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1 Introduction

Koszul algebras show up naturally and abundantly in algebra and topology. They
were first introduced by Priddy in 1970 as algebras for which the bar resolution,
which is normally far from minimal, admits a reduction to a comparatively small
subcomplex; see [23]. Priddy’s work explained contemporaneous ideas on restricted
Lie algebras in the work of May and, separately, that of Bousfield, Curtis, Kan,
Quillen, Rector, and Schlesinger; see [2, 17]. Priddy was an algebraic topologist,
but Koszul algebras have since been linked to several fundamental concepts across
mathematics where they appear naturally and are studied extensively in fields
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as diverse as topology [14], representation theory [6], commutative algebra [12],
algebraic geometry [4], noncommutative geometry [16], and number theory [21].
For a general overview, see the monograph by Polishchuk and Positselski [22].

An interesting feature of Koszul algebras is that they appear in pairs: every
Koszul algebra A has a dual algebra A! which is also a Koszul algebra (see
Sect. 2). The prototypical example of such a Koszul pair is a polynomial algebra
S over a field, together with the corresponding exterior algebra !. The associated
theory of Koszul duality is a generalization of the duality underlying the Bernstein–
Gelfand–Gelfand correspondence [4] describing coherent sheaves on projective
space in terms of modules over the exterior algebra. This exemplifies the philosophy
that facts relating the symmetric and exterior algebras often have Koszul duality
counterparts.

In this paper we extend Priddy’s methods of constructing free resolutions
over standard graded Koszul algebras and generalize Buchsbaum and Eisenbud’s
resolutions in [3] to resolve powers of the homogeneous maximal ideal over Koszul
algebras. Resolutions over Koszul algebras have previously appeared in works of
Green and Martínez-Villa [15, Theorem 5.6], Martínez-Villa and Zacharia [20,
Proposition 3.2] and in other sources referenced below. Our approach has the
advantage of producing explicit minimal resolutions.

In particular, in [23] Priddy exploits a natural differential on A ⊗k A
! to give an

explicit construction for the linear minimal graded free resolution of the residue
field of a graded Koszul algebra; see Definition 2.5. In this paper, we extend
this construction to a family of acyclic complexes that yields highly structured
resolutions of the powers of the homogeneous maximal ideal over standard graded
Koszul algebras; see Definition 4.1. Since these complexes are typically not
minimal, we also seek to determine their minimal counterparts. To achieve this, we
take inspiration from results that describe structured resolutions over a polynomial
ring S constructed starting from the Koszul complex (exterior algebra) ! and its
generalizations; see [3]. We provide analogs of these results using any pair of Koszul
dual algebras, A and A!, instead of S and !.

Our main result generalizes the canonical resolutions for the powers of the homo-
geneous maximal ideal constructed over a polynomial ring S by Buchsbaum and
Eisenbud in [3] to obtain minimal free resolutions for powers of the homogeneous
maximal ideal of a graded Koszul algebra. In contrast to the situation over S, these
are in general infinite resolutions. This allows us to obtain an explicit formula for
the graded Betti numbers defined by βi,j (ma) = dimk Tori (ma, k)j and the graded
Poincaré series PA

ma (y, z) =
∑

i,j!0 βi,j (ma)yj zi . The following is a combination
of Theorem 5.3 and Corollary 5.5.

Theorem If A is a graded Koszul algebra with homogeneous maximal ideal m, the
complexes

LA
a : · · · → LA

n,a

∂ ′
n−→ LA

n−1,a

∂ ′
n−1−−→ . . .

∂ ′
1−→ LA

0,a
εa−→ ma → 0,
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defined in Eq. (5.3) with the augmentation map εa defined in Eq. (5.4) are minimal
free resolutions of the powers ma with a ! 1.

The nonzero graded Betti numbers of the powers of m are given by

βA
n,n+a(m

a) =
a∑

i=1

(−1)i+1 dimk((A
!)∗n+i ) dimk(Aa−i ).

and the graded Poincaré series is

PA
ma (y, z) = −(−z)−aHA!∗(yz)HA/ma (−yz).

In particular, the minimal graded resolution of ma is a-linear.
The Betti numbers presented in the theorem are recovered in a more restricted

setting in the recent paper [25] investigating resolutions of monomial ideals over
strongly Koszul algebras via different techniques.

The paper is structured as follows. In Sect. 2, we provide background on Koszul
algebras and the Priddy complex. In Sect. 3, we explain how to obtain a free solution
of a module M from a resolution of the ring over its enveloping algebra. In Sect. 4,
we rewrite this resolution as the totalization of a double complex, in the case that
the module is a power of the homogeneous maximal ideal and the ring is a Koszul
algebra. In Sect. 5, we give the minimal resolution and Betti numbers for the powers
of the homogeneous maximal ideal over a Koszul algebra. In Sect. 6 we apply our
construction to several specific Koszul algebras A to obtain explicit formulas for the
Betti numbers of ma .

2 Koszul Algebras and the Priddy Resolution

Throughout k is a field andA is a graded k-algebra having finite-dimensional graded
components with Ai = 0 for i < 0 and A0 = k. We further assume that A is
standard graded, that is, A is generated by A1 as an algebra over A0 = k.

Definition 2.1 ([23, Chapter 2]) We say that A is Koszul if k = A/A>0 admits a
linear graded free resolution over A, i.e., a graded free resolution P• in which Pi is
generated in degree i. &'

Classes of graded Koszul algebras arise from: quadratic complete intersections
[24], quotients of a polynomial ring by quadratic monomial ideals [12], quotients
of a polynomial ring by homogeneous ideals which have a quadratic Gröbner basis,
and from Koszul filtrations [9]; see, for example, the survey paper by Conca [7].

We now focus on quadratic algebras in order to define Koszul duality.

Definition 2.2 ([22, Chapter 1, Section 2]) Let A be a standard graded k-algebra.
We say that A is quadratic if A = T (V )/Q, where V is a k-vector space, T (V ) is
the tensor algebra of V , and Q is a quadratic ideal of T (V ).
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If A is a quadratic algebra, its quadratic dual algebra is defined by

A! = T (V ∗)
Q⊥

where V ∗ = Homk(V , k) andQ⊥ is the quadratic ideal generated by the orthogonal
complement to Q2 in T (V ∗)2 = V ∗ ⊗k V ∗ with respect to the natural pairing
between V ⊗ V and V ∗ ⊗ V ∗ given by

〈v1 ⊗ v2, v
∗
1 ⊗ v∗

2〉 = 〈v1, v∗
1〉〈v2, v∗

2〉.

Choosing dual bases x1, . . . , xd and x∗
1 , . . . , x

∗
d for V and V ∗ respectively yields

that T (V ) = k〈x1, . . . , xd〉 and T (V ∗) = k〈x∗
1 , . . . , x

∗
d 〉 are polynomial rings in

noncommuting variables of degrees |xi | = 1 and |x∗
i | = −1. This allows one to

compute Q⊥ given a quadratic ideal Q ⊆ T (V ) using linear algebra, as described
for example in [18, Section 8]. &'

Graded Koszul algebras are quadratic (see, for example, [22, Chapter 2, Defini-
tion 1]) and the duality of quadratic algebras restricts well to the class of Koszul
algebras since A and A! are Koszul simultaneously [22, Chapter 2, Corollary 3.2 ].
Moreover, (A!)! = A.

Example 2.3 The main example of Koszul dual algebras is given by the symmetric
algebra on a vector space V

S = k[x1, . . . , xd ] =
k〈x1, . . . , xd〉

(xixj − xjxi, 1 " i < j " d)

and the exterior algebra on V ∗

S! = ! = k〈x∗
1 , . . . , x

∗
d 〉

((x∗
i )

2, x∗
i x

∗
j + x∗

j x
∗
i , 1 " i " j " d)

.

Example 2.4 For the following commutative Koszul algebra

A = k[x, y, z]
(x2, xy, y2)

= k〈x, y, z〉
(x2, xy, y2, xz − zx, xy − yx, yz − zy)

,

the dual algebra is given by

A! = k〈x∗, y∗, z∗〉
((z∗)2, x∗z∗ + z∗x∗, y∗z∗ + z∗y∗)

.

This pair of algebras are further discussed in Example 6.1. &'
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Definition 2.5 The Priddy complex [23] of a quadratic algebra A is the complex
PA
• whose i-th term is given by

PA
i = A ⊗k (A

!)
∗
i ,

and the differential is defined by right multiplication by the trace element
∑d

i=0 xi⊗
x∗
i , where multiplication by x∗

i ∈ A! on (A!)∗ is defined as the dual of multiplication
by x∗

i on A!. &'
2.6 The importance of the Priddy complex lies in the fact that PA

• is acyclic if and
only if A is Koszul; see [22, Chapter 2, Corollary 3.2]. Moreover, when A is Koszul
the Priddy complex, also called the generalized Koszul resolution, is a minimal free
resolution of the residue field k of A. This will be the base case in the proof that our
construction in Sect. 4 is a resolution. &'
2.7 Duality of Koszul algebras extends to an equivalence of derived categories that
goes back to [5] and was developed further in [6]. Let T = A⊗kA

! which is anA-A!-
bimodule. For complexes N• of A!-modules and M• of A-modules define functors
L(N•) = T ⊗A! N• ∼= A ⊗k N• and R(M•) = HomA(T ,M•) ∼= Homk(A

!,M•) ∼=
(A!)∗ ⊗k M•. It is shown in [6, Theorem 2.12.1] that these functors induce an
equivalence of categories

L : D↑(A!) # D↓(A) : R

where D↑(A!) stands for the derived category of complexes N• of graded A!-
modules with Ni,j = 0 for i 0 0 or i + j 1 0 and D↓(A) is the derived category
of complexes M• of graded A-modules withMi,j = 0 for i 1 0 or i + j 0 0.

3 Resolutions via the Enveloping Algebra

LetA be a (not necessarily commutative) k-algebra where k is a field. In this section,
we review how one obtains a free resolution of any A-module M from a resolution
of A over its enveloping algebra. In general, one obtains a resolution that is far from
minimal. We remedy this in Sects. 4 and 5 over Koszul algebras A for the modules
ma (and hence A/ma).

3.1 Given a k-algebra A, its enveloping algebra is given by Ae = A⊗k A
op. A left

Ae-module structure is equivalent to an A-A-bimodule structure via

(a ⊗ b) ·m = a ·m · b (3.1)

We consider A as an Ae-module via the action in (3.1), where a, b,m ∈ A and
a ·m · b represents internal multiplication in A.
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Consider a graded free resolution1 of A over Ae and note that any free left Ae-
module F can be rewritten as

F = Ae ⊗k V = A ⊗k A
op ⊗k V ∼= A ⊗k V ⊗k A

for some vector space V , where the rightmost expression is thought of as an A-A-
bimodule via the outside two factors. Thus the resolution will be of the form

· · · → A ⊗k V2 ⊗k A → A ⊗k V1 ⊗k A → A ⊗k A
ε−→ A → 0, (3.2)

where the augmentation ε from A ⊗k A to A is given by multiplication across the
tensor.

We observe that A⊗k k ⊗k A ∼= A⊗k A. Thus setting V0 = k, we may write the
resolution as a quasi-isomorphism of Ae-modules

A ⊗k V• ⊗k A
2−→ A

Next we show how to construct an A-free resolution for arbitrary A-modules M
using (3.2). This is well known; we include it because the construction is the basis
of our next step in Sect. 4. In the case of Koszul algebras, it can also be seen using
Koszul duality, and, more generally, it follows when the resolution of A comes from
an acyclic twisting cochain; see the remarks following the proof.

Proposition 3.2 If M is a graded A-module and A ⊗k V• ⊗k A
2−→ A is a graded

Ae-free resolution of A, then the induced map A ⊗k V• ⊗k M
2−→ M is a graded

A-free resolution ofM where the A-module structure on the latter tensor product is
via the first factor. &'
Proof First note that both A ⊗k V• ⊗k A and A are A-A-bimodules in the obvious
ways. Furthermore, the complex A ⊗k V• ⊗k A (considered as an A-module via its
righthand factor) and the trivial complexA both consist of freeA-modules (although
the latter is not a free Ae-module). Therefore the quasi-isomorphism A ⊗k V• ⊗k

A
2−→ A is actually a homotopy equivalence of A-modules. Hence it remains a

quasi-isomorphism after tensoring over A on the right with arbitrary A-modules. To
see this, note that the augmented complex of free A-modules (3.2) is contractible,
that is, homotopy equivalent to 0 (equivalently, it is split exact over A). But this
complex is the mapping cone of the chain map A ⊗k V• ⊗k A → A.

Therefore, upon tensoring (3.2) on the right over A with a left A-moduleM , one
obtains a quasi-isomorphism of left A-modules

(A ⊗k V• ⊗k A) ⊗A M
2−→ A ⊗A M

1 One can always take the bar resolution of A over its enveloping algebra, but that is usually far
from minimal.
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A ⊗k V• ⊗k M
2−→ M

As the original resolution of A was a map of A-A-bimodules, this one is still a map
of A-modules (via the lefthand factor of the tensor product). Viewing V• ⊗k M as a
(rather large) k-vector space, one sees that the complex on the left consists of free
A-modules, giving a free A-resolution of M .

Remark 3.3 Under the assumption that A is a Koszul algebra, we include here an
alternate proof of Proposition 3.2 using Koszul duality. Using the functors from the
equivalence described in 2.7, for a graded A-module M , one gets that L(R(M)) 2
M . On the other hand, one computes that R(M) is the complex

0 → (A!)∗ ⊗k M0 → (A!)∗ ⊗k M1 → · · · → (A!)∗ ⊗k Mi → · · ·

Furthermore, it is clear from the definition that L((A!)∗) is simply the Priddy
complex PA

• . Applying this to the complex above termwise and totalizing gives
that L(R(M)) equals the totalization of

0 → PA
• ⊗k M0 → PA

• ⊗k M1 → · · · → PA
• ⊗k Mi → · · ·

which is exactly the complex described in Proposition 3.2. In the case that M =
A/ma , one gets the double complex XA

a described in Corollary 4.5. &'
Remark 3.4 More generally, we now briefly describe this from the perspective of
acyclic twisting cochains. Although these go far back, for recent quite general
versions of the duality they afford, modeled on that of Dwyer, Greenlees, and
Iyengar in [10] and generalizing Koszul duality, and for descriptions of how it
specializes to the situation of Koszul algebras, as well as the terms used below,
see Avramov’s paper [1], especially Theorem 4.7.

Let A be an augmented dg (differential graded) algebra. When there is an
augmented dg coalgebra C with a map τ : C → A of degree −1 that is a twisting
cochain, that is, a Maurer-Cartan equation

∂Aτ + τ∂C + µ(τ ⊗ τ )& = 0,

holds, where & : C → C ⊗ C is the diagonal map and µ is the multiplication map,
then one can form tensor products whose differential is “twisted” by τ yielding a
natural map A ⊗ τCτ ⊗ A → A. If this is a quasi-isomorphism, then τ is called
acyclic, in which case the induced map A⊗ τCτ ⊗M → M is a quasi-isomorphism
for all dgA-modulesM and a duality generalizing Koszul duality holds. An example
is given by the bar construction C = BA with the canonical map τ : BA → A, but
in the case of Koszul algebras one can get by with a much smaller complex using
Priddy’s construction. &'
Remark 3.5 SupposeA is local (or standard graded) k-algebra with (homogeneous)
maximal ideal m. The resolutions obtained in Proposition 3.2 are in general not



288 E. Faber et al.

minimal (respectively, minimal graded) resolutions even when one starts with a
minimal (respectively, minimal graded) resolution of A over Ae. For example, for
the explicit resolution XA

a given in Corollary 4.5, although ∂ ′ is minimal, ∂ ′′ is
clearly not. &'

4 The Case of Koszul Algebras

In this section, under the further assumption that A is a Koszul k-algebra, we write
theA-free resolution ofA/ma obtained in Remark 3.3 as the totalization of a certain
double complex.

First we recall the minimal graded resolution of A over Ae following the
presentation in [26, Section 3]. It is a symmetrization of the resolution of k over
A found by Priddy in [23], which is presented in Definition 2.5.

Definition 4.1 Let A be a Koszul k-algebra with dual Koszul algebra A!. Let
(A!)∗ = Homk(A

!, k); thus (A!)∗ is an A!-module where the action of A! on (A!)∗

is the dual of the action of A! on itself. Define free A-modules

Fn = A ⊗k (A
!)∗n ⊗k A

and differentials

∂n = (∂ ′)n + (−1)n(∂ ′′)n

where

∂ ′ = right multiplication by
d∑

i=0

xi ⊗ x∗
i ⊗ 1

(which will form our vertical maps) and

∂ ′′ = left multiplication by
d∑

i=0

1 ⊗ x∗
i ⊗ xi

(which will form our horizontal maps).2 Then the complex

FA : · · · → Fn
∂n−→ Fn−1 → · · ·F0

ε−→ A → 0 (4.1)

2 There is a misprint in [26] with regards to this map.
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Fig. 1 The minimal resolution of a Koszul algebra A over Ae

augmented by the multiplication map ε from F0 = A ⊗k k ⊗k A ∼= A ⊗k A to A is
the minimal graded free resolution of A over Ae [26, Proposition 3.1]. The complex
is FA is the totalization of the double complex with differentials ∂ ′ and ∂ ′′ depicted
in Fig. 1. In particular, Fn is the sum of the modules on the n-th antidiagonal of this
double complex. &'

Remark 4.2 Here is the explicit connection with Priddy’s resolution: tensoring (4.1)
on the right over A with k gives Priddy’s minimal resolution of k as a left A-module
in Definition 2.5, also called the generalized Koszul resolution. Tensoring (4.1) on
the left gives the minimal resolution of k as a right A-module. &'
4.3 Considering the graded strands of (4.1), one can write this complex as a
totalization of an anticommutative double complex, which we also call FA, of free
A-modules given by the free A-modules

Fij = A ⊗k (A
!)∗i ⊗k Aj (4.2)

where we are using the first tensor factor as “coefficients” and the maps ∂ ′ and ±∂ ′′

of Definition 4.1 become the vertical and horizontal maps, respectively in Fig. 1.
Note that i is the homological degree in the complex FA. &'
4.4 One can interpret the complex FA in the language of the functors introduced
in 2.7 as FA = L(R(A)), where A is viewed as a complex concentrated in
homological degree 0. The discussion in 4.1 shows there is a quasi-isomorphism
L(R(A)) 2 A. This was previously shown in [6, Thm 2.12.1] and is a particular
case of Remark 3.3. &'
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Next we apply the discussion from Sect. 3 to the A-module A/ma and arrange its
resolution into a double complex similarly to the one shown in Fig. 1 above.

Corollary 4.5 Totalization of the truncation of the double complex (4.2) obtained
by removing the columns with index j ! a ! 1 gives a graded A-free resolution

XA
a = A ⊗k (A

!)∗ ⊗k A"a−1
2−→ A/ma. (4.3)

Proof Applying Proposition 3.2 by tensoring the resolution of A over Ae on the
right over A with A/ma gives a graded A-free resolution

XA
a = A ⊗k (A

!)∗ ⊗k A/m
a 2−→ A/ma

By means of the k-vector space identification

A/ma = A"a−1

the resolution becomes

XA
a = A ⊗k (A

!)∗ ⊗k A"a−1
2−→ A/ma

Viewing graded strands, one can write this as a totalization of an anticommutative
double complex of free A-modules given by the terms Fij=A ⊗k (A

!)∗i ⊗k Aj with
i ! 0, 0 " j " a − 1 of (4.2) with the differentials inherited from those described
in Definition 4.1. &'

We display the diagram for the double complex that yields the A-free graded
resolution XA

a of A/ma in Corollary 4.5 in Fig. 2. In the language of 2.7 this
resolution can be described as XA

a = L(R(A/ma)).

Remark 4.6 The resolution XA
a is minimal for a = 1 in which case XA

a recovers the
Priddy complex without its first term. However for a ! 2 this resolution is typically
non minimal as the rows are split acyclic; see 5.1. The goal of Sect. 5 is to produce
a minimal free resolution for A/ma using XA

a . &'

5 Minimal Resolutions for Powers of the Maximal Ideal

We introduce complexes LA
a inspired by work of Buchsbaum and Eisenbud [3].

These will turn out to be the minimal resolutions for the powers of the homogeneous
maximal ideal of a graded Koszul algebra.
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Fig. 2 The A-free graded resolution XA
a of A/ma

5.1 We define freeA-modules analogous to the Schur modules used by Buchsbaum
and Eisenbud in their resolutions (the case whereA is a polynomial ring) in [3]. First
note that the rows of the double complex (4.2) except the bottom one are exact; in
fact, they can be viewed as the result of applying the exact base change A ⊗k −
to the strands of the dual Priddy complex, all of which are exact except the one
whose homology is k (in the case where A is a polynomial ring, it is applied to the
strands of the tautological Koszul complex; see [19, Section 1.4]). These complexes
are contractible, as they consist of free A-modules, and so all kernels, images, and
cokernels of the differentials are free as well.

Define for a > 0 the following free A-modules

LA
n,a = im

(
A ⊗k A

!∗
n+1 ⊗k Aa−1

(−1)n+1∂ ′′
−−−−−−→ A ⊗k A

!∗
n ⊗k Aa

)
(5.1)

= ker
(
A ⊗k A

!∗
n ⊗k Aa

(−1)n∂ ′′
−−−−→ A ⊗k A

!∗
n−1 ⊗k Aa+1

)
. (5.2)

The vertical differentials ∂ ′ in Fig. 2 induce maps on these modules, which we
again denote by ∂ ′, to yield a complex

LA
a : · · · → LA

n,a

∂ ′
n−→ LA

n−1,a

∂ ′
n−1−−→ . . .

∂ ′
1−→ LA

0,a. (5.3)

This complex is minimal in the sense that ∂ ′(LA
n,a) ⊆ mLA

n−1,a for all n since the
same property holds for the columns of the complex in Fig. 1 viewed as complexes
with differential ∂ ′. The construction of the complex LA

a is depicted in Fig. 3.

Lemma 5.2 The complex LA
a can be augmented by the evaluation map
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Fig. 3 The construction of the complex LA
a

εa : LA
0,a = A ⊗k A

!∗
0 ⊗k Aa → ma (5.4)

which is the restriction of the multiplication map

ε : A ⊗k A
!∗
0 ⊗k A → A sending r ⊗ v ⊗ s 3→ rvs.

Proof As stated in Definition 4.1, ε is an augmentation map FA• → A. We verify
explicitly that ε satisfies the required property ε ◦ (∂ ′ − ∂ ′′) = 0 below:

ε ◦ (∂ ′ − ∂ ′′)(r ⊗ v ⊗ s) = ε(rv ⊗ 1 ⊗ s − r ⊗ 1 ⊗ vs) = rvs − rvs = 0.

Since ∂ ′′|LA
1,a

= 0 it follows from the computation above that ε◦∂ ′(LA
1,a) = 0, hence

the complex LA
a can be augmented to

· · · → LA
n,a

∂ ′
n−→ LA

n−1,a

∂ ′
n−1−−→ . . .

∂ ′
1−→ LA

0,a
εa−→ ma → 0. &'

The following is the main result of our paper. The case when A is an exterior
algebra has appeared previously in [11, Corollary 5.3]. The proof therein uses the
self-injectivity of the exterior algebra in a crucial manner, and therefore does not
seem to extend to all Koszul algebras.
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Theorem 5.3 If A is a Koszul algebra, the complexes LA
a defined in Eq. (5.3) with

the augmentation map εa defined in (5.4) are minimal free resolutions for the powers
ma of the maximal ideal with a ! 1. &'
Proof The complexes LA

a are minimal by the discussion in 5.1. The proof of the
remaining claims is by induction on a ! 1.

The definition of Ln,1 in (5.1) shows that there are isomorphisms

LA
n,1

∼= A ⊗k A
!∗
n+1 ⊗k k ∼= A ⊗k A

!∗
n+1,

since the map ∂ ′′ is injective on FAn+1,0 for n ! 0, the leftmost column of the double
complex in Fig. 1 (this column considered by itself is in fact XA

1 ). Therefore there
is an isomorphism of complexes LA

1
∼= (XA

1 )!1[−1], where (XA
1 )!1 denotes the

truncation of the complex XA
1 by removing the homological degree 0 component.

Since XA
1 = PA

• is just the Priddy complex (upon noting that ∂ ′ : (XA
1 )1 → (XA

1 )0

agrees with ε under the identification (XA
1 )0 = A ⊗k A!∗

0 ⊗k A0 ∼= A), we see

that (XA
1 )!1

ε−→ m is a resolution of m by 2.6 and the base case that LA
1

ε−→ m is a
minimal resolution of m follows.

For arbitrary a ! 2, (5.1) gives a short exact sequence of complexes

0 → LA
a−1 → PA

• ⊗k Aa−1 → LA
a [−1] → 0,

where PA
n ⊗k Aa−1 = A ⊗k A

!∗
n ⊗k Aa−1 is the (a − 1)-st column of the double

complex in Fig. 2. The notation signifies that this column can be viewed as the
Priddy complex PA

• tensored withAa−1. From the long exact sequence in homology
induced by the short exact sequence of complexes displayed above we deduce

Hi (L
A
a ) =

{
0 i ! 1

ker
(
H0(LA

a−1) → H0(P
A
• ⊗k Aa−1)

)
i = 0.

It remains to show that H0(LA
a ) = ma . Indeed, the induced map in homology

H0(L
A
a−1) → H0(P

A
• ⊗k Aa−1) ∼= H0(P

A
• ) ⊗k Aa−1

can be recovered as the bottom map in the following commutative diagram

LA
0,a−1

εa−1

!!

A ⊗k (A
!)∗0 ⊗k Aa−1

ε0⊗idAa−1
!!

ma−1 "" k ⊗k Aa−1 ∼= ma−1/ma.
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Commutativity of the diagram yields that for r ⊗ s ⊗ v ∈ LA
0,a the induced map in

homology is given by

εa(r ⊗ s ⊗ v) = rsv 3→ rsv,

where r is the coset of r in k = A/m. Thus we obtain the desired identification

ker
(
H0(L

A
a−1) → H0(P

A
• ⊗k Aa−1)

)

= εa (Span{r ⊗ s ⊗ v | r ∈ m, s ∈ k, v ∈ Aa−1})
∼= ma. &'

Remark 5.4 Recall that rows of the double complex (4.2) except the bottom one
are exact; in fact, they can be viewed as the result of applying a base change to
the strands of the dual Priddy complex; see 5.1. These complexes are contractible,
as they consist of free R-modules. Hence for n ! 1 the (n + a)-th row of Fig. 2,
counting from the bottom (as the 0th row), is quasi-isomorphic to LA

n,a and the
lower rows (numbered 1 through a) are split exact. The acyclic assembly lemma
[27, Lemma 2.7.3] yields quasi-isomorphisms (XA

a )!1[−1] 2−→ LA
a for a ! 1. As

shown in Corollary 4.5 there are quasi-isomorphisms XA
a

2−→ A/ma , hence also

(XA
a )!1

2−→ ma . Transitivity yields a quasi-isomorphism LA
a

2−→ ma .
This approach gives an alternate proof for our main result, but it only determines

the augmentation map up to an isomorphism on its target. We prefer the more
explicit approach of Theorem 5.3, which specifies the augmentation map εa . &'

The following corollary of Theorem 5.3 gives an explicit formula for the Betti
numbers of powers of the maximal ideal of a Koszul algebra. That ma has an
a-linear minimal free resolution also follows from [8, Theorem 3.2]. Once the
linearity of this resolution has been established, [22, Chapter 2, Corollary 3.2
(iiiM)] gives an alternate interpretation for the Betti numbers of ma in terms of
the graded components of a quadratic dual module for the A-module ma . However
this description seems less amenable to explicit computations than our methods.

The next result utilizes the Hilbert series

H(A!)∗(t) =
∑

'!0

dimk(A
!)∗' · t' and HA/ma (t) =

a−1∑

j=0

dimk Aj · t j .

Corollary 5.5 If (A,m) is a Koszul algebra, the nonzero graded Betti numbers of
the powers of m are given by

βA
n,n+a(m

a) =
a∑

i=1

(−1)i+1 dimk((A
!)∗n+i ) dimk(Aa−i ).
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In particular, the minimal graded resolution of ma is a-linear and its graded
Poincaré series is

PA
ma (y, z) = −(−z)−aH(A!)∗(yz)HA/ma (−yz).

Consequently, the nonzero Betti numbers of A/ma are given by

βA
n,j (A/m

a) =






∑a
i=1(−1)i+1 dimk((A

!)∗n+i−1) dimk(Aa−i ) n > 0, j = n+ a − 1

1 n = j = 0.

Proof The fact that minimal free resolution of ma is a-linear follows from the
Theorem 5.3 and the description of the differential ∂ ′ of the complex (5.3) in view
of the fact that there is a splitting of the map ∂ ′′ to each Ln,a identifying a basis of
it with part of a basis of the last column of XA

a . Consider the rows of the truncated
complex XA

a when augmented to the relevant Ln,a as follows.

0 −→ A ⊗k (A
!)∗n+a ⊗k A0 −→ · · · −→ A ⊗k (A

!)∗n+1 ⊗k Aa−1 −→ LA
n,a −→ 0

The exactness of this complex, as explained in Remark 5.4, yields the identities

βA
n,n+a(m

a) = rankA(LA
n,a) =

a∑

i=1

(−1)i+1 rankA
(
A ⊗k (A

!)∗n+i ⊗k Aa−i

)

=
a∑

i=1

(−1)i+1 dimk(A
!)∗n+i dimk Aa−i

and the vanishing of the remaining Betti numbers is due to the fact that the minimal
resolution in Theorem 5.3 is a-linear.

Lastly, the coefficients of the series

−H(A!)∗(yz)HA/ma (−yz)

(−z)a
=

∑

n!0




∑

0"j"a−1
j+'=n+a

(−1)j−a dimk(A
!)∗' dimk Aj



 znyn+a,

agree with the preceding expression for βA
n,n+a(m

a) by setting j = a− i, ' = n+ i.
&'

In contrast to Theorem 5.3, for non Koszul algebras the A-free resolution of
A/ma afforded by Corollary 4.5 cannot be minimized by the procedure presented in
this section. We illustrate the obstructions by means of the following example.

Example 5.6 Let A = k[x]/(x3), which is a non Koszul (also non quadratic)
algebra. The enveloping algebra is
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Ae = A ⊗k A = k[x]/(x3) ⊗k k[y]/(y3) ∼= k[x, y]/(x3, y3)

and the Ae-module structure induced on A by the (surjective) multiplication map
Ae = A ⊗k A

ε−→ A yields the isomorphism A ∼= Ae/(x − y). Therefore A has the
following two-periodic resolution over the complete intersection Ae

· · · → Ae x−y−−→ Ae x2+xy+y2−−−−−−→ Ae x−y−−→ Ae ε−→ A → 0.

Rewriting this complex in the form of Sect. 3 gives

· · · → A ⊗k V2 ⊗k A
∂−→ A ⊗k V1 ⊗k A

∂−→ A ⊗k V0 ⊗k A
ε−→ A → 0,

where each Vi is a one dimensional vector space with basis {ei} and for i > 0

∂(1 ⊗ ei ⊗ 1) =
{
x ⊗ ei−1 ⊗ 1 − 1 ⊗ ei−1 ⊗ y for i odd

x2 ⊗ ei−1 ⊗ 1+ x ⊗ ei−1 ⊗ y + 1 ⊗ ei−1 ⊗ y2 for i even.

The conclusion of Corollary 4.5 still holds and indicates that the truncated
complexes XA

a are (non minimal) free resolutions for A/ma . But by contrast to the
Koszul case, we see that arranging by grading as in (4.2) yields a diagram that is
not a bicomplex and whose rows are no longer exact (or even complexes!), and so
in the truncated complex (4.3) the rows are no longer acyclic. Correspondingly, the
modules Ln,a one could define are no longer free. Thus there is no clear way to
minimize the complex XA

a in a similar manner to the technique used in this section,
except for the case a = 1 where XA

a is already minimal. &'

6 Examples

In this section we provide examples which illustrate our constructions for certain
Koszul algebras. For simplicity, all our examples are commutative algebras defined
by quadratic monomial ideals, but of course there are plenty of noncommutative
examples as well. This class is known to yield Koszul algebras by [12].

Example 6.1 Consider the following pair of dual Koszul algebras from Example 2.4

A = k[x, y, z]
(x2, xy, y2)

and A! = k〈x∗, y∗, z∗〉
((z∗)2, x∗z∗ + z∗x∗, y∗z∗ + z∗y∗)

.

The graded pieces (A!)−n are spanned by the words of length n on the alphabet
{x∗, y∗, z∗} where the first letter is x∗, y∗ or z∗ and the other n − 1 are x∗ or y∗,
whence dimk(A

!)−n = 3 · 2n−1 for n ! 1. For n ! 1, An is spanned by monomials
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of the form (z∗)n, x∗(z∗)n−1, and y∗(z∗)n−1 so that dimk A−n = 3. Thus in this
case both A and A! are infinite dimensional k-algebras.

The Priddy complex PA
• (2.5) consists of terms of the form

P0 = A ⊗k k

Pn = A ⊗k k
3·2n−1

for n ! 1

and the resolution of A over Ae viewed as a double complex (4.2) has terms

Fi,j = A ⊗k k
3·2i−1 ⊗k Aj =

{
A3·2i−1 ⊗A A i ! 1, j = 0

A3·2i−1 ⊗A A3 i ! 1, j ! 1.

Corollary 5.5 reveals that the Betti numbers of ma are independent of a. Indeed for
a ! 1 and n ! 0 we have

βn,n+a(m
a) =

a−1∑

i=1

(−1)i+1 · 9 · 2n+i−1 + (−1)a+1 · 3 · 2n+a−1

= 9 · 2n · 1 − (−2)a−1

3
+ (−1)a−1 · 3 · 2a+n−1

= 3 · 2n.

Example 6.2 Consider the following commutative Koszul algebra

A = k[x, y, z]
(xy, xz)

= k〈x, y, z〉
(xy, xz, xz − zx, xy − yx, yz − zy)

.

The Koszul dual algebra is given by

A! = k〈x∗, y∗, z∗〉
((x∗)2, (y∗)2, (z∗)2, y∗z∗ + z∗y∗)

and its Hilbert function satisfies the Fibonacci recurrence

dimA!
−n−2 = dimA!

−n + dimA!
−n−1.

Indeed, setting u(n) to be the number of monomials in A! of degree −n ending in x
and v(n) to be the number of monomials in A! of degree −n not ending in x∗, yields
u(n) = v(n− 1) and v(n) = 2u(n− 1)+ u(n− 2). The second expression follows
because the number of monomials ending in y∗ or z∗ where the previous letter is x∗

is 2u(n − 1) and the number of monomials ending in y∗z∗ (or equivalently, z∗y∗)
where the previous letter is x is u(n − 2). Thus this leads to
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dimA!
−n−2 = u(n+ 2)+ v(n+ 2) = v(n+ 1)+ 2u(n+ 1)+ u(n)

= v(n+ 1)+ u(n+ 1)+ v(n)+ u(n) = dimA!
−n−1 + dimA!

−n.

This shows that the Betti numbers of m are the Fibonnacci numbers starting with
βA
0 (m) = 3 and βA

1 (m) = 5.
The identity above in turn implies that the terms of the double complex as well

as the free modules in the resolution of ma satisfy similar recurrences

rankFn+2,a = rankFn+1,a + rankFn,a, rankLn+2,a = rankLn+1,a + rankLn,a.

We conclude that the Fibonacci recurrence holds for Betti numbers

βA
n+2,n+2+a(m

a) = βA
n+1,n+1+a(m

a)+ βA
n,n+a(m

a) for a ! 1, n ! 0

subject, if a ! 2, to the initial conditions βA
0 (m

a) = a + 4 and βA
1 (m

a) = 2a + 4.
Solving the above recurrence yields closed formulas for the Betti numbers of ma

with a ! 2 as follows

βA
n,n+a(m

a) =
(
a + 4
2

+ 3a + 4

2
√
5

)(
1+

√
5

2

)n

+
(
a + 4
2

− 3a + 4

2
√
5

) (
1 −

√
5

2

)n

.

We now give an infinite resolution counterpart to a family of square-free
monomial ideals that have appeared as ideals of the polynomial ring in work of
Galetto [13].

Example 6.3 (See also [25, Example 3.18]) Consider the dual pair of Koszul
algebras

A = k[x1, . . . , xd ]
(x21 , . . . , x

2
d)

, and A! = k〈x∗
1 , . . . , x

∗
d 〉

(x∗
i x

∗
j + x∗

j x
∗
i , 1 " i < j " d)

,

where dimk(Aj ) =
(d
j

)
and dimk(A

!
−i ) =

(i+d−1
d−1

)
. Thus the terms in the double

complex (4.2) are

Fi,j = A ⊗k k
(i+d−1

d−1 ) ⊗k k
(dj).

Notice that for a " d the ideal ma of A can be described as the ideal generated by
all square-free monomials of degree a in A, while for a > d we have ma = 0. We
compute the Betti numbers of this family of ideals using Corollary 5.5 as follows

βn,n+a(m
a) =

a∑

i=1

(−1)i+1
(
n+ i + d − 1

d − 1

)(
d

a − i

)
(6.1)
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Note that (−1)i+1
(
n+ i + d − 1

d − 1

)
is equal to (−1)n−1 times the coefficient of tn+i

in the Taylor expansion of the rational function 1
(1+t)d

around 0. Similarly,
(

d

a − i

)

is the coefficient of ta−i in the binomial expansion of (1 + t)d . Since 1
(1+t)d

· (1 +
t)d = 1, for n+ a > 0, the coefficient of tn+a in their product is 0, i.e.

a∑

i=−n

(−1)n+i

(
n+ i + d − 1

d − 1

)(
d

a − i

)
= 0.

However, when i < a − d, the second binomial coefficient is 0, so this can be
restated as

a∑

i=a−d

(−1)n+i

(
n+ i + d − 1

d − 1

)(
d

a − i

)
= 0.

Combined with (6.1), the identity above leads to the more compact formula

βn,n+a(m
a) =

{∑0
i=a−d(−1)i

(n+i+d−1
d−1

)( d
a−i

)
1 " a " d

0 a ! d + 1.

This is consistent with ma = 0 for a > d and can be easier to evaluate than (6.1)
for some values of a. For example, setting a = d yields

βn,n+d(m
d) =

(
n+ d − 1
d − 1

)
.
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