


item semantics and inter-item relations. Beyond

training a potent language model for intra-item se-

mantics, our model also conditions the language

modeling task on graph-level session information,

thus encouraging the pretrained model to learn how

to utilize inter-item signals. Our model architec-

ture tightly integrates two key components: (1)

an item Transformer encoder, which captures text

semantics of session items; and (2) a graph condi-

tioned Transformer, which aggregates and propa-

gates inter-item relations for cross-item prediction.

As a result, CERES models the higher-level inter-

actions between items.

We have pretrained CERES using 468,199,822

sessions and performed experiments on three

session-based tasks: product search, query search,

and entity linking. By comparing with publicly

available state-of-the-art language models and

domain-specific language models trained on alter-

native representations of session data, we show that

CERES outperforms strong baselines on various

session-based tasks by large margins. Experiments

show that CERES can effectively utilize session-

level information for downstream tasks, better cap-

ture text semantics for session items, and perform

well even with very scarce training examples.

We summarize our contributions as follows: 1)

We propose CERES , a pretrained model for semi-

structured e-commerce session data. CERES can

effectively encode both e-commerce items and

sessions and generically support various session-

based downstream tasks. 2) We propose a new

graph-conditioned transformer model for pretrain-

ing on general relational structures on text data. 3)

We conducted extensive experiments on a large-

scale e-commerce benchmark for three session-

related tasks. The results show the superiority

of CERES over strong baselines, including main-

stream pretrained language models and state-of-

the-art deep session recommendation models.

2 Customer Sessions

A customer session is the search log before a fi-

nal purchase action. It consists of customer-query-

product interactions: a customer submits search

queries obtains a list of products. The customer

may take specific actions, including view and pur-

chase on the retrieved products. Hence, a session

contains two types of items: queries and products,

and various relations between them established by

customer actions.

We define each session as a relational graph

G = (V, E) that contains all queries and products

in a session and their relations. The vertex set

V = (Q,P) is partitioned into ordered query set

Q and unordered product set P . The queries Q =
(q1, . . . , qn) are indexed by order of the customer’s

searches. The edge set E contains two types of

edges: {(qi, qj), i < j} are one-directional edges

that connect each query to its previous queries; and

{qi, pj , aij} are bidirectional edges that connects

the ith query and jth product, if the customer took

action aij on product pj retrieved by query qj .

The queries and products are represented by tex-

tual descriptions. Specifically, each query is rep-

resented by customer-generated search keywords.

Each product is represented with a table of tex-

tual attributes. Each product is guaranteed to have

a product title and description. In this paper, we

call “product sequence” as the concatenation of

title and description. A product may have addi-

tional attributes, such as product type, color, brand,

and manufacturer, depending on their specific cate-

gories.

3 Our Method

In this section we present the details of CERES.

We first describe our designed session pretraining

task in Section 3.1, and then describe the model

architecture of CERES in Section 3.2.

3.1 Graph-Conditioned Masked Language

Modeling Task

Suppose G = (V, E) is a graph on T text items as

vertices, v1, . . . , vT , each of which is a sequence

of text tokens: vi = [vi1, . . . , viTi
], i = 1, . . . , T .

We propose graph-conditioned masked language

modeling (GMLM), where masked tokens are pre-

dicted with both intra-item context and inter-item

context:

pGMLM(vmasked) =
∏

jth masked

P(vij |G, {vik}kth unmasked),

(1)

which encourages the model to leverage informa-

tion graph-level inter-item semantics efficiently in

order to predict masked tokens. To optimize (1),

we need to learn token-level embeddings that are

infused with session-level information, which we

introduce in Section 3.2.2. Suppose certain tokens

in the input sequence of items as masked (detailed

below), we optimize the predictions of the masked

tokens with cross entropy loss. The pretraining

framework is illustrated in Figure 3.
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the model, we optimize a hinge loss on the cosine

similarity between sessions and items.

4 Experiments

4.1 Experiment Setup

Dataset. We collected customer sessions from

Amazon for pretraining and finetuning on down-

stream tasks. 468,199,822 customer sessions are

collected from August 1 2020 to August 31 2020

for pretraining. 30,000 sessions are collected from

September 2020 to September 7 2020 for down-

stream tasks. The pretraining and downstreaming

datasets are from disjoint time spans to prevent data

leakage. All data are cleaned and anonymized so

that no personal information about customers was

used. Each session is collected as follows: when a

customer perform a purchase action, we backtrace

all actions by the customer in 600 seconds before

the purchase until a previous purchase is encoun-

tered. The actions of customers include: 1) search,

2) view, 3), add-to-cart, and 4) purchase. Search

action is associated with customer generated query

keywords. View, add-to-cart, and purchase are as-

sociated with the target products. All the products

in the these sessions are gathered with their product

title, bullet description, and various other attributes,

including color, manufacturer, product type, size,

etc. In total, we have 37,580,637 products. The

sessions have an average of 3.24 queries and 4.36

products. Queries have on average 5.63 tokens,

while product titles and bullet descriptions have

averagely 17.42 and 96.01 tokens.

Evaluation Tasks and Metrics. We evaluate all

the compared models on the following tasks: 1)

Product Search. In this task, given observed cus-

tomer behaviors in a session, the model is asked

to predict which product will be purchased from a

pool of candidate products. The purchased prod-

ucts are removed from sessions to avoid trivial in-

ference. The candidate product pool is the union of

all purchased products in the test set and the first

10 products returned by the search engine of all

sessions in the test set.

2) Query Search. Query Search is a recommen-

dation task where the model retrieves next queries

for customers which will lead to a purchase. Given

a session, we hide the last query along with prod-

ucts associated with it, i.e. viewed or purchased

with the removed query. Then, we ask the model

to predict the last query from a pool of candidate

queries. The candidate query pool consists of all

last queries in the test set.

3) Entity Linking. In this task we try to under-

stand the deeper semantics of customer sessions.

Specifically, if customer purchases a product in a

session, the task is to predict the attributes of the

purchased product from the rest contexts in the

session. In total, we have 60K possible product

attributes.

Baselines. The compared baselines can be catego-

rized into three groups:

1) General-domain pretrained language mod-

els which include BERT (Devlin et al., 2018),

RoBERTa (Liu et al., 2019), and ELECTRA (Clark

et al., 2020). These models are state-of-the-art

pretrained language models, which can serve as

general-purpose language encoders for items and

enable downstream session-related tasks. Specifi-

cally, the language encoders produce item embed-

dings first, and compose session embeddings by

pooling the items in sessions. To retrieve items

for sessions, one can compare the cosine similarity

between sessions and retrieved items.

2) Pretrained session models which are pre-

trained models on e-commerce session data. Specif-

ically, we pretrain the following language models

using our session data: a) Product-BERT, which

is a domain-specific BERT model pretrained with

product information; b) SQSP-BERT, where SQSP

is short for Single-query Single-Product. SQSP-

BERT is pretrained on query-product interaction

pairs with language modeling and contrastive learn-

ing objectives. They are used in the same manner

in downstream tasks as general-domain pretrained

language models. The detailed configurations are

provided in the Appendix.

3) Session-based recommendation methods

including SR-GNN (Wu et al., 2019b) and

NISER+ (Gupta et al., 2019), which are state-of-

the-art models for session-based product recom-

mendation on traditional benchmarks, including

YOOCHOOSE and DIGINETICA; and Nvidia’s

MERLIN (Mobasher et al., 2001), which is the best-

performing model in the recent SIGIR Next Items

Prediction challenge (Kallumadi et al., 2021)

To evaluate the performance on these tasks, we

employ standard metrics for recommendation sys-

tems, including MAP@K, and Recall@K.

4.2 Implementation Details

The implementation details for pretraining and fine-

tuning stages are described as follows.
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Method map@1 recall@1 map@32 recall@32 map@64 recall@64

BERT 55.609 55.353 66.386 90.511 66.481 95.073
RoBERTa 66.506 65.754 74.516 93.248 74.561 95.438
Electra 62.321 62.365 62.985 68.296 63.122 74.318

Product-Bert 66.827 66.393 74.611 94.404 74.641 96.046
SQSP-Bert 63.942 64.872 72.232 91.241 72.307 94.891
CERES 75.481 75.456 81.121 95.255 81.16 96.898

Table 3: The performance of different methods for Entity Linking, after fine-tuning with 30,000 training sessions.

achieving 93.453%, 71.231%, 80.26% MAP@64

in three downstream tasks, observing a 1.13% per-

formance drop. This shows that GNN’s aggrega-

tion of information can help item-level embeddings

encode more session-level information, improving

performance in downstream tasks.

Model Efficiency. CERES has additional few

GNN and Transformer layers attached to the end of

the model. The additional layers bring ∼20% addi-

tional inference time compared to standard BERT

with 12 layers and 768 hidden size.

5 Related work

Pretrained language models such as BERT (Devlin

et al., 2018), BART (Lewis et al., 2019), ELEC-

TRA (Clark et al., 2020), RoBERTa (Liu et al.,

2019) have pushed the frontiers of many NLP tasks

by large margins. Their effectiveness and efficiency

in parallelism have made them popular and general-

purpose language encoders for many text-rich appli-

cations. However, they are not designed to model

relational and graph data, and hence are not the

best fit for e-commerce session data.

Researchers have also sought to enhance text

representations in pretrained models with knowl-

edge graphs (Shen et al., 2020; Liu et al., 2020;

Yao et al., 2019; Sun et al., 2020, 2021). While

these models consider a knowledge graph struc-

ture on top of text data, they generally use entities

or relations in knowledge graphs to enhance text

representations, but cannot encode arbitrary graph

structures. This is not sufficient in session-related

applications as session structures are ignored.

Many works have been proposed to learn pre-

trained graph neural networks. Initially, methods

were proposed for domain-specific graph pretrain-

ing (Hu et al., 2019a,b; Shang et al., 2019). How-

ever, they rely on pre-extracted domain-specific

node-level features, and cannot be extended to ei-

ther session data or text data as nodes. Recently,

many works have been proposed to pretrain on gen-

eral graph structure (Hu et al., 2020; You et al.,

2020; Qiu et al., 2020a). However, they cannot

encode the semantics of text data as nodes.

Contextual information in sessions have been

shown beneficial to various related recommenda-

tion tasks, such as product recommendation (Wu

et al., 2019b; Dehghani et al., 2017; Jannach and

Ludewig, 2017; Gupta et al., 2019) and query

rewriting (Li et al., 2017; Cucerzan and White,

2007). Many existing session-based recommenda-

tion methods seek to exploit the transitions between

items (Yap et al., 2012; Rendle et al., 2010; Wang

et al., 2018; Li et al., 2017) and considering ses-

sions as graphs (Xu et al., 2019; Ruihong et al.,

2021; Wang et al., 2020).

6 Limitations and Risks

This paper limits the application of CERES to ses-

sion data with text descriptions. CERES has the po-

tential of being a universal pretraining framework

for arbitrary heterogeneous data. For example, ses-

sions can include product images and customer

reviews for more informative multimodal graphs.

We leave this extension for future work.

Session data are personalized experience for cus-

tomers and could cause privacy issues if data are

not properly anonymized. In application, the model

should be used to avoid exploitation or leakage of

customers personal profiles and preferences.

7 Conclusion

We proposed a pretraining framework, CERES,

for learning representations for semi-structured e-

commerce sessions. We are the first to jointly

model intra-item text and inter-item relations in ses-

sion graphs with an end-to-end pretraining frame-

work. By modeling Graph-Conditioned Masked

Language Modeling, our model is encouraged to

learn high-quality representations for both intra-

item and inter-item information during its pretrain-

ing on massive unlabeled session graphs. Further-

more, as a generic session encoder, our model

enabled effective leverage of session information

in downstream tasks. We conducted extensive

experiments and ablation studies on CERES in

comparison to state-of-the-art pretrained models

and recommendation systems. Experiments show

that CERES can produce higher quality text rep-

resentations as well as better leverage of session
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graph structure, which are important to many e-

commerce related tasks, including product search,

query search, and query understanding.
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Attribute Value

Title Pour-over Coffee Maker

Bullet Description Just coffee maker.

Color N/A

Brand Chemex

Manufacturer Chemex

Product Type Coffee Maker

Table 4: Example Product Table. Each product is

guaranteed to have a title. Most products have bul-

let descriptions, which can be split into multiple en-

tries. Products could have other attributes, such as

color, brand, product type, etc. as well.

A Details on Session Data

A.1 Product Attributes.

A product is represented with a table of attributes.

Each product is guaranteed to have a product title

and bullet description. In this paper, we regard

the product title as the representative sequence of

the product, called “product sequence”. A product

may have additional attributes, such as product

type, color, brand, and manufacturer, depending on

specific products.

A.2 Alternative Pretraining Corpora

In this section we introduce alternative pretrain-

ing corpora that encode information in a session,

including products and queries, but not treating

sessions as a whole.

A.2.1 Product Corpus

In this corpus, we gathered all product information

that appeared in the sessions from August 2020 to

September 2020. Each product will have descrip-

tions such as product title and bullet description,

and other attributes like entity type, product type,

manufacturer, etc. Particularly, bullet description

is composed of several lines of descriptive facts

about the product. All products without titles are

removed. Each of the remaining product forms a

paragraph, where the product title comes as the first

sentence, followed by the entries of bullet descrip-

tions each as a sentence, and product attributes.

An example document in this corpora is as fol-

lows:

[Title] product title

[Description] description

[Product Type] product type

[Color] color

A.2.2 Single-Query Single-Product (SQSP)

Corpus

In this corpus, we treat each session as a document

and each query-product pair as a sentence. A query-

product pair in the document are the pairs of queries

and products that are either viewed or clicked with

the given queries. A query-product pair looks like

the follows:

[SEARCH] search keywords

[TITLE] product title

[DESCRIPTION] description

[ENTITY_TYPE] entity type

where the first [SEARCH] special token indicates

a field of query keywords, and [TITLE] indicates

fields of product information starting with product

tittles. In this corpus, we model the one-to-one

relation between queries and products.

A.2.3 Session Corpus

In this corpus, we treat each session as a document

and sequentially put text representations of items

in a session to the document with special tokens in-

dicating the fields of items. An example document

looks like the follows:

[SEARCH] keywords 1

[SEARCH] keywords 2 [CLICK]

[TITLE] product 1

[SEARCH] keywords 3

[PURCHASE]

[TITLE] product 2

In this example, the customer first attempted to

search with keywords 1 and then modified the key-

words to keywords 2. The customer then clicked on

product 1. At last, the customer modified his search

to keywords 3 and purchased product 2. In this cor-

pus, session information is present in a document,

but the specific relations between elements are not

specified. The comparison of different datasets are

in Table 5.

A.3 Alternative Pretraining Methods

We introduce the alternative pretraining models.

• Product-Bert. It is pretrained on the Product

Corpus. Specifically, we treat each product

in the Product Corpus as an article. Product

titles is always the first sentence, followed by

paragraphs of bullet descriptions, which can

contain multiple sentences. Then, each addi-

tional product attribute is a sentence added

after the bullet descriptions.
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Corpus Product Info Query Info Relational Session Context

Product 3 7 7 7

SQSP 3 3 3 7

Session-Corpus 3 3 7 3

Session-Graph 3 3 3 3

Table 5: Comparision of different pretraining dataset. Product Corpus has access only to product information.

SQSP models on the queries and query-product relations, without access to session context. Session Corpus has

access to contextual information in a session, but does not model on relations between objects. Session-Graph has

access to all information and models on the relational nature of nodes in the session graph.

Product Bert is trained for 300,000 steps, with

a 12-layer transformer with a batch size of

6144 and peak learning rate of 1e-3, 1% linear

warm-up steps, and 1e−2 linear weight decay

to a minimum learning rate of 1e-5.

• SQSP-Bert. It is pretrained on SQSP Cor-

pus. The SQSP Bert uses the same Trans-

former backbone as Product Bert. Given each

query-product pair, SQSP feeds the text pair

sequence to the Transformer for token embed-

dings for masked language modeling loss. In

addition to language modeling, for each query-

product pair, we sample a random product for

the query as a negative query-product pair.

The text pair sequence of the negative sample

is also fed to the Transformer. Then, a dis-

criminator is trained in the pretraining stage

to distinguish the ground-truth query-product

pairs and randomly sampled pairs. The dis-

criminator’s classification loss should serve as

a contrastive loss.

SQSP Bert is trained with the same configura-

tion of Product Bert.

B Details on Evaluation Metrics

Mean Average Precision. Suppose that for a ses-

sion, m items are relevant and N items are retrieved

by the model, the Average Precision (AP) of a ses-

sion is defined as

AP@N =
1

min(m,N)

N∑

k=1

P (k)rel(k), (4)

where P (k) is the precision of the top k re-

trieved items, and rel(k) is an indicator function

of whether the kth item is relevant. As we have at

most one relevant item for each session, the above

metric reduces to 1
r
, where r is the rank of the rele-

vant item in the retrieved list, and k = ∞ when the

relevant item is not retrieved. MAP@N averages

AP@N over all sessions,

MAP@N =
1

|S|

∑

s∈S

1

rs
(5)

where rs is the rank of the relevant item for a spe-

cific session s. MAP in this case is equivalent to

MRR.

Mean Average Precision by Queries (MAPQ).

Different from MAP, MAPQ averages AP over last

queries instead of sessions. Suppose Q is the set of

unique last queries, and S(q), q ∈ Q is the set of

sessions whose last queries are q, then the average

precision for one query q is

1
∑k

i=1 rel(k)

N∑

k=1

min(1,

∑
rs≤k rel(k)

k
) (6)

then we sum over all queries to obtain MAPQ@N.

Mean Reciprocal Rank by Queries (MRRQ).

MRRQ averages MRR over session last queries

instead of sessions.

MRRQ@N =
1

|Q|

∑

q∈Q

max
s∈S(q)

(rs) (7)

Recall. Recall@N calculates the percentage of

sessions whose relevant items were retrieved

among the top N predictions.
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