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A B S T R A C T   

Community resilience in the face of natural hazards involves both a community’s sensitivity to 
disaster and its potential to bounce back. A failure to integrate equity into resilience consider
ations results in unequal recovery and disproportionate impacts on vulnerable populations, which 
has long been a concern in the United States. This research investigated aspects of equity related 
to community resilience in the aftermath of Winter Storm Uri in Texas which led to extended 
power outages for more than 4 million households. County-level outage/recovery data was 
analyzed to explore potential significant links between various county attributes and their share 
of the outages during the recovery/restoration phase. Next, satellite imagery was used to examine 
data at a much higher geographical resolution focusing on census tracts in the city of Houston. 
The goal was to use computer vision to extract the extent of outages within census tracts and 
investigate their linkages to census tracts attributes. Results from various statistical procedures 
revealed statistically significant negative associations between counties’ percentage of non- 
Hispanic whites and median household income with the ratio of outages. Additionally, at 
census tract level, variables including percentages of linguistically isolated population and public 
transport users exhibited positive associations with the group of census tracts that were affected by 
the outage as detected by computer vision analysis. Informed by these results, engineering so
lutions such as the applicability of grid modernization technologies, together with distributed and 
renewable energy resources, when controlled for the region’s topographical characteristics, are 
proposed to enhance equitable power grid resiliency in the face of natural hazards.   

1. Introduction 

Between February 13–17, 2021, Winter Storm Uri impacted 25 states and more than 150 million Americans leading to extended 
power and water outages nationwide, with Texas being the hardest hit [1]. The impact of Uri on the state of Texas was far beyond 
expectation due to the lack of precautionary measures to withstand prolonged freezing temperatures [2]. While the electric grid in 
Texas is capable of withstanding extreme humidity and warm weather conditions, it was not designed to endure extended freezing 
temperatures, leaving administrators with no other options than to implement rolling blackouts. These blackouts were supposed to last 
less than an hour [3] but ranged anywhere from couple of hours to couple of days across the state [4,5]. The storm led to several deaths 
due to carbon monoxide poisoning, a significant halt in the administration of COVID-19 vaccines, and an economic loss that is 
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estimated to be around $90 billion [6]. Meanwhile, various outlets brought to light the issue of environmental justice, and the 
human-centric and equity aspects of the impact [7]. While four million people lost electricity and water in Texas [7,8], the impact was 
disproportionate in low-income communities of color [9–11]. Low-income non-white families were reported to bear the brunt of 
compounding crises in the aftermath of Uri [10]. 

Disparate impact was also investigated by Carvallo et al. (2021) who used satellite data on nighttime lights (NL) to determine 
blackouts at the level of Census Block Groups (CBGs) and correlated it to demographic data from the EPA’s EJScreen tool which 
identified the share of population in each CBG that is minority and low-income; they found that CBGs with a high share of non-white 
minorities were more than four times as likely to experience a blackout than predominantly white CBGs, regardless of income. Lee et al. 
[12] analyzed community-scale big data, including digital trace and crowdsourced data, in Harris County and found significant 
disparity in the extent and duration of power outages as well as the extent of burst pipes and disrupted food access for low-income and 
minority residents at the census tract level. 

Racial and income disparities in Texas are associated with a history of redlining and gentrification [7,8] resulting in the con
centration of people of color in specific areas. At the same time, low-income areas tend to lack amenities such as hospitals, which 
during the blackout were prioritized for power restoration together with their neighboring areas [7]. Additionally, tendency to live in 
neighborhoods with older homes equipped with utility systems more prone to failure was cited along with other contributing factors to 
this disproportionate impact for Texans of color [13]. 

A disparity in environmental justice was also witnessed in the aftermath of other recent storms including Sandy [14–16], Katrina 
[17–19], Harvey [20–22] and many others. In the aftermath of Hurricane Sandy in New Jersey, Burger et al. [14] found ethnic dif
ferences in length of evacuation, length of power outages, self-reported personal/family/healthcare impact, and federally qualified 
health centers (FQHC) use, need, and access. Research on the impacts of Hurricane Harvey in Houston found that communities of color 
suffered more extensive flooding than predominantly white neighborhoods, lower income households flooded more extensively than 
higher income households, and low-income communities of color were disproportionately exposed to flood-mobilized toxic pollutants 
and environmental hazards [20,22]. Given the fact that the disproportionate impact of disasters on vulnerable populations including 
low-income non-white families is not unique to Uri nor to the state of Texas, there is a dire need to demystify its contributing factors 
using appropriate data. 

Previous studies highlighted weak planning, exploitative industries, despoiled environment, and spatial seclusions as the root 
causes for the existence of disparities in environmental justice among communities [23] in the wake of various natural hazards such as 
Hurricane Harvey. Additionally, disruption of transportation routes to evacuate and access emergency assistance was reported to be 
more pronounced in racial/ethnic minority communities compared to predominately white areas [23]. Finally, the presence of digital 
divide was shown to serve as a burden to access information for socioeconomically marginalized residents in the aftermath of Harvey. 
These studies suggested that interventions in early stages of disaster management cycle including mitigation and preparedness could 
help with ameliorating the adverse impacts of disasters and assist with environmental justice within communities. Also, these in
terventions are recommended to be driven by the understanding that current disasters in Gulf Coast areas would have natural and 
technical dimensions due to the lack of proper land use planning and the entrenched toxic infrastructure of petrochemical industries 
surrounding socially marginalized communities. This would imply a more extensive integration of climate change studies to enable 
proper handling of these complex interlinkages [23]. 

Community-specific vulnerability and resilience and their dependence on communities’ pre-existing conditions, inequities, the 
severity and compounding of hazards, the influence of time, and the diversity of external factors and their impacts were underlined in 
Cutter et al.‘s [24] disaster resilience of place (DROP) model. Inspired by this model and guided by the existing literature, our study 
examines the vulnerability and resilience of communities in Harris County in the wake of Winter Storm Uri to provide an intrinsic, yet 
theoretically useful case study. The study intends to collectively explore the importance of household-specific attributes together with 
the significance of built-environment in contextualizing community resilience. The case is unique in that east Texas rarely sees pro
longed freezing temperatures and the impact on the electrical grid – conspicuously detachment from the Eastern and Western In
terconnections – was unexpected by utilities, regulators, state leaders, and residents alike. The case is broadly useful, though, as many 
counties across the U.S. are experiencing more extreme and unusual climactic events and, like Harris County, are suffering from 
compounding disasters that strain resources for recovery. Such a study can provide opportunities to learn from what went wrong at 
various levels, including technical upkeep of infrastructure, precautionary measures, planning, and execution with the hope that it can 
be used to foster environmental justice for future community resilience planning [25,26]. This research expands disaster and 
vulnerability assessments to the relatively under-explored case of climate-related blackouts through collecting and extracting data at 
various county and census tract levels during and after Winter Storm Uri. More specifically, unlike previous studies, our study not only 
revealed the importance of household-specific attributes such as education and language but also highlighted the significance of the 
built environment through parameters such as the percentage of one-unit structures and public-transport users within census tracts. 
We also explore a relatively nascent methodology for assessing the impact of disaster and vulnerability through computer vision 
analysis of satellite imagery. This section is succeeded by Research Methodology, and Results sections. Conclusions will wrap up the 
paper. 

2. Methodology 

To address the objectives of this research, various data analysis methods were performed at both county and census tract levels. The 
logic behind performing various statistical methods was twofold: 1) the exploratory nature of this research study which necessitated 
testing our hypothesis of having disproportionate impacts in non-white communities at various levels including a coarser data 

A. Nejat et al.                                                                                                                                                                                                           



International Journal of Disaster Risk Reduction 77 (2022) 103070

3

granularity level before delving into finer levels, and 2) data availability which steered the selection of these levels of data granularity. 
These resulted in choosing county-level outage data to check the validity for our initial speculation and was succeeded by census tract- 
level analysis to check the consistency of the results at both levels. Additionally, the statistical methods used followed the exploratory 
nature of the research. More specifically, at county-level were interested in exploring the significance of the incorporated parameters in 
predicting the ratio of remaining outages. This was continued by a multipronged approach for our finer resolution data in which we 
were initially interested in parameters’ effect size which is a quantitative measure of the relationship between them and census-tract 
percentage of outage and their significance. This was then followed by testing the significance of each parameter in predicting whether 
a census tract would fall in the category of tract experiencing outage using logistic regression. Finally, by utilizing principal component 
analysis we aimed to explore correlations between ratio of outages and the incorporated parameters. 

County level analysis was made available through the data that was acquired from a third-party company1 that is specialized in 
collecting live power outage data from utilities nationwide. The first round of data analysis was performed at county-level to explore 
changes in power outages and potentially link them to county-specific characteristics. To do so, a macro analysis of longitudinal 
county-level outages during the month of February was studied. The study was mainly focused on the recovery stage of the blackout, 
which, as shown in Fig. 1b, happened between Feb. 18 – Feb. 21. The rationale behind using the recovery phase was the implication of 
human interventions through the decisions of grid operation professionals and restoration plans/policies [27–29], which in general 
contrasts with the build-up and blackout stages in which decisions could be made on an ad-hoc basis. Additionally, Fig. 1a shows total 
electric load in the ERCOT network (in GW) over a period of three weeks from February 5 until February 26. Abnormal trends in 
increased loading starts around February 9 due to record low temperature and peaks around February 15 (ERCOT, 2021a); Fig. 1b 
represents the subsequent severe blackout that affects between 2.5 million to 4.5 million customers over a period of three days together 
with build-up and recovery which starts around February 18. Finally, Fig. 1c shows a snapshot map of the power outages on February 
20 at noon and the extent of impact (PowerOutage.US, 2021). Full recovery took more days to be achieved at certain locations across 
the state. More specifically, full-recovery durations tended to vary from one county to the other as an example, while over 99.6% of the 
households who had lost power in Collins County had their power restored by February 20 at noon; less than 47.8% percent of the 
households who had lost power in Nacogdoches County had their power restored by the same time. Collins County has the highest 
median household income in Texas. Nacogdoches county has one of the lowest median household incomes in Texas. 

Next, to explore the impacts at a neighborhood scale, census tract data for Harris County was used in the second round of data 
analysis, including the variables shown in Table 1. Our statistical tests used census variables from the 2019 American Communities 
Survey (ACS 2019) 5-year estimates for Harris County Census Tracts. We selected variables that are proxies for environmental and 
social disparities at the neighborhood level (we use the term neighborhood interchangeably with census tract). 

The selection of variables was mainly based on the review of literature. Even though within the context of disasters, there are 
numerous research studies on contributing parameters to social vulnerability, we based our analysis on the highly-cited research study 
performed by Flanagan et al. [30] in which as shown below 4 main categories were used to establish the index. The reason behind using 
this study as the basis for our analysis is multifold which are described as follows: 1) the focus of the aforementioned study is mainly on 
developing a social vulnerability index for disaster management which is well-aligned with the topic of our study, 2) the study is well 
rooted in disaster literature covering its various social aspects, 3) data used for the purpose of index development in the study is 
census-tract level aggregated data which was deemed to be an appropriate level of granularity to answer our research question to 
analyze data extracted from American Community Survey 2019 5-year estimate for Harris County census tracts, and 4) the work was 
built on previous related research studies that studied vulnerability as a resilience measure for population group post disasters [31] 
which again was aligned with the scope of our study. More specifically, according to Flanagan et al. [30] these parameters can be 
divided into 4 main categories and 15 census-tract variables that are demonstrated in Fig. 2 below. In our study, even though the 
incorporated parameters are essentially the same as the ones included in the work by Flanagan et al. [30], there were a few tweaks in 
the way they were grouped for easier interpretation purposes. More specifically, in our categorization, socioeconomic status and 
transportation/accessibility were grouped together to form Economic Characteristics, household structure and mobility were classified 
as Housing Characteristics, and finally, age, race, ethnicity, and education formed our Social Characteristics group. 

It is worth noting that commonalities between the previous research and another well-cited study performed by Tate [32] cor
roborates the importance of these parameters in forming the base to study social vulnerabilities in the aftermath of disasters. 

Once data at census tract level was obtained, the next step was to identify a measure that could be used as a proxy for extent of 
outages within the census tracts. In the absence of public access to high resolution outage data, nightlight satellite imagery2 was used 
for this purpose. The idea was to compare the total number of black and white pixels within each census tract before and after the 
winter storm and evaluate the changes. 

3. Results 

3.1. Data analysis at county level 

At county level, our study was focused on the time span during which about 10% of the total outages (~400 K units) had not yet 
been recovered. The primary objective was to explore potential significant links between different counties’ attributes and their share 
of the remaining outages during this final recovery/restoration phase. Results are shown in Fig. 3 in which linear regression models were 

1 Bluefire Studios LLC https://poweroutage.us/about. 
2 https://www.newsweek.com/satellite-photos-show-extent-texas-power-outages-space-1569942. 
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developed to investigate the significance of various county-level attributes, including counties’ percentage of non-Hispanic whites and 
median household income in driving counties’ share of the remaining outages. These two variables were selected as examples of pa
rameters that were deemed influential and repeatedly shown to affect the impact imposed by disasters including Sandy [14–16], 
Katrina [17–19,33,34], Harvey [20–22] within the literature. A more comprehensive model was developed (see Fig. 3c) which turned 
out to corroborate the importance of race and socioeconomic status as well. More specifically, as shown in Fig. 3a, median household 
income was incorporated into our first model. Results indicated its significance at 0.01 level. In Model 2 (Fig. 3b), the only predictor 
was the percentage of white populations within counties that turn out to be borderline significant between 0.05 and 0.1 levels. In 

(C)

Fig. 1. Overview of the power grid conditions during Winter Storm Uri in Texas.  

Table 1 
Census tract variables extracted from 2019 ACS.  

Social Characteristics Housing Characteristics Economic Characteristics 

Age Residential type Median Household Income 
Race Vacant housing Unemployment 
Ethnicity Owner Occupancy Poverty 
Education Mobility Employment Industry 
Linguistically Isolated  Access to Health Insurance 
Others  Transportation modes to commute to work  

Fig. 2. Social Vulnerability Factors – Inspired by Flanagan et al. [30].  
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Fig. 3d, negative associations between the remaining ratio of outages and the increase in household median income and percentage of 
white population at county-level were visualized in a 3dimentioanl graph. These preliminary results revealed statistically significant 
negative associations between these predictors and the dependent variable, which was set to be the ratio of remaining outages to the 
maximum recorded outage in the county. This would imply that counties with higher percentage of non-Hispanic whites recovered faster 
(lower rate of remaining outages) compared to those without. The same result can be concluded from counties with higher median 
household income. Finally, model 3 (Fig. 3c) represents a more comprehensive model incorporating all social vulnerability parameters 
as indicated in Table 1 which was reduced to a model with 5 significant predictors through stepwise backward elimination process. A 
process which is based on the probability of the likelihood-ratio statistic and conditional parameter estimates [35]. Among the sig
nificant variables, percentages of employed civilians, 1-unit structures turn out to have negative impact on the remaining outages at county 
level. The remaining parameters, including percentages of 85-year-old and above population, Hispanic population, and high school grad
uates turn out to have positive impact on the ratio of remaining outages. These results are consistent with our first wo models in which 
race (Hispanic) and income (through proxies: employment, one-unit structures) were shown to be significant in predicting county-level 
remaining outages. The results are also aligned with the existing literature on the higher vulnerability of non-white and lower in
come groups within the context of disasters [31,36,37]. Even though results from this preliminary study were thought provoking, they 
were not conclusive and, as such, called for more in-depth bottom-up analyses to be performed. We subsequently performed a 
micro-level analysis of power outages at census tract level within Harris County due to its high level of impact among cities within the 
state of Texas [38]. 

3.2. Data analysis at census tract level 

At census tract level, tracts’ attributes as shown in Table 1 were extracted from ACS 2019 and were associated with results from 
computer vision analysis of their extent of outage. More specifically, in the absence of high-resolution longitudinal power outage data 
within greater Harris County, the following tasks as demonstrated in Fig. 4 were performed to use satellite imagery to detect the 
intensity of outages. First, NASA satellite images [39] of nighttime lights in Texas on Feb. 7 and Feb. 16, 2021 were downloaded from 
their website (Fig. 4a). The image taken on Feb. 7 was set as the benchmark displaying normal nighttime lights while the second image 
taken on Feb. 16 was used to evaluate changes during the outage. Second, to perform spatial analysis, downloaded images were 
georeferenced in ArcGIS using ArcMap georeferencing tool (Fig. 4b). Third, census tracts shapefile was downloaded from US Census 
TIGER/Line3 and clipped by Harris County boundaries in ArcMap (Fig. 4c). Fourth, ArcMap model builder was used to extract multiple 
shapefiles for each census tract and create raster files from the extracted shapefiles (Fig. 4d). 

Once raster datasets were created for both before the outage and after the outage, OpenCV computer vision package4 was used to 
convert the datasets from Red-Green-Blue (RGB) to grayscale and then to black and white (see Fig. 5) and to count the number of pixels 

Fig. 3. Regression models at county-level.  

3 https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Census+Tracts. 
4 https://opencv.org/releases/. 
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within each census tract. These numbers were the basis for calculating black pixel ratio which was used to determine the severity of 
outage within neighborhoods for the rest of the research study. 

3.2.1. Significant variables and their effect size 
Once outage intensity at census tract level was determined using satellite photos and computer vision algorithms, independent 

sample t-tests were performed to understand the differences between the two sample groups: neighborhoods (census tracts) that 
experienced a power outage compared to neighborhoods (census tracts) that did not have a power outage during Winter Storm Uri. As 
shown in Table 2, these tests were run using various measures to define which neighborhoods had a power outage. A key challenge in 
this analysis is to lower the sensitivity to normal fluctuation in customer loads, a phenomenon that is well documented in the power 
engineering literature due to the impact of various factors on load profiles [40]. Importantly, even if there was no blackout at the times 
when either of the two satellite images were taken, one could still have seen a considerable level of difference between the light pattern 
and intensity across the two satellite images unrelated to any outage. Of course, such normal fluctuations also exist when a comparison 
is made between satellite images before and during outages due to Winter Storm Uri; yet again, unrelated to the outages. Therefore, a 
reduction in the sensitivity of the analysis to such normal fluctuations in loading was needed. 

To resolve this issue, a reliability threshold in the form of a cut-off point to be applied to the black pixel ratio was considered. First, 
suppose there is no normal fluctuation (e.g., those than can happen under daily use and not necessarily extreme conditions such as a 
power blackout), between the time of taking the first satellite image (before the outage) versus the time of taking the second satellite 
image (during the outage). In that case, an area of interest is deemed to have experienced outage if black pixel ratio is greater than 1.0. 
However, due to the presence of normal fluctuations in loads, there can be areas with a black pixel ratio greater than 1.0 that have not 
experienced outage; they have rather only experienced less loading, unrelated to the outage. Accordingly, sensitivity to such unrelated 
factors was reduced by examining four different cut-off points: 1.0, 1.1, 1.2, and 1.5. For the purpose of this study, the 1.2 cutoff point 
was chosen for two reasons: first it displayed the highest number of significant variables based on t-test results compared to the rest 
which can be a good indication of its higher accuracy in depicting actual outages; and second, random manual visual inspection of 
various raster files exhibited more accurate depiction of the actual outage under this setting. Then the effect size of the difference for 
the variables that had statistically significant different means between neighborhoods with power outages compared to those with 
power during Winter Storm Uri were determined (See Table 2). 

According to the test results for variables with large effect size (0.5 and above) it can be inferred that neighborhoods (census tracts) 
with a power outage had fewer single-family housing, more multi-family housing, fewer owner-occupied housing, household size and 
more users of public transit for commuting to work together with more newcomers than neighborhoods without a power outage. Also, 
among variables with medium effect size (0.3–0.5), results indicated that neighborhoods with a power outage had more linguistically 
isolated people, more people living in poverty, more people with no health insurance, more people in the labor force, more vacant 
housing, more overcrowding, smaller family size, and fewer seniors than neighborhoods without a power outage. 

Fig. 4. Census tract computer vision process.  
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3.2.2. Logistic regression 
Identification of parameters with large and medium effect size such as housing type, public transit work commute, mobility, etc. Led to 

the next part of the study investigation to explore the significance of each of these parameters in predicting the category of each census 
tract with regards to their level of impact/outage. More specifically, this was carried out through the application of binary logistic 
regression in which changes in the log odds of belonging to an affected census tract per a unit increase in predictor variables was 
investigated. Odds refer to the probability ratio of being in affected group versus unaffected group. Several binary logistic regression 
models were run using stepwise conditional forward selection testing in SPSS v.27. 

Logistic regression is a form of statistical modeling which relates a set of explanatory variables to a categorical response variable. 
Response variables can either have two or more than two categories and are called dichotomous or polytomous, respectively. In the 
case of our study, the dependent variable was census tract outage experience class which had two levels of “affected” and “not 
affected”. This classification of census tracts was based on their black to white pixel ratios before and after the storm. Our independent 
variables included all social tract-specific social vulnerability parameters (see Fig. 1) such as demographic, socioeconomic, etc. Since 
our response variable was nominal and could take two different categories binary logit model was pursued to perform logistic 
regression. Binary logit models are a member of generalized linear models or GLMs which were introduced by Nelder and Wedderburn 
[41]. Generalized linear models are characterized by three components which are: 1) a random factor which represents the probability 
distribution of the response variable; 2) a systematic component which denotes a linear function of explanatory variables that are used 
as regressors; and 3) the link which defines the functional relationship between the systematic component and the expected value of 
the random component [42]. Binary response Y with outcomes 0 and 1 is a Bernoulli random variable with mean E(Y) = 1× P(Y = 1)+

0 × P(Y = 0) . By denoting this probability as π(x) the variance of would be: 

VAR(Y) = E
(
Y2)

− [E(Y)]
2

= π(x)[1 − π(x)] (1) 

Now for the binary response variable, a linear probability model can be defined as: 

E(Y) = π(x) = α + βx (2) 

The regression model shown in Eq-2 displays a major conceptual shortcoming associated with linear probability model, which is 
the occurrence of probabilities beyond the feasible range of 0–1. To address this defect, it would be more beneficial if a logistic 
regression function is used, which is s-shape and has a monotonic relationship with its regressor [42]. This is shown in the following 
equation: 

π(x) =
exp(α + βx)

1 + exp(α + βx)
(3) 

As a result, the link function that should be used to make the logistic regression a GLM is a log odds transformation or the logit 
which is shown below [42]: 

log
(

π(x)

1 − π(x)

)

= α + βx (4) 

Through this method, parameter entry is tested based on the significance of score statistic while removal testing is based on the 
probability of a likelihood-ratio statistic founded on conditional parameter estimates [43]. Among the developed models, a model with 
four variables as shown in Table 3 was selected after accounting for simplicity, interpretability, and goodness of fit. Included pa
rameters consisted of percentages of one-unit structures, public transportation users, linguistically isolated people, and high school graduates 

Fig. 5. Use of computer-vision to prepare census tract-level outage data.  
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within census tracts. The model had a Nagelkerke pseudo–R Square of 0.261 which was marginally lower than the model with the 
inclusion of all the variables (in percentages as shown in Table 1) while sharing the same significant variables. Additionally, calculated 
Chi-square for Hosmer and Lemeshow test turned out to be insignificant (Chi-square 7.02, p-value 0.535), indicating the model’s 
goodness of fit [44]. It is worth noting that having a relatively low R square is the norm for logistic regression; however, they are being 
suggested to be used as a statistic to compare and evaluate various competing models [44]. Results from the logistic regression 
indicated the positive impact of linguistically isolated people and public transport commute percentages in increasing the log odds of 
belonging to affected census tracts. As percent of linguistically isolated population per census tract turns out to have a highly significant 
correlation with the percent of Hispanic population within the same census tract (Pearson correlation of 0.824 at 0.01 level) this can be 
an indication of disproportionate impact among various ethnicities within the county. The same positive impact can be seen in the 

Table 2 
T-test results for various Cut-Points.   

1.5 Cut Point – T-test 
results – statistical 
significance 

1.2 Cut Point – T-test 
results – statistical 
significance 

Cohen’s D for the 
1.2 Cut Point t- 
tests 

1.1 Cut Point – T-test 
results – statistical 
significance 

1.0 Cut Point – T-test 
results – statistical 
significance 

1. Age: 65 and over,% *** *** -.42 *** * 
2. Race: Black or African 

American, % 
NS NS  NS NS 

3. Race: Asian, % NS * -.18 * NS 
4. Hispanic % NS * .17 NS NS 
5. Vacant Housing, % *** *** .37 *** NS 
6.1 unit, Housing Structures, 

% 
*** *** −1.0 *** * 

7.20 or more units, Housing 
Structures, % 

*** *** þ1.0 *** * 

8. Housing Built before 1979, 
% 

NS NS  NS NS 

9. Owner Occupied Housing, 
% 

*** *** -.89 *** NS 

10. No Vehicle Access 
(owner-occupied 
housing), % 

*** *** .56 *** NS 

11. Over Crowded Housing, 
% 

*** ** .32 ** NS 

12. In Labor Force, % *** *** .47 *** NS 
13. Unemployment Rate NS ** -.27 * NS 
14. Public Transit for Work 

Commute, % 
*** *** .53 *** NS 

15. Retail Employment, % * * -.20 NS NS 
16. FIRE Employment, % NS * .20 NS NS 
17. Median Household 

Income, $ 
*** * -.22 * * 

18. No Health Insurance, % *** ** .34 * NS 
19. Poverty Level, all *** *** .40 *** NS 
20. Poverty, age 65 and over, 

% 
* ** .37 *** NS 

21. Household Size *** *** -.61 *** ** 
22. Family Size *** *** -.42 *** * 
23. Education: High School 

Grad or equivalent, % 
* ** -.24 ** * 

24. Education: Bachelor’s 
degree, % 

NS NS .16 NS * 

25. Mobility: Lived in Same 
House for at least 1 year, 
% 

*** *** -.57 *** NS 

26. Linguistically Isolated 
(speak English less than 
“well”), % 

*** *** .46 *** NS 

NS non-significant, * significant at 0.05 level, ** significant at 0.01 level, *** significant at 0.001 level. 

Table 3 
Variables in the equation.   

B S.E. Wald Sig. Exp(B) 

OneUnitStructure% −0.027 0.004 47.652 <.001 1.028 
PublicTransport% 0.067 0.032 4.455 .035 .935 
LinguasticallyIsolated% 0.029 0.007 18.745 <.001 .971 
HSgrad% −0.048 0.013 14.196 <.001 1.049 
Constant −0.087 0.322 0.073 <.001 1.091  
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percentage of population taking public transport to work. On the other hand, higher concentration of one-unit structures and, subse
quently, less concentration of multifamilyhousing, appeared to have a negative impact implying that an increase in the percentage 
would increase the log odds of belonging to the unaffected category. The same applies to percentage of high school graduates within a 
census tract, which resulted in a negative impact. These impacts are visualized in Fig. 6 to show how probability of belonging to an 
affected census tract would be affected by changes in any of these parameters when holding the rest of the parameters unchanged at 
their mean. As shown in Fig. 6, an increase in the percentage of public transportation users for work commute together with the 
percentage of linguistically isolated population within a census tract increase its probability to be located among the affected census 
tracts. On the other hand, this probability decreases as the percentage of single-family residences and high school graduates increases 
within a census tract. 

3.2.3. Principal component analysis 
Finally, principal component analysis (PCA) was performed using SPSS v.27 to reveal how percentage of black pixels loads on 

various components within our data sets. Similar to logistic regression, all the variables in percentages were used in this analysis. 
Number of factors was limited to four (see Fig. 7 and Table 4) as they cumulatively cover at least 60% of the variance and factors 
beyond four encompass less than five percent of the variance [45–47]. As shown in Table 5, results from PCA revealed noticeable 
positive loading of black pixel ratio on a factor which has been additionally loaded by percentage of African American population, 
public transport commute, poverty, vacant housing, multifamily housing, and no vehicle owner occupied units, a result which is 
impartially aligned with the previous approaches. Even though these results are not conclusive, they suggest possible presence of 
disproportionate impacts on low-income communities of color within Harris County. 

4. Conclusions and future work 

While the results from this study suggest disproportionate impacts among populations with various demographic and socioeco
nomic statuses, the question remains on how the engineering community, utilities, and policymakers can address inequities and ul
timately enhance resiliency in areas that are proven to be affected disproportionately during Winter Storm Uri and other extreme 
events. In response, two potential power engineering interventions are proposed. 

First, as it was observed in this study, when looking at the differences between neighborhoods, it was found that the neighborhoods 
that had power outage were disproportionally vulnerable. They had more multifamily housing, overcrowded housing, lower owner 
occupancy, more persons with limited English speaking, more persons without access to a car, more persons who rely on public transit 
for work commuting, and more persons who recently moved into the neighborhood. These results are particularly insightful within the 
recovery period. That is, even though different areas were affected similarly when the disaster occurred, the areas with lower 
household income and higher percentage of ethnic minorities remained without power for a longer period while higher-income 
predominantly non-Hispanic White areas recovered more quickly. This could be due to various factors, such as lack of more 
advanced technologies such as Fault Location, Isolation, and Service Restoration (FLISR) [48], which can significantly accelerate 
service restoration due to an automated ability to pinpoint the points of failure in order to assist utility personnel to restore service 
faster. More investment in vulnerable geographic areas might be needed to help mitigate disparities in grid resiliency. 

Second, there are evolving technologies that can help maintain electricity service during extreme events in critical community 
resources such as at hospitals, shelters, schools, churches, etc. In particular, recent advancements in the area of microgrid technologies, 
in combination with the installation of onsite renewable generation and energy storage resources, are improving the ability to sustain 
isolated operation of a critical facility for several days, thereby serving the affected community until service is fully restored, e.g., see 
Refs. [49,50]. 

As part of our future work, the authors plan to investigate how critical community resources were affected during Winter Storm Uri 
and similar extreme events to gain a clearer understanding of disparities in resilience related to specific types of critical infrastructure. 
The results will help further identify the engineering challenges and potential solutions required to eliminate existing demographic 
disparities associated with the response to and restoration of disaster-caused electrical outages. 

As extreme weather events like Winter Storm Uri become more frequent, intense, and unpredictable due to climate change, it is 
important to understand how they impact critical infrastructures like the power grid and how such impacts are compounded by 
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Fig. 6. Probability of belonging to affected category – Sensitivity analysis.  
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socioeconomic and racial inequalities. Our analysis of spatiotemporal and demographic data found that geographic areas with a higher 
percentage of single-family homes recovered from the power outages that occurred during Winter Storm Uri and possessed lower rates 
of remaining outages during the latter stages of the recovery/restoration phase than areas with a higher proportion multifamily 
housing communities. Understanding these disparate impacts of Winter Storm Uri is integral to developing appropriate response, 
recovery, and mitigation plans for future events that disrupt the power grid. Our findings could assist utilities and government entities 
to enact more equitable approaches to managed service outages and power grid resiliency in the face of natural hazards. 

This can have implications at both state and federal levels to help with avoiding/mitigating the impacts together with expediting 
the recovery of communities facing disasters such as winter storm Uri in Texas. An example at state-level is the adoption of 16 Texas 
Administrative Code § 3.65 and amended § 3.17 by Railroad Commission of Texas [51] to designate natural gas providers in Texas as 
critical gas suppliers or customers during emergencies so that their power would remain on during emergencies. This also included 
terms on imposing fees on gas companies that aren’t prepared to perform during emergencies. This was in response to a federal report 
in which 18% of outages was reported to be caused by natural gas producers power loss and their incapability to disseminate fuel to 
powerplants [52]. The other example is Senate Bill 3 which requires weatherization of all electricity generators and providers [53]. 
Additionally, federal assistance can also help with recovery and mitigation efforts. An example is FEMA public notice 4586-DR-TX [54] 
in which Public Assistance (PA), Individual Assistance (IA), and Hazard Mitigation Grant Program (HMGP) were included in response 
to damages imposed by winter storm Uri in 2021. More specifically, according to the public notice, the HGMP funds was intended to 
mitigate future disaster damages by construction of new facilities, modification of existing ones, relocation of facilities out of flood
plains etc. Additionally, FEMA aimed at exploring how response and recovery efforts would impact low income and minority com
munities so that alternative actions and HMGP projects can be considered if the initial ones turn out to have adverse impacts. Other 
mitigation strategies specific to grid failure shall focus on increasing resiliency, such as equipment upgrade for service restoration, 
increased location generation capacity, such as adding renewable generation resources, or increasing transmission capacity, such as by 
adding additional transmission lines to increase the ability to import power. While the exact causes in the grid technologies cannot be 
identified without direct access to the proprietary utility data, the results in this paper do reveal the need for addressing the challenges 
in these geographical areas, given the outcome with respect to the patterns in the outages. Additionally, many technologies can help 
with bridging the current gaps including Distributed Energy Resources (DERs) and microgrid technologies [55] together with 
advanced Fault Location, Isolation, and Service Restoration (FLISR) [48] technologies which can significantly accelerate service 
restoration due to an automated ability to target failure nodes. These can be complemented by adding power lines in sub-transmission 
and transmission networks to increase the ability to supply power to a region from different path when a power line fails and to avoid 
cascading failures [56]. 

Fig. 7. Scree plot.  

Table 4 
Variables in the equation.  

Component Initial Eigenvalues 

Total % of Variance Cumulative % 

1 8.680 28.933 28.933 
2 4.572 15.240 44.173 
3 2.996 9.986 54.159 
4 2.017 6.725 60.884 
5 1.134 3.780 64.664 
6 1.095 3.650 68.314  
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It is worth noting that this study is not immune to limitations. Though our study focuses on the recovery stage of Winter Storm Uri, 
we are cognizant of Bosher et al.‘s (2021) critique of the disaster cycle and the risk of underestimating the role of pre-disaster risk 
reduction and preparedness activities or characterizing disaster as a one-off event or technological challenge rather than a multi- 
faceted, compounded, and evolving phenomenon. As with other disaster research, subjectivity involved in variable selection and 
weighting, unavailability of certain data, and difficulty with aggregation and scaling limit the validation and generalizability of results. 
More specifically, though our results suggest the importance of community characteristics in how they were affected by the outage 
they are not conclusive due to lack of high-resolution longitudinal outage data, limited public data on the grid conditions during the 
storm, etc.; thus, requiring a follow up confirmatory study that can collect data throughout the outage. Nevertheless, our quantitative 
indicators and findings are useful for demystifying the impacts of natural hazards and power outages, mapping impacts, measuring 
post-disaster recovery progress, and determining priorities for decisionmakers. 
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