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ARTICLE INFO ABSTRACT

Keywords: Community resilience in the face of natural hazards involves both a community’s sensitivity to
Power grid disaster and its potential to bounce back. A failure to integrate equity into resilience consider-
Equitable community resilience ations results in unequal recovery and disproportionate impacts on vulnerable populations, which
Winter storm uri has long been a concern in the United States. This research investigated aspects of equity related
Blackout

to community resilience in the aftermath of Winter Storm Uri in Texas which led to extended
power outages for more than 4 million households. County-level outage/recovery data was
analyzed to explore potential significant links between various county attributes and their share
of the outages during the recovery/restoration phase. Next, satellite imagery was used to examine
data at a much higher geographical resolution focusing on census tracts in the city of Houston.
The goal was to use computer vision to extract the extent of outages within census tracts and
investigate their linkages to census tracts attributes. Results from various statistical procedures
revealed statistically significant negative associations between counties’ percentage of non-
Hispanic whites and median household income with the ratio of outages. Additionally, at
census tract level, variables including percentages of linguistically isolated population and public
transport users exhibited positive associations with the group of census tracts that were affected by
the outage as detected by computer vision analysis. Informed by these results, engineering so-
lutions such as the applicability of grid modernization technologies, together with distributed and
renewable energy resources, when controlled for the region’s topographical characteristics, are
proposed to enhance equitable power grid resiliency in the face of natural hazards.

1. Introduction

Between February 13-17, 2021, Winter Storm Uri impacted 25 states and more than 150 million Americans leading to extended
power and water outages nationwide, with Texas being the hardest hit [1]. The impact of Uri on the state of Texas was far beyond
expectation due to the lack of precautionary measures to withstand prolonged freezing temperatures [2]. While the electric grid in
Texas is capable of withstanding extreme humidity and warm weather conditions, it was not designed to endure extended freezing
temperatures, leaving administrators with no other options than to implement rolling blackouts. These blackouts were supposed to last
less than an hour [3] but ranged anywhere from couple of hours to couple of days across the state [4,5]. The storm led to several deaths
due to carbon monoxide poisoning, a significant halt in the administration of COVID-19 vaccines, and an economic loss that is
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estimated to be around $90 billion [6]. Meanwhile, various outlets brought to light the issue of environmental justice, and the
human-centric and equity aspects of the impact [7]. While four million people lost electricity and water in Texas [7,8], the impact was
disproportionate in low-income communities of color [9-11]. Low-income non-white families were reported to bear the brunt of
compounding crises in the aftermath of Uri [10].

Disparate impact was also investigated by Carvallo et al. (2021) who used satellite data on nighttime lights (NL) to determine
blackouts at the level of Census Block Groups (CBGs) and correlated it to demographic data from the EPA’s EJScreen tool which
identified the share of population in each CBG that is minority and low-income; they found that CBGs with a high share of non-white
minorities were more than four times as likely to experience a blackout than predominantly white CBGs, regardless of income. Lee et al.
[12] analyzed community-scale big data, including digital trace and crowdsourced data, in Harris County and found significant
disparity in the extent and duration of power outages as well as the extent of burst pipes and disrupted food access for low-income and
minority residents at the census tract level.

Racial and income disparities in Texas are associated with a history of redlining and gentrification [7,8] resulting in the con-
centration of people of color in specific areas. At the same time, low-income areas tend to lack amenities such as hospitals, which
during the blackout were prioritized for power restoration together with their neighboring areas [7]. Additionally, tendency to live in
neighborhoods with older homes equipped with utility systems more prone to failure was cited along with other contributing factors to
this disproportionate impact for Texans of color [13].

A disparity in environmental justice was also witnessed in the aftermath of other recent storms including Sandy [14-16], Katrina
[17-19], Harvey [20-22] and many others. In the aftermath of Hurricane Sandy in New Jersey, Burger et al. [14] found ethnic dif-
ferences in length of evacuation, length of power outages, self-reported personal/family/healthcare impact, and federally qualified
health centers (FQHC) use, need, and access. Research on the impacts of Hurricane Harvey in Houston found that communities of color
suffered more extensive flooding than predominantly white neighborhoods, lower income households flooded more extensively than
higher income households, and low-income communities of color were disproportionately exposed to flood-mobilized toxic pollutants
and environmental hazards [20,22]. Given the fact that the disproportionate impact of disasters on vulnerable populations including
low-income non-white families is not unique to Uri nor to the state of Texas, there is a dire need to demystify its contributing factors
using appropriate data.

Previous studies highlighted weak planning, exploitative industries, despoiled environment, and spatial seclusions as the root
causes for the existence of disparities in environmental justice among communities [23] in the wake of various natural hazards such as
Hurricane Harvey. Additionally, disruption of transportation routes to evacuate and access emergency assistance was reported to be
more pronounced in racial/ethnic minority communities compared to predominately white areas [23]. Finally, the presence of digital
divide was shown to serve as a burden to access information for socioeconomically marginalized residents in the aftermath of Harvey.
These studies suggested that interventions in early stages of disaster management cycle including mitigation and preparedness could
help with ameliorating the adverse impacts of disasters and assist with environmental justice within communities. Also, these in-
terventions are recommended to be driven by the understanding that current disasters in Gulf Coast areas would have natural and
technical dimensions due to the lack of proper land use planning and the entrenched toxic infrastructure of petrochemical industries
surrounding socially marginalized communities. This would imply a more extensive integration of climate change studies to enable
proper handling of these complex interlinkages [23].

Community-specific vulnerability and resilience and their dependence on communities’ pre-existing conditions, inequities, the
severity and compounding of hazards, the influence of time, and the diversity of external factors and their impacts were underlined in
Cutter et al.‘s [24] disaster resilience of place (DROP) model. Inspired by this model and guided by the existing literature, our study
examines the vulnerability and resilience of communities in Harris County in the wake of Winter Storm Uri to provide an intrinsic, yet
theoretically useful case study. The study intends to collectively explore the importance of household-specific attributes together with
the significance of built-environment in contextualizing community resilience. The case is unique in that east Texas rarely sees pro-
longed freezing temperatures and the impact on the electrical grid — conspicuously detachment from the Eastern and Western In-
terconnections — was unexpected by utilities, regulators, state leaders, and residents alike. The case is broadly useful, though, as many
counties across the U.S. are experiencing more extreme and unusual climactic events and, like Harris County, are suffering from
compounding disasters that strain resources for recovery. Such a study can provide opportunities to learn from what went wrong at
various levels, including technical upkeep of infrastructure, precautionary measures, planning, and execution with the hope that it can
be used to foster environmental justice for future community resilience planning [25,26]. This research expands disaster and
vulnerability assessments to the relatively under-explored case of climate-related blackouts through collecting and extracting data at
various county and census tract levels during and after Winter Storm Uri. More specifically, unlike previous studies, our study not only
revealed the importance of household-specific attributes such as education and language but also highlighted the significance of the
built environment through parameters such as the percentage of one-unit structures and public-transport users within census tracts.
We also explore a relatively nascent methodology for assessing the impact of disaster and vulnerability through computer vision
analysis of satellite imagery. This section is succeeded by Research Methodology, and Results sections. Conclusions will wrap up the

paper.

2. Methodology

To address the objectives of this research, various data analysis methods were performed at both county and census tract levels. The
logic behind performing various statistical methods was twofold: 1) the exploratory nature of this research study which necessitated
testing our hypothesis of having disproportionate impacts in non-white communities at various levels including a coarser data
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granularity level before delving into finer levels, and 2) data availability which steered the selection of these levels of data granularity.
These resulted in choosing county-level outage data to check the validity for our initial speculation and was succeeded by census tract-
level analysis to check the consistency of the results at both levels. Additionally, the statistical methods used followed the exploratory
nature of the research. More specifically, at county-level were interested in exploring the significance of the incorporated parameters in
predicting the ratio of remaining outages. This was continued by a multipronged approach for our finer resolution data in which we
were initially interested in parameters’ effect size which is a quantitative measure of the relationship between them and census-tract
percentage of outage and their significance. This was then followed by testing the significance of each parameter in predicting whether
a census tract would fall in the category of tract experiencing outage using logistic regression. Finally, by utilizing principal component
analysis we aimed to explore correlations between ratio of outages and the incorporated parameters.

County level analysis was made available through the data that was acquired from a third-party company’ that is specialized in
collecting live power outage data from utilities nationwide. The first round of data analysis was performed at county-level to explore
changes in power outages and potentially link them to county-specific characteristics. To do so, a macro analysis of longitudinal
county-level outages during the month of February was studied. The study was mainly focused on the recovery stage of the blackout,
which, as shown in Fig. 1b, happened between Feb. 18 — Feb. 21. The rationale behind using the recovery phase was the implication of
human interventions through the decisions of grid operation professionals and restoration plans/policies [27-29], which in general
contrasts with the build-up and blackout stages in which decisions could be made on an ad-hoc basis. Additionally, Fig. 1a shows total
electric load in the ERCOT network (in GW) over a period of three weeks from February 5 until February 26. Abnormal trends in
increased loading starts around February 9 due to record low temperature and peaks around February 15 (ERCOT, 2021a); Fig. 1b
represents the subsequent severe blackout that affects between 2.5 million to 4.5 million customers over a period of three days together
with build-up and recovery which starts around February 18. Finally, Fig. 1c shows a snapshot map of the power outages on February
20 at noon and the extent of impact (PowerOutage.US, 2021). Full recovery took more days to be achieved at certain locations across
the state. More specifically, full-recovery durations tended to vary from one county to the other as an example, while over 99.6% of the
households who had lost power in Collins County had their power restored by February 20 at noon; less than 47.8% percent of the
households who had lost power in Nacogdoches County had their power restored by the same time. Collins County has the highest
median household income in Texas. Nacogdoches county has one of the lowest median household incomes in Texas.

Next, to explore the impacts at a neighborhood scale, census tract data for Harris County was used in the second round of data
analysis, including the variables shown in Table 1. Our statistical tests used census variables from the 2019 American Communities
Survey (ACS 2019) 5-year estimates for Harris County Census Tracts. We selected variables that are proxies for environmental and
social disparities at the neighborhood level (we use the term neighborhood interchangeably with census tract).

The selection of variables was mainly based on the review of literature. Even though within the context of disasters, there are
numerous research studies on contributing parameters to social vulnerability, we based our analysis on the highly-cited research study
performed by Flanagan et al. [30] in which as shown below 4 main categories were used to establish the index. The reason behind using
this study as the basis for our analysis is multifold which are described as follows: 1) the focus of the aforementioned study is mainly on
developing a social vulnerability index for disaster management which is well-aligned with the topic of our study, 2) the study is well
rooted in disaster literature covering its various social aspects, 3) data used for the purpose of index development in the study is
census-tract level aggregated data which was deemed to be an appropriate level of granularity to answer our research question to
analyze data extracted from American Community Survey 2019 5-year estimate for Harris County census tracts, and 4) the work was
built on previous related research studies that studied vulnerability as a resilience measure for population group post disasters [31]
which again was aligned with the scope of our study. More specifically, according to Flanagan et al. [30] these parameters can be
divided into 4 main categories and 15 census-tract variables that are demonstrated in Fig. 2 below. In our study, even though the
incorporated parameters are essentially the same as the ones included in the work by Flanagan et al. [30], there were a few tweaks in
the way they were grouped for easier interpretation purposes. More specifically, in our categorization, socioeconomic status and
transportation/accessibility were grouped together to form Economic Characteristics, household structure and mobility were classified
as Housing Characteristics, and finally, age, race, ethnicity, and education formed our Social Characteristics group.

It is worth noting that commonalities between the previous research and another well-cited study performed by Tate [32] cor-
roborates the importance of these parameters in forming the base to study social vulnerabilities in the aftermath of disasters.

Once data at census tract level was obtained, the next step was to identify a measure that could be used as a proxy for extent of
outages within the census tracts. In the absence of public access to high resolution outage data, nightlight satellite imagery” was used
for this purpose. The idea was to compare the total number of black and white pixels within each census tract before and after the
winter storm and evaluate the changes.

3. Results

3.1. Data analysis at county level

At county level, our study was focused on the time span during which about 10% of the total outages (~400 K units) had not yet
been recovered. The primary objective was to explore potential significant links between different counties’ attributes and their share
of the remaining outages during this final recovery/restoration phase. Results are shown in Fig. 3 in which linear regression models were

1 Bluefire Studios LLC https://poweroutage.us/about.
2 https://www.newsweek.com/satellite-photos-show-extent-texas-power-outages-space-1569942.
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Fig. 1. Overview of the power grid conditions during Winter Storm Uri in Texas.

Table 1
Census tract variables extracted from 2019 ACS.
Social Characteristics Housing Characteristics Economic Characteristics
Age Residential type Median Household Income
Race Vacant housing Unemployment
Ethnicity Owner Occupancy Poverty
Education Mobility Employment Industry
Linguistically Isolated Access to Health Insurance
Others Transportation modes to commute to work
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Fig. 2. Social Vulnerability Factors — Inspired by Flanagan et al. [30].

developed to investigate the significance of various county-level attributes, including counties’ percentage of non-Hispanic whites and
median household income in driving counties’ share of the remaining outages. These two variables were selected as examples of pa-
rameters that were deemed influential and repeatedly shown to affect the impact imposed by disasters including Sandy [14-16],
Katrina [17-19,33,34], Harvey [20-22] within the literature. A more comprehensive model was developed (see Fig. 3c) which turned
out to corroborate the importance of race and socioeconomic status as well. More specifically, as shown in Fig. 3a, median household
income was incorporated into our first model. Results indicated its significance at 0.01 level. In Model 2 (Fig. 3b), the only predictor
was the percentage of white populations within counties that turn out to be borderline significant between 0.05 and 0.1 levels. In
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Model 1 County-level Analysis
param B S.E. t-value Sig.
intercept]0.11357]0.221799] 0.512 [0.60908
employed |0.00507|0.001749 -2.897 [0. 004106

Model 2
param B S.E. t-value Sig.
intercept]0.11357]0.221799] 0.512 [0.60908
employed |-0.00507]0.001749[ -2.897 [0.004106

Model 3

param B S.E. t-value Sig.
intercept|0.113570.221799] 0.512 ]0.60908
employed |-0.00507{0.001749] -2.897 |0.004106

unitl [-0.004750.001482] -3.203 [0.001538

age85 [0.044195/0.015295] 2.889 [0.004201
Hispanic[0.002726{0.000805] 3.387 |0.000823

HSgrad -.294 .365 .650 1

3c. models 3, and 4

3d. visualized associations

Fig. 3. Regression models at county-level.

Fig. 3d, negative associations between the remaining ratio of outages and the increase in household median income and percentage of
white population at county-level were visualized in a 3dimentioanl graph. These preliminary results revealed statistically significant
negative associations between these predictors and the dependent variable, which was set to be the ratio of remaining outages to the
maximum recorded outage in the county. This would imply that counties with higher percentage of non-Hispanic whites recovered faster
(lower rate of remaining outages) compared to those without. The same result can be concluded from counties with higher median
household income. Finally, model 3 (Fig. 3c) represents a more comprehensive model incorporating all social vulnerability parameters
as indicated in Table 1 which was reduced to a model with 5 significant predictors through stepwise backward elimination process. A
process which is based on the probability of the likelihood-ratio statistic and conditional parameter estimates [35]. Among the sig-
nificant variables, percentages of employed civilians, 1-unit structures turn out to have negative impact on the remaining outages at county
level. The remaining parameters, including percentages of 85-year-old and above population, Hispanic population, and high school grad-
uates turn out to have positive impact on the ratio of remaining outages. These results are consistent with our first wo models in which
race (Hispanic) and income (through proxies: employment, one-unit structures) were shown to be significant in predicting county-level
remaining outages. The results are also aligned with the existing literature on the higher vulnerability of non-white and lower in-
come groups within the context of disasters [31,36,37]. Even though results from this preliminary study were thought provoking, they
were not conclusive and, as such, called for more in-depth bottom-up analyses to be performed. We subsequently performed a
micro-level analysis of power outages at census tract level within Harris County due to its high level of impact among cities within the
state of Texas [38].

3.2. Data analysis at census tract level

At census tract level, tracts’ attributes as shown in Table 1 were extracted from ACS 2019 and were associated with results from
computer vision analysis of their extent of outage. More specifically, in the absence of high-resolution longitudinal power outage data
within greater Harris County, the following tasks as demonstrated in Fig. 4 were performed to use satellite imagery to detect the
intensity of outages. First, NASA satellite images [39] of nighttime lights in Texas on Feb. 7 and Feb. 16, 2021 were downloaded from
their website (Fig. 4a). The image taken on Feb. 7 was set as the benchmark displaying normal nighttime lights while the second image
taken on Feb. 16 was used to evaluate changes during the outage. Second, to perform spatial analysis, downloaded images were
georeferenced in ArcGIS using ArcMap georeferencing tool (Fig. 4b). Third, census tracts shapefile was downloaded from US Census
TIGER/Line® and clipped by Harris County boundaries in ArcMap (Fig. 4¢). Fourth, ArcMap model builder was used to extract multiple
shapefiles for each census tract and create raster files from the extracted shapefiles (Fig. 4d).

Once raster datasets were created for both before the outage and after the outage, OpenCV computer vision package* was used to
convert the datasets from Red-Green-Blue (RGB) to grayscale and then to black and white (see Fig. 5) and to count the number of pixels

3 https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Census+Tracts.
4 https://opencv.org/releases/.
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Fig. 4. Census tract computer vision process.

within each census tract. These numbers were the basis for calculating black pixel ratio which was used to determine the severity of
outage within neighborhoods for the rest of the research study.

3.2.1. Significant variables and their effect size

Once outage intensity at census tract level was determined using satellite photos and computer vision algorithms, independent
sample t-tests were performed to understand the differences between the two sample groups: neighborhoods (census tracts) that
experienced a power outage compared to neighborhoods (census tracts) that did not have a power outage during Winter Storm Uri. As
shown in Table 2, these tests were run using various measures to define which neighborhoods had a power outage. A key challenge in
this analysis is to lower the sensitivity to normal fluctuation in customer loads, a phenomenon that is well documented in the power
engineering literature due to the impact of various factors on load profiles [40]. Importantly, even if there was no blackout at the times
when either of the two satellite images were taken, one could still have seen a considerable level of difference between the light pattern
and intensity across the two satellite images unrelated to any outage. Of course, such normal fluctuations also exist when a comparison
is made between satellite images before and during outages due to Winter Storm Uri; yet again, unrelated to the outages. Therefore, a
reduction in the sensitivity of the analysis to such normal fluctuations in loading was needed.

To resolve this issue, a reliability threshold in the form of a cut-off point to be applied to the black pixel ratio was considered. First,
suppose there is no normal fluctuation (e.g., those than can happen under daily use and not necessarily extreme conditions such as a
power blackout), between the time of taking the first satellite image (before the outage) versus the time of taking the second satellite
image (during the outage). In that case, an area of interest is deemed to have experienced outage if black pixel ratio is greater than 1.0.
However, due to the presence of normal fluctuations in loads, there can be areas with a black pixel ratio greater than 1.0 that have not
experienced outage; they have rather only experienced less loading, unrelated to the outage. Accordingly, sensitivity to such unrelated
factors was reduced by examining four different cut-off points: 1.0, 1.1, 1.2, and 1.5. For the purpose of this study, the 1.2 cutoff point
was chosen for two reasons: first it displayed the highest number of significant variables based on t-test results compared to the rest
which can be a good indication of its higher accuracy in depicting actual outages; and second, random manual visual inspection of
various raster files exhibited more accurate depiction of the actual outage under this setting. Then the effect size of the difference for
the variables that had statistically significant different means between neighborhoods with power outages compared to those with
power during Winter Storm Uri were determined (See Table 2).

According to the test results for variables with large effect size (0.5 and above) it can be inferred that neighborhoods (census tracts)
with a power outage had fewer single-family housing, more multi-family housing, fewer owner-occupied housing, household size and
more users of public transit for commuting to work together with more newcomers than neighborhoods without a power outage. Also,
among variables with medium effect size (0.3-0.5), results indicated that neighborhoods with a power outage had more linguistically
isolated people, more people living in poverty, more people with no health insurance, more people in the labor force, more vacant
housing, more overcrowding, smaller family size, and fewer seniors than neighborhoods without a power outage.
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Fig. 5. Use of computer-vision to prepare census tract-level outage data.

3.2.2. Logistic regression

Identification of parameters with large and medium effect size such as housing type, public transit work commute, mobility, etc. Led to
the next part of the study investigation to explore the significance of each of these parameters in predicting the category of each census
tract with regards to their level of impact/outage. More specifically, this was carried out through the application of binary logistic
regression in which changes in the log odds of belonging to an affected census tract per a unit increase in predictor variables was
investigated. Odds refer to the probability ratio of being in affected group versus unaffected group. Several binary logistic regression
models were run using stepwise conditional forward selection testing in SPSS v.27.

Logistic regression is a form of statistical modeling which relates a set of explanatory variables to a categorical response variable.
Response variables can either have two or more than two categories and are called dichotomous or polytomous, respectively. In the
case of our study, the dependent variable was census tract outage experience class which had two levels of “affected” and “not
affected”. This classification of census tracts was based on their black to white pixel ratios before and after the storm. Our independent
variables included all social tract-specific social vulnerability parameters (see Fig. 1) such as demographic, socioeconomic, etc. Since
our response variable was nominal and could take two different categories binary logit model was pursued to perform logistic
regression. Binary logit models are a member of generalized linear models or GLMs which were introduced by Nelder and Wedderburn
[41]. Generalized linear models are characterized by three components which are: 1) a random factor which represents the probability
distribution of the response variable; 2) a systematic component which denotes a linear function of explanatory variables that are used
as regressors; and 3) the link which defines the functional relationship between the systematic component and the expected value of
the random component [42]. Binary response Y with outcomes 0 and 1 is a Bernoulli random variable with mean E(Y) =1x P(Y=1)+
0 x P(Y=0) . By denoting this probability as z(x) the variance of would be:

VAR(Y)=E(Y*) — [EY)] =n(x)[1 — n(x)] €Y}
Now for the binary response variable, a linear probability model can be defined as:
E(Y)=n(x) = a+ px (2)

The regression model shown in Eq-2 displays a major conceptual shortcoming associated with linear probability model, which is
the occurrence of probabilities beyond the feasible range of 0-1. To address this defect, it would be more beneficial if a logistic
regression function is used, which is s-shape and has a monotonic relationship with its regressor [42]. This is shown in the following
equation:

(%) = exp(a + px)

"1 +exp(a+ px) 3

As a result, the link function that should be used to make the logistic regression a GLM is a log odds transformation or the logit
which is shown below [42]:

7(x)
log(——2— ) = 4
() e @

Through this method, parameter entry is tested based on the significance of score statistic while removal testing is based on the
probability of a likelihood-ratio statistic founded on conditional parameter estimates [43]. Among the developed models, a model with
four variables as shown in Table 3 was selected after accounting for simplicity, interpretability, and goodness of fit. Included pa-
rameters consisted of percentages of one-unit structures, public transportation users, linguistically isolated people, and high school graduates
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Table 2
T-test results for various Cut-Points.
1.5 Cut Point — T-test 1.2 Cut Point — T-test Cohen’sD for the 1.1 Cut Point — T-test 1.0 Cut Point — T-test
results — statistical results — statistical 1.2 Cut Point t- results — statistical results — statistical
significance significance tests significance significance
1. Age: 65 and over,% el ok -42 el *
2. Race: Black or African NS NS NS NS

American, %

3. Race: Asian, % * -.18 * NS

4. Hispanic % 17 NS

5. Vacant Housing, % .37 NS

6.1 unit, Housing Structures, -1.0
%

7.20 or more units, Housing ke e +1.0 ke *
Structures, %

8. Housing Built before 1979, NS NS NS NS
%

9. Owner Occupied Housing, wxx ok -.89 wxx NS
%

10. No Vehicle Access e ek .56 sk NS
(owner-occupied
housing), %

11. Over Crowded Housing, sk i .32 il NS
%

12. In Labor Force, % Hxx ok 47 Hxx NS

13. Unemployment Rate NS i -27 * NS

14. Public Transit for Work sk * .53 skl NS
Commute, %

15. Retail Employment, % * * -.20 NS NS

16. FIRE Employment, % NS * .20 NS NS

17. Median Household bk * -22 *
Income, $

18. No Health Insurance, % ok .34 * NS

19. Poverty Level, all ok d .40 NS

20. Poverty, age 65 and over, .37 NS
%

21. Household Size ok sk -.61 ok ok

22. Family Size ok el -42 ok *

23. Education: High School * i -.24 i *
Grad or equivalent, %

24, Education: Bachelor’s NS NS .16 NS *
degree, %

25. Mobility: Lived in Same ok ok -.57 ok NS
House for at least 1 year,
%

26. Linguistically Isolated ok ok .46 ok NS
(speak English less than
“well”), %

NS non-significant, * significant at 0.05 level, ** significant at 0.01 level, *** significant at 0.001 level.

within census tracts. The model had a Nagelkerke pseudo-R Square of 0.261 which was marginally lower than the model with the
inclusion of all the variables (in percentages as shown in Table 1) while sharing the same significant variables. Additionally, calculated
Chi-square for Hosmer and Lemeshow test turned out to be insignificant (Chi-square 7.02, p-value 0.535), indicating the model’s
goodness of fit [44]. It is worth noting that having a relatively low R square is the norm for logistic regression; however, they are being
suggested to be used as a statistic to compare and evaluate various competing models [44]. Results from the logistic regression
indicated the positive impact of linguistically isolated people and public transport commute percentages in increasing the log odds of
belonging to affected census tracts. As percent of linguistically isolated population per census tract turns out to have a highly significant
correlation with the percent of Hispanic population within the same census tract (Pearson correlation of 0.824 at 0.01 level) this can be
an indication of disproportionate impact among various ethnicities within the county. The same positive impact can be seen in the

Table 3
Variables in the equation.
B S.E. Wald Sig. Exp(B)

OneUnitStructure% —0.027 0.004 47.652 <.001 1.028
PublicTransport% 0.067 0.032 4.455 .035 .935
LinguasticallyIsolated% 0.029 0.007 18.745 <.001 971
HSgrad% —0.048 0.013 14.196 <.001 1.049
Constant —0.087 0.322 0.073 <.001 1.091
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percentage of population taking public transport to work. On the other hand, higher concentration of one-unit structures and, subse-
quently, less concentration of multifamilyhousing, appeared to have a negative impact implying that an increase in the percentage
would increase the log odds of belonging to the unaffected category. The same applies to percentage of high school graduates within a
census tract, which resulted in a negative impact. These impacts are visualized in Fig. 6 to show how probability of belonging to an
affected census tract would be affected by changes in any of these parameters when holding the rest of the parameters unchanged at
their mean. As shown in Fig. 6, an increase in the percentage of public transportation users for work commute together with the
percentage of linguistically isolated population within a census tract increase its probability to be located among the affected census
tracts. On the other hand, this probability decreases as the percentage of single-family residences and high school graduates increases
within a census tract.

3.2.3. Principal component analysis

Finally, principal component analysis (PCA) was performed using SPSS v.27 to reveal how percentage of black pixels loads on
various components within our data sets. Similar to logistic regression, all the variables in percentages were used in this analysis.
Number of factors was limited to four (see Fig. 7 and Table 4) as they cumulatively cover at least 60% of the variance and factors
beyond four encompass less than five percent of the variance [45-47]. As shown in Table 5, results from PCA revealed noticeable
positive loading of black pixel ratio on a factor which has been additionally loaded by percentage of African American population,
public transport commute, poverty, vacant housing, multifamily housing, and no vehicle owner occupied units, a result which is
impartially aligned with the previous approaches. Even though these results are not conclusive, they suggest possible presence of
disproportionate impacts on low-income communities of color within Harris County.

4. Conclusions and future work

While the results from this study suggest disproportionate impacts among populations with various demographic and socioeco-
nomic statuses, the question remains on how the engineering community, utilities, and policymakers can address inequities and ul-
timately enhance resiliency in areas that are proven to be affected disproportionately during Winter Storm Uri and other extreme
events. In response, two potential power engineering interventions are proposed.

First, as it was observed in this study, when looking at the differences between neighborhoods, it was found that the neighborhoods
that had power outage were disproportionally vulnerable. They had more multifamily housing, overcrowded housing, lower owner
occupancy, more persons with limited English speaking, more persons without access to a car, more persons who rely on public transit
for work commuting, and more persons who recently moved into the neighborhood. These results are particularly insightful within the
recovery period. That is, even though different areas were affected similarly when the disaster occurred, the areas with lower
household income and higher percentage of ethnic minorities remained without power for a longer period while higher-income
predominantly non-Hispanic White areas recovered more quickly. This could be due to various factors, such as lack of more
advanced technologies such as Fault Location, Isolation, and Service Restoration (FLISR) [48], which can significantly accelerate
service restoration due to an automated ability to pinpoint the points of failure in order to assist utility personnel to restore service
faster. More investment in vulnerable geographic areas might be needed to help mitigate disparities in grid resiliency.

Second, there are evolving technologies that can help maintain electricity service during extreme events in critical community
resources such as at hospitals, shelters, schools, churches, etc. In particular, recent advancements in the area of microgrid technologies,
in combination with the installation of onsite renewable generation and energy storage resources, are improving the ability to sustain
isolated operation of a critical facility for several days, thereby serving the affected community until service is fully restored, e.g., see
Refs. [49,50].

As part of our future work, the authors plan to investigate how critical community resources were affected during Winter Storm Uri
and similar extreme events to gain a clearer understanding of disparities in resilience related to specific types of critical infrastructure.
The results will help further identify the engineering challenges and potential solutions required to eliminate existing demographic
disparities associated with the response to and restoration of disaster-caused electrical outages.

As extreme weather events like Winter Storm Uri become more frequent, intense, and unpredictable due to climate change, it is
important to understand how they impact critical infrastructures like the power grid and how such impacts are compounded by
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Fig. 7. Scree plot.
Table 4
Variables in the equation.
Component Initial Eigenvalues
Total % of Variance Cumulative %

1 8.680 28.933 28.933
2 4.572 15.240 44.173
3 2.996 9.986 54.159
4 2.017 6.725 60.884
5 1.134 3.780 64.664
6 1.095 3.650 68.314

socioeconomic and racial inequalities. Our analysis of spatiotemporal and demographic data found that geographic areas with a higher
percentage of single-family homes recovered from the power outages that occurred during Winter Storm Uri and possessed lower rates
of remaining outages during the latter stages of the recovery/restoration phase than areas with a higher proportion multifamily
housing communities. Understanding these disparate impacts of Winter Storm Uri is integral to developing appropriate response,
recovery, and mitigation plans for future events that disrupt the power grid. Our findings could assist utilities and government entities
to enact more equitable approaches to managed service outages and power grid resiliency in the face of natural hazards.

This can have implications at both state and federal levels to help with avoiding/mitigating the impacts together with expediting
the recovery of communities facing disasters such as winter storm Uri in Texas. An example at state-level is the adoption of 16 Texas
Administrative Code § 3.65 and amended § 3.17 by Railroad Commission of Texas [51] to designate natural gas providers in Texas as
critical gas suppliers or customers during emergencies so that their power would remain on during emergencies. This also included
terms on imposing fees on gas companies that aren’t prepared to perform during emergencies. This was in response to a federal report
in which 18% of outages was reported to be caused by natural gas producers power loss and their incapability to disseminate fuel to
powerplants [52]. The other example is Senate Bill 3 which requires weatherization of all electricity generators and providers [53].
Additionally, federal assistance can also help with recovery and mitigation efforts. An example is FEMA public notice 4586-DR-TX [54]
in which Public Assistance (PA), Individual Assistance (IA), and Hazard Mitigation Grant Program (HMGP) were included in response
to damages imposed by winter storm Uri in 2021. More specifically, according to the public notice, the HGMP funds was intended to
mitigate future disaster damages by construction of new facilities, modification of existing ones, relocation of facilities out of flood-
plains etc. Additionally, FEMA aimed at exploring how response and recovery efforts would impact low income and minority com-
munities so that alternative actions and HMGP projects can be considered if the initial ones turn out to have adverse impacts. Other
mitigation strategies specific to grid failure shall focus on increasing resiliency, such as equipment upgrade for service restoration,
increased location generation capacity, such as adding renewable generation resources, or increasing transmission capacity, such as by
adding additional transmission lines to increase the ability to import power. While the exact causes in the grid technologies cannot be
identified without direct access to the proprietary utility data, the results in this paper do reveal the need for addressing the challenges
in these geographical areas, given the outcome with respect to the patterns in the outages. Additionally, many technologies can help
with bridging the current gaps including Distributed Energy Resources (DERs) and microgrid technologies [55] together with
advanced Fault Location, Isolation, and Service Restoration (FLISR) [48] technologies which can significantly accelerate service
restoration due to an automated ability to target failure nodes. These can be complemented by adding power lines in sub-transmission
and transmission networks to increase the ability to supply power to a region from different path when a power line fails and to avoid
cascading failures [56].
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Table 5
Variables in the equation.
Component
1 2 3 4
Age_85andover PCT -.164 .158 -.258 .665
Age_65andover_ PCT -.328 -.170 -.154 .837
Race_BlackAfricanAmericanr_PCT -.152 .245 .808 .161
Race_Asian_PCT -.368 178 -.291 -.106
Hispanic_PCT .908 -.142 -.026 -.203
VacantHousingUnits PCT .101 .594 .069 .200
1_UnitStructure_PCT -.122 -.878 .036 .256
20ormoreunitsStructure_PCT -.095 .821 -.243 -.142
Builtbefore1979_PCT .598 .052 .045 447
OwnerOccupied PCT -.294 -.853 -.184 215
NoVehicles.OwnerOcc_PCT .349 .592 424 .298
LackPlumbing OwnerOcc_PCT 122 .103 120 147
OverCrowded_1.5_PCT 499 .150 -.100 -.049
InLaborForce_PCT -.318 .250 -.228 -.707
Unemployed_PCT .074 .025 .640 .004
PublicTrans_Commute_ PCT .076 .565 .333 .160
Retail Employment_PCT 127 -.100 .460 -.202
FIRE_Employment_PCT -.515 .098 -.404 .096
NoHealthInsurance_PCT .867 .139 197 -.182
Poverty_Family_PCT .729 .373 .405 .061
Poverty_FemaleHHwithkids_PCT .667 175 273 .062
PovertyLevel all PCT 728 .408 .400 .084
PovertyLeve_65andover PCT 531 .297 .207 199
FemaleHHwithkids_PCT .357 .108 .573 -.091
Households_65andover_PCT -127 -.409 .046 .827
Education_HighSchoolGrad_PCT .564 -.190 .626 -.006
Education_BachDegree PCT -.765 .146 -.498 .012
Mobility_SameHouselyear PCT 278 -.704 .030 .223
LinguisticallyIsolated_PCT .879 .067 -.092 -191
BPP _ratio .131 .253 -.123 -.092

Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 8 iterations.

It is worth noting that this study is not immune to limitations. Though our study focuses on the recovery stage of Winter Storm Uri,
we are cognizant of Bosher et al.‘s (2021) critique of the disaster cycle and the risk of underestimating the role of pre-disaster risk
reduction and preparedness activities or characterizing disaster as a one-off event or technological challenge rather than a multi-
faceted, compounded, and evolving phenomenon. As with other disaster research, subjectivity involved in variable selection and
weighting, unavailability of certain data, and difficulty with aggregation and scaling limit the validation and generalizability of results.
More specifically, though our results suggest the importance of community characteristics in how they were affected by the outage
they are not conclusive due to lack of high-resolution longitudinal outage data, limited public data on the grid conditions during the
storm, etc.; thus, requiring a follow up confirmatory study that can collect data throughout the outage. Nevertheless, our quantitative
indicators and findings are useful for demystifying the impacts of natural hazards and power outages, mapping impacts, measuring
post-disaster recovery progress, and determining priorities for decisionmakers.
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