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We present state-selected measurements of rotational cooling and excitation rates of CHþ molecular ions
by inelastic electron collisions. The experiments are carried out at a cryogenic storage ring, making use of a
monoenergetic electron beam at matched velocity in combination with state-sensitive laser dissociation of
the CHþ ions for simultaneous monitoring of the rotational level populations. Employing storage times of
up to 600 s, we create conditions where electron-induced cooling to the J ¼ 0 ground state dominates over
radiative relaxation, allowing for the experimental determination of inelastic electron collision rates to
benchmark state-of-the-art theoretical calculations. On a broader scale, our experiments pave the way to
probe inelastic electron collisions for a variety of molecular ions relevant in various plasma environments.
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Electron collisions with molecular ions are fundamental
processes in partially ionized molecular gas, ranging from
astrophysical environments and planetary atmospheres to
low temperature plasma used in advanced technologies
[1,2]. Despite their fundamental relevance, detailed exper-
imental data on the effect of electron collisions on the
internal excitation of the molecular ions are essentially
nonexistent. Moreover, to enable computationally tractable
calculations, most state-of-the-art theoretical methods
require significant approximations [3], such as the
Coulomb-Born (CB) [4–7] and R-matrix methods [8–15],
which in this context have remained without experimental
verification. For rotationally inelastic collisions between
electrons and molecular ions, in particular, theoretical
calculations have not yet converged [4–13,16–18], and we
are unaware of any previous state-resolved experimental
cross section data that can guide the theory.
For illustration, we consider the case of molecular ions in

cold astrophysical environments [19,20]. They are mostly
observed [21] by radio-astronomy via transitions between
the lowest rotational states, requiring knowledge of the
inelastic collision processes that contribute to rotational
excitation and de-excitation. At the relevant temperatures of
10–100 K, the dominant partners for inelastic collisions are
hydrogen atoms or molecules, and electrons [13,18].
Electronic collisions are relevant even at the generally

small electron density in the interstellar medium (typically
∼10−4 of hydrogen) because of their higher rate coefficients
(10−6 cm3 s−1 at 10–100 K for dipolar molecular ions). For
ions such as HCOþ, electron collisions are found to even
dominate the inelastic rates [18].
To represent, in particular, the astrophysical conditions,

relevant laboratory studies should ensure the low-density,
binary-collision regime. Hence, very sensitive detection
methods are required. Moreover, the internal molecular
excitation must be probed for only a few populated
rotational levels, corresponding to the cold astrophysical
temperatures. We present such a measurement using
methylidyne (CHþ) cations circulating in a cryogenic
storage ring. There, the rotational level populations are
subject to radiative cooling in the cryogenic environment
and to controlled electron collisions in a merged, velocity-
matched beam of electrons. We probe the evolution of the
level populations as a function of storage time by resonant
photodissociation. At effective temperatures of ∼20 K for
the radiation field and ∼26 K for the electrons, we reach
effective electron densities substantially above the critical
density needed for collisional transition rates to dominate
over the radiative ones. Hence, rotational cooling by
inelastic electron collisions outperforms radiative cooling,
leading to J ¼ 0 as the dominant rotational level after a
much shorter storage time than for radiative cooling
alone. Using laser diagnostics, the electron-induced
changes of the rotational populations are measured and
compared to theory. This confirms recent predictions for
the low-temperature inelastic rate coefficients of CHþ and
demonstrates that, in combination with suitable rotational
diagnostics, cryogenic storage rings offer a platform to
measure rotationally inelastic electron-collision rates for a
wide range of molecular ions.
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Merged-beams studies in room-temperature storage
rings [22] demonstrated the effect of electron collisions
on rotational excitation of HDþ by measuring the frag-
mentation energies from dissociative recombination (DR)
events. However, individual angular momenta J could not
be resolved, and the effect of electron collisions on the
rotational populations was far from dominant. Cryogenic
storage rings for molecular ions [23,24] now enable state-
selective studies for the lowest J levels of elementary
diatomic ions. These studies addressed spontaneous
radiative relaxation of rotational excitation in a low-
temperature blackbody field for CHþ [25] and OH−

[26,27]. Moreover, the rotational dependence of the
low-energy DR rate was measured in electron collision
experiments on HeHþ [28]. The present Letter extends
these studies by combining laser probing of the rotational
level populations of CHþ ions with the collisional rota-
tional cooling of these ions by a merged electron beam.
The experiments are performed in the cryogenic storage

ring (CSR) [24] at the Max Planck Institute for Nuclear
Physics in Heidelberg, Germany. A 280-keV beam of CHþ
ions with a broad J distribution is produced in a Penning
ion source, electrostatically accelerated, and injected into
the CSR, where the ions then circulate with a mean storage
lifetime of ∼180 s. For rotational diagnostics, they are
illuminated in a straight section of the ring with nanosecond
laser pulses from an optical parametric oscillator (OPO)
with a tunable wavelength near 300 nm. At certain wave-
lengths, CHþ ions in specific low-J levels can be preferen-
tially addressed by resonant photodissociation, as already
demonstrated at CSR [25]. Neutral H atoms from the
photodissociation leave the closed ion orbit at a downstream
electrostatic deflector and are counted on a microchannel
plate (MCP) detector [Fig. 1(a)].
On each revolution, the ions interact with the velocity-

matched, collinear electron beam of the CSR electron
cooler. The electron cooler delivers a continuous, nearly
monoenergetic electron beam of ∼20 eV, guided by an
axial magnetic field (10 mT in the interaction region) to
yield a 10-mm diameter, nearly homogeneous current
density profile in the collinear overlap region with the
ion beam. The electron density is 7.0ð6Þ × 105 cm−3 (here
and below, the number in parentheses is the one-sigma
uncertainty of the final digit), and the relative velocities are
mainly transverse to the beam direction with an effective
temperature T⊥ ∼ 26 K [kBT⊥ ¼ 2.25ð25Þ meV with kB
being the Boltzmann constant; further discussed below].
The overlap region is housed in a biased drift tube where
the electrons are decelerated to 11.8 eV, thus reaching the
same velocity as the stored CHþ ions over an effective
matched-velocity overlap region of 0.79(1) m. The ion
beam is centered within the electron beam and reaches an
effective full width at half-maximum (FWHM) diameter of
< 6 mm after 10 s of phase-space cooling by the electrons
[29]. The DR rate and its dependence on the electron-ion

collision energy are measured using the MCP detector.
The peak in the DR rate at the lowest achievable electron-
ion collision energy serves for matching the average ion
and electron beam velocities.
CHþ [29] has an X1Σþ ground state with a rotational

constant of ∼13.9 cm−1 and a dissociation energy D0 ¼
32946.7ð11Þ cm−1 [30]. A metastable a3Π state with
∼1.2 eV excitation energy and measured lifetime of
∼7 s [37] is strongly populated in the injected ion beam
[29]. At a storage time t≳ 20 s, radiative relaxation has
progressed along the vibrational cascades (all having
radiative lifetimes τr < 0.1 s) while the rotational cascade
then has essentially depopulated the J ≥ 4 states [τr < 2 s
for X1Σþðv ¼ 0Þ]. The population in the metastable a3Π
levels was monitored in situ by storage-time-dependent
molecular-fragment imaging making use of the unique
signature of DR from these levels. Their fractional pop-
ulations were found to be < 0.1 for t > 25 s and < 0.05
for t > 40 s [29]. For t > 20 s, we probe the populations of
the remaining levels, X1Σþðv ¼ 0; J ≤ 3Þ, via Feshbach
resonances in near-threshold photodissociation [25,30,49].
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FIG. 1. (a) Schematic of the storage-ring section for laser
probing and merged-beam electron-ion interaction. (b) Theoreti-
cal near-threshold photodissociation cross sections of CHþ ions
[25] in J ≤ 3, weighted with a typical J distribution during
rotational relaxation in the CSR and convolved with the laser
line shape (FWHM 6.1 cm−1). Horizontal brackets: wave number
ranges between the thresholds for Cþð2P1=2Þ, lower, and
Cþð2P3=2Þ, upper, for the indicated J. Thick vertical lines mark
the wave numbers ν̄i (i ¼ 0;…; 2) and ν̄b0 where laser probing
signals were accumulated. The probing wave numbers are
Doppler shift corrected, as explained in the Supplemental
Material [29]. Individual J contributions (broken curves) add
up to the total probed signal (full curve). The magnified
contribution of J ¼ 3 is shown up to the onset of its continuum
level only.
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In this process, optical transitions excite the A1Π electronic
state which correlates to the atomic channel Hþ Cþð2P3=2Þ
with a fine-structure excitation of 63.42 cm−1 [50] and
supports vibrational energy levels above the Hþ Cþð2P1=2Þ
channel. These levels dissociate by spin-orbit and rotational
coupling while being long-lived enough to cause distinct
resonances [30] in the near-threshold photodissociation
spectrum.
Considering the initial CHþðX1Σþ; v ¼ 0; JÞ levels, the

photodissociation yield as a function of the photon energy
has characteristic resonances for each J [Fig. 1(b)]. In our
laser-probing scheme, we use three photon wave numbers
ν̄i controlled by the OPO laser tuning, each situated near a J
resonance peak for J ≤ 2. Gated count rates Ri were
accumulated in time windows synchronized with the arrival
times of H atoms produced by the < 10-ns laser pulses
(repetition rate 20 s−1), where the arrival times were
evaluated as the time difference between the trigger signal
of a laser pulse and the detection time of a corresponding
counted particle. The background count rate Rb on the
MCP from CHþ collisions with residual gas molecules was
recorded in the breaks between the synchronized gates. The
wave numbers were cycled and stayed ∼4 s at each ν̄. The
cycle included a further wave number ν̄b0 below the J ¼ 3
threshold to probe a rate Rb0 for all backgrounds, including
any laser-induced one. The resonant laser-induced rates
were normalized to the measured laser pulse energy ϵL
and to Rb (proportional to the stored ion number), yielding
the normalized signals Si ¼ ðRi − Rb0 Þ=ϵLRb. Based on
updated molecular theory [25] and on a precise study of the
resonance structure for our experimental parameters [29],
these normalized signals can be expressed as Si ¼
C
P

J pJσJðν̄iÞ with the known cross sections σJðν̄iÞ and
an overall normalization C. This relation is solved for the
relative rotational populations pJ [29]. With electrons
absent, we also performed finely spaced scans of ν̄ to
align the experimental peaks with the J-dependent theo-
retical spectra. Moreover, the spectra from laser scans at
t ¼ 14–28 s were fitted with a linear combination of the
calculated σJðν̄Þ to derive populations p̃J (J ≤ 3) [29] that
we consider as the initial populations at t ¼ 21 s for the
rotational levels in the X1Σþ; v ¼ 0 ground state.
As shown by the symbols in Fig. 2, relaxation by

radiative transitions alone was probed for ten windows
of t up to radiative equilibrium. The deduced pJðtÞ were
fitted by the corresponding t-window averages of pJ from
rate equations which included spontaneous radiative decay
as well as the transitions induced by a modeled blackbody
radiation field of the CSR. In this radiative model [29], the
spectral intensity is composed of a cryogenic component at
a temperature T low with a 1 − ϵ fraction of the Planck
blackbody spectrum plus a small fraction ϵ of a room-
temperature (300 K) blackbody spectrum from radiation
leaks into CSR. With the fitted parameters T low ¼
14.6ð21Þ K and ϵ ¼ 1.03ð28Þ × 10−2, the radiative model

well reproduces the measured pJðtÞ and is used to predict
the J populations in the stored CHþ ions when collisional
cooling by the electrons is absent. Based on the in situ
monitoring, the remaining small population in the meta-
stable a3Π state is neglected. Assuming a purely thermal
radiation field, its effective temperature Teff

r can be derived
directly from the asymptote of the population ratio between
the J ¼ 0 and 1 levels, ðp1=p0Þeq ¼ 0.39ð5Þ, which
yields Teff

r ¼ 19.6ð11Þ K.
The effect of low-energy electron collisions was then

measured (Fig. 3) by merging the velocity-matched elec-
tron beam with the CHþ ions. Phases with electrons on and
off were alternated, with the electron-off phases serving as
laser-probing time windows. This results in a duty cycle for
the inelastic electron interaction of ∼50%. The MCP
detector was activated for the laser-probing only and turned
off when the electrons were on, as the high DR event rate
would saturate the MCP detector.
Compared with electrons off, the J ¼ 0 level now

becomes populated much faster. At only 30 s of storage,
p0 ≈ 0.3 versus p0 < 0.1 without electrons. Moreover, the
asymptote of the J ¼ 1 and 0 population ratio, representing
the equilibrium between rotational cooling and excitation,
rises significantly to ðp1=p0Þeq ¼ 0.53ð13Þ. Both observa-
tions reveal a strong collisional effect and directly show that
in the low-temperature regime the critical electron density for
the CHþ J ¼ 0 → 1 transition is similar to or lower than our
ring-averaged electron density n̄e ¼ 2.06ð21Þ × 104 cm−3.
The larger collisional value of ðp1=p0Þeq indicates a some-
what higher electron temperature as compared to Teff

r .
With the time dependence of the results in Fig. 3, we

quantitatively test the electron-collision rate coefficients.

FIG. 2. Measured and modeled CHþ rotational populations
without electron interaction. Data pJ at t > 40 s (filled symbols
and one-sigma uncertainties) were determined from the signals SJ
at the J-specific laser-probing wavelengths (J ≤ 2) averaged over
the probing time windows indicated at the top (horizontal bars).
Specialized laser scans (see the text) yielded populations p̃J
(unfilled symbols) at t ¼ 21 s (arrow) for J ≤ 3. With these as
initial conditions, the radiative model was fitted to the later p0

and p2 (p1 follows as 1 − p0 − p2) varying T low and ϵ. Light
colored bands: one-sigma uncertainties of the fitted model
populations (including the p̃J uncertainties).
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We analyze the evolution of the pJ starting at t ¼ 28 s,
when the J ¼ 3 relative population has dropped to ≲0.05
and a three-level model (J ≤ 2) is adequate. Even dis-
regarding inelastic collisions, already DR as a potentially
J-dependent reactive process can influence the pJ.
Therefore, in addition to the radiative rates, we must
account for the variation of the pJ due to differences
between the DR rate coefficients for the lowest J levels.
These were obtained in a separate run within the same
experiment, measuring the time dependence of the merged-
beams J-averaged DR rate coefficient ᾱmb

DRðtÞ in the
velocity-matched beams over 100 s of storage. These
measurements required the electron energy to be rapidly
alternated from a velocity-matching condition to higher
values (0.2–4 eV collision energy). This led to modified
pJðtÞ values that, during the times of detuned electron
velocity, were again laser monitored. Correlating the
changes of these pJðtÞ with those of ᾱmb

DRðtÞ, differences
between the J-specific DR rate coefficients could be
derived [29]. The pJðtÞ modeled with radiative transitions
plus J-selective depletion by DR, but still excluding
inelastic collisions, are separately shown in Fig. 3.

To include the inelastic collisions, cross sections σJ;J0 ðEÞ
as functions of the collision energy E are used [29] to
determine merged-beams inelastic rate coefficients αmb

J;J0 ,
thus adding the related J → J0 transitions to the rate
equations for pJðtÞ. We perform this step for σJ;J0 ðEÞ
calculated in the CB approximation [4,5,7,29] as well as
from the most recent R-matrix calculations [11]. The latter
are generally higher than the CB results by a factor of
∼1.6. The collision energy distribution used in the deter-
mination of αmb

J;J0 is modeled for a set of electron temper-
atures kBT⊥ between 1.5 and 3.0 meV [29]. The modeled
equilibrium population ratio ðp1=p0Þeq, largely governed
by αmb

1;0=α
mb
0;1, depends significantly on kBT⊥, but only

weakly on the theoretical cross-section size. This size
effectively cancels in the ratio αmb

1;0=α
mb
0;1 as the cooling

and excitation cross sections are related through detailed
balance. Comparing Ref. [29], the model with the measured
pJ at t ¼ 142 s supports the experimental value of kBT⊥ ¼
2.25ð25Þ meV [T⊥ ¼ 26ð3Þ K].
The data measured at intermediate times for p0ðtÞ and

p1ðtÞ can then be compared with the model calculations
employing the experimental T⊥. This probes the absolute
values of the inelastic rate coefficients, dominantly αmb

1;0

and αmb
0;1. As seen in Fig. 3 the data are remarkably well

reproduced when using the R-matrix cross sections; slightly
worse agreement is found for the CB approximation.
Comparison with theory is also possible considering the

thermal rate coefficients implied by the experiment. For the
relevant collision energies, the J-changing cross sections
for an energy level pair spaced by ΔEJ;J0 are well
approximated by a simplified, single-parameter expression.
For excitation (J0 > J), the approximation is σ̂J;J0 ðEÞ ¼
σ̂0J;J0ΔEJ;J0=E (where E > ΔEJ;J0) with the threshold
value σ̂0J;J0 as the only parameter. For de-excitation, de-
tailed balance then yields, at all energies, σ̂J0;JðEÞ ¼
ĝσ̂0J;J0ΔEJ;J0=E with ĝ ¼ ð2J þ 1Þ=ð2J0 þ 1Þ. An experi-
mental value for σ̂00;1 can be obtained from the time
dependence of the ratio p1=p0 starting at t ¼ 28 s
[Fig. 4(a)]. A fit of the parameter in the simplified model
yields σ̂00;1 ¼ 1.07ð23Þfitð40Þsyst × 104 Å2, where the first
uncertainty stems from the fitting and the second one from
the uncertainties in T⊥, the initial condition at t ¼ 28 s, and
n̄e. (Simplified σ̂J;Jþ1ðEÞ and σ̂Jþ1;JðEÞ for other level pairs
were included in the model with their σ̂0J;Jþ1 matching
Ref. [11], but reducing them to 0 changed the fit result by
only < 0.02 × 104 Å2.) The simplified cross sections with
the experimental σ̂00;1 and the thermal electron energy
distribution at a kinetic temperature T served to obtain
the plasma rate coefficients α1;0ðTÞ and α0;1ðTÞ, shown in
Fig. 4(b). The corresponding R-matrix results [11] and the
CB approximation lie well within the experimental one-
sigma uncertainty range of �43%.

FIG. 3. Laser-probed CHþ rotational populations pJ (symbols)
with velocity-matched electrons applied in the shaded time
windows. Thin full line: fitted pJðtÞ for radiative relaxation only
from Fig. 2. The other lines show modeled evolutions starting
from the pJðt ¼ 28 sÞ measured here. Short-dashed, radiation
only; dash-dotted, depletion by J-dependent DR also included;
long-dashed line, additionally including inelastic collisions using
cross sections σCBJ;J0 ðEÞ; thick full line, instead, using the R-matrix
results [11] for the inelastic collisions cross sections. The red line
and shaded area show the estimated maximum J ¼ 3 population.
Data points with one-sigma uncertainties.
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This demonstrates the use of a merged-beams electron
target in a cryogenic storage ring for quantitative probing of
J-changing electron collisions between the lowest rota-
tional levels in small molecular ions. The experimental
method for rotational state probing used here, employing
J-dependent resonances in single-step photodissociation,
generally cannot be transferred to other ion species.
However, effort is underway [51] to develop J-dependent
photodissociation schemes for additional small ions in
cryogenic storage rings. For most systems, such schemes
will include intermediate laser excitation steps similar to
the resonant multiphoton dissociation process earlier real-
ized in ion traps [52]. It will then be possible to extend the
measurements to other systems crucial for spectroscopic
probing of the interstellar medium, such as HCOþ. The
CSR merged-beams setup offers more options for control-
ling and probing the electron collisions, beyond what has
been realized in the present survey. Thus, future experi-
ments may focus on precisely probing the change of pJ in a
given electron interaction period or apply detuned average
velocities of the electron and ion beam. This will allow
electron impact excitation and de-excitation cross sections
of molecular cations to be investigated in more detail, over
a wider range of electron collision energies relevant not
only for astrophysical environments, but also for molecular
plasma conditions in general.
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