formally known as
a Duffing oscillator.
We first consider the left-hand side of Eq. (10) in

isolation and in the absence of damping,

∂2
tΘS þ ΘS −

1

6
Θ3

S ¼ 0: ð11Þ

With an oscillatory ansatz ΘSðtÞ ≈ σS cosðωtþ δÞ, we find
that, because of the attractive self-interactions, the oscil-
lation frequency ω of the pendulum is a decreasing function
of its amplitude σS:

ωðσSÞ ≈ 1 − σ2S
16

þOðσ4SÞ: ð12Þ

This fact is key to autoresonance. Because of this effect,
the range of frequencies below the fundamental frequency 1
is now accessible to possible resonances. As we will see
below, by driving the pendulum at a frequency μ below the
fundamental, the system can automatically evolve to a new
equilibrium amplitude at which ωðσSÞ ≈ μ.
We now move to the next stage of complexity by

reintroducing constant damping and driving terms,

∂2
tΘS þ γ∂tΘS þ ΘS − 1

6
Θ3

S ¼ σd cosðμtÞ; ð13Þ

where γ and σd are the damping and driving coefficients,
respectively. The long-term effect of the driver is best
depicted by a resonance curve, which shows the possible
equilibrium amplitudes σS as a function of the driver’s
frequency μ. In the absence of the nonlinear term− 1

6Θ
3
S, the

oscillator’s equilibrium amplitude is unique:

σS ¼
σdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − μ2Þ2 þ γ2μ2
p ; ð14Þ

where 1 − μ2 represents the difference between the squares
of the oscillator frequency 1 and the driver μ. An intuitive
trick to extend this resonance curve to the nonlinear
oscillator is to replace the fundamental frequency 1
in Eq. (14) with its amplitude-dependent version in
Eq. (12):

σS ¼
σdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðωðσSÞ2 − μ2Þ2 þ γ2μ2
p : ð15Þ

By introducing amplitude dependence to the resonance
condition, there can now be up to three equilibrium
amplitudes for ΘS as a function of the driver frequency
μ, which we show in Fig. 2. The smallest amplitude
corresponds to the regime of linear excitation of the
pendulum and is stable to perturbations; we refer to this

FIG. 2. Resonance curve [Eq. (15)] for a pendulum of funda-
mental frequencym ¼ 1 driven at an amplitude of σd ¼ 4 × 10−3

at a damping of γ ¼ 2.5 × 10−3 (magenta). The vertical line is
drawn for a driving frequency of μ ¼ 0.9 and intersects the
resonance curve at the three equilibrium solutions. The bottom
solution (the linear branch) is stable and well approximated by the
harmonic oscillator resonance curve (blue). The intermediate
solution living on the dashed segment is unstable. The top
solution is, once again, stable and corresponds to the autoresonant
solution for the short axion (with amplitude σS). The dashed
black curve represents the frequency curve of a free pendulum.

4This formally corresponds to the limit ΘS ≫ ð1=6ÞΘ3
S ≫

ð1=2ÞΘ2
SΘL. In practice, this approximation appears to work quite

well even when the hierarchy is not very large.
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solution as the linear branch. The intermediate amplitude
solution is unstable to small perturbations. The third and
largest amplitude equilibrium, which we refer to as the
nonlinear branch, is again stable and, as we show below,
corresponds to autoresonance.
We now return to the cosmological scenario of Eq. (10),

where friction and driving are decaying functions of time.
In particular, the damping is given by the Hubble parameter
γ → 3HðtÞ ∝ t−1, and the amplitude of the driver follows
the cosmological evolution of the long axion, namely,
σd → σLðtÞ ∝ t−3=4. In spite of this time dependence, the
notion of a resonance curve is still useful in the cosmo-
logical scenario since both damping and driving vary
slowly compared to the rapid oscillatory timescale when
t ≫ 1, allowing σS to arrive at a quasiequilibrium.
Remarkably, it is the cosmological evolution of γ and σd

that is responsible for autoresonance. We show this effect in
Fig. 3, where we plot the instantaneous equilibrium of σS at
each point in time for two different initial ΘL amplitudes
σLð0Þ and fixed driving frequency μ. Early on, the system is
dominated by friction, and the equilibrium value of σS is
small. At late times, Hubble friction decays faster than the
driver, resulting in equilibrium solutions on both the linear
branch near zero and on the nonlinear branch at large
amplitude. Whether the short axion is smoothly carried up
to the nonlinear branch σS → 4

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
or left on the linear

branch where σS → 0 depends on whether the initial
driving amplitude σLð0Þ is large enough. The same

reasoning can be applied to Eq. (9) with only slight
modifications, which we discuss in Appendix B.
Thus, we have identified a cosmological mechanism for

arriving at the nonlinear branch of the resonance curve.
This instance of autoresonance is not unique. For example,
Ref. [55] showed that autoresonance can be induced by
sweeping the driver’s frequency, and they applied this effect
to a variety of systems, including planetary dynamics and
plasma physics. In other words, autoresonance is a generic
feature of many driven nonlinear systems where some
external parameter varies, and it may be a generic feature of
the axiverse as well.
We now return to the full system of Eq. (A8), which

describes the homogeneous part of the coupled axion
system of Eq. (5) in a FLRW background. For some range
of values of μ, F , and initial misalignment angles ΘS and
ΘL, the system autoresonates, with ΘS dynamically adjust-
ing its amplitude so that its frequency matches the driver
frequency μ, and then remaining at this amplitude until
backreaction ontoΘL eventually cuts off the autoresonance.
For a representative choice of parameters, this can be seen
concretely in Fig. 4. The physics of this autoresonance is
quite rich, and in Appendix B, we develop a formalism that

FIG. 3. Quasiequilibrium trajectories of the short amplitude σS
as it tracks the time-dependent resonance curve, for two values of
the initial driver amplitude σLð0Þ and a fixed driver frequency
μ ¼ 0.95. For small driver amplitudes (blue line), the short axion
never leaves the linear branch of the resonance curve. For large
enough driver amplitudes (magenta line), the short axion is
smoothly lifted from zero amplitude to the stable nonlinear
branch, which converges to the undamped pendulum solution
[ωðσSÞ ¼ μ with ωðσSÞ given by Eq. (12)]. At the critical driving,
the two branches are equally accessible as a bifurcation (gray
dashed line). See Appendix B 1 and, in particular, Fig. 18 for
further details.

FIG. 4. Evolution of energy densities in the short and long
axions for generic initial conditions that lead to autoresonance.
The parameters taken here are μ ¼ 0.8, F ¼ 20, ΘS;0 ¼ 0.4π,
ΘL;0 ¼ 0.8π, although the qualitative features are similar for
broad ranges of initial conditions within the “friendly” band
0.75≲ μ < 1. Here, F sets the rough initial ratio of energy
densities in the short and long modes but does not play any
significant role in determining whether the system lands on
autoresonance, provided it is somewhat large (F ≳ 5). The short-
axion energy density is held approximately constant at a value
determined by the equilibrium amplitude of Eq. (12) (labeled
“Autores. Equil.”) until the long axion no longer has enough
energy density to drive the autoresonance. Note that the final
energy densities are not equal, but rather, the short axion ends up
with virtually all of the system’s energy density. At late times, the
mass mixing of the two axions leads to rapid flavor oscillations in
the long axion’s energy density. Rotating to the mass basis (see
Appendix A) removes these oscillations.
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lets us quantitatively understand many details about it;
however, for the remainder of this section, we focus on
three questions. First, at what amplitude is the short field
held during autoresonance? Second, assuming the system
begins to autoresonate, what eventually cuts it off (i.e.,
how long does it last), and what is the final energy density
in the short-axion field? And third, what range of param-
eters (μ, F , and the initial misalignment angles) lead to
autoresonance?
The first question is also the simplest to answer. If a

nonlinear oscillator is being autoresonantly driven in its
steady state, its amplitude will be chosen such that its
frequency approximately matches the driver frequency. In
the case of two friendly axions discussed here, the short
axion is driven by the long axion, which oscillates with
frequency μ in its linear regime (i.e., once ΘL ≪ 1). As
discussed above, the frequency of a cosine oscillator as a
function of its amplitude σS is given by Eq. (12). During
autoresonance, the amplitude of ΘS will remain fixed at
ωðσSÞ ≈ μ. For μ ¼ 0.8, for example, this evaluates
to σS ≈ 1.82.
This “locking” of the ΘS amplitude has important

cosmological effects. Hubble friction operates to steadily
dilute the total axion energy density, but because ΘS is
autoresonantly held at fixed amplitude, its energy density
does not decrease. As a result, there is a steady transfer of
energy from the long axion to the short axion, and the
relative partition of energy between the two fields shifts as
the universe evolves. If both axions have Oð1Þ initial
misalignment angles, then at H ∼m, we have that ρS ∼
m2f2 and ρL ∼ μ2F 2m2f2. As time goes on, ρS remains
roughly constant, but ρL decreases proportionally to
a−3 ¼ t−3=2. Thus, after approximately a time

teq ≡
Ceq

m
ðμF Þ4=3; ð16Þ

the short- and long-axion energy densities will have
equalized, where Ceq is an order-1 constant.
Autoresonance is still maintained for some time after this,
although, from this point on, the energy loss in the long
field is dominated by the transfer to the short field rather
than Hubble friction. This continues until autoresonance is
cut off.
That autoresonance must eventually be cut off is clear

from energetics; the short-axion amplitude cannot remain
constant forever. Our second principal question is what
causes this cutoff, and the answer lies in the equation of
motion for ΘL [Eq. (8)]. In our above first pass, we
neglected the F−2 sinðΘS þ ΘLÞ term in the large-F limit,
but in truth, this approximation is only valid when the
amplitude of ΘL remains somewhat large. If we expand in
small ΘL and retain the first-order contribution from the F 2

term, we obtain

∂2
tΘLþ

3

2t
∂tΘLþΘL

!
μ2þ 1

F 2
cosΘS

"
þ 1

F 2
sinΘS¼0;

ð17Þ

so we can see that when F−2 sinΘS ∼ μ2ΘL, backreaction
will significantly affect the frequency of ΘL. This is a
somewhat decent proxy for when autoresonance ends,
which predicts a maximum ratio of the amplitudes σS
and σL of the short and long axions:

σS
σL

&&&&
late-time

∼ μ2F 2 ≫ 1: ð18Þ

Defining the homogeneous energy density in each axion by

ρS ¼ f2
!
1

2
ð∂tΘSÞ2 þm2ð1 − cosðΘS þ ΘLÞÞ

"

≈
1

2
m2f2σ2S; ð19Þ

ρL ¼ F 2f2
!
1

2
ð∂tΘLÞ2 þ μ2m2ð1 − cosΘLÞ

"

≈
1

2
μ2m2F 2f2σ2L; ð20Þ

where the approximations are only valid when ΘL ≪ ΘS
(the expectation after a period of autoresonance), we then
have

ρS
ρL

&&&&
late-time

∼ μ2F 2 ≫ 1: ð21Þ

Once autoresonance ends, the two axions behave as
uncoupled fields, with the exception of a small mass
mixing, which can be rotated away by shifting to the mass
basis. The details of this transformation are discussed in
Appendix A, but the important result is that, for
F ≫ 1=ð1 − μ2Þ, the rotation angle is quite small. The
resulting flavor oscillations, however, have a small effect,
which we take into account in Appendix B. This yields a
more precise estimate for the final energy-density ratio,
which is given in Appendix B. For F ≫ 1=ð1 − μ2Þ, this
ratio is well approximated by

ρS
ρL

&&&&
late-time

∼ 4F 2ð1 − μÞ2 ≫ 1: ð22Þ

This ratio then remains approximately constant as the
universe evolves since both ρS and ρL redshift proportion-
ally to a−3.
Although it is a simple heuristic, Eq. (22) is extremely

important, and it highlights one of the main results of this
paper: If autoresonance occurs, ΘL transfers nearly all of its
energy density into ΘS, which then dominates the late-time
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axion energy density. Thus, the short axion can have far
more energy density than would seem possible using the
misalignment mechanism with Oð1Þ misalignments for all
fields. Because ΘS has a smaller decay constant, it will also
generically have larger couplings to the SM. As we discuss
in Sec. IV, these larger couplings can be probed by direct
detection experiments even when the friendly pair makes
up only a subcomponent of the dark matter.
In actuality, Eq. (22) is a decent heuristic, but there are a

few additional effects that can modify the final result
significantly. The first is the fact that when the initial
conditions of the axions cause an autoresonance to occur,
they typically also excite oscillations about the steady-state
autoresonance. These lead to a variance of the final ratio in
Eq. (22) of up to a few orders of magnitude. We devote
Appendix B to a more detailed study of autoresonance that
touches on such effects, although analytic results are
limited in precision by the nonlinearity of the dynamics.
In all such cases, however, the vast majority of the axion
energy density ends up in the short field, so this effect only
significantly affects the final abundance of the long field
(a small subcomponent of the total axion energy density).
The second and by far most significant effect is that of
spatial inhomogeneities in the short field. These can be
resonantly amplified during autoresonance and, if they
grow large enough, can cut off the autoresonance before the
full OðF 2Þ ratio of Eq. (22) is achieved. We discuss these
effects in Sec. III.
With this central result, we can address our third

principal question: What range of parameters (μ, F , and
the initial misalignment angles) lead to autoresonance? Let
us first consider the effect of the decay constant ratio F .
Because the dynamics of autoresonance are mainly deter-
mined by the F → ∞ limit of the axion equations of
motion [Eq. (A8)], the precise value of F does not play a
big role in determining whether autoresonance will occur,
although it must be somewhat large (F ≳ 5) to trust the
above analytic results. Numerically, we find that there are
potentially observable effects on gravitationally bound
structures for F ≳ 3, which we discuss further in Sec. III.
The mass ratio μ of the axions plays a much larger role.

For the attractive self-interactions of ΘS discussed in the
bulk of this paper, autoresonance requires μ < 1 since the
driving frequency must be less than the fundamental
frequency of the driven field (i.e., the long axion’s mass
must be slightly smaller than the short axion’s). However, if
the hierarchy of masses is too large, autoresonance ceases
to be possible. Intuitively, this is because as the masses get
further apart, the amplitude of the short axion predicted by
Eq. (12) gets larger and larger. Eventually, the approxima-
tion cosΘS ∼ 1 in Eq. (10) fails, and the effects of this
destroy the possibility of autoresonance. As we discuss in
Appendix B, this predicts a minimum value of μ≳ 0.64 to
achieve autoresonance. In practice, very few initial con-
ditions lead to autoresonance for μ≲ 0.75 (see inset of

Fig. 5), so the range 0.75≲ μ < 1 is a useful notion of how
friendly two axions must be to see significant effects of the
kind we have described. We have studied this question
numerically in the finite F limit, and we summarize our
results in Fig. 5 and, in particular, its inset. We find that for
μ in the friendly band 0.75≲ μ < 1, Oð50%Þ of the space
of initial misalignment angles result in autoresonance,
which leads to the short axion dominating the late-time
energy density whenever it happens.
For fixed μ and F , we can gain a better understanding of

which initial misalignment angles lead to autoresonance by
using the resonance curve techniques discussed above. In
Appendix B, we show that all ΘSð0Þ will be brought to
autoresonance by sufficiently large ΘLð0Þ in the large F
and small 1 − μ limits [see Eq. (B10) and surrounding
discussion]. In Fig. 6, we show a representative scan over
initial misalignment angles for the parameters μ ¼ 0.85 and
F ¼ 20. For initial jΘL;0j ≳ π=2, nearly all values of ΘS;0

FIG. 5. Relic density ratio of the short axion ρS to the long
axion ρL in the model two-axion system of Eq. (5). A vertical
slice of this plot at fixed μ should be read as a histogram, with
darker colors representing a higher likelihood of choosing initial
conditions (IC) uniformly sampled from ðΘSð0Þ;ΘLð0ÞÞ ∈
½−π; π& × ½−π; π& corresponding to that density ratio. For μ ≥ 1
and μ ≤ 0.75, most initial conditions lead to ρS ≪ ρL (lower dark
bands), as naively expected for two uncoupled axions. For
0.75≲ μ < 1, a period of autoresonance causes ρS to dominate
the relic abundance (wispy dark features pointing towards the
upper left). We plot the analytical estimate for the shape of the
autoresonance tail as a dashed blue line (see Appendix B). Inset:
integrated version of this plot that shows, for each value of μ, the
total fraction of initial misalignment angles that result in the short
axion dominating the late-time energy density in the axion sector.

DAVID CYNCYNATES et al. PHYS. REV. D 105, 055005 (2022)

055005-8



end up autoresonating, directing nearly all the axion energy
density into the short field. Figure 6 also displays the large-
F autoresonance thresholds: The magenta contour repre-
sents the adiabatic prediction [Eq. (B10)], which one
should compare to the numerical blue contour. These
thresholds differ because the numerical contour accounts
for initial transient ΘS oscillations that depend mildly on
the misalignment angles, while the analytical approxima-
tion assumes that all transients have died out. These
differences vanish as we take μ closer to 1, where the
adiabatic approximation becomes exact.

III. SPATIAL FLUCTUATIONS

In the previous section, we described the phenomenon
of autoresonance in the two-axion potential of Eq. (5).
Autoresonance causes the short axion to undergo sustained,
large-amplitude oscillations by drawing energy from the
long axion. At these large amplitudes, θS experiences
strong attractive self-interactions which can lead to the
growth of large density perturbations in the axion field
during radiation domination. If the friendly pair comprises
a sizable fraction of DM, these perturbations collapse early
during matter domination, leading to a multitude of
present-day astrophysical signatures. The mechanism at
play is a form of parametric resonance, quite similar to that
studied in Ref. [38]. In this section, we generalize that study
to our case of coupled axions. We begin in Sec. III A by
considering a one-axion analogue of the friendly axion
system that contains most of the relevant physics of
perturbation growth. We then show in Sec. III B that the
results of this analogue model apply almost without
modification to the case of friendly axions, and we arrive
at analytic expressions for the growth rate of the short-
axion perturbations. In Sec. III C, we proceed to a pre-
liminary numerical study of autoresonance in the presence
of nonperturbative θS fluctuations. Our 3þ 1d numerical
simulations provide evidence that the autoresonant energy
transfer of Sec. II can be cut off early if θS fluctuations grow
sufficiently large, significantly changing the predictions of
the homogeneous theory. Finally, in Sec. III D, we conclude
by describing the Newtonian formalism to evolve the
density perturbations to the present day and discuss the
late-time axion halo spectrum. In this final section, we treat
only the case where the friendly axions constitute all of the
DM. We expect qualitatively similar effects if the pair
constitute a significant [≳Oð1%Þ] fraction of the DM, but
we leave this case to future work.

A. Invitation: A single axion model of
perturbation growth

In the standard misalignment picture, the axion ϕ starts
out displaced by order f from its vacuum expectation value.
The axion begins oscillating at H ∼m and quickly loses
energy to Hubble friction, diluting to approximately one-
fifth of its initial amplitude over a single oscillation. At
such small amplitudes, self-interactions are weak, and the
axion’s potential is well approximated by a free quadratic.
If, however, the axion starts very close to the top of the
cosine, then oscillations are delayed, and Hubble friction is
tiny by the time the axion starts oscillating. It thus takes a
long time for the axion to damp down from its large initial
amplitude. The consequence of this large misalignment is
that the axion probes the nonlinear part of the potential for
an extended period of time. The now-accessible many-to-
one interactions convert the nonrelativistic spectrum of
axion fluctuations into semirelativistic modes through

FIG. 6. Representative plot of the late-time relative abundance
of the short axion ΘS compared to the total axion energy density,
as a function of initial misalignment angles for both ΘS and ΘL.
Black regions correspond to initial angles for which ΘS domi-
nates the final relic abundance. It is clear that this happens in two
qualitatively distinct regions: when ΘLð0Þ is tuned close to zero
and when jΘLð0Þj is above some threshold, which for these
parameters is roughly π=2. The latter corresponds to those initial
misalignment angles that land on autoresonance and thus lead
to a nearly complete transfer of energy density from ΘL to ΘS.
The former is simply explained by the linearized dynamics, as
shown in the inset. The autoresonance cutoff predicted in the
adiabaticF → ∞ limit [Eq. (B10)] is displayed as a magenta line.
The numerical F → ∞ cutoff is displayed as a blue line, which
differs from the adiabatic prediction in that it accounts for
transient ΘS motion (see main text for details). At very large
initial long-axion misalignments, a fractal-like structure emerges
due to chaotic dynamics in the coupled system, which we discuss
in Appendix B 4. Inset: same plot obtained by discarding all
terms in the potential VðΘL;ΘSÞ of Eq. (5) higher than quadratic
order in the fields. In this case, the upper and lower regions
completely disappear because autoresonance relies on the self-
interactions of the short axion to achieve frequency matching
between the long and short fields.
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parametric resonance. The resulting density fluctuations
can then collapse into small-scale structure, leading to an
abundance of late-time signatures [38,131,132].
It turns out that fine-tuned initial conditions are not

necessary for such effects if the axion has a more
complicated potential. For example, Ref. [38] also studied
monodromy-inspired potentials that flatten at large field
values, effectively extending the cosine plateau. We can
obtain a similar effect if a single axion’s potential receives
contributions from two instantons:

VðϕÞ ¼ m2f2
#!

1 − cos
!
ϕ
f
þ δ

""

þμ2F 2

!
1 − cos

!
ϕ
Ff

""$
; ð23Þ

where, in this setup, F is an integer5 and δ ∈ ½0; 2πÞ is a
generic phase offset. Like the two-axion potential of
Eq. (5), this potential is comprised of a “short” and a
“long” instanton (first and second lines, respectively),
whose ratio of periods is F . For parameters F ≳ 3 and
μ ∼ 1, the resemblance goes further. Since the fundamental
period of the field is ð−πFf; πFfÞ, an untuned initial
misalignment angle is ϕ=f ∼OðF Þ. After a time
tosc ∼ 1

m ðμF Þ4=3, the axion amplitude will have diluted to
the scale of the small instanton [ϕ=f ∼Oð1Þ], and it will
feel strong self-interactions. This delay is completely
analogous to the time it takes for θS to fall off the
autoresonance [Eq. (16)]. In addition, Hubble friction
has already decreased significantly by this time, and tosc
is thus functionally equivalent to the delay time of
oscillations during large misalignment [38]. At this point,
the self-interactions can lead to rapid perturbation growth.
We study the axion perturbations in the background of

the perturbed FLRW metric

ds2 ¼ ð1þ 2ΦÞdt2 − a2ð1 − 2ΦÞδijdxidxj; ð24Þ

where Φðt;xÞ ¼
P

k ΦkðtÞeik·x is the adiabatic scalar
perturbation generated by inflation. Planck measurements
of the CMB are consistent with a nearly scale-invariant
dimensionless power spectrum PΦðt → 0Þ ¼ hΦk;0Φk;0i≈
2.1 × 10−9ðk=k⋆Þns−1, where ns ≈ 1 − 0.03 is the spectral
tilt and k⋆ ≈ 0.05 Mpc−1 is the pivot scale [130]. Because
we lack measurements below k ¼ 1 Mpc−1 (and for sim-
plicity), we assume a scale-invariant power spectrum for
the remainder of the text, hΦk;0Φk;0i ¼ 2.1 × 10−9.

We separate the axion field θðt;xÞ≡ ϕ=ðFfÞ into a
homogeneous component and a spatially varying pertur-
bation

θðt;xÞ ¼ ΘðtÞ þ
X

k

eik·xδθðt;kÞ; ð25Þ

where k is the comoving wave number. To make our
notation simpler, we rescale the comoving wave number by
defining

k̃2 ≡ 1

2mHradðtÞ
k2

aðtÞ2
; ð26Þ

where aðtÞ ∝ t1=2 is the scale factor during radiation
domination, H2

rad ¼ 8πG2ρrad, and ρrad ∝ aðtÞ4 is the
energy density in radiation. Note that with this definition,
k̃ is dimensionless and constant in time, and k̃ ∼ 1 corre-
sponds to those modes that enter the horizon atH ∼m. The
zero mode obeys the equation

∂2
tΘþ 3

2t
∂tΘþ 1

ðFfÞ2
V 0ðFfΘÞ ¼ 0; ð27Þ

and the perturbation obeys the linearized equation

∂2
t δθðt; k̃Þþ3H∂tδθðt; k̃Þ

þ
!
m
t
k̃2þ 1

ðFfÞ2
V 00ðFfΘðtÞÞ

"
δθðt; k̃Þ¼Sðt; k̃Þ; ð28Þ

where primes indicate differentiation with respect to Θ, and
the perturbation initial conditions are set by inflation,
which, after many e-folds, has flattened the axion field
so that δθð0;xÞ ¼ 0 to high precision. Note that Sðt; k̃Þ is a
small source representing the effect of the adiabatic scalar
perturbations to the metric on the axion field:

Sðt; k̃Þ ¼ 2

#
tk
t
dΦk

dtk
∂tΘþΦkV 0ðΘÞ

$
; ð29Þ

where

Φk ¼ 3Φk;0

!
sin tk
t3k

−
cos tk
t2k

"
; ð30Þ

t2k ≡
2

3

m
Hrad

k̃2: ð31Þ

Unlike misalignment in the cosine potential [Eq. (1)], the
two scales of Eq. (23) mean that misalignment takes place
in two parts. In the first epoch, the axion has a large amount
of energy coming from the larger of the two instantons (the
long instanton). These initial oscillations have kinetic
energy density many times larger than the small instanton,
and the axion rolls over short instanton’s feature in the

5A potential of this form can naturally arise from a general
axiverse potential such as that of Eq. (3), and in that context, F is
just the ratio of the axion’s integer charges Q under two different
instantons. Thus, in general, F can be any rational number rather
than only an integer; however, this does not change any of the
qualitative features of the analysis, so we neglect it here.
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potential without noticing them. The second epoch begins
once the axion’s energy matches the small instanton scale at
a time t ¼ tosc. At this point, strong self-interactions from
the short instanton lead to the parametric resonant growth
of perturbations.
More quantitatively, the story of misalignment in the

two-instanton potential [Eq. (23)] is as follows. At early
times when H ≫ m, the axion remains fixed at its untuned
initial condition Θ ¼ Θ0 ¼ Oð1Þ, where it acts as a
cosmological constant. After Hubble friction dilutes below
the mass scale, the zero-momentum mode starts oscillating,
and the axion energy density dilutes like matter. After just
one oscillation, Θ is small enough that the self-interactions
caused by the large instanton are negligible, and we can
approximate the equation for δθ as

∂2
t δθ þ 3H∂tδθ þm2

!
k̃2

mt
þ μ2 þ cosðFΘþ δÞÞ

"
δθ ≈ S:

ð32Þ

Although the self-interactions of the long instanton are no
longer relevant, it still dominates the energy density of Θ,
ρ ∼ 1

2 μ
2m2F 2f2. Thus, when the axion is rolling past the

bottom of the potential, we can approximate _Θ ∼ μm, and
the short instanton acts as a parametric driver at integer
multiples of the fundamental frequency F _Θ ≈ Fμm.
Because the mass of δθ is order μm ≪ F _Θ, these rapid
parametric oscillations do not induce parametric resonance,
and δθ remains small during this early phase.
The axion does not begin to feel strong self-interactions

until its energy density has diluted to the scale of the small
instanton,

ρðtÞ≈ðμmÞ2ðFfÞ2Θ2
0ðmtÞ−3=2¼m2f2Θ2

0

!
t
tosc

"−3=2
; ð33Þ

at a time t ¼ tosc ≈ ðμF Þ4=3=m. At this point, the amplitude
of the zero-mode oscillations has damped to Θ ∼ 1=F , and
Θ acts as a parametric driver with frequency at integer
multiples of F _Θ ∼m. Now that the parametric driver and
the perturbation frequency are both order m, δθ will
experience a period of exponential growth due to a para-
metric resonance instability.
As we will derive in Appendix C, the growth rate of the

axion perturbations is controlled by a single parameter, the
frequency shift δω of the zero-mode oscillations, defined
by the relationship

δωðσÞ≡ ωðσÞ − ωð0Þ; ð34Þ

where σ and ωðσÞ are the amplitude and frequency of the
homogeneous mode Θ. The sign of δω characterizes the
net-repulsive or attractive interactions of the potential over
the range of a complete Θ oscillation. Consider, for

example, the case of a repulsive (positive) quartic inter-
action. The interaction increases the potential at larger
amplitudes, causing the axion to turn around faster than it
would in a quadratic potential, reducing the period of
oscillation. Similar reasoning applies to attractive quartic
and to cubic interactions, which both work to increase the
oscillation period.6 Thus, net-repulsive interactions have
δω > 0, and net-attractive interactions have δω < 0.
The instantaneous exponential growth rate Γðt; k̃Þ of the

axion perturbation δθðt; k̃Þ amplitude at comoving wave
number k̃ is (see Appendix C)

Γðt; k̃Þ ¼ Re

"

−
3

4t
þ jδωj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
!
1þ k̃2

2tδω

"2
s #

; ð35Þ

where the −3=4t is due to Hubble friction. We can see that
for repulsive self-interactions (δω > 0), the growth rate is
always negative, and thus density perturbations do not
grow through parametric resonance. Consequently, the late-
time signatures of repulsive interactions are completely
characterized by the analysis of Sec. II, offering a clean
benchmark model of autoresonant dark matter, which we
describe further in Sec. V. On the other hand, attractive self-
interactions, for which δω < 0, do grow density perturba-
tions, which we describe below and calculate in detail in
Appendix C.
We can estimate the size of the δθ by integrating the

growth rate

hδθðt; k̃Þ2i ≈ hδθðtinit; k̃Þ2i exp
#
2

Z
t

tinit
dt0Γðt0; k̃Þ

$
; ð36Þ

where tinit ≈ tosc is the earliest time where Γ ≥ 0, and

hδθðt; k̃Þ2i ≈
Φ2

k;0

ð1þ mtk̃2
π2 Þ

2
ð37Þ

is an empirical formula for the amplitude of δθ before
perturbations start growing [38]. Because the leading-order
frequency shift is always quadratic in the zero-mode
amplitude δω ∝ σ2, we can parametrize the frequency
shift’s time evolution as δωðtÞ ¼ δωoscðt=toscÞ−3=2. As
we show in Appendix C, the resulting scalar perturbations
are maximized at k̃ ¼ k̃max, with the corresponding inte-
grated growth rate

k̃2max ≈ −0.622δωosctosc; ð38Þ

lim
t→∞

Z
t

tosc
dt0Γðt0; k̃maxÞ ≈ −1.45δωosctosc − 2.8; ð39Þ

6Cubic interactions are always net attractive since the axion
always spends more time on the attractive side of the potential.
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where we have taken tinit ¼ tosc, and −2.8 corresponds to
the suppression from Hubble damping.
To summarize, the axion only starts to experience

parametric resonance once it has damped to the short
instanton scale. The early period of large-amplitude oscil-
lations only serves to delay parametric resonance to a late-
enough time that it is not immediately quenched by Hubble
friction. In the following section, we study perturbations in
the two-axion model, Eq. (5), and we find that the results of
this section carry over to the period after autoresonance
ends and, in addition, that autoresonance provides a
mechanism for mode growth even during the early phase
of large amplitude oscillations, leading to enhanced total
perturbation growth.

B. Perturbation growth during autoresonance

In this section, we quantify mode growth during the early
phase of autoresonance, where the zero-mode physics is
quite different from that of Sec. III A. Nonetheless, the
single-axion model [Eq. (23)] introduced in the previous
section shares important features with the friendly axion
model [Eq. (5)], and the same framework for parametric
resonance is easily extended to this case. Importantly, we
find that autoresonance is a period of significant parametric
resonance, which accounts for exactly one-third of the total
mode growth, lasting only 2% of the total growth time. This
is the consequence of the large, constant amplitude oscil-
lations that are the hallmark of autoresonance.
The equations of motion for the density perturbations of

the short and long axions are

∂2
t δθS þ 3H∂tδθS þm2

!
1

mt
k̃2 þ cosðΘS þ ΘLÞ

"
δθS

þm2 cosðΘS þ ΘLÞδθL
¼ SS; ð40aÞ

∂2
t δθL þ 3H∂tδθL þm2

!
1

mt
k̃2 þ F−2 cosðΘS þ ΘLÞ

þ μ2 cosΘL

"
δθL þm2F−2 cosðΘS þ ΘLÞδθS

¼ SL; ð40bÞ

where SS;L represent how the metric fluctuations source the
scalar perturbations of θS and θL, respectively (see
Appendix C). In the large-F limit, we can see that δθL
will behave just as in ordinary misalignment in a single
cosine potential. Therefore, we approximate δθL → 0 and
consider δθS in isolation. We further approximate ΘS þ
ΘL ≈ ΘS sinceΘL damps quickly to small amplitudes while
ΘS is locked by autoresonance. Thus, the equation for the
short axion perturbation becomes

∂2
t δθSþ3H∂tδθSþm2

!
1

mt
k̃2þcosðΘSÞ

"
δθS≈SS: ð41Þ

This is of the same form as Eq. (28), and therefore our
expression for the growth rate is exactly Eq. (35), where the
frequency shift is now given by the condition for autor-
esonance, δωðσSðtÞÞ ¼ δωosc ¼ μ − 1 for t < tosc. In this
case, tosc ¼ CoscðμF Þ4=3=m is the time at which autoreso-
nance ends and nearly harmonic decaying ΘS oscillations
begin. Note that Cosc is an Oð1Þ constant that depends on
initial conditions. We now integrate the growth rate to
arrive at the magnitude of δθS at the end of autoresonance,

hδθSðtosc;kÞ2i≈hδθðtinit;kÞ2iexp
#
2

Z
tosc

0
dt0Γðt0;kÞ

$
: ð42Þ

The fastest-growing mode starts growing at
tinit ≈ 0.155tosc, with comoving wave number k̃max and
integrated growth rate

k̃2max ≈ −0.622δωosctosc; ð43Þ
Z

tosc

tinit
dt0Γðt0; k̃maxÞ ≈ −0.725δωosctosc − 1.4; ð44Þ

where −1.4 originates from Hubble damping.
After the end of autoresonance, σS decays as t−3=4 and

δωðσSðtÞÞ ¼ δωoscðt=toscÞ−3=2, just as in Sec. III A. At this
point, we have reduced the two-axion perturbation equa-
tions (40) to a single-axion equation (41), and we may
directly apply the results of Sec. III A, leading to the post-
autoresonance integrated growth rate

k̃2max ≈ −0.622δωosctosc; ð45Þ

lim
t→∞

Z
t

tosc
dt0Γðt0; k̃maxÞ ≈ −1.45δωosctosc − 2.8: ð46Þ

Notice that the spectrum of axion perturbations produced
during autoresonance is peaked in the same location as the
post-autoresonance perturbations. As a result, the total
growth from both the fixed-amplitude autoresonance and
the subsequent decaying-ΘS oscillations is just the sum of
Eqs. (43) and (45):

lim
t→∞

Z
t

0
dt0Γðt0; k̃maxÞ ≈ −2.175δωosctosc − 4.2: ð47Þ

The linear analysis of this section allows us to predict a
late-time spectrum of DM halos, provided all perturbations
remain small (Sec. III D). However, it is possible that a
density perturbation grows nonperturbatively large, at
which point this analysis breaks down. We treat this
numerically in the next section, where we find that non-
perturbative structures can also quench the autoresonant
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transfer of homogeneous energy density described in
Sec. II. We summarize the distinction between the pertur-
bative and nonperturbative regions in Fig. 7, where the
colors indicate the time at which modes become nonlinear.
In the white regions, all modes remain linear, and the
conclusions of Sec. II go through unchanged. In the colored
regions, the various contours indicate the different stages of
parametric resonance at which modes become nonlinear.
For modes becoming nonlinear after the end of autoreso-
nance, we can safely apply the results of Sec. II. For
parameters where modes become nonlinear before the end
of autoresonance, we must instead turn to the techniques of
Sec. III C.

C. Nonperturbative structures during autoresonance

Autoresonance holds the homogeneous field ΘS at large
amplitudes for a long time, causing the spatial perturbations
δθS to undergo a long period of exponential growth through
parametric resonance. When these perturbations become
Oð1Þ, the notion of the homogeneous mode ΘS breaks
down, and the conclusions of Sec. II no longer apply. In
order to get a sense of what happens in this nonlinear
regime, we have performed a preliminary numerical inves-
tigation for a small set of Lagrangian parameters and initial

conditions, which we describe in detail in Appendix D.
Here, we summarize our early results, which suggest that
nonperturbative structure shuts down autoresonance,
generically leading to a smaller final energy density in
θS than predicted by Sec. II.
We simulate two axions in the potential Eq. (5) in the

background of the perturbed FLRW metric Eq. (24), where
all fields are required to satisfy periodic boundary con-
ditions. The results of one such simulation are given in
Fig. 8. Because of the nonperturbative fluctuations in θS,
there is no unique way to partition the energy densities
between θS and θL, so we make the following choice:

ρ̄S ¼
f2

V

Z
dV

#
1

2
ð∂tθSÞ2 þ

1

2
ð∇θSÞ2

þm2ð1 − cosðθS þ θLÞÞ
$
; ð48Þ

ρ̄L ¼ f2F 2

V

Z
dV

#
1

2
ð∂tθLÞ2 þ

1

2
ð∇θLÞ2

þm2μ2ð1 − cos θLÞ
$
; ð49Þ

where V is the simulation volume. Even after the onset of
nonperturbative θS fluctuations (marked by the vertical
gray line), the θS energy density only deviates slightly from
the homogeneous prediction. This deviation remains small

FIG. 7. Time until the onset of nonlinearity, obtained for the
specific initial conditions θSð0Þ ¼ 0; θLð0Þ ¼ 0.8π, chosen be-
cause they lead to autoresonance for the entire set of scanned
ðμ;F Þ. The criterion for nonlinearity is that a single mode crosses
δθS ≥ 1. Above the solid black contour, the axion remains
perturbative indefinitely. The dotted black contour is the corre-
sponding analytical estimate using the techniques of Sec. III B.
Above the blue contour, the axion only becomes nonperturbative
after the energy densities of θS and θL have equalized. Below this,
modes become nonlinear even earlier, but above the magenta
contour, modes remain linear until θS has at least 1=10 the energy
density of θL.

FIG. 8. Comparison of the energy densities of the long and
short axions from a homogeneous calculation (Sec. II) versus the
corresponding 3þ 1-dimensional lattice simulation (see Appen-
dix D for details). Here, F ¼ 50 and μ ¼ 0.8, with initial
conditions θLð0Þ ¼ 0.8π and θSð0Þ ¼ 0 chosen to lie in the
autoresonance band. The vertical gray line represents the point
beyond which θS fluctuations become nonperturbative, although
ρS does not yet deviate significantly from the homogeneous
expectation. Once these large θS fluctuations collapse under their
own attractive self-interactions at the vertical black line, the
autoresonant energy transfer stops, and both species dilute
approximately like cold matter.
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until the perturbations begin collapsing under their own
attractive self-interaction, which we mark with a vertical
black line. The objects nucleating from this nonlinear
collapse are oscillons: long-lived spherically symmetric
scalar configurations held together by attractive self-inter-
action [133–142]. At this point, both ρS and ρL diverge
from the prediction of Sec. II and simultaneously begin
diluting (almost) like cold matter. Unexpectedly, we
observe the final energy-density ratio ρS=ρL to scale like
t0.17, although it is unclear whether this scaling persists
until the energy densities equalize or whether it is a
numerical artifact. In our later estimates of direct detection
prospects, we assume that the energy-density ratio is fixed
after oscillon nucleation, which is conservative since we are
mainly interested in the detection of ρS.
In spite of this numerical uncertainty, there is a possible

physical explanation for why oscillon nucleation may end
autoresonance. Consider that for θS to sustain autoreso-
nance in any given region of space, θS’s amplitude must
remain locally large enough that its frequency can remain
locked to μ. At early times, θS fluctuations are dominated
by a single momentum mode k̃ ¼ k̃max, whose wavelength
is typically much longer than the Compton wavelength of
the axion field. As this mode grows, a fixed fraction of the
comoving volume is at a large enough amplitude for
autoresonance, even after δθSðk̃maxÞ becomes much larger
than unity. After a short time, these comoving regions of
space collapse into oscillons with a fixed physical size
much smaller than the scale of k̃max. At this point, the long-
wavelength perturbations at k̃max have lost much of their
amplitude to gradient energy and to radiation production,
and most space is below the autoresonance threshold.
While the large-amplitude oscillons may, in principle, still
remain autoresonant with θL, the θS energy density now
dilutes like matter since the comoving number density of
oscillons is approximately conserved, and the nonautore-
sonant parts of space cannot become autoresonant.
However, we emphasize the need for higher-resolution

simulations to confirm our results and intuition. Even
though it is physically reasonable that nonperturbative
structure cuts off autoresonance, the opposite possibility
also offers exciting observational prospects. If autoreso-
nance is not cut off, then the short axion may become even
more visible at smaller fS (larger F ), offering enhanced
direct detection prospects. On the other hand, if our
numerics are confirmed, then the resulting oscillons may
have parametrically enhanced lifetimes, leading to interest-
ing present-day signatures of their own. We do not perform
a full analysis of this possibility here, but we discuss it
further in Sec. VI.

D. Newtonian evolution and gravitational collapse

A long time after parametric resonance has concluded,
the axion field is firmly nonrelativistic and can be well

approximated by its Newtonian evolution. If the friendly
pair comprises a majority of the dark matter, the overdense
regions begin to collapse under their own gravity and
virialize at the onset of matter domination, leading to the
formation of axion minihalos, which eventually comprise
galactic substructure. In this section, we extend the for-
malism of Ref. [38] to describe this process in the case of
two friendly axions. For concreteness, we assume the
friendly pair makes up all of the dark matter.
After parametric resonance, the axion fields are best

described in the mass basis

νh ≡ ϕS cos ηþ ϕL sin η; ð50Þ

νl ≡ ϕL cos η − ϕS sin η; ð51Þ

where the ν basis is related to the old basis by the rotation
angle η, and the states νh and νl have corresponding heavy
and light masses mh and ml, all defined in Appendix A.
When F ≫ ð1 − μ2Þ−1, the mass eigenstates νh and νl are
mostly comprised of ϕS and ϕL, respectively. The fields νh
and νl may be broken down into a homogeneous back-
ground and perturbations,

νh;l ¼ Nh;lðtÞ þ
X

k

eik·xδνh;lðt;kÞ; ð52Þ

yielding the corresponding relative density perturbations
ρh;l ¼ ρ̄h;lð1þ δh;lÞ,

δh;l ¼
∂tNh;l∂tδνh;l þm2

h;lNh;lδνh;l
1
2 ð∂tNh;lÞ2 þ 1

2m
2
h;lN

2
h;l

; ð53Þ

where ρ̄h;l is the average density of νh;l, respectively.
Following Ref. [38], we now change variables from t to

y≡ aðtÞ=aeq, where aeq is the scale factor at matter-
radiation equality. The density fluctuations deep inside
the horizon k̃2 ≫ H=m then obey the Newtonian equations
of motion,

0 ¼ ð1þ yÞδ00 þ
!
3

2
þ 1

y

"
δ0

−
!
3

2y
FG −

1

y3
k̃2C2

s −
1

y2
k̃4C2

Q

"
δ; ð54Þ

where we have defined the vector of relative density
perturbations δ≡ ðδh; δlÞT , and primes denote differentia-
tion with respect to y. The matrices of Eq. (54) are
defined as

C2
s ¼

3
ffiffiffi
2

p
mHeqM2

Pl

ρ̄h þ ρ̄l

0

@
λhhρ̄h
16m4

h

λhlρ̄l
8m2

hm
2
l

λhlρ̄h
8m2

hm
2
l

λllρ̄l
16m4

l

1

A; ð55Þ
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C2
Q ¼

!
m2=m2

h 0

0 m2=m2
l

"
; ð56Þ

FG ¼ 1

ρ̄h þ ρ̄l

!
ρ̄h ρ̄l
ρ̄h ρ̄l

"
; ð57Þ

where λhh;hl;ll are the quartic interactions in the mass basis
of even parity (corresponding to interactions with even
numbers of both species), whose full expressions are given
in Appendix A. The matrices Cs and CQ are coefficients
representing the strength of self-interactions and kinetic
pressure, respectively, which together comprise the effec-
tive speed of sound. The matrix FG represents the attractive
force of gravity. These equations may then be numerically
integrated to late times.
Having solved for the full history of the linear density

perturbations, we can now describe the nonlinear collapse
of these density perturbations into small-scale structures.
The formalism to describe nonlinear gravitational collapse
is well known [143] and worked out in detail in Ref. [38],
which we summarize here for completeness.
In the extended Press-Schechter formalism, a local

overdensity is considered to have collapsed if it exceeds
the critical overdensity δc ¼ 1.686 [144]. In the two-axion
model, the total DM overdensity in momentum space is

δðt;kÞ≡ ρ̄hðtÞδhðt;kÞ þ ρ̄lðtÞδlðt;kÞ
ρ̄hðtÞ þ ρ̄lðtÞ

: ð58Þ

To obtain a distribution for the density perturbations in
position space, we smooth the density field δðt;xÞ≡
ð2πÞ−3

R
d3keik·xδðt;kÞ over a radius RS using the

spherical top-hat window function WðRS;xÞ ¼
ΘðRS − jxjÞð3=ð4πR3

SÞÞ:

δðt;x; RSÞ≡
Z

d3x0WðRS;x − x0Þδðt;x0Þ: ð59Þ

The mass contained within the smoothing radius is MS ¼
ð4π=3Þρ0DMR3

S, where ρ0DM ¼ 3.3 × 10−8 M⊙=pc3 is the
average dark matter density in the present-day universe.
Assuming that the density perturbations obey a Gaussian

distribution, the differential collapsed fraction of energy
density per unit mass is

1

ρ0DM

dρcoll
d logMS

¼
ffiffiffi
2

π

r
δc

σðMSÞ

&&&&
dlog σðMSÞ
d logMS

&&&&e
− δ2c
2σ2ðMSÞ; ð60Þ

where the density fluctuation variance is
σ2ðMSÞ ¼ hδðt;x; RSÞ2i. We plot the variance and differ-
ential collapsed fraction in Fig. 9 for a representative set of
initial conditions and Lagrangian parameters for a mass
scalem ≈ 10−18 eV to allow for direct comparison to Fig. 7
of Ref. [38]. We see that an early period of autoresonance

has enhanced structure at the mass scale MS ≈ 105 M⊙,
which collapses significantly earlier than the larger-scale
structure comprising entire galactic halos.
In Ref. [38], the authors point out two downsides of

Press-Schechter theory. First, δðt;x; RSÞ can be large even
if there is no structure at the scale RS, so long as there is
structure at larger scales. Second, the differential collapsed
fraction does not count substructure. To remedy this, they
propose the use of a smoothing function in momentum
space which isolates structures of scale R,

Wðk; RÞ ¼ 1

ð2πσ̃2Þ1=4
exp

#
−
logðjkjR=πÞ2

4σ̃2

$
: ð61Þ

Using Eq. (59) with this new window function, we compute
the variance σ2ðMSÞ,

FIG. 9. Standard deviation of the density perturbations (top
panel) and the differential fraction of collapsed structures (bottom
panel) at a given smoothing mass MS. The mass scale m ¼
10−18 eV is chosen to enable direct comparison with Fig. 7 of
Ref. [38], where a 10−10 tuning of the initial misalignment angle
is necessary to achieve comparable density fluctuations. The thin
dashed lines correspond to the same density fluctuations and
collapsed fraction for a non-self-interacting scalar of the same
mass m ¼ 10−18 eV.

RESONANT NONLINEAR PAIRS IN THE AXIVERSE … PHYS. REV. D 105, 055005 (2022)

055005-15



σ2ðMsÞ ¼
Z

d log kjδðt; kÞj2jWðk; RsÞj2: ð62Þ

Structures at a given mass scale Ms are considered to have
collapsed at a time corresponding to the scale factor
acollðMsÞ when a 1σ overdensity exceeds δc, where
Ms ¼ ρ0DMð4π=3ÞR3

s . The resulting collapsed structure
has a well-known density roughly 200 times the ambient
density at the time of collapse, ρs ≈ 200 × ρ0DMa

−3
coll. We

plot the resulting halo spectra in Fig. 10 for three repre-
sentative sets of initial conditions and Lagrangian param-
eters, where we have chosen mass scales that match those in
Fig. 8 of Ref. [38] to enable direct comparison. This halo
spectrum peaks at a scale mass determined by the k̃max in
Sec. III B, which is well approximated by

Ms ∼
4

3
πρDMðH ¼ m=2Þ

!
2π

mk̃max

"
3

∼ 1.2 × 104 M⊙

!
10−19 eV

m

"
3=2! 5

k̃max

"
3

: ð63Þ

IV. SIGNATURES

So far, we have primarily focused on the early-time
dynamics of a pair of friendly axions, but in this section, we
turn to the late-time observable effects of these dynamics.
Broadly, they fall into two categories.

First, autoresonance can facilitate a significant transfer of
energy density from an axion with a large decay constant to
an axion with a much smaller decay constant. Since the
axion’s couplings to the SM are generically suppressed by
its decay constant, axions produced via autoresonance can
be coupled significantly more strongly to the SM than
axions produced via the usual misalignment mechanism,
and they can be observable even if they make up only a
small subcomponent of DM. We discuss this point and
outline future detection prospects in Sec. IVA.
The second broad class of observable effects are indirect

gravitational signatures. As discussed in Sec. III, an era of
autoresonance can lead to significant growth of density
fluctuations that can collapse into gravitationally bound
structures earlier than would be predicted by ΛCDM, as
shown in Fig. 9. This collapse requires that the pair of
friendly axions make up the entirety of dark matter, but if
this happens, such structures can be detectable through
their gravitational effects. The halo substructure turns out to
be quite similar to that produced by the mechanism of
Ref. [38], so the techniques discussed therein for detecting
such structures apply here as well. We briefly review these
in Sec. IV B. Finally, both the long and short axions can
potentially be constrained by black-hole (BH) superra-
diance (SR); we comment on this in Sec. IV C. The reach of
all signatures discussed in this section are summarized in
Fig. 12 for the case where the friendly axions are the DM,
and in Fig. 11 for the case where they are only a
subcomponent.

A. Enhanced direct detection prospects

The most striking effect of axion friendship is to signifi-
cantly improve the prospects of probing an axiverse in direct
detection experiments. In the absence of interactions, all
axions with similar masses would be equally detectable,
provided they all start at similarly untuned initial misalign-
ment angles. An axion with a smaller decay constant f will
have a smaller present-day abundance, but its stronger
coupling to the SM precisely cancels this out when it comes
to observability. Quantitatively, haloscope experiments
couple to the combination g2aγγρax, where the axion-photon
coupling is expected to be of order gaγγ ≃ α=4πf, with α the
QED fine-structure constant. An axion of a given mass m
will thus be detectable to an experiment with sensitivity7:
!
g2aγγ

ρax
ρ0DM

"
1=2

naïve
∼2.3×10−17GeV−1

!
Θ0

π=2

"!
m

10−7 eV

"
1=4

;

ð64Þ

FIG. 10. Halo spectrum ρs versus scale massMs in the friendly
axion model with initial misalignments and Lagrangian param-
eters chosen to be representative of what one might expect to find
in the axiverse. The three masses m chosen for this plot match
those of Fig. 8 in Ref. [38] in order to allow for direct comparison.
Note the large enhancement of subhalo density relative to the
CDM expectation. The dashed lines correspond to the density of a
soliton, a gravitationally bound scalar field configuration sup-
ported by kinetic pressure, which represents the densest stable
collapsed axion structure of a given mass. The soliton mass-
density relationship is given by ρs ≈ 0.067G3m6M4

s [145].

7This expression and the analysis of this section refer to
experiments that probe the axion through its coupling to photons.
There are other potential axion couplings that can be probed
which are subject to similar analyses, but we do not discuss them
here.
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where we have normalized to the current universe-average
DM density, Θ0 is its initial misalignment, and this formula
receives logarithmic corrections near Θ0 ¼ π. Note, impor-
tantly, that Eq. (64) is independent of the decay constant. For
this reason, in this naive scenario, an axion haloscope
experiment sensitive to a wide range of masses is unlikely
to see any axiverse axion until it reaches the sensitivity
threshold of Eq. (64). However, once it reaches this point,
it may see several axion signals at the same time, even
from axions that make up only a small subcomponent of
the DM.
In contrast, we have seen that for a pair of friendly

axions in the axiverse, autoresonance can transfer nearly
all of the energy density from the long axion (with the
larger decay constant fL) to the short axion (with the
smaller decay constant fS). This results in a “best of both
worlds” scenario: If autoresonance completes, the short
axion’s energy density is set by fL while its coupling to
the SM is set by fS. This makes the short axion much
more observable, enhancing its signal strength relative to
Eq. (64):

!
g2aγγ

ρax
ρ0DM

"
1=2

friendly
¼ F

!
g2aγγ

ρax
ρ0DM

"
1=2

naive

∼ 4.6 × 10−16 GeV−1
!
F
20

"!
Θ0

π=2

"!
m

10−7 eV

"
1=4

; ð65Þ

where Θ0 refers to the long axion’s initial misalignment
angle. Although there may only be a few pairs of friendly
axions in the axiverse that end up autoresonating, these
few pairs (or, more precisely, the short axion in each of
these pairs) may become the one most visible to direct
detection experiments.
For fixed F , the enhancement to the signal strength

[Eq. (65)] does not depend on whether the friendly pair
makes up all of DM or only a subcomponent, but this
distinction can still matter for direct detection because of
the formation of spatial structure. The subcomponent case
is simpler, and we summarize the enhancement to direct
detection prospects in Fig. 11. Any experiment whose
projected sensitivity intersects the blue regions (set by
different values of F ) will be able to probe any friendly
axion pair in their mass range with large enough F .
Attractive autoresonance may thus be visible to many
proposed experiments such as ADMX [94], DM Radio
[92,101], HAYSTAC [146], KLASH [93], superconducting
rf cavities [96–98], and, optimistically, BRASS [95] and
MADMAX [102].
If the friendly pair comprises the totality of DM, the

situation is slightly more complicated. In this case, as
discussed in Sec. III, the self-interactions of θS can result in
the growth of density perturbations that gravitationally
collapse earlier than they would in ΛCDM and thus form
dense axion minihalos. The region where these structures
remain perturbative until most of the axion energy density
is in the short axion is labeled “Autores. Completes” in
Fig. 12, but even in this case, anywhere from 95%–99% of
the dark matter can reside in these minihalo structures.8 If
the minihalos are numerous enough that one may expect at
least one encounter with a detector during its experimental
runtime, then the experimental sensitivity is not signifi-
cantly changed by such a substructure, although for a
resonant experiment, the scanning strategy may need to be
modified to maximize the likelihood of scanning the correct
frequency during a minihalo encounter [38]. This is
generally the case for axions with mass m≳ 10−3 eV,
where the minihalos are light and therefore extremely
numerous. For smaller axion masses, where the minihalos

FIG. 11. Enhanced direct detection prospects for a short axion,
assuming that the friendly pair comprises a small fraction of the
total dark matter energy density. The darker blue band shows the
prospects for μ ¼ 0.8 and ΘLð0Þ ¼ 0.5π in the large-F limit,
where the possible enhancement saturates for F ≳ 20 due to the
formation of nonperturbative structure (Sec. III C). For μ ¼ 0.99,
the possible enhancement saturates for F ≳ 40 (light blue band).
As F decreases below the saturation value, the visibility
decreases linearly with F . This enhanced visibility should be
compared to that of a single free axion with initial misalignment
Θ0 ¼ 0.5π (middle solid blue line). The dashed and dotted blue
lines are the sensitivity prospects for μ ¼ 0.8 and μ ¼ 0.99,
respectively, in the large-F limit with ΘLð0Þ ¼ 0.9π. Because the
friendly pair makes up only a subcomponent of DM, its over-
densities do not collapse under self-gravity, and minihalos never
form. Thus, an Oð1Þ fraction of ρS in the galaxy is ambient (as
opposed to clumped) and will pass through direct detection
experiments. As a result, the direct detection prospects are
improved relative to those in Fig. 12. This plot was made using
prospects compiled in Refs. [73,74,92–99,101,102,104,105].

8We estimate the ambient dark matter fraction by computing
the collapsed fraction in structures whose mass is smaller than
that of the Milky Way and by subtracting that from the total
collapsed fraction at the present day. This calculation neglects
several important effects, including tidal stripping, which may
boost the ambient dark matter component. The resulting ambient
fractions we found were all between 1% and 30%, and we quote
1% to be conservative.
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are heavy and fewer in number, direct detection experi-
ments are sensitive only to the ambient background fraction
of DM. To be conservative, we assume an ambient fraction
of only 1% when computing the projected sensitivity of
experiments to short axions lighter than 10−3 eV.
For larger decay constant ratios F ≳ 20, θS can grow

nonperturbative fluctuations during autoresonance. In this
case, detailed simulations are required to understand the
full dynamics of autoresonance, but our initial numerical
explorations provide tentative evidence that the autoreso-
nant energy transfer is quenched shortly after the θS field
becomes nonperturbative. Most of the friendly pair’s
energy density remains in the long axion, but the short
axion’s energy density is still boosted compared to the
“single axion misalignment” expectation of Eq. (2). In
addition, if autoresonance is quenched, the overall density
fluctuations in the dark sector cease their parametric
resonant growth before becoming Oð1Þ. The large

fluctuations in the θS energy density only lead to
OðF−2ðmtNLÞ3=2Þ fluctuations in the total axion energy
density, where tNL is the time it takes for δθS to become
Oð1Þ. These fluctuations can, in principle, still seed early
collapse during matter domination, but computing their
precise effects is difficult due to the uncertainties inherent
in the nonlinear collapse of the θS field.
We adopt a conservative strategy to estimate the sensi-

tivity of future direct detection experiments in the event that
autoresonance is quenched. We take the short-axion energy
density ρS to be given by its value at the point that
autoresonance ends (i.e., the point at which the θS pertur-
bations become nonlinear), redshifted as matter to late
times. Nonperturbative θS fluctuations at the end of
autoresonance correspond to OðρS=ðρS þ ρLÞÞ perturba-
tions in the total matter energy density, which remain
approximately frozen during radiation domination and
grow linearly with the scale factor during matter

FIG. 12. Summary of parameter space, constraints, and signatures for friendly axions in the concrete model of Eq. (5) for μ ¼ 0.8 and
representative initial conditions that result in autoresonance. This plot is for the case where the friendly pair makes up the entirety of DM,
and the axes m and f refer to the mass and decay constant of the short axion specifically. In the region labeled “Autores. Completes,”
autoresonance lasts long enough that nearly all of the axion energy density is in the form of θS, while in the region labeled “Autores.
Quenched,” nonperturbative structure halts autoresonance early, and the short axion makes up only a subcomponent. Throughout, we
assume that the short axion has a coupling to photons of size gaγγ ≃ α

4πf, and we plot direct detection constraints and projections based on
this coupling. Even when θS is only a subcomponent, it can be a very visible subcomponent because of its enhanced coupling to the SM.
The regions labeled “Gravitational Signatures” are discussed in Sec. IV B and elaborated on in Fig. 13. The regions labeled “BH Spins”
and “SMBH Spins” refer to BH superradiance constraints discussed in Sec. IV C. This plot was made using limits compiled in
Refs. [73–88,90–98,101,107–123,125–129,146].
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domination. They then undergo Newtonian collapse at a
scale factor a given by

ρS
ρS þ ρL

a
aeq

¼ δc: ð66Þ

If these structures collapse before the present day (a < 1),
some of the θS and θL energy densities will reside in
dense minihalo structures that may transit an experiment
only rarely. To be conservative, we quote an ambient
fraction of only 1%8. If these structures have not yet
collapsed by the present day (a > 1), we consider an Oð1Þ
fraction of our local halo’s θS density to reside in an
ambient component. This occurs for a density ratio at least
as small as

ρS
ρS þ ρL

≲ δcaeq ≈
1

2000
: ð67Þ

The effects of substructure can thus be viewed as
occurring for three distinct ranges of F . For F ≲ 20,
autoresonance completes, and ρS dominates the dark matter
density, although its fluctuations suppress the ambient
component, reducing overall direct detection sensitivity
relative to the case where the friendly pair collectively
makes up only a DM subcomponent. ForF ≳ 20, ρS begins
to drop by F−2, but this is exactly counteracted by its
enhanced coupling proportional to F 2. For even larger
F ≳ 20

ffiffiffiffiffiffiffiffiffiffi
2000

p
≈ 900, ρS comprises an Oð1=2000Þ sub-

component or less, and its fluctuations no longer lead to
early collapse, boosting the overall detectability relative to
when F ≲ 900. Altogether, these effects result in the direct
detection prospects of Fig. 12 for the case where the
friendly pair makes up all of DM.

B. Gravitational signatures of substructure

As discussed in Sec. III, if the friendly axion pair makes
up a majority of the dark matter, then autoresonance can
lead to DM substructures that are denser than predicted by
ΛCDM. In this respect, it is quite similar to the mechanism
of Ref. [38], and indeed, the halo mass spectrum predicted
by that mechanism is quite similar to the one that emerges
from a period of autoresonance. We are thus able to adapt
their subhalo detection projections to the case studied here,
and we summarize the results in Fig. 13. We dedicate the
rest of this section to a brief review of the two most relevant
signatures, suppressing others that are interesting but
slightly less sensitive. For a more complete treatment,
we refer the reader to Ref. [38] and the references cited
therein.
The first class of indirect signatures we focus on are

astrometric lensing signatures. A dense, heavy halo passing
through our line of sight weakly lenses all background
stars, and the lensing pattern is correlated across all stars
behind the halo. A telescope with good angular resolution

and a wide field of view can, in principle, look for such
correlated deflections and infer the presence of an inter-
vening weak lens. In practice, since the true positions of
individual stars are unknown, it is impossible to observe the
correlations of the stars’ angular positions on the sky, but as
the lens moves, it will induce correlated proper motion and
proper acceleration of the background star field. A high-
angular-resolution experiment that periodically measures
the positions of a large number of stars can search for such
correlated motions, either with templates or by looking for
global correlations. Several such astrometric experimental
efforts either exist (Gaia [149], HST [150]) or are planned
(Theia [151], WFirst [152], SKA [153], TMT [154]).
Reference [147] worked out dense subhalo sensitivity
projections for Gaia and Theia, and we report these in
Fig. 13 for the halo mass spectrum predicted in Sec. III.
Another potential class of observable signatures are

those associated with photometric microlensing. The basic
idea is to monitor a distant star and look for changes in its
brightness that would indicate a gravitational lens passing

FIG. 13. Gravitational detection prospects for short-axion DM
substructure. This plot was generated for μ ¼ 0.8, but it does not
have significant dependence on μ or the initial misalignment
angles (provided they result in autoresonance). The purple “μ-
lensing” and blue “α-lensing” regions show projected sensitiv-
ities of future telescopes to weak astrometric lensing of local stars
(correlated distortions in their velocities with SKA and their
accelerations with Theia, respectively) [147]. The teal “photo-
metric lensing” region may be probed through brightness
fluctuations of a critically lensed distant star [38,148]. Inside
the peach region, nonperturbative structures form during radia-
tion domination, making this region subject to theoretical
uncertainties about how this substructure will resolve today.
Nonetheless, we expect that Oð1Þ density fluctuations will
collapse immediately after matter-radiation equality and lead
to similar direct detection prospects as for the perturbative region
below. In the hot pink region at the top, nonperturbative structure
quenches autoresonance before the two axion energy densities
equalize; in this region, the short axion is a subcomponent, and
gravitational detection prospects die off quickly as F increases.

RESONANT NONLINEAR PAIRS IN THE AXIVERSE … PHYS. REV. D 105, 055005 (2022)

055005-19



through the line of sight. This technique has been used to
place constraints on extremely compact objects (such as
primordial black holes), but, in general, it is harder to use
it for dilute, gravitationally bound subhalos because they
only lens weakly and thus have minute effects on a star’s
observed brightness. To deal with this, Ref. [148] has
proposed using highly magnified stars that are only
observable because they lie close to a critical gravitational
lensing caustic of a galaxy cluster. If the DM in the galaxy
cluster is composed of subhalos, the virial motion of these
subhalos will add Poissonian noise to the position of the star,
which has an amplified impact on the star’s brightness. This
noise has a characteristic frequency and amplitude that
depends on the DM halo mass spectrum, and Ref. [148]
suggests the observation of this noise can probe DM
substructure. Reference [38] made projections of the sensi-
tivity of such a technique for gravitationally bound subhalos,
and we report these in Fig. 13 for the halo spectrum
calculated in this paper. It should be noted that these
projections are subject to potentially significant uncertainties
associated with the galactic evolution (and tidal stripping) of
such gravitationally bound subhalos, and we caution that
proper simulations must be done to confirm them.
For F ≳ 20, perturbations in the short-axion field can

grow nonperturbatively and quench the autoresonance
before the majority of the axion energy density is trans-
ferred to θS. In this case, even though there are large
fluctuations in the short-axion field, the overall density
fluctuations are small because the majority of the axion
energy density is still in θL. Structures thus collapse
gravitationally at roughly the same time they would have
in ΛCDM, and all gravitational signatures of autoresonance
disappear. We show this in Fig. 12, where the gravitational
signatures appear only in the region where θS can compose
the totality of dark matter.

C. Superradiance signatures and constraints

The phenomenon of black-hole SR, by which the angular
momentum of an initially rapidly rotating BH is transferred
to a cloud of bound axions generated around the BH, can be
used to constrain axions at ultralight masses by measuring
the age and spin of astrophysical BHs [8,31,39,155–160].
SR bounds are quite unique in that they are more con-
straining for an axion that has small interactions, as
interactions tend to slow down the extraction of angular
momentum from the BH into the cloud. Even a single axion
with a potential typified by Eq. (1) inevitably has self-
interactions, which at leading order are quartic with
dimensionless coupling λ ∼m2=f2. As one moves towards
values of f smaller than about 1015 GeV in axion parameter
space, the growth of the SR cloud is cut off at perturbative
values of θ, and angular momentum can no longer
efficiently be extracted from the BH [160].
For the case of the coupled short and long axions studied

here, as long as the evolution remains perturbative in θS, θL,

SR is better studied in the mass basis in which
flavor oscillations are removed (Appendix A). For
F ≫ ð1 − μ2Þ−1, the heavy state νh ≈ ϕS has quartic self-
interactions λhh ≈m2=f2, while the light state νl ≈ ϕL has
quartic self-interactions λll ≈ ðμ=FÞ2λhh. As emphasized
previously, in the scenario in which the friendly axion pair
is DM, the light state (i.e., the long axion) must fall within
the region of parameter space that would yield the correct
present-day DM density in the absence of friendly inter-
actions (i.e., within a band centered on the “Θ0 ¼ π=2
Misalignment” line of Fig. 1). The coupling λll is therefore
fixed. Depending on the value ofF , the self-coupling λhh of
the heavy state (i.e., the short axion) may or may not be
small enough that the SR bounds apply to the short axion
directly. If F is large enough that the short axion cannot be
constrained by SR, then the scenario of two friendly axions
being DM is still constrained by SR bounds on the long
axion (one can check that cross-couplings do not change
those bounds in that limit). For this reason, we have shown
the SR bounds from astrophysical BHs on Figs. 1 and 12 as
extending to arbitrarily large F since they exclude a long
axion living near the “Θ0 ¼ π=2Misalignment” line within
that mass range.
Because of the complicated merger history of super-

massive BHs and the larger uncertainties on their measured
parameters, it is difficult to make a definite claim that a lack
of spin-down implies the absence of an axion in the
spectrum. A more detailed understanding of merger histor-
ies and better measurements could make supermassive BHs
robust probes of axions in the 10−18 − 10−16 eVmass range
in the future. We show this region in Figs. 1 and 12 in a
lighter shade to reflect this uncertainty.
We note that there is a somewhat tuned—but not entirely

excluded—scenario in which neither DM axion can be
constrained by SR bounds on BH spins. If μ is close enough
to unity that F ≪ ð1 − μ2Þ−1, one can have that λll ≃ λhh≃
m2=f2, and all mass states have comparable self-inter-
actions. In the interaction basis, this can be explained by
observing that strong mixing between the two axions
causes the long axion to inherit the strong self-interactions
of the short axion via flavor oscillations. One might view
this as the spin-down signatures of an axion with a
nominally large decay constant being masked by the
presence of a closely resonant axion with a small decay
constant.
If the friendly axion pair is a subcomponent of DM, the

long axion is not required to live near the “Θ0 ¼ π=2
Misalignment” line of Fig. 1. In this case, both axions can
have small enough decay constants to evade SR spin
bounds. Rather than rapidly extracting the angular momen-
tum from a BH and storing it in a SR cloud, axions with
small decay constants form smaller clouds that slowly
transfer angular momentum directly from the BH to spatial
infinity in the form of coherent axion waves that could be
detected on Earth by planned nuclear magnetic resonance
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experiments [160]. The signal strength on Earth of these
small clouds scales as the axion mass to the fourth power,
but it does not scale with the decay constant. It is therefore
possible that small clouds of both short and long axions
exist simultaneously around a BH and emit axion waves at
nearby frequencies of about m and μm that are similarly
detectable. A more detailed study of cross-cloud inter-
actions would be necessary to fully understand this
scenario.

V. REPULSIVE SELF-INTERACTIONS

So far, our analysis has been focused on the axion
potential of Eq. (5), which has attractive self-interactions
for θS. This is often the case in the most minimal axion
potentials because instanton contributions typically enter
the potential as cosines, which have negative (i.e., attrac-
tive) quartic interactions. However, this is not a universal
rule, and repulsive self-interactions can exist in axion
models [39,161]. In this section, we summarize the
phenomenology when the short axion has repulsive self-
interactions. As we will see, autoresonance can occur with
few differences from the attractive case. Importantly,
however, repulsive self-interactions can prevent all struc-
ture growth during autoresonance, implying that autoreso-
nance cannot be cut off early by nonperturbative structures.
Therefore, if the system lands on autoresonance, it is
guaranteed to complete the energy transfer, further enhanc-
ing signatures at large decay constant hierarchies F ≫ 20,
for which attractive self-interaction signatures would be
saturated (see Fig. 11). Future direct detection experiments
such as ADBC [99], DANCE [100], DM Radio 50L [101],
LAMPOST [103], aLIGO [104], ORGAN [105], and
TOORAD [106] may therefore see a self-repulsive short
axion, even though they cannot access the parameter space
relevant to an attractive theory.
To make our discussion concrete, consider the following

axiverse-inspired potential with repulsive θS self-inter-
actions,

VðθS; θLÞ ¼ m2f2ðζ2ð1 − cosðθS þ θLÞÞ
þ ð1 − cosðQθS þ δÞÞ þ μ2F 2ð1 − cos θLÞÞ:

ð68Þ

For small θS amplitudes, interactions are repulsive if
1 < Q≲ ζ ≲Q2 and 3π=4≲ δ≲ 5π=4, and repulsive
autoresonance may occur if μ2 ≳ ζ2 −Q2 and F ≫ ζ.
A good diagnostic of autoresonance is to measure the

late-time energy-density ratio of θS and θL as in Fig. 5. As
before, it is often helpful to think about the energy-density
ratio in the interaction basis since it is this quantity that late-
time signatures depend on. However, the partition of energy
between the two fields becomes ambiguous beyond the
scale of flavor oscillations. A useful choice is the time
average of the corresponding kinetic term,

ρS ≈ hð∂tΘSÞ2i; ρL ≈ F 2hð∂tΘLÞ2i: ð69Þ

This estimate generalizes easily to theories with a large
number of fields and instantons, provided the mass matrix
is close to diagonal. We plot the late-time energy-density
ratios in Fig. 14 for a representative set of parameters,
which is meant to be compared to Fig. 5. This plot shows
two important distinguishing features. First, autoresonance
occurs for driver frequencies above the short rest mass μ >
ωSð0Þ and not below, as in the case of attractive self-
interactions. This is a consequence of repulsive self-
interactions, which cause the short axion’s frequency to
increase with an increase in its amplitude (see inset of
Fig. 14). Second, there are two apparent autoresonance

FIG. 14. Distribution of late-time energy-density ratios ρS=ρL,
as defined by Eq. (69) in the potential Eq. (68). For each choice of
μ, the initial conditions ðΘSð0Þ;ΘLð0ÞÞ ∈ ½−π; π& × ½−π; π& are
sampled uniformly, and the results are binned by the final density
ratio log ρS=ρL. This figure should be compared to Fig. 5. For
mS ≤ μm≲ 1.17mS (note that mS ≈ 3m is the short-axion mass),
there are two ΘS amplitudes that can autoresonate with ΘL,
corresponding to the upper and lower tails visible in the upper
right. Top inset: Frequency versus amplitude curve for ΘS,
showing that small amplitudes experience net-repulsive self-
interactions, which suppress perturbation growth (blue), and
larger amplitudes experience net-attractive self-interactions,
which enhance growth (magenta). The two autoresonant tails
correspond to the two solutions σS of the equation ωðσSÞ ¼ μ for
μ ≥ ωð0Þ. Bottom inset: fraction of initial misalignment angles
landing on each branch. Note that the total probability of landing
on either nonlinear branch does not equal 1 because one may also
land on the linear branch, where the short axion does not
autoresonate.
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bands in Fig. 14 as opposed to the single band in Fig. 5.
This is again a consequence of the nontrivial dependence of
frequency on amplitude. Because ΘS is a periodic variable,
the repulsive self-interactions that take place at small
amplitudes cannot continue to arbitrary field displace-
ments. Thus, the positive frequency shift that occurs at
small amplitudes must eventually turn around and decrease,
ultimately passing through zero as shown in the inset of
Fig. 14. Therefore, every possible positive frequency shift
in the potential Eq. (68) is achieved at two separate
amplitudes σS. Depending on the initial conditions, the
driverΘL of a particular frequency μmay driveΘS at one of
two possible amplitudes, giving rise to the two autoreso-
nant tails.
These two tails, while both are the consequence of

repulsive self-interactions, lead to very different phenom-
enology. Let us first consider the small-amplitude tail (blue
line). Here, the result of the small-amplitude formalism for
computing the perturbation growth rate Eq. (35) goes
through unchanged: Perturbations do not grow because
the frequency shift δω is positive (see Appendix C).
At larger amplitudes (magenta line), the motion of the

zero-modeΘS is no longer well approximated by its motion
near the bottom of the potential, and the formalism of
Appendix C no longer applies. Even though we cannot
analytically quantify the growth rate of modes beyond the
small-amplitude approximation, we may gain some quali-
tative intuition through the following considerations. Recall
from our discussion in Sec. III A that perturbations are
agnostic to features in the potential below the kinetic
energy of ΘS. Therefore, the relevant features of the
potential for perturbation growth occur near the turnaround
points where kinetic energy vanishes. At these points, the
potential behaves as locally attractive if increasing σS
decreases ωðσSÞ and locally repulsive if it increases
ωðσSÞ. In other words, the relevant quantity for mode
growth is ω0ðσSÞ. This argument predicts that autoreso-
nance on the large amplitude tail (magenta) of Fig. 14 for
which ω0ðσSÞ < 0, representing net-attractive self-inter-
actions, drives the growth of large perturbations. We have
confirmed this intuition with numerical simulations.
The observational prospects for repulsive autoresonance

are striking. Spatial perturbations to the axion field do not
grow, so autoresonance is not quenched even for F ≫ 20.
This implies that the boost to direct detection signal
strength [Eq. (65)] can be quite large if such large
hierarchies of decay constants exist in the axiverse.9

Such strongly coupled relics provide important targets
for direct detection experiments probing mass ranges where
both the expectation Eq. (64) and that of attractive

autoresonance are out of reach. These observational impli-
cations motivate us to take the possibility of repulsive
autoresonance seriously, even though the potential Eq. (68)
is repulsive over a relatively small range of parameters.
Whether repulsive interactions remain relatively rare in
realistic axiverse potentials is an open question, and our
model serves as motivation to study this question further.

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we have studied the dynamics of coupled
axion dark matter and, in particular, the case of a pair of
axions with nearby masses. We have shown that one axion
can dynamically adjust its amplitude so that its frequency
matches that of another and then remain fixed at this
amplitude for cosmologically relevant times, avoiding the
damping effects of Hubble friction long enough to domi-
nate the energy density in the axion sector. This frequency
matching is a form of autoresonance, and within the
concrete model of this paper, it is a common phenomenon
provided the long-axion mass mL is within around 25% of
the short-axion mass: 0.75mS ≲mL < mS. This gives a
good notion of how “friendly” two axions must be to see
the effects we have described, and such a coincidence of
masses is unsurprising in an axiverse with Oð100sÞ of
axions distributed log-flat in mass.
If autoresonance does occur, the energy transfer typically

runs from the axion with a larger (“long”) decay constant to
the axion with a smaller (“short”) decay constant, meaning
that the effect on the axion sector is generally to make it
more detectable by direct detection experiments. This alone
is a very exciting prospect, and various experiments such as
ADMX, DM Radio, and HAYSTAC will probe significant
regions of parameter space of friendly axions, independent
of the friendly pair’s total energy density. In addition, if the
pair makes up all of DM, we have shown that autoreso-
nance for a potential with attractive self-interactions can
lead to a parametric-resonance-driven growth of spatial
perturbations in the axion field, which can then collapse at
early times and form dense axion minihalos. For axion
masses m≲ 10−7 eV, these have gravitational signatures
that can be probed with near-future experiments. If autor-
esonance lasts for a long time (which occurs for large
hierarchies of axion decay constants), spatial perturbations
can grow to nonperturbative amplitudes, and the analytic
formalism developed here breaks down; however, our
preliminary numerical results suggest that the autoreso-
nance is quenched. Still in this case, the short axion
receives a significant boost to its energy density. The
various signatures discussed are complementary, and in
some parts of parameter space, multiple signatures may be
observed, allowing a concrete identification of the friendly
axion scenario from other mechanisms which may predict
similar minihalo spectra.
There remain several natural questions about this mecha-

nism. The first is whether the QCD axion, which has a

9This, itself, is a question worthy of future study. At least some
concrete realizations of the axiverse result in decay constant
distributions that are spread only 1–2 orders of magnitude about a
central value [39].
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temperature-dependent mass, can receive an energy-density
enhancement due to resonances with an axiverse. It turns
out that autoresonant (i.e., nonlinear) energy transfer to the
QCD axion is impossible: By the time the QCD axion nears
its zero-temperature mass ma, any would-be friend has
already lost too much energy for the nonlinear interactions
in the QCD potential to be accessible, putting autoreso-
nance out of reach.
On the other hand, linear resonances are accessible to the

QCD axion: As the QCD axion mass increases through the
masses of other axions in an axiverse, a level crossing may
lead to energy transfer to or from the QCD axion. The
possibility of the QCD axion generating a cosmological
abundance of axiverse axions has been explored in
Refs. [162–165]. We note that it is similarly possible for
an axiverse axion to transfer its initial energy density to the
QCD axion, leading to QCD axion DM signatures at large
masses ma ≳meV, well above the range expected from an
Oð1Þ initial misalignment angle.
A second natural question is what happens if the decay

constant hierarchy F is large enough that spatial fluctua-
tions grow nonperturbative during autoresonance and
collapse into oscillons—compact axion structures bound
by self-interactions. We have performed numerical simu-
lations in this regime that indicate autoresonance is
quenched by oscillon formation, but they are limited in
their resolution. Further simulations are necessary to verify
our results, but it is worth pointing out that oscillons can
potentially have intriguing signatures of their own, which
we have not worked out here. Oscillons, in general, do not
have very long lifetimes but may live significantly longer in
the background of a long-axion condensate that can
resonantly drive them (see Refs. [166,167] for examples
of driven nonlinear field equations). Energy conservation
suggests that, in this case, the oscillon’s lifetime may be
extended parametrically to

mTdriven ∝ ðmTvacuumÞ4=3; ð70Þ

where m is the axion mass and Tvacuum is the lifetime of an
oscillon with fundamental frequency μm. For potentials
with somewhat long-lived oscillons already (see, e.g.,
Refs. [137–142]), this enhancement would allow them to
survive to matter-radiation equality even at larger axion
masses m≳ 10−15 eV for the longest-lived oscillons [142].
At late times, if such an oscillon is in a galactic halo of θL
DM and it can remain locked to the virialized ρL back-
ground, then the only upper bound on its lifetime comes
from exhausting the entire halo energy density. Since even
a small subcomponent of oscillons can be detected
[168–170], this is an important case to study further.
The example of autoresonance we have studied in this

paper is not the only type of nonlinear resonance possible
in a coupled oscillator system, and future work is needed
to understand whether other types of resonance can show

up in the axiverse. For example, even a pendulum can
resonate in a qualitatively different way than we have
studied so far: At energies above the potential barrier, it
can make complete circuits about its pivot, which opens
up a large window of higher frequencies to autoresonance
due to the nonlinearities of the oscillator. This is illus-
trated in Fig. 15. These circular resonances may be
accessed if one axion obtains an approximately constant
velocity, which may occur because of the complicated
geometry of multiaxion potentials or because of an
explicit breaking of PQ symmetry in the early universe
[24,171].10 We illustrate some of the other possibilities for
axiverse axions in Fig. 16, but further work is needed to
understand which of these can be realized in realistic
models.
String theory remains the most successful attempt at a

unified theory of quantum gravity, but unfortunately, we
lack many experimental probes of this possibility. Nearly
all new effects (particles, forces, nonlocality, etc.) within
the theory are suppressed by the string scale, which, in
principle, can lie quite close to the Planck scale, making it
virtually impossible to test with current technology. String
theory axions are a notable exception, and observing
several distinct axions in the particle spectrum would hint
at string theory as a UV completion for the SM. In many

FIG. 15. Frequency of a classical pendulum versus its energy.
There are two distinct regimes. First, at energies below the barrier
height, the pendulum oscillates around its equilibrium angle, at a
frequency that decreases with energy (blue line). At energies
above the potential barrier height, the pendulum completes full
rotations. In this regime, it is the pendulum’s velocity that
oscillates around an “equilibrium value,” and the oscillation
frequency increases with energy (magenta line). In this paper, we
have described how a driver can lock onto the low-energy branch
of this curve through autoresonance. The high-energy branch
opens up the possibility of autoresonance and associated sig-
natures over a larger frequency range.

10Mechanisms like [24,171] would also result in large density
perturbations because the axion kinetic energy delays the onset of
harmonic oscillations (see Sec. III).
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scenarios, string axions can be accurately approximated as
weakly interacting massive fields. However, this approxi-
mate picture of axions as a collection of perturbatively
coupled oscillators misses something important: In such a
system, exact resonances are necessary for appreciable
energy transfer between normal modes [172]. Since there is
no reason to expect that axion masses obey simple integer
relations (assuming the masses are temperature indepen-
dent and remain fixed as the universe evolves), such exact
resonances are impossible, and one would conclude that no
significant transfer of energy can happen between axions in
an axiverse. As we have shown here, quite the opposite is
true: In a realistic system, exact resonance can be obtained
dynamically because the frequency of a nonlinear oscillator
is a function of its amplitude. In other words, perturbative
treatments can miss important features if they do not
account for the full nonlinearity of the axiverse potential.
The two-axion case studied here should be considered a
minimal example of the effects of nonlinear couplings in
the axiverse, and it already provides exciting signatures in
the reach of near-future experiments.
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APPENDIX A: MASS VS INTERACTION BASIS

The ϕS and ϕL fields in Eq. (4) are not mass eigenstates
(i.e., they are not stable under propagation in the non-
interacting limit). They are, however, the natural basis in
which to consider most of the early-time dynamics and
the late-time signatures (since any couplings to the SM
likely descend from the UV theory). In this appendix, we
clarify this point and include the transformation from
the interaction basis (ϕS, ϕL) to the mass basis. For
F ≫ 1=ð1 − μ2Þ, the two bases are quite similar, so this
discussion has very little effect on the interpretation of the
dynamics studied in this paper, although we have included
it in our results where relevant.
We wish to find the propagation eigenstates of ϕL and

ϕS. Expanding the potential of Eq. (4) to quadratic order
yields a mass mixing matrix

VðϕL;ϕSÞ ≈
1

2
m2

!
ϕ2
S þ

1

F 2
ϕ2
L þ 2

F
ϕSϕL þ μ2ϕ2

L

"

¼ 1

2
m2ðϕS ϕL Þ

!
1 F−1

F−1 μ2 þ F−2

"!
ϕS

ϕL

"
;

ðA1Þ

which has off-diagonal elements suppressed by the ratio of
decay constants. This matrix is easy to diagonalize, yield-
ing the following basis of heavy and light fields νh and νl:

FIG. 16. Some possibilities for energy redistribution in the
axiverse. Each axion in the axiverse is represented as a point in
the mass-decay constant plane. The magenta line represents those
values ofm and f that lead to the proper relic abundance of DM for
Oð1Þ initial misalignment if the axions are treated independently.
As we have shown here, energy density can be resonantly
transferred to axions with smaller decay constants (illustrated
by blue arrows). We have studied the case of two axions with
nearby masses (“2-axion Friendship”), both when the pair com-
prise the totality of DM (“DM”) and when they are only a
subcomponent (“Ω < 1”), but there are other possibilities in a
realistic axiverse. For example, multiple axions with nearbymasses
could transfer energy in a sequence (“Friendly Cascade”), or
collections of axions could dynamically synchronize and lock onto
a rational resonance, where no two frequencies match identically
but they are related rationally. These latter possibilities are likely to
be less common than the two-axion case discussed in this work
because they require more coincidences, but with Oð100sÞ of
axions, they may still be possible, and further work is necessary to
understand them.
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νh ≡ ϕS cos ηþ ϕL sin η; ðA2Þ

νl ≡ −ϕS sin ηþ ϕL cos η; ðA3Þ

m2
h ¼ m2

0 þ Δm2; ðA4Þ

m2
l ¼ m2

0 − Δm2; ðA5Þ

m2
0 ≡

1

2
m2ð1þ μ2 þ F−2Þ; ðA6Þ

Δm2 ¼ 1

2
m2ð1 − μ2 − F−2Þ sec 2η; ðA7Þ

sin η≡ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
1 − μ2 − F−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F−2 þ ð1 − μ2 − F−2Þ2

p
s

: ðA8Þ

For the late-time Newtonian evolution of the axion energy
density, it is most useful to describe the system in this basis
since the energydensities in the fields νl and νh are constant in
the small-amplitude limit. As mentioned above, for F ≫
ð1 − μ2Þ−1, we have sin η ≈ 0, so νl ≈ ϕL and νh ≈ ϕS. The
effects of this basis rotation are thus very slight formost of the
parameter space discussed in this paper, but we nevertheless
use this basis when performing the analysis of Sec. III D.
In rotating to the mass basis, we have also modified the

quartic interactions

V intðνh; νlÞ ¼
1

4!
λhhν4h þ

1

3!
λhhhlν3hνl þ

1

4
λhlν2hν

2
l

þ 1

3!
λhlllνhν3l þ

1

4!
λllν4l ; ðA9Þ

where the even interactions are

f2

m2
λhh ¼ −b4μ2F−2 − ðaþ bF−1Þ4; ðA10Þ

f2

m2
λhl ¼ −a2b2μ2ðF−2 þ μ2Þ; ðA11Þ

f2

m2
λll ¼ −a4μ2F−2 − ðb − aF−1Þ4; ðA12Þ

with

a2 ¼ cos2 η; b2 ¼ sin2 η: ðA13Þ

It turns out that the leading-order self-interactions in the
nonrelativistic theory only come from those terms that
conserve parity under νh → −νh and νl → −νl independ-
ently. Odd-parity interactions enter at the next-to-leading
order in the nonrelativistic approximation, so we do not
take them into account in this work; however, for com-
pleteness, we list them here:

f2

m2
λhhhl ¼−ðaþbF−1Þ3ðaF−1−bÞ−ab3μ2F−2; ðA14Þ

f2

m2
λhlll ¼−ðaF−1−bÞ3ðaþbF−1Þ−a3bμ2F−2: ðA15Þ

APPENDIX B: MORE DETAILED STUDY OF
AUTORESONANCE

The dynamics of autoresonating axions are rich, and in
this appendix, we focus on building analytic intuition for
their behavior. Even though the oscillators are quite non-
linear, it turns out that we can get good approximations for
several interesting quantities by searching for stable
autoresonant solutions and perturbing around them.

1. Adiabatic evolution of resonance curves

Here, we review the details of the calculations behind the
resonance curve results in Sec. II. For this purpose, we are
interested in the F → ∞ limit, for which ΘL decouples
from ΘS and obeys a simple pendulum equation of motion:

Θ̈L þ 3

2t
_ΘL þ μ2 sinΘL ¼ 0: ðB1Þ

For small initial conditions sinΘL ≈ ΘL, the solutions
can be obtained analytically:

ΘLðtÞ ¼ ΘLð0ÞΓð5=4Þ21=4
J1=4ðμtÞ
ðμtÞ1=4

; ðB2Þ

which, at late times, is approximately

ΘLðtÞ ¼
ΘLð0ÞΓð54Þ2

3=4

ffiffiffi
π

p
sinðμtþ π

8Þ
ðμtÞ3=4

; ðB3Þ

At large initial conditions comparable to π, this approxi-
mation fails, and we must correct the initial amplitude
ΘLð0Þ to account for the delay in oscillations caused by the
flatness of the cosine potential. To this end, we define the
function Θlin→cos, which takes as input the initial amplitude
of a linear oscillator and returns the corresponding initial
amplitude of a cosine oscillator, which results in the same
energy density at late times. This function is shown in the
inset of Fig. 17. At small amplitudes, it is approximately
the identity, while at large amplitudes, it asymptotes to π.
The late-time amplitude of the full nonlinear solution for
ΘL in the cosine potential can be written as

σLðtÞ ¼ Θ−1
lin→cosðΘLð0ÞÞ

Γð54Þ2
3=4

ffiffiffi
π

p
ðμtÞ3=4

: ðB4Þ
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This instantaneous amplitude σL will drive the short
axion ΘS at the long frequency μ. Specifically, the equation
of motion for ΘS, obtained in the small-ΘL regime from
Eq. (A8), becomes

Θ̈S þ
3

2t
_ΘS þ sinΘS ¼ − cosΘSσL cosðμt −ΦÞ; ðB5Þ

where Φ is the relative phase between ΘS and ΘL (which is
constant at leading order in the adiabatic approximation).
Note that compared to a standard driven pendulum
[Eq. (13)], the driver is suppressed by a cosΘS correction.
To leading order, the resonance curve can be obtained by
only treating the terms oscillating at the driver frequency μ,
which is equivalently thought of as the small-amplitude
limit. We thus take ΘS ≈ σS cosðμtÞ and expand sinΘS and
cosΘS using the Jacobi-Anger formulas:

cosðσS cos μtÞ ¼ J0ðσSÞ þ 2
X∞

n¼1

ð−1ÞnJ2nðσSÞ cosð2nμtÞ;

ðB6aÞ

sinðσS cos μtÞ ¼ 2
X∞

n¼0

ð−1ÞnJ2nþ1ðσSÞ cosðð2nþ 1ÞμtÞ:

ðB6bÞ

Keeping only terms of frequency μ, we collect the
terms proportional to sin μt and cos μt, leading to the
equations

−μ2σS þ 2J1ðσSÞ þ J0ðσSÞσL cosΦ ¼ 0; ðB7aÞ

3μ
2t

σS − J0ðσSÞσL sinΦ ¼ 0; ðB7bÞ

which, upon eliminating the phase shift Φ, lead to the
condition defining the resonance curve:

ð2J1ðσSÞ − μ2σSÞ2 þ
!
3μ
2t

"
2

σ2S ¼ J0ðσSÞ2σ2L: ðB8Þ

Expanding the Bessel function to leading nonlinear
order, we arrive at the following approximate small-
amplitude resonance curve:

σS ¼
σLðtÞð1 − σ2S

4 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − σ2S

8 − μ2Þ2
q

þ 9μ2

4t2

: ðB9Þ

Given a fixed frequency μ, we are interested in tracking
the equilibrium solution of σS given by this resonance
condition when the driver amplitude σL also varies slowly
with time, as given by Eq. (B4).
At small t, friction dominates, and there is only one real

solution to Eq. (B9). At large t, the curve narrows around
the free frequency curve as shown in Fig. 2 and, over a
range of frequencies μ < 1, can support two stable sol-
utions on either the nonlinear branch [which asymptotes to
a finite amplitude σS ≈ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μÞ

p
] or on the linear branch

(which tends to zero). In this adiabatic view of the evolving
resonance curve, autoresonance is considered to occur
when the early-time solution, which starts on the linear
branch, is continuously connected to a late-time solution on
the upper, nonlinear branch. Autoresonance does not
happen if the system remains on the linear branch. To
find the critical point between these two regimes, it suffices
to look for the largestΘLð0Þ for which the linear branch at μ
never becomes complex. Solving for this condition in
Eq. (B9) leads to the ΘLð0Þ amplitude cutoff

ΘLð0Þ ≥ Θlin→cos

#
23=4

ffiffiffiffiffiffi
8π

p

33=8Γð54Þ
ð1 − μÞ3=4

$
: ðB10Þ

We plot the resulting critical initial misalignment ΘLð0Þ
versus μ in Fig. 17, where we find excellent agreement
between the analytical threshold (magenta line) and the

FIG. 17. Set of parameters for whichΘS ends up autoresonating
for ΘSð0Þ ¼ 0 in the F → ∞ limit. We compare a numerical
evaluation (blue line) to the analytic adiabatic prediction of the
critical driver amplitude. The numeric autoresonance region
corresponds to those parameters for which ΘS has finite ampli-
tude as t → ∞. The analytic contour is obtained as the minimum
driver amplitude for which a quasiequilibrium configuration
connects the zero amplitude linear resonance at t ¼ 0 with the
finite amplitude nonlinear resonance at t ¼ ∞ as in Fig. 3. Note
that the analytic estimate improves as μ → 1, where the evolution
of the resonance curve is slowest; thus, it is most accurately
described by an adiabatic approximation. Inset: plot of the
function Θlin→cos, which takes as input the initial misalignment
of a harmonic oscillator and outputs the misalignment of a cosine
oscillator that yields the same late-time relic abundance. Note that
this function is the identity at small Θlin.
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numerical threshold (blue line). In Fig. 18, we show an
explicit comparison between an initial ΘLð0Þ amplitude
that results in autoresonance and one that does not. The
values are chosen to match those shown in Fig. 3.

2. Expected relic density ratio

In this section, we derive the maximum relic abundance
ratio at the end of autoresonance. In essence, this calcu-
lation assumes that autoresonance carries on until θL is
small enough that flavor oscillations dominate its energy
density ρL. Thus, our goal in this section is to calculate the
minimal size of flavor oscillations.
To begin, consider the mass eigenstates νl and νh with

masses ml and mh, respectively (see Appendix A).
We assume that the total energy density is fixed at a
constant ρ0:

ρ0 ¼
1

2
h_ν2l iþ

1

2
m2

l hν2l iþ
1

2
h_ν2hiþ

1

2
m2

hhν2hi

¼ m2
l hν2l iþm2

hhνhi2: ðB11Þ

We maximize the ratio ρS=ρL subject to fixed ρ0. Using our
definition of ρS and ρL in Eq. (19), expanding in the small
ΘS, ΘL limit, and using the fact that ml ≠ mh so that
hνlνhi ¼ 0, we have

ρS ¼
1

4
hν2l ið2ð1− sinð2ηÞÞþm2

l ð1− cosð2ηÞÞÞ

þ1

4
hν2hið2ð1þ sinð2ηÞÞþm2

hð1þ cosð2ηÞÞÞ; ðB12Þ

ρL ¼ 1

2
hν2l iðm2

l þ μ2Þcos2η

þ 1

2
hν2hiðm2

h þ μ2Þsin2η: ðB13Þ

One can check that the ratio ρS=ρL is maximized for νl ¼ 0
provided μ < 1,

max
ρS
ρL

¼ ð1þm2
hÞcsc2ηþ 2 cot η −m2

h

μ2 þm2
h

: ðB14Þ

Expanding for F ≫ ð1 − μ2Þ−1 and 1 − μ → 0, we find

max
ρS
ρL

≈ 4F 2ð1 − μÞ2: ðB15Þ

This estimate is essentially the envelope of the hourglass
shape in Fig. 5. Our numeric results nearly saturate this
bound, indicating that autoresonance transfers virtually all
energy density out of the long field. An additional factor of
1=2 appears to do a good job matching the measured final
ratio:

ρS
ρL

&&&&
observed

≈ 2F 2ð1 − μÞ2: ðB16Þ

3. Stability of autoresonance

We now derive a set of equations for the amplitude and
phase of both axions during autoresonance and use them to

FIG. 18. Short-axion resonance curves over a sequence of times for two different values of initial long amplitude σLð0Þ. Black dots
represent the adiabatic evolution of an axion system with μ ¼ 0.95. The short axion always begins on the linear branch at early times, but
its final amplitude is determined by the evolution of the resonance curve. Left panel: For σLð0Þ ¼ 0.55, the resonance curve “tongue”
grows over the instantaneous equilibrium, leaving σS on the linear branch. Right panel: For σLð0Þ ¼ 0.65, the resonance curve narrows
under the instantaneous equilibrium, leaving σS elevated on the nonlinear branch (autoresonance). Note that these resonance curves are
made using Eq. (15) to enable direct comparison with Fig. 3; utilizing Eq. (B8) does not change the qualitative features of these two
classes of evolution history.
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compute the evolution of excitations on top of the autor-
esonance solution. We begin with the coupled equations of
motion of Eq. (A8), where we are measuring time in units
of m−1. Because we are expecting approximately periodic
solutions, we make the following ansatz for ΘLðtÞ and
ΘSðtÞ:

ΘS ¼ σSRe½eiφS &; ðB17aÞ

ΘL ¼ σLRe½eiφL &: ðB17bÞ

We assume that σS; σL; _φS; _φL (where dots denote time
derivatives) all vary slowly compared to the oscillatory
timescale 1=m. We can then insert our ansatz into the
equations of motion and expand, keeping only the lowest
order in σL and only the lowest harmonics of φS, to obtain

σ̈L þ 2i _φL _σL þ iφ̈LσL − _φ2
LσL þ 3

2t
ð _σL þ i _φLσLÞ

þ ðμ2 þ F−2ÞσL ¼ −2
1

F 2
J1ðσSÞeiΦ; ðB18aÞ

σ̈S þ 2i _φS _σS þ iφ̈SσS − _φ2
SσS þ

3

2t
ð _σS þ i _φSσSÞ

þ 2J1ðσSÞ ¼ −σLJ0ðσSÞe−iΦ; ðB18bÞ

where Φ≡ φS − φL is the relative phase of the two
oscillators, Jn are Bessel functions, and we have used
the Jacobi-Anger identities Eq. (B6). Note that from
Eq. (B18b), we can see that if σS becomes so large that
J0ðσSÞ ¼ 0, then σS is no longer driven. This critical σS
determines a critical driving frequency μ ≈ 0.64 below
which autoresonance is no longer possible, as given by the
first zero of J0ð4

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þ.

Now, we may take the real and imaginary parts of
Eq. (B20) to obtain a set of four coupled equations:

σ̈L − _φ2
LσL þ 3

2t
_σL þ ðμ2 þ F−2ÞσL ¼ −

2

F 2
J1ðσSÞ cosΦ;

ðB19aÞ

φ̈L þ
!
3

2t
þ 2

_σL
σL

"
_φL ¼ −

2

F 2

J1ðσSÞ
σL

sinΦ; ðB19bÞ

σ̈S − _φ2
SσS þ

3

2t
_σS þ 2J1ðσSÞ ¼ −σLJ0ðσSÞ cosΦ; ðB19cÞ

φ̈S þ
!
3

2t
þ 2

_σS
σS

"
_φS ¼ σL

J0ðσSÞ
σS

sinΦ: ðB19dÞ

These equations are interesting in their own right and can
be numerically integrated more efficiently than a rapidly
oscillating system such as Eq. (A8), but for now, we focus
on further simplification. We wish to find the state of the
system when it is stably autoresonating, by which we mean

we are looking for a solution for which σS is roughly
constant and _φS ≈ _φL so that the oscillators are synchron-
ized with each other. We thus approximate _σS ≈ σ̈S ≈ φ̈S ≈
φ̈L ≈ 0 and obtain

ð _φ2
L − μ2 − F−2Þ ¼ 3

2t
_σL
σL

þ 2

F 2

J1ðσSÞ
σL

cosΦ; ðB20aÞ

!
3

2t
þ 2

_σL
σL

"
_φL ¼ −

2

F 2

J1ðσSÞ
σL

sinΦ; ðB20bÞ

2
J1ðσSÞ
σS

− _φ2
S ¼ −σLJ0ðσSÞ cosΦ; ðB20cÞ

3

2t
_φS ¼ σL

J0ðσSÞ
σS

sinΦ: ðB20dÞ

From these equations, we may read off a few things.
First, provided t ≫ σL= _σL and F 2 ≫ σ−1L , the long oscil-
lator undergoes roughly free motion at its fundamental
frequency: _φ2

L ¼ μ2 þ F−2 ≈ μ2. If we demand that _φS ≈
_φL to ensure we are in autoresonance, that then implies that
_φS ≈ μ, and from Eq. (B20d), we can read off an expression
for the relative phase of the two oscillators:

sin Φ̄ ≈
3μ
2t

σS
σL

1

J0ðσSÞ
; ðB21Þ

where we have used the bar to denote the fact that this is the
relative phase in steady-state autoresonance.
We now turn to the question of how excitations on top of

this steady-state solution behave. This will provide an
analytic justification for the numeric observation that
autoresonance is a stable condition. We work in the limit
F → ∞, which implies _φL ¼ μ and _σL=σL ¼ −3=ð4tÞ. We
may then combine Eqs. (B19b)–(B19d) to obtain

σ̈S þ
3

2t
_σS − _φ2

SσS þ 2J1ðσSÞ þ σL cosΦ ¼ 0; ðB22aÞ

Φ̈þ 3

2t
_Φ −

σL
σS

sinΦþ 3μ
2t

þ 2 _φS
_σS
σS

¼ 0: ðB22bÞ

We now perturb around the equilibrium autoresonance
solution, defining

Φ≡ Φ̄þ δΦ; ðB23aÞ

σS ≡ σ̄S þ δS; ðB23bÞ

with Φ̄ defined in Eq. (B21) and σ̄S defined by the
autoresonance condition

2J1ðσ̄SÞ
σ̄S

¼ μ2: ðB24Þ
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Expanding and linearizing yields the pair of equations

δ̈S þ
3

2t
_δS − 2μσ̄S _δΦ − 2J2ðσ̄SÞδS −

3μ
2t

σ̄SδΦ ¼ −σL cos Φ̄;

ðB25aÞ

δ̈Φ þ 3

2t
_δΦ −

σL
σ̄S

cos Φ̄δΦ þ 2μ
_δS
σ̄S

þ 3μ
2t

δS
σ̄S

¼ 0; ðB25bÞ

where we have used Eq. (B21) and approximated
J0ðσ̄SÞ ≈ σ̄S. For t ≫ 1, we may neglect several terms,
simplifying to

δ̈S − 2J2ðσ̄SÞ − 2μσ̄S _δΦ −
3μ
2t

σ̄SδΦ ¼ 0; ðB26aÞ

δ̈Φ −
σL
σ̄S

δΦ þ 2μ
_δS
σ̄S

þ 3μ
2t

:
δS
σ̄S

¼ 0: ðB26bÞ

To analyze the stability of autoresonance, we can search
for first-order perturbative solutions of the form

δS ¼ jδSjeiωf:o:t; δΦ ¼ jδΦjeiωf:o:t; ðB27Þ

where we will assume (and then confirm) that jωf:o:j ≪ 1.
Plugging this into the above relations and solving yields

ωf:o: ≈
t≫1

!
2σL
σ̄S

J2ðσ̄SÞ
4μ2 − 2J2ðσ̄SÞ

"
1=2

þ i
3

4t
; ðB28Þ

where the imaginary part, in particular, demonstrates that
fluctuations about the autoresonant solution should damp
away as t−3=4 at large times. As predicted, jωf:o:j ≪ 1, so
our approximations above are safe.

4. Chaotic parameter space

As we have discussed in the previous sections, there is a
wide range of parameter space where the zero mode is well
described by a slowly varying amplitude and phase. This
description neglects the initial phase of transient oscilla-
tions, and as we have seen in Appendix B 1, transients often
do not play a significant role in the evolution of ΘS. This is
no longer true if the long axion delivers enough energy to
the short axion that it can roll over many vacua, exploring
the saddle points of the potential. If ΘS happens to slow
down near one of the saddle points, the direction it rolls off
will depend sensitively on the details of its trajectory and,
consequently, on its initial conditions. In other words,
if ΘL starts with enough energy, then the short axion
exhibits classical chaos, leading to the intricate striations
in Fig. 6 near ΘL ¼ π. The possibility of chaotic evolution
in this type of potential was first pointed out in
Refs. [162,164].
During chaotic evolution, the short axion receives sub-

stantial energy from the long axion, leading to many of the

same signatures we have described in Sec. IV. In particular,
the chaotic rolling of ΘS necessarily delays the onset of
near-harmonic oscillations, generating large ΘS perturba-
tions, as described in Sec. III. Further, although it is no
longer guaranteed, an Oð1Þ fraction of chaotic initial
conditions lead to autoresonance and, consequently,
enhanced direct detection prospects.
A new behavior is also possible for initial conditions

sufficiently close to the boundary between striations in
Fig. 6. For these initial conditions, ΘS spends a long time
very close to the apex of the saddle point, causing rapid
perturbation growth. If ΘS gets close enough to the hilltop
for long enough, the axion field in different parts of space
can roll off to either side, creating a network of vacuum
bubbles. The cosmological implications of this scenario
require further investigation.

APPENDIX C: PERTURBATIONS IN DETAIL

In this section, we provide the details of the perturbation
growth rate calculations referenced in Sec. III. We first
review the general formalism to numerically compute the
full spectrum of axion perturbations. We then go on to
describe the analytic approximations made in Secs. III A
and III B.

1. General formalism

Consider a theory of N interacting axions ϕ1;…;ϕN
with scalar potential V,

Lðϕ1;…;ϕNÞ ¼
1

2

!XN

i¼1

∂μϕi∂μϕi

"
− Vðϕ1;…;ϕNÞ:

ðC1Þ

To study the strongly self-interacting regime of this theory,
it is helpful to change variables from the canonically
normalized fields ϕi to the fields θi ≡ ϕi=fi, where fi is
chosen so that θi ≈ 1 is the scale of self-interaction. In the
two-axion model, there is no ambiguity regarding the
choice of fi. However, one generally must take more care
in choosing the scales fi if there are more instantons than
axions [39].
The axion field evolves in the background of the

perturbed FLRW metric Eq. (24), where Φðt;xÞ ¼P
k Φkðt;kÞeik·x is the adiabatic scalar perturbation with

spectral components given by Eq. (30). Breaking θi down
into homogeneous modes Θi and perturbations δθi,

θiðt;xÞ ¼ ΘiðtÞ þ
X

k

δθiðt;kÞ; ðC2Þ

we arrive at the following set of equations of motion:
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Θ̈i þ 3H _Θi þ
1

f2i

∂V
∂Θi

¼ 0; ðC3aÞ

δθ̈i þ 3Hδ_θi þ
k̃2

t
δθi þ

1

f2i

∂2V
∂Θi∂Θj

δθj ¼ Si; ðC3bÞ

Si ≡ 2

!
tk
t
dΦk

dtk
_Θi −Φk

1

f2i

∂V
∂Θi

"
; ðC3cÞ

where we have specialized to the case of radiation domi-
nation, and k̃ and tk are defined in Eqs. (26) and (30),
respectively. For definiteness, we assume that inflation lasts
long enough that the δθi initial conditions are well
approximated as δθi ¼ δ_θi ¼ 0.

2. Analytical approximations

Having reviewed the full set of perturbation equations,
we now specialize to the case of the one-axion potential
Eq. (23). As we have described in Sec. III A, perturbations
do not grow at an appreciable rate until after the homo-
geneous oscillations have settled down near the vacuum. At
this point, the potential is well approximated by the leading
nonlinear terms

1

f2
VðfθÞ ¼ 1

2
θ2 þ 1

3!
Aθ3 þ 1

4!
Bθ4; ðC4Þ

where A and B are constants that may be determined from
the full potential by Taylor expanding around the vacuum.
The homogeneous mode Θ then satisfies the following
equation of motion:

0 ¼ Θ̈þ 3

2t
_Θþ

!
1þ 1

2
AΘþ 1

3!
BΘ2

"
Θ: ðC5Þ

For Θ oscillating with small amplitude σ, its waveform and
frequency at leading nontrivial order in σ are

ΘðtÞ ¼ − 1

4
Aσ2 þ σ cosωtþ 1

12
Aσ2 cos 2ωt; ðC6Þ

δω ¼ 3B − 5A2

48
σ2: ðC7Þ

From these formulas, we see that the cubic and quartic
interactions have qualitatively distinct effects on the Θ
oscillations. The sign of B controls whether the quartic
interaction is attractive or repulsive, leading to slower or
faster oscillations, respectively. On the other hand, A always
works to decrease the fundamental frequency of the oscil-
lations. For positive A, the cubic interaction is repulsive for
positiveΘ and attractive for negativeΘ, ultimately causingΘ
to spend more time at negative values where it is oscillating
slower. For negative A, the sides are switched, but in either
case, the net effect is to decrease the oscillator’s frequency.

In the background of the homogeneous Θ oscillations,
the equation of motion for the perturbation δθ is

δθ̈ðt; k̃Þþ 3

2t
δ_θðt; k̃Þþ

!
1þ k̃2

t
þAΘþ1

2
BΘ2

"
δθðt; k̃Þ¼S;

ðC8aÞ

S ≡ 2

#
tk
t
dΦk

dtk
_ΘþΦk

!
Θþ 1

2
AΘ2 þ 1

3!
BΘ3

"$
: ðC8bÞ

The source S provides the axion with the initial
fluctuations that will grow because of parametric reso-
nance. Soon after the exponential growth starts, S becomes
irrelevant, and the perturbation growth rate may be com-
puted from the homogeneous equation

δθ̈ þ 3

2t
δ_θ þ

!
1þ k̃2

t
þ AΘþ 1

2
BΘ2

"
δθ ≈ 0: ðC9Þ

Modes will only grow once Hubble friction is small,
H ≪ 1, i.e., once t ≫ 1. This allows us to treat the time
variation of the Hubble friction, the zero-mode amplitude
σ ∝ t−3=4, and the changing frequency δω ∝ σ2 ∝ t−3=2

adiabatically. Thus, we may change variables

δθ ¼ e−
3
4tψ ; ðC10Þ

so that ψ obeys the frictionless version of Eq. (C9) up to
order t−2. Inserting the known zero-mode evolution
Eq. (C6), we arrive at the following equation for ψ :

ψ̈ þ ð1þ αþ 2β cos tþ 2γ cos 2tÞψ ¼ 0; ðC11Þ

where

α ¼ k̃2

t
− 1

24
ðA2 − 3BÞσ2; ðC12aÞ

β ¼ 1

2
Aσ; ðC12bÞ

γ ¼ 1

24
ðA2 þ 3BÞσ2: ðC12cÞ

This Mathieu-type equation can be solved directly by
applying a Fourier transformation t → ωt:

0¼−ω2
tψðωtÞþð1þαÞψðωtÞþβðψðωtþ1Þþψðωt−1ÞÞ

þ γðψðωtþ2Þþψðωt−2ÞÞ: ðC13Þ

In this equation, only frequencies related by integer multi-
ples of m couple to one another, and thus, this problem can
be rephrased in terms of an infinite matrix. To see this, we
define Γψ ∈ ½0; 1Þ þ iR, so its real part represents the
noninteger real part of ωt. We can then label harmonics as

DAVID CYNCYNATES et al. PHYS. REV. D 105, 055005 (2022)

055005-30



ψnðΓψ Þ≡ ψðΓψ þ nÞ ¼ ψðωtÞ: ðC14Þ

The Fourier transformed Eq. (C13) is thus equivalent to the
matrix equation

0 ¼ ð−ðΓψ þ nÞ2 þ 1þ αÞψn þ βðψnþ1 þ ψn−1Þ
þ γðψnþ2 þ ψn−2Þ: ðC15Þ

The eigenvalues Γψ characterize the growth rate ImΓψ and
frequency ReΓψ of the ψ oscillations.
To solve for Γψ , we look for solutions with jΓψ j → 0,

which corresponds to the principal instability branch of
the Mathieu-type equation (C11). Thus, we approximate
ðΓψ þ nÞ2 ≈ 2nΓψ þ n2, leading to the following eigen-
value problem:

0¼ det

0

BBBBBBBBBBBB@

. .
.

−4þ4Γψ þ1þα β γ

β −1þ2Γψ þ1þα β γ

γ β 1þα β γ

γ β −1−2Γψ þ1þα β

γ β −4−4Γψ þ1þα

. .
.

1

CCCCCCCCCCCCA

: ðC16Þ

By truncating Eq. (C16) at the leading 5 × 5 elements, we
arrive at the following expression for the ψ growth rate:

Γψ ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
γ2

4
−
α2

4

"
þ
!
α
3
−
γ
2

"
β2 þ 5

36
β4 þOðσ5Þ

s

;

¼ −ijδωj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
!
1þ k̃2

2tmδω

"2
s

; ðC17Þ

to order σ4 in the root [using the fact that k̃2=t ∼ σ2] and
where δω is as in Eq. (C7). Reintroducing the −3=4t term
we had absorbed into ψ , we arrive at Eq. (35) for the growth
rate of δθ: Γ ¼ Reð−3=4tþ iΓψÞ.
The perturbations begin growing when Γ ≥ 0, which we

define as the time tinit. Prior to t ¼ tinit, the source term S
holds δθ at an approximately constant initial amplitude
given by Eq. (37), and thus, we arrive at the expression
Eq. (36) for the amplitude of δθ, which we reproduce here
for ease of reference:

hδθðt; k̃Þ2i ≈ hδθðtinit; k̃Þ2i exp
#
2

Z
t

tosc
dt0Γðt0; k̃Þ

$
; ðC18aÞ

hδθðt; k̃Þ2i ≈
Φ2

k;0

ð1þ mtk̃2
π2 Þ

2
: ðC18bÞ

The integral in Eq. (C18a) can be evaluated exactly, but
the resulting expression is hardly useful. To make clean
analytic progress, it is helpful to first compute the integral
by ignoring Hubble friction and then to reintroduce Hubble
friction at the end by adding −ð3=4Þ logðtend=tinitÞ. Because
Θ is oscillating at the bottom of the potential with decaying

amplitude proportional to t−3=4, the frequency shift is
δω ¼ δωoscðt=toscÞ−3=2, where tosc represents the time at
which the zero-mode amplitude starts decaying as
σ ∝ t−3=4, and thus tosc ¼ tinit for the single axion model.
In the case of autoresonant axions, tosc is the time at which
autoresonance ends, which is, in general, much larger than
the time tinit when perturbations start growing. Substituting
our expression for δω into Eq. (C17) and plugging into
Eq. (C18a), we arrive at the integrated growth rate
(neglecting Hubble friction):

Z
∞

tosc
dt0Re

!
Γðt0; k̃Þ þ 3

4tm

"
¼ 2k̃2

!!
4ð1 − μÞtosc

k̃2
− 1

"
1=2

− arccot
#!

4ð1 − μÞtosc
k̃2

− 1

"−1=2$"
: ðC19Þ

The parametric resonance ends at the time

tend ¼
t3oscδωosc

ðk̃=2Þ4
; ðC20Þ

so we add −ð3=4Þ logðt2oscδωosc=ðk̃=2Þ4Þ to account for
Hubble damping.
We have thus accounted for perturbation growth in

the single-particle model Eq. (23). As we discussed in
Sec. III B, this calculation carries through unchanged in the
two-axion model [Eq. (5)] for the perturbations of θS that
accrue after the end of autoresonance, where δω ¼
ðμ − 1Þðt=toscÞ−3=2. Further, the same physics applies to
perturbations that grow during autoresonance, except that
δωðtÞ is simply constant, fixed by the frequency shift
between the long axion and short axion, δωðtÞ ¼ μ − 1. In
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our approximate treatment of Hubble friction, the inte-
grated growth rate during autoresonance turns out to be
exactly one-half the integrated growth rate after autoreso-
nance, although this growth occurs over only roughly 2%
of the time.

APPENDIX D: SIMULATIONS OF
NONPERTURBATIVE STRUCTURE GROWTH

DURING RADIATION DOMINATION

In Sec. III C, we outlined the results of 3þ 1d numerical
simulations in which the collapse of nonperturbative
fluctuations leads to the breakdown of autoresonance. In
this appendix, we provide the details of these simulations
and outline improvements that can be made in future work.

1. Metric perturbations and the equations of motion

In this first section, we review the equations of motion
for a set of scalar particles ϕ1;…;ϕn in a potential
Vðϕ1;…;ϕnÞ in the background of a FLRW spacetime
in the presence of adiabatic scalar perturbations Φðt;xÞ,
Eq. (24). As in previous sections, we work in terms of the
variables θiðt;xÞ ¼ ϕiðt;xÞ=fi, where fi is the scale of
self-interaction for ϕi. Treating the metric perturbations at
first order, the θi equations of motion are

#
ð1− 2ΦÞ∂2

t þ ð3Hð1− 2ΦÞ− 4 _ΦÞ∂t − ð1þ 2ΦÞ 1
a2

∇2

$
θi

þ 1

f2i

∂V
∂θi ¼ 0: ðD1Þ

The axion fields θi are endowed with order-1 initial
misalignment and homogeneous initial conditions by a
sufficiently long period of inflation.
Unlike in the linearized equations, where each wave-

length of θi evolves independently, large θi fluctuations
couple different modes, and therefore, the relative size of
perturbations on different scales becomes important. In
other words, we may no longer be agnostic to the phase and
amplitude of the metric perturbations Φk: A particular
realization of the metric perturbation Φ must be generated
from its dimensionless power spectrum inside our integra-
tion volume.
Our simulation takes place inside a symmetric box of

size 2L and resolution dL, corresponding to a momentum
resolution of kmax ¼ π=dL and dk ¼ π=L. The dimension-
less metric power spectrum is defined in terms of Φk as

PΦðkÞ ¼
!
k
k0

"
ns−1

Φ2
k; ðD2aÞ

P _ΦðkÞ ¼
!
k
k0

"
ns−1!tk

2t

"
2
!
dΦk

dtk

"
2

ðD2bÞ

[see discussion around Eq. (30) for definitions of Φk, ns,
and tk]. The dimensionful power spectrum P is defined in
terms of the dimensionless power spectrum P as

P ¼ 2π2

k3
P: ðD3Þ

A particular realization of the field is then generated
from the dimensionful power spectrum with the procedure
of Ref. [173]. First, for each point k in the momentum grid,
generate two random numbers R1ðkÞ and R2ðkÞ uniformly
distributed on the interval [0, 1]. Then, define

ρk ¼ −2 logR1ðkÞ; φk ¼ 2πR2ðkÞ: ðD4Þ

A particular realization of the Φ and _Φ Fourier coefficients
is then computed as

ΦkðtÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VρkPΦðt;kÞ

p
eiφk ; ðD5aÞ

_ΦkðtÞ ¼ s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VρkP _Φðt;kÞ

q
eiφk ; ðD5bÞ

where s and s0 denote the signs of ΦkðtkÞ and dΦkðtkÞ=dtk,
respectively, and V ¼ ð2LÞ3 is the comoving integration
volume. The zero-momentum terms represent a constant shift
of Φk and _Φk, which we remove by setting Φ0 ¼ _Φ0 ¼ 0.
The real-space fields Φðt;xÞ and _Φðt;xÞ are then

Φðt;xÞ ¼ Re
!
dk
2π

"
3X

k

ΦkðtÞe−ik·x ðD6aÞ

_Φðt;xÞ ¼ Re
!
dk
2π

"
3X

k

_ΦkðtÞe−ik·x ðD6bÞ

These expressions can be written in terms of the fast
Fourier transform (FFT), or fftn(fftshift(Φk)) in
Matlab.
Finally, we discuss the process of measuring the power

spectrum of a real field FðxÞ at an instant in time.
Measuring the density power spectrum is especially impor-
tant when verifying the 3þ 1d code since the density
power spectrum can be directly compared to the output of
the linearized theory of Appendix C.
In order to measure the power spectrum of a real field

FðxÞ, we first compute its Fourier transform

Fk ¼ dL3
X

k

FðxÞe−ik·x: ðD7Þ

The power spectrum of FðxÞ is the average of F2
k over

concentric spherical momentum shells. The fact that small
jkj shells contain fewer momentum grid points means that
one should not trust the low-frequency power spectrum to
reflect the statistical properties of the field. Define the
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magnitude of the momentum vector kr ¼
ffiffiffiffiffiffi
k2

p
. Let krðnÞ ¼

kr when kr is in the interval ½ðn − 1Þ; n&dk, and zero
otherwise. Let Nn be the number of nonzero elements in
krðnÞ. The power spectrum is then

PFðndkÞ ¼
X

k∈krðnÞ

Fk
2

NnV
: ðD8Þ

2. Numerical methods

To evolve the equations of motion, Eq. (D1), we use
Runge-Kutta fourth-order (RK4) time integration, with
pseudospectral derivative operators. Here, we provide a
brief review of pseudospectral methods.
The Laplacian operator in Eq. (D1) poses a computa-

tional challenge: In position space, it represents matrix
multiplication, which can be an inefficient process. The
pseudospectral method recognizes that the potential is best
computed in position space, where it acts as a pointwise
operator, and derivatives are best computed in momentum
space, where they act as pointwise operators. The pseu-
dospectral algorithm to compute derivatives is as follows:
(1) Compute the FFT of θi.
(2) Apply the derivative operator in momentum space

(pointwise multiplication).
(3) Compute the inverse FFT (IFFT).

We note that the pseudospectral method is well suited
to Graphics Processing Units (GPUs) acceleration since it
makes use of pointwise matrix multiplication and the FFT,
both of which have efficient GPU implementations.
Because the FFT is an extremely optimized algorithm,
converting between position space and momentum space is
an extremely efficient process, in essence making the
pseudospectral method an efficient implementation of
multiplication that would otherwise need to take place to
compute the action of a differential operator. The numerical
Laplacian is computed as

∇2θ ¼ 1

V

X

k

ð−k2Þe−ik·x
X

k

θeik·x: ðD9Þ

We note that to ensure convergence of the pseudospectral
method, it is often helpful to suppress the numerical

instability of high-frequency modes by truncating momen-
tum space somewhat below the maximum possible reso-
lution of the spatial grid (kmax ¼ π=dL). In our
calculations, we take this cutoff to be kmax=2.

3. Future directions

While our preliminary simulations shed some light on
the possible consequences of nonlinear fluctuations during
autoresonance, we recognize an opportunity to develop
higher-resolution simulations in order to reach a definitive
conclusion. In particular, our simulations are limited in
the range of comoving momenta they can resolve,
jk̃j ∈ ½m; 30m&, which is particularly restrictive at the time
of oscillon formation. Because our simulations take place
on a comoving grid, oscillons, whose physical size does not
redshift, appear to get smaller, requiring higher and higher
momenta to fully resolve. Combined with the fact that
oscillons already have very broad momentum spectra, this
means that our simulations are substantially less reliable
after oscillons have formed, and our observation that
autoresonance is terminated by oscillon formation may
not hold up to higher-resolution simulations.
We end on a tangentially related note that there are

additional questions that will only be resolved by 3þ 1d
simulations. In particular, it need not be the case that the
axion rolls to the true vacuum. For example, the potential
Eq. (23) will, in general, have many false vacua, and it may
be more likely that the axion rolls there than the true
vacuum. In this case, there are two possibilities. First, the
axion can quantum tunnel out of the false vacuum into the
true vacuum, nucleating vacuum bubbles that quickly
expand to fill the universe. Second, the axion can classi-
cally tunnel out of the false vacuum, also nucleating
vacuum bubbles that expand to fill the universe, but
potentially on a very different timescale. Classical tunnel-
ing occurs when the axion perturbations become large
enough that the field must explore adjacent vacua, and the
rapid perturbation growth experienced in potentials such as
Eq. (23) may make this the dominant tunneling mechanism.
Both classical and quantum tunneling require detailed
simulations to resolve signatures such as gravitational
wave production and the matter power spectrum.
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