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system properties like latency and energy consumption. These
non-functional faults, unlike regular software bugs, do not
cause the system to crash or exhibit any obvious misbe-
havior [75, 83, 94]. Instead, miscon�gured systems remain
operational but degrade in performance [15, 70, 74, 84] that
can cause major issues in cloud infrastructure [18], internet-
scale systems [13], and on-device machine learning (ML)
systems [1]. For example, a developer complained that “I
have a complicated system composed of multiple components
running on NVIDIA Nano and using several sensors and I ob-
served several performance issues. [3].” In another instance, a
developer asks “I’m quite upset with CPU usage on Jetson TX2
while running TCP/IP upload test program” [4]. After strug-
gling in �xing the issues over several days, the developer
concludes, “there is a lot of knowledge required to optimize the
network stack and measure CPU load correctly. I tried to play
with every con�guration option explained in the kernel docu-
ments.” In addition, they would like to understand the impact
of con�guration options and their interactions, e.g., “What
is the e�ect of swap memory on increasing throughput? [1]”.
Existing works and gap. Understanding the performance
behavior of con�gurable systems can enable (i) performance
debugging [34, 87], (ii) performance tuning [42, 45, 46, 72,
73, 78, 92, 95, 101], and (iii) architecture adaptation [8, 25,
26, 30, 44, 53, 56, 60]. A common strategy is to build per-
formance in�uence models such as regression models that
explain the in�uence of individual options and their inter-
actions [36, 82, 87, 95]. These approaches are adept at in-
ferring the correlations between con�guration options and
performance objectives, however, as illustrated in Fig. 1 per-
formance in�uence models su�er from several shortcomings
(detailed in §2): (i) they become unreliable in unseen environ-
ments and (ii) produce incorrect explanations.
Our approach. Based on the several experimental pieces
of evidence presented in the following sections, this paper
proposes U������–a methodology that enables reasoning
about con�gurable system performance with causal infer-
ence and counterfactual reasoning. U������ �rst recovers
the underlying causal structure from performance data. The
causal performance model allows users to (i) identify the
root causes of performance faults, (ii) estimate the causal ef-
fects of various con�gurable parameters on the performance
objectives, and (iii) prescribe candidate con�gurations to �x
the performance fault or optimize system performance.
Contributions. Our contributions are as follows:
• We propose U������ (§4), a novel approach that allows
causal reasoning about system performance.

• We have conducted a thorough evaluation of U������ in
a controlled case study (§5) as well as real-world large-
scale experiments. In particular, we evaluated e�ectiveness
(§7), transferability (§8), and scalability (§9) by comparing
U������ with: (i) state-of-the-art performance debugging
approaches, including CBI [90], DD [9], E�C��� [104],

Video  
Decoder

Stream 
Muxer

Primary 
Detector

Object 
Tracker

Secondary 
Classifier

# Configuration Options

55861444 86

Figure 2. D���������: An example of a highly-con�gurable com-
posed system, a big data analytics pipeline system, with several
con�gurable components: (i) Video Decoder performs video en-
coding/decoding with di�erent formats; (ii) Stream Muxer accepts
input streams and converts them to sequential batch frames; (iii)
Primary Detector transforms the input frames based on input NN
requirements and makes model inference to detect objects; (iv) Ob-
ject Tracker supports multi-object tracking; (v) Secondary Classi�er
improves performance by avoiding re-inferencing.

and B��D�� [67] and (ii) performance optimization tech-
niques, including SMAC [48] and PESMO [43]. The eval-
uations were conducted on six real-world highly con�g-
urable systems, including a video analytic pipeline, D����
������ [5], three deep learning-based systems, X�������
[17], D��������� [41], and BERT [23], a video encoder,
X264 [7], and a database engine, SQLite [6], deployed on
NVIDIA J����� hardware (TX1, TX2, and X�����).

• In addition to sample e�ciency and accuracy of U������
in �nding root causes of performance issues, we show
that the learned causal performance model is transferable
across di�erent workload and deployment environments.
Finally, we demonstrate the scalability of U������ to large
systems consisting of 500 options and several trillion po-
tential con�gurations.

• The artifacts and supplementary materials can be found
at https://github.com/softsys4ai/unicorn.

2 Motivating Scenarios
Simple motivating scenario. In this simple scenario, we
motivate our work by demonstrating why performance anal-
yses solely based on correlational statistics may lead to an
incorrect outcome. Here, the collected performance data indi-
cates that Throughput is positively correlated with increased
Cache Misses2 (as in Fig. 1 (a)). A simple ML model built on
this data will predict with high con�dence that larger Cache
Misses leads to higher Throughput—this is misleading as
higher Cache Misses should, in theory, lower Throughput.
By further investigating the performance data, we noticed
that the caching policy was automatically changed during
measurement. We then segregated the same data on Cache
Policy (as in Fig. 1 (b)) and found out that within each
group of Cache Misses, as Cache Misses increases, the
Throughput decreases. One would expect such behavior, as

2we used a distinct font to indicate variables such as con�guration
options or performance metrics and events throughout this paper.
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Figure 3. (a) Performance distribution when D��������� is de-
ployed on NVIDIA Jetson Xavier (b) Miscon�guration that caused
the multi-objective non-functional fault, shown as ⇤ in the perfor-
mance distribution.

the more Cache Misses the higher number of access to ex-
ternal memory, and, therefore, the Throughput would be
expected to decrease. The system resource manager may
change the Cache Policy based on some criteria; this means
that for the same number of Cache Misses, the Throughput
may be lower or higher; however, in all Cache Policies,
the increases of Cache Misses resulting in a decrease in
Throughput. Thus, Cache Policy acts as a confounder that
explains the relation between Cache Misses and Throughout,
which a correlation-based model will not be able to capture.
In contrast, a causal performance model, as shown in Fig. 1
(c), �nds the relation between Cache Misses, Cache Policy,
and Throughput and thus can reason about the observed be-
havior correctly.

In reality, performance analysis and debugging of hetero-
geneous multi-component systems is non-trivial and often
compared with �nding the needle in the haystack [100]. In
particular, the end-to-end performance analysis is not pos-
sible by reasoning about individual components in isola-
tion, as components may interact with one another in such
a composed system. Below, we use a highly con�gurable
multi-stack system to motivate why causal reasoning is a
better choice for understanding the performance behavior
of complex systems.
Motivating scenario based on ahighly con�gurable data
analytics system. We deployed a data analytics pipeline,
D��������� [5]. D��������� has many components, and
each component has many con�guration options, resulting
in several variants of the same system as shown in Fig. 2.
Speci�cally, the variability arises from: (i) the con�guration
options of each software component in the pipeline, (ii) con-
�gurable low-level libraries that implement functionalities

required by di�erent components (e.g., the choice of track-
ing algorithm in the tracker or di�erent neural network
architectures), (iii) the con�guration options associated with
each component’s deployment stack (e.g., CPU Frequency
of X�����). Further, there exist many con�gurable events
that can be measured/observed at the OS level by the event
tracing system. More speci�cally, the con�guration space
of the system includes (i) 27 Software options (Decoder: 6,
Stream Muxer: 7, Detector: 10, Tracker: 4), (ii) 22 Kernel op-
tions (e.g., Swappiness, Scheduler Policy, etc.), and (iii)
4 Hardware options (CPU Frequency, CPU Cores, etc.). We
use 8 camera streams as the workload, x264 as the decoder,
Tra�cCamNet model that uses ResNet 18 architecture for
the detector, and an NvDCF tracker, which uses a correla-
tion �lter-based online discriminative learning algorithm
for tracking. Such a large space of variability makes perfor-
mance analysis challenging. This is further exacerbated by
the fact that the con�guration options among the compo-
nents interact with each other. Additional details about our
D��������� implementation can be found in the supple-
mentary materials.
To better understand the potential of the proposed ap-

proach, we measured (i) application performance metrics
including throughput and energy consumption by instru-
menting the D��������� code, and (ii) 288 system-wide
performance events (hardware, software, cache, and trace-
point) using ?4A 5 and measured performance for 2461 con-
�gurations of D��������� in two di�erent hardware en-
vironments, X�����, and TX2. As it is depicted in Fig. 3a,
performance behavior of D���������, like other highly
con�gurable systems, is non-linear, multi-modal, and non-
convex [52]. In this work, we focus on two performance
tasks: (i) Performance Debugging: here, one observes a per-
formance issue (e.g., latency), and the task involves replacing
the current con�gurations in the deployed environment with
another that �xes the observed performance issue; (ii) Perfor-
mance Optimization: here, no performance issue is observed;
however, one wants to get a near-optimal performance by
�nding a con�guration that enables the best trade-o� in the
multi-objective space (e.g., throughput vs. energy consump-
tion vs. accuracy in D���������).
To show major shortcomings of existing state-of-the-art

performance models, we built performance in�uence models
that have extensively been used in the systems’ literature [33,
34, 36, 54, 59, 64, 71, 88, 89] and it is the standard approach in
industry [59, 64]. Speci�cally, we built non-linear regression
models with forward and backward elimination using a step-
wise training method on the D��������� performance data.
We then performed several sensitivity analyses and identi�ed
the following issues:
1. Performance in�uencemodels couldnot reliably pre-
dict performance inunseen environments. Performance
behavior of con�gurable systems vary across environments,
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e.g., when we deploy software on new hardware with a di�er-
ent microarchitecture or when the workload changes [49, 54–
56, 95]. When building a performance model, it is impor-
tant to capture predictors that transfer well, i.e., remain sta-
ble across environmental changes. The predictors in perfor-
mance models are options (>8 ) and interactions (q (>8 ..> 9 ))
that appear in the explainable models of form 5 (2) = V0 +
⌃8q (>8 ) + ⌃8 .. 9q (>8 ..> 9 ). The transferability of performance
predictors is expected from performance models since they
are learned based on one environment (e.g., staging as the
source environment) and are desirable to reliably predict
performance in another environment (e.g., production as
the target environment). Therefore, if the predictors in a
performance model become unstable, even if they produce
accurate predictions in the current environment, there is
no guarantee that it performs well in other environments,
i.e., they become unreliable for performance predictions and
performance optimizations due to large prediction errors. To
investigate how transferable performance in�uence models
are across environments, we performed a thorough analysis
when learning a performance model for D���S����� de-
ployed on two di�erent hardware platforms that have two
di�erent microarchitectures. Note that such environmental
changes are common, and it is known that performance be-
havior changes when, in addition to a change in hardware
resources (e.g., higher CPU Frequency), we have major dif-
ferences in terms of architectural constructs [21, 24], also
supported by a thorough empirical study [54]. The results
in Fig. 4 (a) indicate that the number of stable predictors is
too small for the total number of predictors that appear in
the learned regression models. Additionally, the coe�cients
of the common predictors change across environments as
shown in Fig. 5 making them unreliable to be resued in the
new scenario.
2. Performance in�uencemodels could produce incor-
rect explanations. In addition to performance predictions,
where developers are interested to know the e�ect of con�g-
uration changes on performance objectives, they are also in-
terested to estimate and explain the e�ect of a change in par-
ticular con�guration options (e.g., changing Cache Policy)
toward performance variations. It is therefore desirable that
the strength of the predictors in performance models, deter-
mined by their coe�cients, remain consistent across envi-
ronments [24, 54]. In the context of our simple scenario in
Fig. 1, the learned performance in�uence model indicates
that 0.16 ⇥ Cache Misses is the most in�uential term that
determines throughput, however, the (causal) model in Fig. 1
(c) show that the interactions between con�guration option
Cache Policy and system event Cache Misses is a more
reliable predictor of the throughput, indicating that the per-
formance in�uencemodel, due to relying on super�cial corre-
lational statistics, incorrectly explains factors that in�uence
performance behavior of the system. The low Spearman rank
correlation between predictors coe�cients indicates that a
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Figure 4. (a) Performance in�uence models do not generalize well
as the number of common terms, total terms and prediction error
of these models change from source (X�����) to target (TX2). The
rank correlation between source and target is 0.07 (p-value=0.73).
(b) Causal performance models generalize better as the number of
common terms, total terms and prediction error of the structural
does not change much from source (X�����) to target (TX2). The
rank correlation between source and target is 0.49 (p-value=0.76).
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Figure 5. Visualizing co-e�cient di�erences from the source
(X�����) performance in�uence model to the target (TX2) per-
formance in�uence model for the common terms for both options
and interactions (shown by ⌦).

performance model based on regression could be highly un-
stable and thus would produce unreliable explanations as
well as unreliable estimation of the e�ect of change in spe-
ci�c options for performance debugging or optimization.

3 Causal Reasoning for Systems
We hypothesize that the reason behind unreliable predic-
tions and incorrect explanations of performance in�uence
models (see §3) is the inability of correlation-based models
to capture causally relevant predictors in the learned perfor-
mance models. The theoretical and empirical results [54, 57]
also show that predictive models that contain non-causal
predictors, even though they might be accurate in the envi-
ronment that the training data come from, such models are
not typically transferable in unseen environments.
Hence, we introduce a new abstraction for performance

modeling, called Causal Performance Model, which gives us
the leverage for performing causal reasoning for computer
systems. In particular, we introduce the causal performance
model to serve as a modeling abstraction that allow building
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Figure 6. A partial causal performance model for D���������
discovered in our experiments.

reusable performance models for downstream performance
tasks, including performance predictions, performance test-
ing and debugging, performance optimization, and more
importantly, it serves as a transferable model that allow per-
formance analyses across environments [54, 57].

Causal performancemodels. We de�ne a causal perfor-
mance model as an instantiation of Probabilistic Graphical
Models [79] with new types and structural constraints to
enable performance modeling and analyses. Formally, causal
performance models (cf., Fig. 6) are Directed Acyclic Graphs
(DAGs) [79] with (i) performance variables, (ii) functional
nodes that de�ne functional dependencies between perfor-
mance variables (i.e., how variations in one or multiple vari-
ables determine variations in other variables), (iii) causal
links that interconnect performance nodes with each other
via functional nodes, and (iv) constraints to de�ne assump-
tions we require in performance modeling (e.g., software
con�guration options cannot be the child node of perfor-
mance objectives; or Cache Misses as a performance vari-
able takes only positive integer values). In particular, we
de�ne three new variable types: (i) Software-level con�g-
uration options associated with a software component in
the composed system (e.g., Bitrate in the decoder compo-
nent of D���������), and hardware-level options (e.g., CPU
Frequency), (ii) intermediate performance variables relating
the e�ect of con�guration options to performance objectives
including middleware traces (e.g., Context Switches), per-
formance events (e.g., Cache Misses) and (iii) end-to-end
performance objectives (e.g., Throughput). In this paper, we
characterize the functional nodes with polynomial models,
because of their simplicity and their explainable nature, how-
ever, they could be characterized with any functional forms,
e.g., neural networks [85, 102]. We also de�ne two speci�c
constraints over causal performance models to characterize
the assumptions in performance modeling: (i) de�ning vari-
ables that can be intervened (note that some performance
variables can only be observed (e.g., Cache Misses) or in
some cases where a variable can be intervened, the user may
want to restrict the variability space, e.g., the cases where

the user may want to use prior experience, restricting the
variables that do not have a major impact to performance
objectives); (ii) structural constraints, e.g., con�guration op-
tions do not cause other options. Note that such constraints
enable incorporating domain knowledge and enable further
sparsity that facilitates learning with low sample sizes.

How causal reasoning can �x the reliability and ex-
plainability issues in current performance analyses prac-
tices?. The causal performance models contain more detail
than the joint distribution of all variables in the model. For
example, the causal performance model in Fig. 6 encodes
not only Branch Misses and Throughput readings are de-
pendent but also that lowering Cache Misses causes the
Throughput of D��������� to increase and not the other
way around. The arrows in causal performance models cor-
respond to the assumed direction of causation, and the ab-
sence of an arrow represents the absence of direct causal
in�uence between variables, including con�guration options,
system events, and performance objectives. The only way we
can make predictions about how performance distribution
changes for a system when deployed in another environ-
ment or when its workload changes are if we know how the
variables are causally related. This information about causal
relationships is not captured in non-causal models, such as
regression-based models. Using the encoded information
in causal performance models, we can bene�t from analy-
ses that are only possible when we explicitly employ causal
models, in particular, interventional and counterfactual anal-
yses [80, 81]. For example, imagine that in a hardware plat-
form, we deploy the D��������� and observed that the
system throughput is below 30 FPS and Buffer Size as one
of the con�guration options was determined dynamically
between 8k-20k. The system maintainers may be interested
in estimating the likelihood of �xing the performance issue
in a counterfactual world where the Buffer Size is set to a
�xed value, 6k. The estimation of this counterfactual query
is only possible if we have access to the underlying causal
model because setting a speci�c option to a �xed value is
an intervention as opposed to conditional observations that
have been done in the traditional performance model for
performance predictions.
Causal performance models are not only capable of pre-

dicting system performance in certain environments, they
encode the causal structure of the underlying system perfor-
mance behavior, i.e., the data-generating mechanism behind
system performance. Therefore, the causal model can reli-
ably transfer across environments [86]. To demonstrate this
for causal performance models as a particular characteri-
zation of causal models, we performed a similar sensitivity
analysis to regression-based models and observed that causal
performance models can reliably predict performance in un-
seen environments (see Fig. 4 (b)). In addition, as opposed
to performance in�uence models that are only capable of
performance predictions, causal performance models can be
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used for several downstream heterogeneous performance
tasks. For example, using a causal performance model, we
can determine the causal e�ects of con�guration options on
performance objectives. Using the estimated causal e�ects,
one can determine the e�ect of change in a particular set of
options towards performance objectives and therefore can
select the options with the highest e�ects to �x a perfor-
mance issue, i.e., bring back the performance objective that
has violated a speci�c quality of service constraint without
sacri�cing other objectives. Causal performance models are
also capable of predicting performance behavior by calcu-
lating conditional expectation, ⇢ (. |- ), where . indicates
performance objectives, e.g., throughput, and - = G is the
system con�gurations that have not been measured.

4 U������
This section presents U������–our methodology for per-
formance analyses of highly con�gurable and composable
systems with causal reasoning.

Overview. U������ works in �ve stages, implementing
an active learning loop (cf. Fig. 7): (i) Users or developers of
a highly-con�gurable system specify, in a human-readable
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language, the performance task at hand in terms of a query
in the Inference Engine. For example, a D��������� user
may have experienced a throughput drop when they have
deployed it on NVIDIA Xavier in low-power mode (cf. Fig. 8).
Then, U������’s main process starts by (ii) collecting some
predetermined number of samples and learning a causal per-
formance model; Here, a sample contains a system con�gu-
ration and its corresponding measurement—including low-
level system events and end-to-end system performance.
Given a certain budget, which in practice either translates
to time [50] or several samples [52], U������, at each itera-
tion, (iii) determines the next con�guration(s) and measures
system performance when deployed with the determined
con�guration–i.e. new sample; accordingly, (iv) the learned
causal performance model is incrementally updated, re�ecting
a model that captures the underlying causal structure of the
system performance. U������ terminates if either budget
is exhausted or the same con�guration has been selected a
certain number of times consecutively, otherwise, it contin-
ues from Stage III. Finally, (v) to automatically derive the
quantities which are needed to conduct the performance
tasks, the speci�ed performance queries are translated to
formal causal queries, and they will be estimated based on
the �nal causal model.

Stage I: Formulate Performance Queries. U������ en-
ables developers and users of highly-con�gurable systems
to conduct performance tasks, including performance de-
bugging, optimization, and tuning, n particular, when they
need to answer several performance queries: (i) What con-
�guration options caused the performance fault? (ii) What
are important options and their interactions that in�uence
performance? (iii) How to optimize one quality or navigate
tradeo�s among multiple qualities in a reliable and explain-
able fashion? (iv) How can we understand what options and
possible interactions are most responsible for the perfor-
mance degradation in production?

At this stage, the performance queries are translated to for-
mal causal queries using the interface of the causal inference
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Figure 10. Causal model update.

engine (cf. Fig. 7). Note that in the current implementation
of U������, this translation is performed manually, how-
ever, this process could be made automated by creating a
grammar for specifying performance queries and the trans-
lations can be made between the performance queries into
the well-de�ned causal queries, note that such translation
has been done in domains such as genomics [27].

Stage II: LearnCausal PerformanceModel. In this stage,
U������ learns a causal performance model (see Section 2)
that explains the causal relations between con�guration op-
tions, the intermediate causal mechanism, and performance
objectives. Here, we use an existing structure learning algo-
rithm called Fast Causal Inference (hereafter, FCI) [91]. We
selected FCI because: (i) it accommodates for the existence
of unobserved confounders [32, 77, 91], i.e., it operates even
when there are latent common causes that have not been, or
cannot be, measured. This is important because we do not as-
sume absolute knowledge about con�guration space, hence
there could be certain con�gurations we could not modify
or system events we have not observed. (ii) FCI, also, accom-
modates variables that belong to various data types such as
nominal, ordinal, and categorical data common across the
system stack (cf. Fig. 8). To build the causal performance
model, we, �rst, gather a set of initial samples (cf. Fig. 9). To
ensure reliability [21, 24], we measure each con�guration
multiple times, and we use the median (as an unbiased mea-
sure) for the causal model learning. As depicted in Fig. 9,
U������ implements three steps for causal structure learn-
ing: (i) recovering the skeleton of the causal performance
model by enforcing structural constraints; (ii) pruning the
recovered structure using standard statistical tests of inde-
pendence. In particular, we use mutual info for discrete vari-
ables and Fisher z-test for continuous variables; (iii) orienting
undirected edges using entropy [19, 20, 32, 77, 91].
Orienting undirected causal links.We orient undirected
edges using prescribed edge orientation rules [19, 20, 32, 77,
91] to produce a partial ancestral graph (or PAG). A PAG
contains the following types of (partially) directed edges:
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Figure 11. (a) The hamming distance between the learned causal
model and ground truth model decreases as the algorithms measure
more con�guration samples. Incremental update of (b) Latency
and (c) Energy, using U������ for debugging a multi-objective
fault. Con�guration options selected by U������ at each iteration
are during debugging are shown in (d) using the yellow-colored
nodes. Red-colored nodes indicate con�guration options that are
selected as a �x to the multi-objective performance fault. Mapping
between option indexes and con�guration options are shown in
the supplementary materials.

• - . indicating that vertex - causes . .
• - . which indicates that there are unmeasured con-
founders between vertices - and . .

In addition, a PAG produces two types of edges:
• - . indicating that either - causes . , or that there
are unmeasured confounders that cause both - and . .

• - . which indicates that either: (a) vertices - causes
. , or (b) vertex . causes - , or (c) there are unmeasured
confounders that cause both - and . .

In the last two cases, the circle (�) indicates that there is an
ambiguity in the edge type. In other words, given the current
observational data, the circle can indicate an arrowhead (

) or no arrowhead (—), i.e., for - . , all three of -
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. , . - , and - . might be compatible with
current data, i.e., the current data could be faithful to each
of these statistically equivalent causal graphs inducing the
same conditional independence relationships.
Resolving partially directed edges. For subsequent anal-
yses over the causal graph, the PAG obtained must be fully
resolved (directed with no � ended edges) in order to gener-
ate an ADMG. We use the information-theoretic approach
using entropy proposed in [62, 63] to discover the true causal
direction between two variables. Our work extends the theo-
retic underpinnings of entropic causal discovery to generate
a fully directed causal graph by resolving the partially di-
rected edges produced by FCI. For each partially directed
edge, we follow two steps: (i) establish if we can generate a la-
tent variable (with low entropy) to serve as a common cause
between two vertices; (ii) if such a latent variable does not
exist, then pick the direction which has the lowest entropy.
For the �rst step, we assess if there could be an unmea-

sured confounder (say / ) that lies between two partially ori-
ented nodes (say - and . ). For this, we use the LatentSearch
algorithm proposed by Kocaoglu et al. [63]. LatentSearch
outputs a joint distribution @(- ,. ,/ ) of the variables - ,
. , and / which can be used to compute the entropy � (/ )
of the unmeasured confounder / . Following the guidelines
of Kocaoglu et al., we set an entropy threshold \A = 0.8 ⇥
<8= {� (- ),� (. )}. If the entropy � (/ ) of the unmeasured
confounder falls below this threshold, then we declare that
there is a simple unmeasured confounder / (with a low
enough entropy) to serve as a common cause between -
and . and accordingly, we replace the partial edge with a
bidirected (i.e., ) edge.
When there is no latent variable with a su�ciently low

entropy, two possibilities exist: (i) variable - causes . ; then,
there is an arbitrary function 5 (·) such that . = 5 (- , ⇢),
where ⇢ is an exogenous variable (independent of - ) that
accounts for system noise; or (ii) variable . causes - ; then,
there is an arbitrary function 6(·) such that - = 6(. , ⇢̃),
where ⇢̃ is an exogenous variable (independent of . ) that
accounts for noise in the system. The distribution of ⇢ and
⇢̃ can be inferred from the data [62, see §3.1]. With these
distributions, we measure the entropies � (⇢) and � (⇢̃). If
� (⇢) < � (⇢̃), then, it is simpler to explain the - . (i.e.,
the entropy is lower when . = 5 (- , ⇢)) and we choose -

. . Otherwise, we choose . - .

Stage III: Iterative Sampling (Active Learning). At this
stage, U������ determines the next con�guration to be mea-
sured. U������ �rst estimates the causal e�ects of con�g-
uration options towards performance objectives using the
learned causal performance model. Then, U������ itera-
tively determines the next system con�guration using the
estimated causal e�ects as a heuristic. Speci�cally, U������

Problem [2]: For a real-time scene detection task, TX2 (faster plat-
form) only processed 4 frames/sec whereas TX1 (slower platform)
processed 17 frames/sec, i.e., the latency is 4⇥ worse on TX2.
Observed Latency (frames/sec): 4 FPS
Expected Latency (frames/sec): 22-24 FPS (30-40% better)

Con�guration Options U
��
��

��

SM
A
C

B�
�D

��

Fo
ru
m

A
CE

†

CPU Cores � � � � 3%
CPU Frequency � � � � 6%
EMC Frequency � � � � 13%
GPU Frequency � � � � 22%
Scheduler Policy · � � · .
kernel.sched_rt_runtime_us · · � · .
kernel.sched_child_runs_first · · � · .
vm.dirty_background_ratio · · · · .
vm.dirty_ratio · · � · .
Drop Caches · � � · .
CUDA_STATIC � � � � 55%
vm.vfs_cache_pressure · · · · .
vm.swappiness · � � · 1%

Latency (TX2 frames/sec) 28 24 21 23
Latency Gain (over TX1) 65% 41% 24% 35%
Latency Gain (over default) 7⇥ 6⇥ 5.25⇥ 5.75⇥
Resolution time 22 mins 4 hrs 4 hrs 2 days

Figure 12. Using U������ on a real-world performance issue.

determines the value assignments for options with a proba-
bility that is determined proportionally based on their asso-
ciated causal e�ects. The key intuition is that such changes
in the options are more likely to have a larger e�ect on
performance objectives, and therefore, we can learn more
about the performance behavior of the system. Given the
exponentially large con�guration space and the fact that
the span of performance variations is determined by a small
percentage of con�gurations, if we had ignored such esti-
mates for determining the change in con�guration options,
the next con�gurations would result in considerable varia-
tions in performance objectives comparing with the existing
data. Therefore, measuring the next con�guration would not
provide additional information for the causal model.
We extract paths from the causal graph (referred to as

causal paths) and rank them from highest to lowest based
on their average causal e�ect on latency, and energy. Using
path extraction and ranking, we reduce the complex causal
graph into a few useful causal paths for further analyses. The
con�gurations in this path are more likely to be associated
with the root cause of the fault.
Extracting causal pathswith backtracking.A causal path
is a directed path originating from either the con�gura-
tion options or the system event and terminating at a non-
functional property (i.e., throughput and/or energy). To dis-
cover causal paths, we backtrack from the nodes correspond-
ing to each non-functional property until we reach a node
with no parents. If any intermediate node has more than one
parent, then we create a path for each parent and continue
backtracking on each parent.
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Ranking causal paths. A complex causal graph can re-
sult in many causal paths. It is not practical to reason over
all possible paths, as it may lead to a combinatorial explo-
sion. Therefore, we rank the paths in descending of their
causal e�ect on each non-functional property. For further
analysis, we use paths with the highest causal e�ect. To
rank the paths, we measure the causal e�ect of changing the
value of one node (say Batch Size or - ) on its successor
(say Cache Misses or / ) in the path (say Batch Size
Cache Misses FPS and Energy). We express this with
the do-calculus [80] notation: E[/ | do(- = G)]. This nota-
tion represents the expected value of / (Cache Misses) if
we set the value of the node - (Batch Size) to G . To com-
pute the average causal e�ect (ACE) of - ! / (i.e., Batch
Size Cache Misses), we �nd the average e�ect over
all permissible values of - (Batch Size), i.e., ACE (/ ,- ) =
1
# · Õ80,12- E [/ | do (- = 1)] � E [/ | do (- = 0)]. Here
# represents the total number of values- (Batch Size) can
take. If changes in Batch Size result in a large change in
Cache Misses, then ACE (/ ,- ) will be larger, indicating
that Batch Size has a large causal e�ect on Cache Misses.

Stage IV: Update Causal Performance Model. At each
iteration, U������ measures the con�guration that is de-
termined in the previous stage and updates the causal per-
formance model incrementally (shown in Fig. 10). Since the
causal model uses limited observational data, there may be a
discrepancy between the underlying performance model and
the learned causal performance model, note that this issue ex-
ists in all domains using data-drivenmodels, including causal
reasoning [80]. The more accurate the causal graph, the more
accurate the proposed intervention will be [19, 20, 32, 77, 91].
Fig. 11 (a) shows an example of an iterative decrease of ham-
ming distance [76] between the learned causal model and
(approximate) ground truth causal model. Fig. 11 (b), 11 (c),
and 11 (d) shows the iterative behavior of U������ while
debugging a multi-objective performance fault. In case our
repairs do not �x the faults, we update the observational data
with this new con�guration and repeat the process. Over
time, the estimations of causal e�ects will become more accu-
rate. We terminate the incremental learning once we achieve
the desired performance.

Stage V: Estimate Performance Queries. At this stage,
given the learned causal performance model, U������’s in-
ference engine estimates the user-speci�ed queries using the
mathematics of causal reasoning–do-calculus. Speci�cally,
the causal inference engine provides a quantitative estimate
for the identi�able queries on the current causal model and
may return some queries as unidenti�able. It also determines
what assumptions or new measurements are required to
answer the “unanswerable“ questions, so, the user can de-
cide to incorporate these new assumptions by de�ning more
constraints or increasing the sampling budgets.

DEEPSTREAM XCEPTION BERT DEEPSPEECH X264 SQLITE

0

30

60

90

31
38 33 32

21 23

9

77

56
62

37 32

1
12 9 9 6 6

N
um

b
er

of
Fa
ul
ts

Latency Energy Latency and Energy

Figure 13. Distribution of 451 single-objective and 43 multi-
objective non-functional faults across di�erent software systems
used in our study.

5 Case Study
Prior to a systematic evaluation in §6, here, we show how
U������ can enable performance debugging in a real-world
scenario discussed in [2], where a developer migrated a real-
time scene detection system from NVIDIA TX1 to a more
powerful hardware, TX2. The developer, surprisingly, expe-
rienced 4⇥ worse latency in the new environment (from 17
frames/sec in TX1 to 4 frames/sec in TX2). After two days
of discussions, the performance issue was diagnosed with
a miscon�guration–an incorrect setting of a compiler op-
tion and four hardware options. Here, we assess whether
and how U������ could facilitate the performance debug-
ging by comparing with (i) the �x suggested by NVIDIA
in the forum, and two academic performance debugging
approaches–B��D�� [67] and SMAC [48].
Findings. Fig. 12 illustrates our �ndings. We �nd that:
• U������ could diagnose the root cause of the miscon�gu-
ration and recommends a �x within 22 minutes. Using the
recommended con�guration from U������, we achieved
a throughput of 28 frames/sec (65% higher than TX1 and
7⇥ higher than the fault). This, surprisingly, exceeds the
developers’ initial expectation of 30 � 40% improvement.

• B��D�� (a diagnosis approach) has the least improvement
compared to other approaches (24% improvement over
TX1) while taking 4 hours to suggest the �x. B��D�� also
changed several unrelated options (depicted by � ) not
endorsed by the domain experts.

• Using SMAC (an optimization approach), we aimed to �nd
a con�guration that achieves optimal throughput. How-
ever, after converging, SMAC recommended a con�gura-
tion which achieved 24 frames/sec (41% better than TX1
and 6⇥ better than the fault), however, could not outper-
form the con�guration suggested by U������ and even
took 4 hours (11⇥ longer than U������ to converge). In
addition, SMAC changed several unrelated options ( �
in Fig. 12).

Why U������ works better (and faster)? U������ dis-
covers the miscon�gurations by constructing a causal model
that rules out irrelevant con�guration options and focuses
on the con�gurations that have the highest (direct or indi-
rect) causal e�ect on latency, e.g., we found the root-cause
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Table 1. Overview of the subject systems used in our study.
Details about the con�guration options and system events
for each system are found in the supplementary materials.

System Workload |C| |O| |S| |H | |W| |P|
D��������� [5] Video analytics pipeline for

detection and tracking from
8 camera streams.

2461 53 288 2 1 2

X������� [17] Image recognition system to
classify 5000/5000 test im-
ages from CIFAR10.

6443 28 19 3 3 3

D��������� [41] Speech-to-text from 0.5/1932
hours of Common Voice Cor-
pus 5.1 (English) data.

6112 28 19 3 1 3

B��� [23] NLP system for sentiment
analysis of 1000/25000 test
reviews from IMDb.

6188 28 19 3 1 3

�264 [7] Encodes a 20 second 11.2 MB
video of resolution 1920 x
1080 from UGC.

17248 32 19 3 1 3

SQL��� [6] Database engine for sequen-
tial & batch & random reads,
writes, deletions.

15680 242 288 3 3 3

* C: Con�gurations, O: Options, S: System Events, H: Hardware, W: Workload, P: Objectives

CUDA STATIC in the causal graph which indirectly a�ects la-
tency via Context Switches (an intermediate system event).
Using counterfactual queries, U������ can reason about
changes to con�gurations with the highest average causal
e�ect (ACE) (last column in Fig. 12). The counterfactual
reasoning occurs no additional measurements, signi�cantly
speeding up inference as shown in Fig. 12, U������ accu-
rately �nds all the con�guration options recommended by
the forum (depicted by � in Fig. 12).

6 Evaluation
For a thorough evaluation of U������, we have developed
U������T��� that implements the methodology that we ex-
plained in §4. We used U������T��� (see §A) to facilitate
comparing U������ with state-of-the-art performance de-
bugging and optimization approaches for:
• E�ectiveness in terms of sample e�ciency and perfor-
mance gain (§7).

• Transferability of learned models across environmental
changes such as hardware and workload changes (§8).

• Scalability to large-scale con�gurable systems (§9).
Systems.We selected six con�gurable systems including a
video analytic pipeline, three deep learning-based systems
(for image, speech, and NLP), a video encoder, and a database,
see Table 1. We use heterogeneous deployment platforms,
including NVIDIA TX1, TX2, and X�����, each having dif-
ferent resources (compute, memory) and microarchitectures.
Con�gurations. We choose a wide range of con�guration
options and system events (see Table 1), following NVIDIA’s
con�guration guides/tutorials and other related work [37].
As opposed to prior works (e.g., [96, 97]) that only support
binary options due to scalability issues, we included options
with binary, discrete, and continuous.

Ground truth. We measured several thousands samples
(proportional to the con�guration space of the system, see
supplementary materials for speci�c dataset size) for each
18 deployment settings (6 systems and 3 hardware; see Table
1 for more details). To ensure reliable and replicable results,
following the common practice [21, 24, 54, 59], we repeated
each measurement 5 times and used the median in the eval-
uation metrics. We curated a ground truth of performance
issues, called J����� F�����, for each of the studied soft-
ware and hardware systems using the ground truth data. By
de�nition, non-functional faults are located in the tail of per-
formance distributions [35, 61]. We, therefore, selected and
labeled con�gurations that are worse than the 99th percentile
as ‘faulty.’ Fig. 13 shows the total 494 faults discovered across
di�erent software. Out of these 494 non-functional faults,
43 are faults with multiple types (both energy and latency).
Of all the 451 single-objective and 43 multi-objective faults
discovered in this study, only 2 faults had a single root cause,
411 faults had �ve or more root causes, and 81 remaining
faults had two to four root causes.
Experimental parameters. To facilitate replication of the
results, we made some choices for speci�c parameters. In
particular, we disabled dynamic voltage and frequency scal-
ing (DVFS) before starting any experiment and start with 25
samples for each method (10% of the total sampling budget).
We repeat the entire process 3 times for consistent analyses.
Baselines.We evaluate U������ for two performance tasks:
(i) performance debugging and repair and (ii) performance
optimization. We compare U������ against state-of-the-
art, including CBI [90]—a statistical debugging method that
uses a feature selection algorithm; DD [9]—a delta debug-
ging technique, that minimizes the di�erence between a pair
of con�gurations; E�C��� [104]—a debugging method that
learns to debug from correlational information about miscon-
�gurations; B��D�� [67]—a debugging method that infers
the root causes and derives succinct explanations of failures
using decision trees; SMAC [48]—a sequential model-based
auto-tuning approach; and PESMO [43]—a multi-objective
Bayesian optimization approach.
Evaluation metrics. (i) Accuracy is calculated by weighted
Jaccard similarity between the predicted and true root causes,
where the weight vector was derived based on the aver-
age causal e�ect of options to performance based on the
ground-truth causal performance model. For example, if �
is the recommended con�guration by an approach and ⌫
is the con�guration that �xes the performance issue in the
ground truth, we measure 022DA02~ =

Õ
ACE (A\B)Õ
ACE (A[B) . The key

intuition is that an ideal causal model underlying the system
should identify the most important options that a�ect per-
formance objectives. In other words, an ideal causal model
should provide recommendations for changing the values
of options that have the highest average causal e�ects on
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Table 2. E�ciency of U������ compared to other approaches. Cells highlighted in blue indicate improvement over faults.
(a) Single objective performance fault for latency and energy in TX2 and X�����, respectively.
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X������� 86 53 42 62 65 86 67 61 63 67 83 64 68 69 62 82 48 42 57 59 0.6 4
BERT 81 56 59 60 57 76 57 55 61 73 71 74 68 67 65 74 54 59 62 58 0.4 4
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�264 83 59 63 62 62 82 69 58 65 66 78 64 67 63 72 85 69 72 68 71 1.4 4
D���S����� 91 81 79 77 87 81 61 62 64 73 85 63 61 62 75 86 68 62 61 78 0.7 4
X������� 84 66 63 63 81 78 56 58 66 65 80 69 55 63 68 83 59 50 51 62 0.4 4
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(b) Multi-objective non-functional faults in Energy, Latency in X�����.
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X������� 89 76 81 79 77 53 54 62 81 59 59 62 84 53 61 65 75 38 46 44 0.9 4
BERT 71 72 73 71 77 42 56 63 79 59 62 65 84 53 59 61 67 41 27 48 0.5 4
D��������� 86 69 71 72 80 44 53 62 81 51 59 64 88 55 55 62 77 43 43 41 1.1 4
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�264 85 73 83 81 83 50 54 67 80 63 62 61 75 62 64 66 76 64 66 64 1 4
† Wallclock time in hours

system performance. (ii) Precision is calculated by the per-
centage of true root causes among the predicted ones. (iii) Re-
call is calculated by the percentage of true root causes that
are correctly predicted. (iv) Gain is calculated by percent-
age improvement of suggested �x over the observed fault–
�608= = NFP������NFP�������

NFP����� ⇥100, where NFP����� the observed
faulty performance and NFP�� ����� is the performance of
suggested �x. (v) Error is calculated by the hypervolume
error (in multi-objective) [107]. (vi) Time is measured by
wallclock time (in hours) to suggest a �x.

7 E�ectiveness and Sample E�ciency
Setting. We only show the partial results, however, our
results generalize to all evaluated settings. For debugging,
we use latency faults in TX2 and energy faults in X�����.
For single-objective optimization, we compare U������ with
SMAC for X������� for latency and energy and for multi-
objective optimization we compare with PESMO in TX2.
Results (debugging). Tables 2a and 2b shows U������ sig-
ni�cantly outperforms correlation-based methods in all cases.
For example, in D��������� on TX2, U������ achieves 6%
more accuracy, 12% more precision, and 10% more recall
compared to the next best method, B��D��. We observed
latency gains as high as 88% (9%more than B��D��) on TX2
and energy gain of 86% (9% more than B��D��) on X�����
for X�������. We observe similar trends for multi-objective
faults as well. The results con�rm that U������ can recom-
mend repairs for faults that signi�cantly improve latency and
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Figure 14. U������ has signi�cantly higher sampling e�ciency
than other baselines in debugging non-functional faults: (a) latency
faults in TX2 and (b) energy faults in X�����.

energy. By applying the changes to the con�gurations rec-
ommended by U������ improves performance drastically.

Fig. 14a and Fig. 14b demonstrate the sample e�ciency re-
sults for di�erent systems. We observe that, for both latency
and energy faults, U������ achieved signi�cantly higher
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Figure 15. U������ vs. single and multi-objective optimization
with SMAC and PESMO in TX2.

gains with substantially fewer samples. For X�������, U���
���� required a 8⇥ fewer samples to obtain 32% higher gain
than DD. The higher gain in U������ in comparison to
correlation-based methods indicates that U������’s causal
reasoning is more e�ective in guiding the search in the ob-
jective space. U������ does not waste budget evaluating
con�gurations with lower causal e�ects and �nds a �x faster.

U������ resolvesmiscon�guration faults signi�cantly faster
than correlation-based approaches. In Tables 2a and 2b, the
last two columns indicate the time taken (in hours) by each
approach to diagnosing the root cause. For all correlation-
based methods, we set a maximum budget of 4 hours. We
�nd that, while other approaches use the entire budget to
diagnose and resolve the faults, U������ can do so signi�-
cantly faster. In particular, we observed that U������ is 13⇥
faster in diagnosing and resolving faults in energy usage for
�264 deployed on X����� and 10⇥ faster for latency faults
for B��� deployed on TX2.
Results (optimization). Fig. 15 (a) and Fig. 15 (b) demon-
strate the single-objective optimization results—U������
�nds con�gurations with optimal latency and energy for
both cases. Fig. 15 (a) illustrates that the optimal con�gu-
ration discovered by U������ has 43% lower latency (12
seconds) than that of SMAC (21 seconds). Here, U������
reaches near-optimal con�guration by only exhausting one-
third of the entire budget. In Fig. 15 (b), the optimal con�gura-
tion discovered by U������ and SMAC had almost the same
energy, but U������ reached this optimal con�guration 4x
faster than SMAC. In both single-objective optimizations,
the iterative variation of U������ is less than SMAC–i.e.,
U������ �nds more stable con�gurations. Fig. 15 (c) com-
pares U������ with PESMO to optimize both latency and
energy in TX2 (for image recognition). Here, U������ has
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Figure 16. U������ has higher accuracy, precision, recall, and
gain in debugging non-functional energy faults when hardware
changes (X����� to TX2).
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Figure 17. U������ �nds con�gurations with higher gain when
workloads are changed for performance (latency) optimization task
in TX2.

12% lower hypervolume error than PESMO and reaches the
same level of hypervolume error of PESMO 4x times faster.
Fig. 15 (d) illustrates the Pareto optimal con�gurations ob-
tained by U������ and PESMO. The Pareto front discovered
by U������ has higher coverage, as it discovers a larger
number of Pareto optimal con�gurations with lower energy
and latency value than PESMO.

8 Transferability
Setting.We reuse the causal performancemodel constructed
from a source environment, e.g., TX1, to resolve a non-
functional fault in a target environment, e.g., X�����. We
evaluated U������ for debugging energy faults for X����
���� and used X����� as the source and TX2 as the target,
since they have di�erent microarchitectures, expecting to
see large di�erences in their performance behaviors. We only
compared with B��D�� as it discovered �xes with higher
energy gain in X����� than other correlation-based base-
line methods (see Table 2a). We compared U������ and
B��D�� in the following scenarios: (i) B��D�� (R����) and
U������ (R����): reusing the recommended con�gurations
from Source to Target, (ii) B��D�� + 25 and U������ + 25:
reusing the performance models (i.e., causal model and deci-
sion tree) learned in Source and �ne-tuning the models with
25 new samples in Target, and (iii) B��D�� (R����) and
U������ (R����): we rerun U������ and B��D�� from
scratch to resolve energy faults in Target. For optimization
tasks, we use three larger additional X������� workloads:
10000 (10k), 20000 (20k), and 50000 (50k) test images (previ-
ous experiments used 5000 (5k) test images). We evaluated
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Table 3. Scalability for SQL��� and D���S����� on X�����.
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242 19 111 2234 1.9 94 57 129 1345
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D��������� 53 19 43 497 3.1 86 16 32 1509
53 288 219 5008 2.3 85 97 168 3113

three variants of SMAC and U������: (i) SMAC (R����) and
U������ (R����), where we reuse the near-optimum found
with 5k test images on the larger workloads; (ii) SMAC +
10% and U������ + 10%, where we rerun with 10% budget in
target and update the optimization and causal performance
model with 10% additional budget; and (iii) SMAC + 20% and
U������ + 20%, where we rerun with 20% budget in target
and update the models with 20% additional budget.
Results. Fig. 16 indicates the results in resolving energy
faults in TX2. We observe that U������ + 25 obtains 8%
more accuracy, 7% more precision, 5% more recall and 8%
more gain than B��D�� (R����). Here, B��D�� takes sig-
ni�cantly longer time than U������, i.e., B��D�� (R����)
exhausts the entire 4-hour budget whereas U������ takes at
most 20 minutes to �x the energy faults. Moreover, we have
to rerun B��D�� every time the hardware changes, and this
limits its practical usability. In contrast, U������ incremen-
tally updates the internal causal model with new samples
from the newer hardware to learn new relationships. We
also observe that with little updates, U������ + 25 (⇠20 min-
utes) achieves a similar performance of U������ (R����)
(⇠36 minutes). Since the causal mechanisms are sparse, the
causal performance model from X����� in U������ quickly
reaches a �xed structure in TX2 using incremental learning
by judiciously evaluating the most promising �xes until the
fault is resolved.

Our experimental results demonstrate that U������ per-
forms better than the two variants of three SMAC (c.f. Fig. 17).
SMAC (R����) performs theworst when theworkload changes.
With 10K images, reusing the near-optimal con�guration
from 5K images results in a latency gain of 10%, compared
to 12% with U������ in comparison with the default con�g-
uration. We observe that U������ + 20% achieves 44%, 42%,
and 47% higher gain than SMAC + 20% for workload sizes of
10k, 20k, and 50k images, respectively.

9 Scalability
Setting. We evaluated U������ for scalability with SQL���
(large con�guration space) and D��������� (large com-
posed system). In SQL���, we evaluated three scenarios:
(a) selecting the most relevant software, hardware options,

and events (34 con�guration options and 19 system events),
(b) selecting all modi�able software and hardware options
and system events (242 con�guration options and 19 events),
and (c) selecting not only all modi�able software and hard-
ware options and system events but also intermediate tracepoint
events (242 con�guration options and 288 events). In D����
������, there are two scenarios: (a) 53 con�guration options
and 19 system events, and (b) 53 con�guration options and
288 events when we select all modi�able software and hard-
ware options, and system/tracepoint events.
Results. In large systems, there are signi�cantly more causal
paths and therefore, causal learning and estimations of queries
take more time. The results in Table 3 indicate that U������
can scale to a much larger con�guration space without an
exponential increase in runtime for any of the intermediate
stages. This can be attributed to the sparsity of the causal
graph. For example, the average degree of a node for SQL���
in Table 3 is at most 3.6, and it reduces to 1.6 when the num-
ber of con�gurations increases. Similarly, the average degree
reduces from 3.1 to 2.3 in D��������� when systems events
are increased.

10 Related Work
Performance faults in con�gurable systems. Previous
empirical studies have shown that a majority of performance
issues are due to miscon�gurations [39], with severe con-
sequences in production environments [68, 93], and con�g-
uration options that cause such performance faults force
the users to tune the systems themselves [106]. Previous
works have used static and dynamic program analysis to
identify the in�uence of con�guration options on perfor-
mance [66, 96, 97] and to detect and diagnose miscon�g-
urations [10, 11, 103, 105]. Unlike U������, none of the
white-box analysis approaches target con�guration space
across the system stack, where it limits their applicability in
identifying the true causes of a performance fault.
Statistical and model-based debugging. Debugging ap-
proaches such as S����������D�������� [90],HOLMES [16],
XTREE [65], B��D�� [67], E�C��� [67], R�� [69], and P���
�L������ [40] have been proposed to detect root causes of
system faults. These methods make use of statistical diagno-
sis and pattern mining to rank the probable causes based on
their likelihood of being the root causes of faults. However,
these approaches may produce correlated predicates that
lead to incorrect explanations.
Causal testing and pro�ling. Causal inference has been
used for fault localization [12, 29], resource allocations in
cloud systems [31], and causal e�ect estimation for advertise-
ment recommendation systems [14]. More recently,AID [28]
detects root causes of an intermittent software failure us-
ing fault injection as an intervention. C����� T������ [58]
modi�es the system inputs to observe behavioral changes
and utilizes counterfactual reasoning to �nd the root causes
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of bugs. Causal pro�ling approaches like C�Z [22] point to
developers where optimizations will improve performance
and quantify their potential impact. Causal inference meth-
ods like X�R�� [10] and C���A�� [11] had previously been
applied to analyze program failures. All approaches above
are either orthogonal or complementary to U������, mostly
they focus on functional bugs (e.g., C����� T������) or if
they are performance-related, they are not con�guration-
aware (e.g., C�Z).

11 Limitations and Future Directions
Learning a predictive model vs learning the underly-
ing structure. Building a causal performance model could
be more expensive than performance in�uence models. The
reason for having a potentially higher learning cost is that
in addition to learning a predictive model, we also need to
learn the structure of the input con�guration space. However,
exploiting causal knowledge is more helpful in search-like
tasks (e.g., performance optimization [51, 55]) that looks
for higher quality samples, making it possible to debug or
optimize with a few samples.
Dealing with an incomplete causal model. Existing o�-
the-shelf causal graph discovery algorithms like FCI remain
ambiguous while data is insu�cient and returns partially
directed edges. For highly con�gurable systems, gathering
high-quality data is challenging. To address this issue, we
develop a novel pipeline for causal model discovery by com-
bining FCI with entropic causality, an information-theoretic
approach [62] to causality that takes the direction across
which the entropy is lower as the causal direction. Such
an approach helps to reduce ambiguity and thus allows the
causal graph to converge faster. Note that estimating a theo-
retical guarantee for convergence is out of scope, as having
a global view of the entire con�guration space is infeasible.
Moreover, the presence of too many confounders can a�ect
the correctness of the causal models, and this error may prop-
agate along with the structure if the dimensionality is high.
Therefore, we use a greedy re�nement strategy to update
the causal graph incrementally with more samples; at each
step, the resultant graph can be approximate and incomplete,
but asymptotically, it will be re�ned to its correct form given
enough time and samples.
Algorithmic innovations for faster convergence. The
e�cacy of U������ depends on several factors such as the
representativeness of the observational data or the presence
of unmeasured confounders that can negatively a�ect the
quality of the causal model. There are instances where the
causal model may be incorrect or lack some crucial connec-
tions that may result in detecting spurious root causes or
recommending incorrect repairs. One promising direction
to address this problem would be to develop new algorithms
for Stage II & III of U������ (see Section 4). Speci�cally, we
see the potential for developing innovative approaches for

learning better structure, incorporating domain knowledge
by restricting the structure of the underlying causal model.
In addition, there are potentials for developing better sam-
pling algorithms by either shrinking the search space (e.g.,
using transfer learning [55]) or searching the space more
e�ciently to determine e�ective interventions that enable
faster convergence to the true underlying structure.
Incorporating domain knowledge. Additionally, there is
scope for developing new approaches for either automati-
cally extracting constraints (e.g., from source code or other
downstream artifacts) to incorporate in learning causal per-
formance model or approaches to make humans part of the
loop for correcting the causal performance model during
learning. Speci�cally, new approaches could provide infras-
tructure as well as algorithms to determine when to ask for
human feedback and what to ask for, e.g., feedback regarding
a speci�c part of the causal model or feedback regarding the
determined intervention at each step.
Developing new domain-speci�c languages. U������
uses a query engine to translate common user queries into
counterfactual statements. A domain-speci�c language to
facilitate automated speci�cation of queries from written
unstructured data could potentially lead to the adoption of
causal reasoning in the system development lifecycle.

12 Conclusion
Modern computer systems are highly-con�gurablewith thou-
sands of interacting con�gurations with a complex perfor-
mance behavior. Miscon�gurations in these systems can
elicit complex interactions between software and hardware
con�guration options, resulting in non-functional faults. We
propose U������, a novel approach for diagnostics that
learns and exploits the system’s causal structure consisting
of con�guration options, system events, and performance
metrics. Our evaluation shows that U������ e�ectively and
quickly diagnoses the root cause of non-functional faults and
recommends high-quality repairs to mitigate these faults. We
also show that the learned causal performancemodel is trans-
ferable across di�erent workload and deployment environ-
ments. Finally, we demonstrate the scalability of U������
scales to large systems consisting of 500 options and several
trillion potential con�gurations.
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This appendix provides additional information regarding
the tool that we have developed for evaluating U������. In
this section, we call this tool U������T���. In addition, we
describe the steps using our U������T��� to reproduce the
results reported in §7, §8, and §9. We provide the source code
and data in a publicly accessible GitHub repository that can
be tested on any hardware once the software dependencies
are met.

A.1 Description
U������ is used for performing tasks such as performance
optimization and performance debugging in both o�ine and
online modes.
• In the o�ine mode, U������T��� can be run on any device
that uses previously measured con�gurations.

• In the online mode, the performance metrics are mea-
sured directly on the hardware on which the underlying
con�gurable system is deployed, while the experiments
are running. In the experiments, we have used TX2 and
X�����. To collect measurements from these devices, sudo
privilege is needed, as it requires setting a device to a new
con�guration before measurement.

A.2 Setup
A.2.1 SoftwareDependencies U������T��� is implement-
ed by integrating and building on top of several existing tools
(see Fig. 18):
• semopy for predictions with causal models.
• ananke and causality for estimating the causal e�ects.
• causal-learn for structure learning.

A.2.2 Hardware Dependencies U������T��� is imple-
mented both in o�ine and online modes. There are no par-
ticular hardware dependencies to run U������T��� in o�ine
mode. To run U������T��� in online mode, we used hard-
ware that has sensors for performance measurements. In
particular, we used TX1, TX2, and X����� with Jetpack 4.3
and Ubuntu 20.04 LTS.

A.2.3 Installation We use docker-compose to install the
necessary software required to run U������T���. The nec-
essary steps to install the dependencies and third-party li-
braries used to test our approach can be done with the fol-
lowing commands.
git clone git@github.com:softsys4ai/unicorn.git
cd unicorn
docker-compose up --build --detach
Once this step is completed, U������T��� is ready to be

tested.

A.3 Data
All the datasets required to run experiments are already
included in the ./unicorn/data directory.

A.4 Major Claims
We make the following major claims in our paper:
• U������ can be used to detect root causes of non-functional
performance (latency and energy) faults with higher accu-
racy and gain.

• U������ can support performing downstream performance
tasks such as performance optimization.

• The causal performance models are transferable across
environments (di�erent workload or hardware) and can
be e�ciently re-used from the source environment where
it is trained to a target environment.

A.5 Experiments
We run the following experiments to support our claims.

A.5.1 E1: PerformanceDebuggingExperiment To sup-
port the claim of e�ciency of U������ in debugging non-
functional faults, we reproduce energy faults results forX����
���� in N����� J����� X����� from Table 2a. Our initial
study discovered 29 energy faults for X������� in N�����
J����� X�����, that is 12% of the faults reported in Table 2a.
This would require 1.5 hours to run the experiments in of-
�ine mode and 11 hours to run the experiments in online
mode.
Execution. To run U������T��� on a single bug, execute
the following command:
docker-compose exec unicorn python \\
./tests/run_unicorn_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -i 0
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To run U������T��� and other debugging baselines re-
ported in this paper on all the bugs, please use the following
commands one by one:
docker-compose exec unicorn python \\
./tests/run_unicorn_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b cbi

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b encore

docker-compose exec unicorn python \\
./tests/run_baseline_debug.py -o \\
total_energy_consumption -s Image -k Xavier \\
-m offline\online -b bugdoc

Results. We save the evaluation metrics such as accuracy,
precision, recall, gain, and time required for debugging. A
separate plot is generated using the recommended �xes to
compare U������with other baseline approaches with their
evaluation metrics. Note, in the o�ine mode the reported
time is di�erent (usually less) from the main text as instead
of running the measurements online we reuse recorded mea-
surements. However, we can get a sense of the e�ciency by
comparing the number of samples required to resolve a fault.

A.5.2 E2: PerformanceOptimizationExperiment U���
���� supports can support performing downstream perfor-
mance tasks such as performance optimization. To support
this claim, we reproduce single-objective latency optimiza-
tion results reported in Fig. 15 (a). This experiment would
require around 1.5 hours to complete in the o�ine mode
and 4 hours to complete in the online mode. We also compare
the results with a baseline optimization approach, SMAC,
reported in the paper.
Execution. To run the experiment, we need to execute the
following commands:

docker-compose exec unicorn python \\
./tests/run_unicorn_optimization.py -o \\
inference_time -s Image -k TX2 \\
-m offline\online

docker-compose exec unicorn python \\
./tests/run_baseline_optimization.py -o \\
inference_time -s Image -k TX2 \\
-m offline\online -b smac

Results. We display the results similar to Fig. 15 (a) using
a line plot. Note that this experiment is run once without
repeating, so there are no error bars.

A.5.3 E3: Transferability Experiment. To support this
claim, we initially build a causal performance model to re-
solve the latency faults in X����� and reuse the causal per-
formance model to resolve the latency faults in TX2. We only
use one bug to demonstrate this result. This would require 10
minutes to run the experiment in the o�ine mode and 25
minutes in the online mode.
Execution. The following command runs the experiments:
docker-compose exec unicorn python \\
./tests/run_unicorn_transferability.py -o \\
inference_time -s Image -k Xavier \\
-m offline\online

Results. The evaluation metrics, including accuracy, preci-
sion, recall, gain, and time required for debugging for di�er-
ent scenarios reported in the paper are saved to a separate
CSV �le after the experiments are over and plotted. Note
that the reported time is di�erent from the time reported in
the main text in the o�ine mode.

A.6 Using U������T��� with external data
We added instructions to describe the required steps to use
U������T��� with any other external dataset.

A.7 Extending U������T���

We welcome any contribution for extending either U���
���� (see §11 for several possible future directions) and
U������T��� for performance improvements or feature ex-
tensions.
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