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We introduce NRPyElliptic, an elliptic solver for numerical relativity (NR) built within the NRPy+

framework. As its first application, NRPyElliptic sets up conformally flat, binary black hole (BBH) puncture
initial data (ID) on a single numerical domain, similar to the widely used TwoPunctures code. Unlike
TwoPunctures, NRPyElliptic employs a hyperbolic relaxation scheme, whereby arbitrary elliptic partial
differential equations (PDEs) are trivially transformed into a hyperbolic system of PDEs. As consumers of
NR ID generally already possess expertise in solving hyperbolic PDEs, they will generally find NRPyElliptic

easier to tweak and extend than other NR elliptic solvers. When evolved forward in (pseudo)time, the
hyperbolic system exponentially reaches a steady state that solves the elliptic PDEs. Notably NRPyElliptic

accelerates the relaxation waves, which makes it many orders of magnitude faster than the usual constant
wave speed approach. While it is still ∼12x slower than TwoPunctures at setting up full-3D BBH ID,
NRPyElliptic requires only ≈0.3% of the runtime for a full BBH simulation in the Einstein Toolkit. Future work
will focus on improving performance and generating other types of ID, such as binary neutron stars.
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I. INTRODUCTION

To date the LIGO/Virgo gravitational wave (GW)
observatories have detected dozens of binary black hole
(BBH) mergers [1], and numerical relativity (NR) BBH
simulations form a cornerstone of the ensuing data analy-
ses. Such simulations build from formulations of the
general relativistic (GR) field equations [2–10] that decom-
pose GR into an initial value problem in (3þ 1) dimen-
sions. These formulations generally rewrite the GR field
equations as a set of time evolution and constraint equa-
tions, similar to Maxwell’s equations in differential form
[11]. Thus, so long as one is provided initial data (ID) that
satisfy the Einstein constraints (elliptic PDEs), the evolu-
tion equations (hyperbolic PDEs) can propagate them
forward in time to construct the spacetime.
Construction of NR ID for realistic astrophysical sce-

narios is typically a complex and highly specialized task
(see [12–15] for excellent reviews). A wide range of
approaches have been employed by different groups to
set up ID for realistic astrophysical scenarios, including the

use of finite difference [16–21], spectral [22–36], and
Galerkin [37,38] methods, which are then combined with
special numerical techniques to solve the associated elliptic
PDEs. Notably, this generally requires a different skill set
than those associated with solving the (hyperbolic) evolu-
tion equations, so experts in setting up ID for NR are rarely
experts in solving the evolution equations, and vice versa.

NRPyElliptic is a new, extensible elliptic solver that sets up
initial data for numerical relativity using the same numeri-
cal methods employed for solving hyperbolic evolution
equations. Specifically, NRPyElliptic implements the hyper-
bolic relaxation method of [39] to solve complex nonlinear
elliptic PDEs for NR ID. The hyperbolic PDEs are evolved
forward in (pseudo)time, resulting in an exponential
relaxation of the arbitrary initial guess to a steady state
that coincides with the solution of the elliptic system.
NRPyElliptic solves these equations on highly efficient
numerical grids exploiting underlying symmetries in the
physical scenario. To this end, NRPyElliptic is built within
the SymPy-based [40] NRPy+ code-generation framework
[41,42], which facilitates the solution of hyperbolic
PDEs on Cartesian-like, spherical-like, cylindrical-like,
or bispherical-like numerical grids. For the purposes of
setting up BBH puncture ID, NRPyElliptic makes use of the
latter.
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The choice of appropriate numerical grids is critically
important, as setting up binary compact object ID requires
numerically resolving many orders of magnitude in length
scale, from the sharp gravitational fields near each compact
object, to the nearly flat fields far away. If a constant wave
speed is chosen in the hyperbolic relaxation method (as
in [39]), the Courant-Friedrichs-Lewy (CFL)-constrained
global timestep for the relaxation will be many orders of
magnitude smaller than the time required for a relaxation
wave to cross the numerical domain. This poses a signifi-
cant problem as hyperbolic relaxation methods must
propagate the relaxation waves across the entire numerical
domain several times to reach convergence. Thus hyper-
bolic relaxation solvers are generally far slower than elliptic
solvers based on specialized numerical methods.

NRPyElliptic solves the hyperbolic relaxation PDEs on a
single bispherical-like domain, enabling us to increase the
local relaxation wave speed in proportion to the local grid
spacing without violating the CFL condition. As grid
spacing in our coordinate system grows exponentially
away from the two-coordinate foci and toward the outer
boundary, the relaxation waves accelerate exponentially
toward the outer boundary, increasing the solver’s overall
speedup over a constant wave speed implementation by
many orders of magnitude. In fact the resulting perfor-
mance boost enables NRPyElliptic to be useful for setting up
high-quality, full-3D BBH puncture ID, though it is still
12x slower than the widely used pseudospectral TwoPunctures
[31] BBH puncture ID solver.1

Like TwoPunctures, NRPyElliptic adopts the conformal trans-
verse-traceless decomposition [12,43–45] to construct
puncture ID for two BHs. In this paper we present both
2D and full 3D validation tests, which demonstrate that
NRPyElliptic yields identical results to TwoPunctures as numeri-
cal resolution is increased in both codes.
We also embed NRPyElliptic into an Einstein Toolkit [46–48]

module (“thorn”), called NRPyEllipticET, which enables the
generated ID to be interpolated onto Cartesian adaptive
mesh refinement (AMR) grids within the Einstein Toolkit. To
demonstrate that NRPyElliptic ID are of high fidelity, we first
generate 3D BBH puncture ID with both NRPyEllipticET and
the TwoPunctures Einstein Toolkit thorns at comparable accuracy,
then evolve the ID forward in time through inspiral, merger,
and ringdown using the Einstein Toolkit infrastructure, and
finally show that the results of these simulations are
virtually indistinguishable.
While existing algorithms for elliptic equations can be

used to solve a general class of problems, their numerical
implementations can be rather problem specific (see, e.g.,
Ref. [49] and references therein). For instance, the
TwoPunctures code employs the biconjugate gradient stabi-
lized (BiCSTAB) method, which requires a specific

preconditioner for numerical efficiency [31]. In contrast,
hyperbolic relaxation solvers can be trivially used for other
elliptic problems by simply replacing the right-hand sides
of the resulting hyperbolic PDEs while preserving other
aspects of the numerical implementation. In fact, the
generality of the hyperbolic relaxation method has already
been demonstrated in [39], where it was used to produce ID
for many different scenarios of interest, such as scalar
fields, Tolman-Oppenheimer-Volkoff (TOV) stars, and
binary neutron stars (BNSs). In this work we will focus
our discussion on BBH puncture ID, and further evidence
of the extensibility of NRPyElliptic will be presented in
forthcoming papers to generate e.g., BNS ID.
The remainder of this paper is organized as follows.

Section II introduces the puncture ID formalism, the
hyperbolic relaxation method, and our implementation of
Sommerfeld (radiation) boundary conditions. In Sec. III we
discuss the details of our numerical implementation,
including choice of coordinate system and implementation
of a grid spacing-dependent wave speed. We present 2D
(axisymmetric) and full 3D validation tests, as well as
results from a BBH evolution of our full 3D ID in Sec. IV.
We conclude in Sec. V and discuss future work.

II. BASIC EQUATIONS

Throughout this paper we adopt geometrized units, in
which G ¼ c ¼ 1, and Einstein summation convention
such that repeated Latin (Greek) indices imply a sum over
all three spatial (all four spacetime) components.
Consider the (3þ 1) decomposition of the spacetime

metric, with line element

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð1Þ

Here, α is the lapse function, βi is the shift vector, and γij is
the 3-metric.
It is useful to define a conformally related 3-metric γ̃ij via

γij ¼ ψ4γ̃ij; ð2Þ

where the scalar function ψ is known as the conformal
factor. We adorn geometric quantities associated with γ̃ij
with a tilde diacritic. For instance, the Christoffel symbols
associated with γ̃ij are computed using

Γ̃
k
ij ¼

1

2
γ̃lkðγ̃li;j þ γ̃lj;i − γ̃ij;lÞ: ð3Þ

Likewise, ∇̃i is the associated conformal covariant deriva-
tive and R̃ij the Ricci tensor. All geometric quantities
compatible with the physical 3-metric γij are written
without tildes.
In the limit of vacuum (e.g., BBH) spacetimes, the

Hamiltonian and momentum constraint equations can be
written as [12]

1Benchmark tests performed using an Intel Xeon Gold 6230
20-Core CPU for initial data of comparable quality.
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H≡ Rþ K2 − KijK
ij ¼ 0; ð4Þ

Mi ≡∇jðKij − γijKÞ ¼ 0; ð5Þ

where Kij is the extrinsic curvature and K ≡ γijKij is the
mean curvature. Setting up ID for vacuum spacetimes
in numerical relativity generally involves solving these
constraints, which exist as second-order nonlinear ellip-
tic PDEs.
For the purposes of this paper, we will focus on the

puncture ID formalism, in which a set of simplifying
assumptions is applied to these constraints, known as the
conformal transverse-traceless (CTT) decomposition (see
e.g., [12]). For completeness we next apply the CTT
approach to Eqs. (4) and (5) to derive the constraint
equations solved in this paper by NRPyElliptic.

A. Puncture initial data formalism

To arrive at the CTT decomposition, we first rewrite the
extrinsic curvature as

Kij ¼ Aij þ
1

3
γijK; ð6Þ

where Aij is the trace-free part of Kij. The conformal
counterpart of Aij is defined through the relation

Aij ≡ ψ−2Ãij: ð7Þ

The CTT decomposition splits Ãij into a symmetric
trace-free part M̃ij and a longitudinal part ðL̃VÞij,

Ãij ¼ ðL̃VÞij þ M̃ij; ð8Þ

where the longitudinal operator L̃ is defined via

ðL̃VÞij ≡ ∇̃
iVj þ ∇̃

jVi −
2

3
γ̃ij∇̃lV

l: ð9Þ

Inserting these CTT quantities into the constraint equations
[Eqs. (4) and (5)] yields the generic CTT Hamiltonian and
momentum constraint equations (see, e.g., [45,50] and
references therein)

∇̃
2ψ −

1

8
ψR̃ −

1

12
ψ5K2 þ 1

8
ψ−7ÃijÃ

ij ¼ 0; ð10Þ

Δ̃LV
i −

2

3
ψ6∇̃

iK þ ∇̃jM̃
ij ¼ 0; ð11Þ

where R̃ is the conformal Ricci scalar and the operator Δ̃L is
defined as

Δ̃LV
i ≡ ∇̃jðL̃VÞij ¼ ∇̃

2Vi þ 1

3
∇̃

ið∇̃jV
jÞ þ R̃i

jV
j: ð12Þ

The degrees of freedom in this formulation include the
choice of M̃ij, K, and γ̃ij. Here we consider puncture ID,
which assumes maximal slicing (K ¼ 0), asymptotic flat-
ness (ψ jr→∞ ¼ 1), and conformal flatness

γ̃ij ¼ γ̂ij; ð13Þ

where γ̂ij is the flat spatial metric. In addition the

assumption M̃ij ¼ 0 is made, yielding Hamiltonian and
momentum constraint equations of the form [31]

∇̂
2
ψ þ 1

8
ψ−7ÃijÃ

ij ¼ 0; ð14Þ

∇̂
2
Vi þ 1

3
∇̂

ið∇̂jV
jÞ þ R̂i

jV
j ¼ 0; ð15Þ

where ∇̂i is the covariant derivative compatible with γ̂ij.
Bowen and York [51] showed that the momentum con-
straint is solved for a set of Np punctures with a closed-
form expression for the extrinsic curvature. This expression

can be written in terms of V⃗ as follows:

V⃗ ¼
X

Np

n¼1

�

−
7

4jx⃗nj
P⃗n −

x⃗n · P⃗n

4jx⃗nj3
x⃗n þ

1

jx⃗nj3
x⃗n × S⃗n

�

; ð16Þ

where x⃗n ¼ ðxn − x; yn − y; zn − zÞ, P⃗n, and S⃗n are the
displacement relative to the origin [i.e., ðx; y; zÞ ¼
ð0; 0; 0Þ], linear momentum, and spin angular momentum
of puncture n, respectively.
The Hamiltonian constraint equation [Eq. (14)] must be

solved numerically, but ψ becoming singular at the location
of each puncture could spoil the numerical solution. Early
attempts excised the singular terms from the computational
domain (see, e.g., [12]), but modern approaches generally
follow [52] in splitting the conformal factor into a singular
and a nonsingular piece,

ψ ¼ ψ singular þ u≡ 1þ
X

Np

n¼1

mn

2jx⃗nj
þ u; ð17Þ

where mn is the bare mass of the nth puncture. The
Hamiltonian constraint equation, which can then be solved
for the nonsingular part u, reads

∇̂
2
uþ 1

8
ÃijÃ

ijðψ singular þ uÞ−7 ¼ 0; ð18Þ

since the Laplacian of the singular piece vanishes.
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B. Hyperbolic relaxation method

We now describe the basic hyperbolic relaxation method
of [39]. Consider the system of elliptic equations

LEu⃗ − ρ⃗ ¼ 0; ð19Þ

where LE is an elliptic operator, u⃗ is the vector of
unknowns, and ρ⃗ is the vector of source terms. The
hyperbolic relaxation method replaces Eq. (19) with the
hyperbolic system of equations

∂2
t u⃗þ η∂tu⃗ ¼ c2ðLEu⃗ − ρ⃗Þ; ð20Þ

where η is an exponential damping parameter (with units of
1=t [53]) and c is the wave speed. The variable t behaves as
a time variable in this hyperbolic system of equations and is
referred to as a relaxation (as opposed to physical) time. As
noted in [39], the damping parameter η that maximizes
dissipation is dictated by the length scale of the grid domain
when the wave speed is constant. On the other hand, a
spatially varying wave speed, as introduced in Sec. III B,
gives rise to a new scale to the problem—the relaxation-
wave crossing time, TRC (refer to Appendix B for details).
Through numerical experimentation, we found that the
choice η that minimizes the required relaxation time
follows a power law given by Eq. (36).
If appropriate boundary conditions are chosen, when

Eq. (20) is evolved forward in (pseudo)time, the damping
ensures that a steady state is eventually reached exponen-
tially fast such that ∂tu→ 0 and ∂2

t u → 0. Thus u relaxes to
a solution to the original elliptic problem. To this end, we
adopt Sommerfeld (outgoing radiation) boundary condi-
tions (BCs) for spatial boundaries, as described in Sec. II C;
what remains is a choice of initial conditions. As this is a
relaxation method, any smooth choice should suffice. For
simplicity, in this work we set trivial initial conditions

u⃗ ¼ ∂tu⃗ ¼ 0⃗.
To complete our expression of these equations in

preparation for a full numerical implementation, we rewrite
Eq. (20) as a set of two first-order (in time) PDEs

∂tu⃗ ¼ v⃗ − ηu⃗;

∂tv⃗ ¼ c2ðLEu⃗ − ρ⃗Þ; ð21Þ

so that the method of lines (Sec. III) can be immediately
used to propagate the solution forward in (pseudo)time
until a convergence criterion has been triggered (indicating
numerical errors associated with the solution to the elliptic
equation are satisfactorily small).
As a simple example, consider Poisson’s equation, for

which LEu⃗ ¼ LEu ¼ ∇2u ¼ u;i;i. This PDE can be easily
made covariant (“comma goes to semicolon rule”),

∇̂
2
u ¼ u;i;i ¼ ρ; ð22Þ

where ∇̂i is the covariant derivative compatible with γ̂ij.
In this way, the Laplace operator is expanded as

∇̂
i
∇̂iu ¼ γ̂ij∇̂i∇̂ju ¼ γ̂ijð∂i∂ju − Γ̂

k
ij∂kuÞ; ð23Þ

with Γ̂
k
ij the Christoffel symbols associated with γ̂ij.

Poisson’s equation is then written as the system

∂tu ¼ v − ηu;

∂tv ¼ c2ð∇̂2
u − ρÞ: ð24Þ

Writing the PDEs covariantly enables the hyperbolic
relaxation method to be applied in coordinate systems that
properly exploit near symmetries. For this purpose we
adopt a reference metric γ̂ij, which is chosen to be the flat
spatial metric in the given coordinate system we are using.
In this way, single compact object ID can be solved in
spherical or cylindrical coordinates (using spherical or
cylindrical reference metrics respectively), and binary ID
can be solved in bispherical-like coordinates. Once the
appropriate coordinate system is chosen, all covariant
derivatives are expanded in terms of partial derivatives
and the Christoffel symbols as prescribed in Eq. (23).
Truly the power of the hyperbolic relaxation method is

its easy and immediate extension to complex, nonlinear
elliptic PDEs by simply modifying the right-hand sides of
Eq. (24). Case in point: ID for two punctures are con-
structed by solving Eq. (18) for u. This elliptic PDE is
nonlinear, but is trivially embedded within the hyperbolic
relaxation prescription via2

∂tu ¼ v − ηu;

∂tv ¼ c2
�

∇̃
2uþ 1

8
ÃijÃ

ijðψ singular þ uÞ−7
�

: ð25Þ

Note that just like in the case of Poisson’s equation, ∇̃2u is
expanded as in Eq. (23).

C. Boundary conditions

Similar to both the hyperbolic relaxation method imple-
mented in [39] and the Einstein Toolkit BC driver NewRad

[46,47,54], spatial BCs are applied to the time derivatives
of the evolved fields instead of the fields directly.
Consequently the desired BC is only satisfied by the steady
state solution.
For example, assume that at ∂Ω, the boundary of our

numerical domain, we wish to impose Dirichlet BCs of the
form

2Recall that in the previous section we adopted the tilde for the
conformal metric and the hat diacritic to denote the flat metric,
consistent with the general convention in the literature. Due to the
choice of conformal flatness, both can be used interchangeably
here, γ̃ij ¼ γ̂ij.
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u⃗j∂Ω ¼ a⃗;

v⃗j∂Ω ¼ b⃗; ð26Þ

for some constant vectors a⃗ and b⃗. In our implementation,
these would be imposed as

∂tu⃗j∂Ω ¼ u⃗ − a⃗;

∂tv⃗j∂Ω ¼ v⃗ − b⃗: ð27Þ

Upon reaching the steady state, ∂tuj∂Ω ¼ 0 ¼ ∂tvj∂Ω, and
we recover the desired BCs.
When applying the hyperbolic relaxation method to

solve the Einstein constraint equations, outgoing radiation
BCs are most appropriate, as they allow the outgoing
relaxation wave fronts to pass through the boundaries of the
numerical domain with minimal reflection.
Radiation (Sommerfeld) BCs generally assume that near

the boundary each field f behaves as an outgoing spherical
wave, and our implementation follows the implementation
within NewRad, building upon the ansatz,

f ¼ f0 þ
wðr − ctÞ

r
þ C

r2
; ð28Þ

where f0 ¼ limr→∞ f, wðr − ctÞ=r satisfies the spherical
wave equation for an outgoing spherical wave, and C=r2

models higher-order radial corrections.
Just as in the case of Dirichlet BCs, we apply

Sommerfeld BCs to the time derivative of the fields.
Appendix Awalks through the full derivation for applying
Sommerfeld BCs to any field ∂tf, as well as its numerical
implementation. Based on Eq. (A10), Sommerfeld BCs for
a generic hyperbolic relaxation of solution vector u⃗ takes
the form

∂tu⃗j∂Ω ¼ −
c

r
½r∂ru⃗þ ðu⃗ − u⃗0Þ� þ

k⃗u

r3
;

∂tv⃗j∂Ω ¼ −
c

r
½r∂rv⃗þ ðv⃗ − v⃗0Þ� þ

k⃗v

r3
; ð29Þ

where k⃗u and k⃗v are constant vectors computed at each
boundary point for each field within the u⃗ and v⃗ vectors
using Eq. (A15).

III. NUMERICAL IMPLEMENTATION

NRPyElliptic exists as both a standalone code and an Einstein

Toolkit module (“thorn”), NRPyEllipticET. NRPyEllipticET incor-
porates the standalone code into the Einstein Toolkit, solving
the elliptic PDE entirely within NRPyElliptic ’s NRPy+ -based
infrastructure. Once the solution has been found,
NRPyEllipticET uses the Einstein Toolkit ’s built-in (third-order
Hermite) interpolation infrastructure to interpolate the

solution from its native, bispherical-like grids to the
Cartesian AMR grids used by the Einstein Toolkit. From
there, the data can be evolved forward in time using any
of the various BSSN or CCZ4 Einstein Toolkit thorns.
Both standalone and Einstein Toolkit thorn versions of the
NRPyElliptic code are fully documented in pedagogical
JUPYTER notebooks. Henceforth, we will describe our
implementation of the standalone version.
Our implementation of Eq. (25) within NRPyElliptic

leverages the NRPy+ framework [41,42] to convert these
expressions, written symbolically using NRPy+ ’s Einstein-
like notation, into highly optimized C-code kernels (SymPy
[40] serves as NRPy+ ’s computer algebra system backend).
Notably NRPy+ supports the generation of such kernels
with single instruction, multiple data (SIMD) intrinsics
and common subexpression elimination (CSE). Like
TwoPunctures, NRPyElliptic currently supports OpenMP paralle-
lization [55] and both codes run on single computational
nodes. Further NRPy+ supports arbitrary-order finite-
difference kernel generation, and we use 10th order to
approximate all spatial derivatives in this work. The time
evolution is performed using the method of lines infra-
structure within NRPy+, choosing its fourth-order (explicit)
Runge-Kutta implementation (RK4).

NRPy+ supports a plethora of different reference metrics,
enabling us to solve our covariant hyperbolic PDEs
(Eq. 25) in a large variety of Cartesian-like, spherical-like,
cylindrical-like, or bispherical-like coordinate systems.
This in turn enables the user to fully take advantage of
symmetries or near symmetries of any given problem. For
example, for problems involving near-spherical symmetry
we have used spherical-like coordinates (e.g., log-radial
spherical coordinates). In this work, we make use of the
prolate spheroidal-like (i.e., bispherical-like) coordinate
system in NRPy+ called SinhSymTP, described in detail in
Sec. III A. This allows us to solve the elliptic problem for
two puncture black hole initial data within a single domain,
similar to the TwoPunctures code.
Note that the wave speed c appearing e.g., in Eq. (25),

need not be constant. In curvilinear coordinates where the
grid spacing is not constant, the CFL stability criterion
remains satisfied if the wave speed is adjusted in proportion
to the local grid spacing. As the grid spacing in the
SinhSymTP coordinates adopted here grows exponentially
with distance from the strong-field region, the wave speed
grows exponentially as well. As a result, relaxation waves
accelerate exponentially to the outer boundary, signifi-
cantly speeding up the convergence to the solution of the
elliptic PDE. Our implementation of this technique is
detailed in Sec. III B.

A. Coordinate system

Like TwoPunctures, NRPyElliptic adopts a modified version of
prolate spheroidal (PS) coordinates when setting up two-
puncture ID. However, these coordinate systems are
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distinct both from each other and from PS coordinates.
Here we elucidate the differences and similarities.
Consider first PS coordinates ðμ; ν;φÞ, which are related

to Cartesian coordinates ðx; y; zÞ via [56]

x ¼ a sinh μ sin ν cosφ;

y ¼ a sinh μ sin ν sinφ;

z ¼ ða2sinh2μþ a2Þ1=2 cos ν: ð30Þ

Here, μ ∈ ½0;∞Þ, ν ∈ ½0; πÞ, φ ∈ ½0; 2πÞ, and the two foci
of the coordinate system are located at z ¼ �a.

TwoPunctures [31] adopts a PS-like coordinate system,
which is written in terms of coordinate variables A ∈ ½0; 1Þ,
B ∈ ½−1; 1�, and φ ∈ ½0; 2πÞ. TwoPunctures coordinates are
related to Cartesian via3

x ¼ b
2A

1 − A2

1 − B2

1þ B2
sinφ;

y ¼ b
2A

1 − A2

1 − B2

1þ B2
cosφ;

z ¼ b
A2 þ 1

A2 − 1

2B

1þ B2
: ð31Þ

The two foci of TwoPunctures coordinates are situated at
z ¼ �b. Of note, the coordinate A is compactified with
jxj; jyj; jzj → ∞ as A→ 1. Similar to the term sin ν (where
ν ∈ ½0; πÞ) in PS coordinates, the ð1 − B2Þ=ð1þ B2Þ
(where B ∈ ½−1; 1�) term is a concave down curve with
a maximum of 1 at the midpoint of the range of B and
zeroes at the endpoints B ¼ �1. Unlike PS coordinates,
however, the coordinate system is not periodic in the
variable B.

NRPyElliptic adopts the NRPy+ PS-like coordinate system
SinhSymTP ðx1;x2;x3Þ with x1 ∈ ½0; 1�, x2 ∈ ½0; π�, and
x3 ∈ ½−π; π�. These are related to PS coordinates via

a sinh μ ¼ r̃≡A
sinhðx1=wÞ
sinhð1=wÞ ;

ν ¼ x2;

φ ¼ x3; ð32Þ

with r̃ ∈ ½0;A�. Introducing the parameter b, we obtain

x ¼ r̃ sinðx2Þ cosðx3Þ;
y ¼ r̃ sinðx2Þ sinðx3Þ;
z ¼ ðr̃2 þ b2Þ1=2 cosðx2Þ: ð33Þ

Given inputs for w,A (domain size), and the foci parameter
b, NRPy+ samples coordinates ðx1;x2;x3Þ uniformly when
setting up numerical grids. The foci exist at z ¼ �b, and

grid point density near the foci can be increased or
decreased by decreasing or increasing w, respectively.
Contrast this to PS coordinates, in which there is no such
parameter to adjust the focusing of gridpoints near foci. In
fact when the foci separation is increased in PS coordinates,
the density of gridpoints decreases in proportion.
As illustrated in Fig. 1, like PS and TwoPunctures coor-

dinates, SinhSymTP coordinates become spherical in the
region far from the foci. Note also that regular spherical
coordinates (with a nonuniform radial coordinate) are
fully recovered by setting b ¼ 0. As with TwoPunctures,
NRPyEllipticET possesses the option to rotate the coordinate
system, to situate the punctures on either the x-axis
(x ¼ �b) or the z-axis (z ¼ �b).
For all cases considered here, the outer boundary is set to

106 (i.e., A ¼ 106), and the grid point spacing parameter w
is set to 0.07. We set b so that the foci match the punctures’
positions and, when interpolating the ID to the Einstein Toolkit

grids, we adjust the origin of the coordinate system to
coincide with the center of mass of the punctures, as is
conventional.

B. Wave speed

To propagate the hyperbolic system of equations forward
in (pseudo)time from the chosen initial conditions, we
make use of NRPy+ ’s method of lines implementation.
Specifically we choose the explicit fourth-order Runge-
Kutta (RK4) method. As this is an explicit method, and we
use three dimensions in space, the steps in time Δt are
constrained by the CFL inequality,

cΔt

Δsmin
≤ C0; ð34Þ

where c is the local wave speed, and C0 is the CFL factor,
which depends on the explicit time stepping method and

FIG. 1. Curves of constant x1 (red) and constant x2 (blue) using
a cell-centered grid structure with x3 ¼ 0.

3Weswap the x and z coordinates of [31] to simplify comparison.
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the dimensionality of the problem. Empirically we find that
C0 ¼ 0.7 ensures both stability and large time steps for
both 2D and 3D cases presented in this paper, with one
exception: when the 3D case is pushed to very high
resolution. In the single highest-resolution 3D case in this
work, we find C0 must be lowered to 0.55 for stability.
Further, Δsmin is the minimum proper distance between

neighboring points in our curvilinear coordinate system,

Δsmin ¼ min ðh1Δx1; h2Δx2; h3Δx3Þ; ð35Þ

where hi and Δxi are the ith scale factor and grid spacing of
the flat space metric, respectively.4

The global relaxation time step Δtglob is given by the
minimum value of Δsmin on our numerical grid. As we
adopt prolate spheroidal-like coordinates, the global Δsmin

occurs precisely at the foci of the coordinate system. At this
point, for simplicity we set the wave speed c ¼ 1. As this is
merely a relaxation (as opposed to a physical) wave speed,
we increase c in proportion to the local Δsmin, which grows
exponentially away from the foci. In this way we maintain
satisfaction of the CFL inequality while greatly improving
the performance of the relaxation method. Details and
implications of our implementation are described in
Appendix B.

C. Choice of damping parameter η

Sweeping through values of η in early tests of our code
(using different grid parameters than those adopted here),
we found that setting η ¼ 12.5=M was optimal for min-
imizing the time to convergence of the relaxation scheme.
After completing the tests, we later found that this is value
of η is not optimal for the grids and resolutions we have
chosen in this work. As a result, our core benchmark in
Sec. IV B below, comparing the performance of NRPyElliptic
with TwoPunctures, is slower by roughly a factor of 2 as
compared to the optimum η for that grid choice, which
would be closer to η ¼ 18=M. We note that this suboptimal
choice does not influence our relaxed solution, as every
choice of η that leads to a stable evolution yields that same
relaxed solution.
To find the optimal value of η, we perform a linear sweep

through possible values in a range η ¼ 1 through 20, in
intervals of 0.25 (recall η has units of inverse mass, 1=M,
and here when quoting values of η we always choose
M ¼ 1). In the steady-state regime, the L2-norm of the
relative error, E (see Sec. IV for details), becomes constant.
Therefore, once we have chosen a trial value of η, we
perform the relaxation until jdE=dtj < δ for n consecutive
iterations, where δ ∼ 10−4 − 10−6 and n ∼ 10–100 (i.e., we
relax until the L2-norm of the relative error has reached its

minimum, constant value). The optimum value of η is that
value that results in the fewest relaxation iterations before
the L2-norm of the relative error has plateaued.
As η has units of 1=t, it is natural to inquire whether the

optimum damping parameter, ηoptimum, is inversely propor-
tional to the relaxation-wave crossing time, TRC. We
applied the aforementioned optimum η search to a
variety of grids, each with its own TRC [in the range
TRC ∈ ð0.24; 0.99Þ], finding that the optimum η obeys the
following power law,5

Mηoptimum ≈
6.9

ðTRC=MÞ0.79 − 0.7: ð36Þ

IV. RESULTS

Validation of NRPyElliptic is performed in two stages.
First, we generate initial data (ID) for a given physical
scenario with the widely used TwoPunctures [31] code,
increasing resolution on the TwoPunctures grids until roundoff
error dominates its numerical solution of Eq. (18), u. We
refer to this high-resolution result as the trusted solution.
Second, we generate the same ID with NRPyElliptic, and
demonstrate that its results approach the trusted solution at
the expected convergence rate.
We repeat this procedure twice; first for an axisymmetric

case of two equal-mass BHs with spin vectors collinear
with their separation vector, and second for a full 3D case
involving a GW150914-like unequal-mass, quasicircular,
spinning BBH system. To demonstrate the fidelity of the
latter case, we first generate NRPyElliptic and TwoPunctures ID
at similar levels of accuracy. Then, using the Einstein Toolkit

[46–48] we evolve the ID through inspiral, merger, and
ringdown, and compare the results. Finally, we note that
M ¼ Mþ þM− is defined as the sum of individual ADM
masses of the punctures—see Eq. (83) of Ref. [31].

A. Axisymmetric initial data

In this test, we generate initial data (ID) for a scenario
symmetric about the z-axis; two equal-mass punctures at

rest, with spin components S⃗� ¼ �0.4M2
�ẑ and initial

positions z� ¼ �6M.6

We start by constructing the trusted solution u, against
which we will compare results from NRPyElliptic. The trusted
solution is generated by increasing the resolution of the
TwoPunctures numerical grids until roundoff errors dominate.
As we adopt double-precision arithmetic, this occurs when

4In orthogonal, curvilinear coordinate systems, such as the
ones supported by NRPy+, we have hi ¼

ffiffiffiffiffi

γ̂ii
p

(no summation
implied).

5For this fit, we generated three-dimensional initial data with
physical parameters as described in Sec. IV B (with M ¼ 1 at
resolutions ranging from 322 × 16 to 1282 × 16). As the wave
speed depends on grid spacing, the relaxation-light crossing time
is affected by the resolution.

6The bare mass of each puncture ism ¼ 0.456428 and the total
ADM mass is MADM ¼ 0.979989M.
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relative errors reach levels of roughly 10−14. The top panel
of Fig. 2 indicates that this occurs at a TwoPunctures grid
resolution of NA × NB × Nϕ ¼ 962 × 4.7

After obtaining this 962 × 4 trusted solution, we next
compare it against NRPyElliptic at various resolutions in the
bottom panel of the figure. To allow for a pointwise

comparison, we use the spectral interpolator in
TwoPunctures [57] to evaluate the TwoPunctures solution at
every point on our grid. Notice that the numerical errors
drop by roughly 29 each time the resolution is doubled,
indicating that numerical convergence is dominated by
our choice of tenth-order finite-difference (FD) stencils.
That perfect tenth-order convergence is not obtained is
unsurprising, as our outer boundary condition is approxi-
mate and implements its own sixth-order FD stencils.8

FIG. 2. Calibration of TwoPunctures and NRPyElliptic solutions,
axisymmetric ID study. Top: Relative errors between a super-high
resolution (1962 × 4) and lower-resolution results from the
TwoPunctures code. Bottom: Calibration of NRPyElliptic solutions
at various resolutions (N1 × N2 × 6), comparing against the
trusted solution (i.e., the TwoPunctures result at 962 × 4 resolution).
The horizontal axis is logarithmic in the range jzj > 1 and linear
otherwise. Further, the black dots on the horizontal axes denote
the puncture BH positions (also the locations of the coordinate
foci). TwoPunctures data were rotated so that the punctures and the
foci lie on the z axis.

FIG. 3. Axisymmetric ID study. Top: Snapshots of the relative
error between the NRPyElliptic solution at 1282 × 4 resolution and
the trusted solution at different times. TwoPunctures datawere rotated
so that the punctures and the foci lie on the z axis. Bottom: Black
dashed curve: L2-norm of the same relative error as the top panel,
computed within a sphere with radius r ¼ 100M and as a function
of time. Blue (dotted) and red (solid) curves:L2-norms of residuals
[second term in Eq. (18)] computed within the same sphere at two
different finite-difference orders as a function of time.

7To ensure we reach the level where roundoff errors dominate,
the maximum number of iterations of the Newton-Raphson
method (Newton_maxit parameter) is set to 10, and the tolerance
(Newton_tol parameter) is to 1 × 10−16, for the axisymmetric case.
Also we fix Nϕ ¼ 4, following an axisymmetric example in
Ref. [31].

8
NRPy+ currently requires the minimum number of grid points

in any given direction to be even and larger than FDorder=2,
where FD_order order of the finite-difference scheme. Thus we set
N3 ¼ 6 despite the system being axisymmetric. This requirement
may be relaxed in the future.
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The exponential convergence in time of the hyperbolic
relaxation method can be readily seen in Fig. 3. In the top
panel snapshots of the relative error at resolution 1282 × 6

are shown as a function of relaxation-wave crossing
times (RCTs) (i.e., the time required for a relaxation wave
to cross the numerical domain; see Appendix B). During
the first RCT, the errors decrease (increase) in the region
near (away from) the punctures and subsequently drop
exponentially in time. Numerical errors are consistently
smaller in the region near the origin due to the extreme
grid focusing there. Notice that after ∼4 RCTs the relative
errors between the punctures have already reached the
same order of magnitude as that of the fully relaxed
solution, and the remaining relaxation time (40% of the
total) is spent decreasing the relative errors away from the
punctures.
Coincident with the exponential relaxation along the

z-axis, the L2-norm of both the relative errors and residual
[second term in the left-hand side of Eq. (18)], computed
inside a sphere of radius 100M around the origin (situated
at the center of mass), displays a steady exponential drop,

FIG. 4. Same as Fig. 2, but for GW150914-like, full-3D BBH
initial data.

FIG. 5. Same as Fig. 3, but for GW150914-like, full-3D BBH
initial data, with NRPyElliptic resolution of 1282 × 16.

FIG. 6. Initial data quality of the GW150914-like BBH 3D
scenario evolved with the Einstein Toolkit, showing the relative
error of u against the trusted TwoPunctures solution. Here Two-

Punctures and NRPyElliptic ID used resolutions of 382 × 16 and
1282 × 16, respectively. Note that TwoPunctures data were rotated
so that the punctures are positioned on the z axis.
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as illustrated in the bottom panel of Fig. 3. We find that
when the FD order for computing the residual matches the
one used by the relaxation algorithm, the L2-norm of the
residual continues to drop even after the steady state has
been reached, until roundoff errors dominate this measure
of residual. This indicates that the residual has become
overspecialized to the approximation adopted for the FD
operators. To ameliorate this, we also compute the residual
using twelfth-order stencils, finding this measure of the
residual to have more consistent behavior with the true
error (i.e., the relative error against the trusted solution). We
repeated this analysis at eighth and fourteenth finite-
differencing order and found the same qualitative behavior
as twelfth order.

B. Full 3D initial data

The second test consists of two punctures with mass
ratio q ¼ 36=29, in a quasicircular orbit emulating the
GW150914 event [58]. The punctures are located at

z ¼ �5M, with spin components S⃗þ ¼ 0.31M2
þŷ and S⃗− ¼

−0.46M2
−ŷ.

9

The validation procedure for both TwoPunctures and
NRPyElliptic follows the prescription used in the axisym-
metric case. Since the full-3D system does not posses axial
symmetry, the number of grid points along the azimuthal
direction is no longer minimal. As indicated in the top panel
of Fig. 4, the trusted TwoPunctures solution has resolution
962 × 16, and we found that using Nϕ > 16 does not lower

the relative errors further. In NRPyElliptic (bottom panel of
Fig. 4), the optimal resolution in the azimuthal direction
was also found to be N3 ¼ 16, except for when the highest
resolution (2562 × 24) was chosen. We find this solution to
have smaller relative errors when compared to the 2562×16

resolution data (not shown), and requires a lower CFL-
factor of C0 ¼ 0.55 for numerical stability. With truncation
errors dominated by sampling in the x1 and x2 directions,
we find roughly 9th-order convergence for this case as well.
As expected, the relaxation to the steady state has

exponential convergence in (pseudo)time as depicted in
both panels of Fig. 5. Although the relaxation requires a
larger number of RCTs in the full-3D case, its qualitative
behavior is the same.
Next, to demonstrate the fidelity of full-3D initial data

generated by NRPyElliptic, we first generate ID for the
GW150914-like BBH scenario using both NRPyElliptic

and TwoPunctures. These ID are chosen to be of comparable
quality, as shown in Fig. 6. Precise numerical parameters
for the ID exactly follow the GW150914 Einstein Toolkit

gallery example [31,46,59–67], for which complete results
are freely available online.10 Notably the TwoPunctures code
required slightly less than a minute to generate the ID (we
input the bare masses directly), while NRPyElliptic required
about 10 minutes, for a difference in performance of
≈12x.11

After generation, the ID from both codes are interpolated
onto the evolution grids, which consist of a set of

FIG. 7. Hamiltonian constraint violation log10 jHj, as defined in Eq. (4), in orbital plane after interpolation to AMR grids at t ¼ 0 (left)
and after one orbit (right). Note that NRPyElliptic data were rotated so that the punctures are positioned on the x axis.

9The bare (local ADM) masses of the punctures are mþ ¼
0.518419 (Mþ ¼ 0.553846) and m− ¼ 0.391936. (M− ¼
0.446154). The total ADM mass is MADM ¼ 0.989946M. To
elicit a quasicircular orbit, linear momenta are set to P⃗� ¼
�Pϕx̂� Prẑ, where Pϕ ¼ 9.53 × 10−2 and Pr ¼ −8.45 × 10−4,
in code units.

10See https://einsteintoolkit.org/gallery/bbh/index.html for more
details.

11Benchmarks were performed on a 16-core AMD Ryzen 9
3950X CPU; the speed-up factor was found to be very similar on
other CPUs as well. Moreover, the damping parameter was not
set to the optimum value of η ¼ 18=M, and if it were the
difference in performance would drop to only ≈6x.
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CARPET [61]-managed Cartesian AMR patches in the
strong field region, with resolution around the punctures
of ≈M=52. These AMR patches are surrounded by a
LLAMA [62]-managed cubed spheres grid in the weak-field
region. When interpolating the ID onto these grids,
TwoPunctures adopts a high-accuracy spectral interpolator
(see e.g., [57]), and NRPyElliptic uses the third-order Hermite
polynomial interpolator from the AEILocalInterp thorn. As our
choice of Hermite interpolation order results in far less
accuracy, it introduces error to the Hamiltonian constraint
violation at time t ¼ 0 on the orbital plane, as shown in the
left panel of Fig. 7.
We then evolve these ID forward in time using the

McLachlan BSSN thorn [65]. Notice that after the first orbital
period the Hamiltonian constraint violations on the orbital
plane are essentially identical (right panel of Fig. 7),
indicating that numerical errors associated with the evolu-
tion quickly dominate ID errors.
Finally, to demonstrate that NRPyElliptic ’s 3D data are of

sufficiently high fidelity, we demonstrate that when they are
evolved forward in time the results are indistinguishable
from an evolution of TwoPunctures ID at comparable initial
accuracy. For instance, in Fig. 8 we show the trajectory of
the less-massive BH and the dominant mode (l ¼ 2,
m ¼ 2) of the Weyl scalar ψ4, for both evolutions. We
find that quantities extracted from the evolution of
NRPyElliptic ID to be in excellent agreement with results
from evolution of ID from the trusted TwoPunctures code.
Although not shown, the trajectory of the more-massive BH
for both simulations are also visually indistinguishable, as
are other, higher-order ψ4 modes.

V. CONCLUSIONS AND FUTURE WORK

NRPyElliptic is an extensible ID code for numerical
relativity that recasts nonlinear elliptic PDEs as covariant,
hyperbolic PDEs. To this end it adopts the hyperbolic
relaxation method of [39], in which the (pseudo)time
evolution of the hyperbolic PDEs exponentially relaxes
to a steady state consistent with the solution to the elliptic

problem. That standard hyperbolic methods are used to
solve the elliptic problem is beneficial, as consumers of
numerical relativity ID generally already have expertise in
solving hyperbolic PDEs. Thus the learning curve is
significantly lowered for core users of NRPyElliptic, enabling
them to build on existing expertise to modify and extend the
solver.

NRPyElliptic leverages NRPy+ ’s reference metric infra-
structure to solve the hyperbolic/elliptic PDEs in a wide
variety of Cartesian-like, spherical-like, cylindrical-like,
and bispherical-like coordinate systems. As its first appli-
cation, in NRPyEllipticwe solve a nonlinear elliptic PDE to set
up two-puncture ID for numerical relativity. Similar to the
TwoPunctures [31] code, NRPyElliptic solves the elliptic PDE for
the Hamiltonian constraint in a prolate spheroidal-like
coordinate system. But unlike the one-parameter coordinate
system used in prolate-spheroidal coordinates or TwoPunctures
coordinates, NRPyElliptic adopts NRPy+ ’s SinhSymTP three-
parameter coordinate system, providing greater flexibility in
setting up the numerical grid.
As the SinhSymTP numerical grid is not compactified,

finite-radius boundary conditions must be applied. To
address this, a new radiation boundary condition algorithm
within NRPy+ has been developed, which is based on the
widely used NewRad radiation boundary condition driver
within the Einstein Toolkit. While NewRad implements a
second-order approach, NRPyElliptic extends to fourth and
sixth finite difference orders as well. This high-order
boundary condition meshes well with the high (tenth)
order finite-difference representation of the elliptic oper-
ators adopted in NRPyElliptic.
To greatly accelerate the relaxation, we set the wave

speed of the hyperbolic PDEs to grow in proportion to the
grid spacing. As the SinhSymTP grid spacing grows expo-
nentially with distance from the central region of the
coordinate system, so does the relaxation wavespeed.
Thus this approach is many orders of magnitude faster
than the traditional, constant wave speed choice, in fact
making it fast enough to set up high-quality, full-3D BBH
ID for numerical relativity.
Although NRPyElliptic currently requires only a tiny

fraction of the total runtime of a typical NR BBH merger
calculation, it is roughly 12x slower than TwoPunctures when
setting up the full-3D BBH ID in this work. Efforts in the
immediate future will in part focus on improving this
performance. To this end, a couple of ideas come to mind.
First, all ID generated in this work used the trivial
(u ¼ v ¼ 0) initial guess. We plan to explore whether
relaxations at lower-resolutions might be used to provide
a superior initial guess on finer grids, in which convergence
is accelerated.
Second, due to the CFL condition, the speed of

NRPyElliptic is proportional to the smallest grid spacing,
which occurs at the foci of our SinhSymTP coordinate system.
Typical grid spacings at the foci are ∼10−4M due to

FIG. 8. Simulation results with ID by TwoPunctures (solid, blue)
and NRPyElliptic (dashed, orange-red). Left: Dominant mode
(l ¼ 2, m ¼ 2) of the Weyl scalar ψ4 at extraction radius
rext ¼ 500M. Right: Trajectory of the less-massive BH.
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extreme grid focusing there, which in turn are ∼1=100
those typically used in (near-equal-mass) binary puncture
evolutions, indicating that a significant speed-up may be
possible if superior grid structures are used.
To this end, we plan to adopt the same seven-grid

bispheres grids infrastructure adopted by the NRPy+ -based
BlackHoles@Home [68] project. As illustrated in Fig. 9, seven-
grid BiSpheres consists of seven overlapping spherical-like
and Cartesian-like grids. This approach places Cartesian-
like AMR grid patches over regions where the spherical-
like grids would otherwise experience extreme grid
focusing (r → 0), constraining the smallest grid spacings
in the strong-field region to ≈M=200. Thus with such
grids, accounting for needed inter-grid interpolations, we
might expect roughly a ∼10x increase in speed—making
NRPyElliptic comparable in performance to TwoPunctures for
near-equal-mass-ratio systems—all while maintaining
excellent resolution in the strong-field region. Further,
the Cartesian-like AMR patches on these grids are centered
precisely at the locations of the compact objects, making
them efficiently tunable to higher mass ratios, unlike
SinhSymTP or other prolate spheroidal-like coordinates
mentioned in this work. Extending NRPyElliptic to higher
mass ratios in this way, as well as to other types of NR ID,
will be explored in forthcoming papers.
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APPENDIX A: SOMMERFELD

BOUNDARY CONDITIONS

Sommerfeld boundary conditions (BCs)—also referred
to as radiation or transparent boundary conditions—aim to
enable outgoing wave fronts to pass through the boundaries
of a domain with minimal reflection. Sommerfeld BCs
typically assume that for large values of r any given field
f ¼ fðt; rÞ behaves as an outgoing spherical wave, with an
asymptotic value f0 as r → ∞. Following NewRad [54], our
ansatz for fðt; rÞ on the boundary takes the form

f ¼ f0 þ
wðr − ctÞ

r
þ C

rn
; ðA1Þ

where wðr − ctÞ=r represents an outgoing wave that solves
the wave equation in spherical symmetry,12 and C is a
constant. The 1=rn correction term encapsulates higher-
order corrections with n > 1 falloff.
We follow the hyperbolic relaxation method of [39] and

NewRad, and apply Sommerfeld boundary conditions not to
f directly, but to ∂tf,

∂tf ¼ −c
w0ðr − ctÞ

r
: ðA2Þ

To better understand the w0ðr − ctÞ term, we compute the
radial partial derivative of f as well,

∂rf ¼ w0ðr − ctÞ
r

−
wðr − ctÞ

r2
− n

C

rnþ1
: ðA3Þ

Solving Eq. (A3) for w0ðr − ctÞ and substituting into
Eq. (A2) yields

∂tf ¼ −c

�

∂rf þ wðr − ctÞ
r2

þ n
C

rnþ1

�

: ðA4Þ

To take care of the (as yet) unknown wðr − ctÞ=r2 term,
notice that our ansatz Eq. (A1) implies

wðr − ctÞ
r2

¼ f − f0

r
−

C

rnþ1
; ðA5Þ

which when inserted into Eq. (A4) yields

∂tf ¼ −c

�

∂rf þ f − f0

r

�

þ k

rnþ1
; ðA6Þ

FIG. 9. Schematic of seven-grid BiSpheres numerical meshes
used for BlackHoles@Home ∼6∶1 mass-ratio BBH simulations
during the long inspiral phase. BHs are represented as black dots.

12That is, ∂2
t ðrwÞ − c2∂2

rðrwÞ ¼ 0.
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where k ¼ −cCðn − 1Þ is just another constant. Thus we
have derived the desired boundary condition

∂tf ¼ −
c

r
½r∂rf þ ðf − f0Þ� þ

k

rnþ1
: ðA7Þ

To generalize Eq. (A7) to arbitrary curvilinear coordinate
systems xiCurv, we make use of the chain rule

∂fðxiCurvÞ
∂r

¼
�

∂xiCurv
∂r

��

∂f

∂xiCurv

�

; ðA8Þ

which can be plugged into Eq. (A7) to give us Eq. (29)

∂tf ¼ −
c

r

�

r
∂xiCurv
∂r

∂f

∂xiCurv
þ ðf − f0Þ

�

þ k

rnþ1
: ðA9Þ

Returning to the original ansatz [Eq. (A1)], we would
generally expect the lowest-order correction to be one order
higher than the dominant, 1=r falloff. As the correction
term in Eq. (A1) has 1=rn falloff, we therefore set n ¼ 2 to
obtain our final expression for imposing outgoing radiation
boundary conditions any given field f,

∂tf ¼ −
c

r

�

r
∂xiCurv
∂r

∂f

∂xiCurv
þ ðf − f0Þ

�

þ k

r3
: ðA10Þ

Regarding numerical implementation of this expression
a couple of subtleties arise. First, note that ∂xiCurv=∂r may
be impossible to compute analytically, as the spherical
radius r is generally easy to write in terms of the curvilinear
coordinates xiCurv, but not its inverse xiCurvðrÞ.
To address this, for all coordinate systems xiCurv imple-

mented in NRPy+, the function

xiSph ¼ ðrðxiCurvÞ; θðxiCurvÞ;ϕðxiCurvÞÞ; ðA11Þ

is explicitly defined. If we define the Jacobian

Jji ¼
∂x

j
Sph

∂xiCurv
; ðA12Þ

and use NRPy+ functions to invert this matrix, we obtain
exact expressions for the inverse Jacobian matrix, which

encodes ∂xiCurv=∂x
j
Sph,

ðJ−1Þij ¼
∂xiCurv

∂x
j
Sph

: ðA13Þ

From this we can express ∂xiCurv=∂r exactly for any
curvilinear coordinate system implemented within NRPy+.
The second subtlety lies in formulating a way to

approximate k. If the function f represented only an
outgoing spherical wave, then it would exactly satisfy
the advection equation

�

∂f

∂t

�

adv

≡ −
c

r

�

r
∂xiCurv
∂r

∂f

∂xiCurv
þ ðf − f0Þ

�

; ðA14Þ

which is identical to Eq. (A10) but with k ¼ 0.
Next, consider an interior point rint directly adjacent to the

outer boundary. Then, fðrintÞ approximately satisfies both
the time evolution equation [e.g., Eq. (25)], and the advection
equation Eq. (A14). We compute ∂tfðrintÞ for a given field f
directly from evaluating the corresponding right-hand side of
Eq. (21), and ½∂tf�advðrintÞ fromEq. (A14). The difference of
these two equations yields the departure from the expected
purely outgoing wave behavior at that point k=rnþ1

int . From
this we can immediately extract k,

k ¼ r3int

�

∂f

∂t
−

�

∂f

∂t

�

adv

�

int

; ðA15Þ

where again we impose n ¼ 2.
Our numerical implementation of Sommerfeld BCs

evaluates ∂f=∂xiCurv in Eq. (A14) using either centered
or fully upwinded finite-difference derivatives as needed to
ensure finite-difference stencils do not reach out of bounds.
Unlike NewRad, which only implements second-order finite-
difference derivatives for ∂f=∂xiCurv, our implementation
supports second, fourth, and sixth-order finite differences.
We validated this Sommerfeld boundary condition algo-

rithm against NewRad for the case of a scalar wave
propagating across a 3D Cartesian grid, choosing sec-
ond-order finite-difference derivatives in our algorithm. We
achieved roundoff-level agreement for the wave propagat-
ing toward each of the individual faces.

APPENDIX B: SPATIALLY DEPENDENT

WAVE SPEED AND RELAXATION-WAVE

CROSSING TIME

At every point in the domain we compute the smallest
proper distance between neighboring points, ΔSmin, and
define a local wave speed that is proportional to the grid
spacing as

cðx⃗Þ ¼ C0
ΔSminðx⃗Þ

Δt
; ðB1Þ

whereΔt is the time step used by the time integrator, and C0
is the CFL factor.
For the sake of readability, we repeat here the

relationship between SinhSymTP coordinates and Cartesian
coordinates,

x ¼ r̃ sinðx2Þ cosðx3Þ;
y ¼ r̃ sinðx2Þ sinðx3Þ;
z ¼ ðr̃2 þ b2Þ1=2 cosðx2Þ: ð33Þ

To establish the time scales associatedwith the propagation of
relaxation waves, we calculate the relaxation-wave-crossing
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time along the x-axis—ðx2;x3Þ ¼ ðπ=2; 0Þ in Eq. (33)—
and the z-axis. NRPyElliptic adopts topologically Cartesian,
cell-centered grids with intercell spacing of Δx1, Δx2, and
Δx3 in the x1, x2, and x3 directions, respectively. Because
of this, the closest points to the x-axis are obtained by
setting x2 ¼ ðπ þ Δx2Þ=2 and x3 ¼ Δx3=2. Likewise, the
closest points to the z-axis are given by setting x2 ¼ Δx2=2
and x3 to any fixed value. The relaxation-wave crossing
time along the x axis is given by

T
ðxÞ
RC ¼

Z

dx

cðxÞ ¼
Z

1

x1¼0

fðx1Þdx1

cðxÞðx1Þ
; ðB2Þ

where

fðx1Þ ¼ ∂x1
xðx1;x2;x3Þjx2¼ðπþΔx2Þ=2;x3¼Δx3=2

; ðB3Þ

and cðxÞ is the wave speed along the x-axis. For the choice
of grid parameters described in Sec. III, the smallest grid
spacing along the x-axis is given by the proper distance in
the direction of the x2 coordinate, so that

cðxÞðx1Þ ¼ C0
ΔSð2Þðx1Þ

Δt
¼ C0Δx2

Δt
hð2Þðx1Þ; ðB4Þ

where hð2Þðx1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̃2ðx1Þ þ b2 cos2ðΔx2=2Þ
p

is the scale
factor. Substituting Eq. (B4) in Eq. (B2) and integrating
yields

T
ðxÞ
RC ¼ Δt

C0Δx2

arctanh

�

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ b2cos2ðΔx2=2Þ
p

�

× sinðΔx2=2Þ cosðΔx3=2Þ: ðB5Þ

Similarly, the wave speed along the z-axis is given by

cðzÞðx1Þ ¼ C0
ΔSð3Þðx1Þ

Δt
¼ C0Δx3

Δt
hð3Þðx1Þ; ðB6Þ

where hð3Þðx1Þ ¼ r̃ðx1Þ sinðΔx2=2Þ is the scale factor in
the direction of x3. Thus, the relaxation-wave crossing time
along the z-axis can be computed as

T
ðzÞ
RC ¼

Z

dz

cðzÞ ¼
Z

1

x1¼0

gðx1Þdx1

cðzÞðx1Þ

¼ Δt

C0Δx3

arctanh

�

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ b2
p

�

cotðΔx2=2Þ; ðB7Þ

where we used

gðx1Þ ¼ ∂x1
zðx1;x2;x3Þjx2¼Δx2=2

: ðB8Þ

Plugging in the values of the grid parameters A, w, and

step sizes, we find T
ðxÞ
RC ¼ 0.248M (0.574M) and T

ðzÞ
RC ¼

1.28M (1.26M) for full-3D (axisymmetric) ID.

From Eq. (B6) we find that for fixed values of x1 and
small angles x2 the wave speed along the z-axis behaves as

cðzÞ ∼ r̃ðx1Þx2Δx3: ðB9Þ

Our cell-centered grid has x2i2
¼ ði2 þ 1=2ÞΔx2 with

i2 ¼ 0; 1; 2;…;N2, and thus the wave speed quickly
increases as we move away from the axis. Such rapidly
moving signals slightly off the z-axis are not considered in
our analytic estimates, yet influence the RCT so that in our

full-3D simulations we observe the same value of TRC ≈

0.25M ≈ T
ðxÞ
RC along both axes, as shown in Fig. 10. Thus

we use TRC ¼ T
ðxÞ
RC in all figures.

FIG. 10. Top: Propagation of u along gridpoints closest to the
x-axis during the first relaxation-wave crossing time for the 3D
ID. Bottom: Same as top panel, except for gridpoints closest to
the z-axis.
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