
Meta-Learned Metrics over Multi-Evolution Temporal Graphs
Dongqi Fu∗

University of Illinois at
Urbana-Champaign

Illinois, USA
dongqif2@illinois.edu

Liri Fang∗
University of Illinois at
Urbana-Champaign

Illinois, USA
lirif2@illinois.edu

Ross Maciejewski
Arizona State University

Arizona, USA
rmacieje@asu.edu

Vetle I. Torvik
University of Illinois at
Urbana-Champaign

Illinois, USA
vtorvik@illinois.edu

Jingrui He
University of Illinois at
Urbana-Champaign

Illinois, USA
jingrui@illinois.edu

ABSTRACT
Graph metric learning methods aim to learn the distance metric
over graphs such that similar (e.g., same class) graphs are closer and
dissimilar (e.g., different class) graphs are farther apart. This is of
critical importance in many graph classification applications such
as drug discovery and epidemics categorization. Most, if not all,
graph metric learning techniques consider the input graph as static,
and largely ignore the intrinsic dynamics of temporal graphs. How-
ever, in practice, a graph typically has heterogeneous dynamics (e.g.,
microscopic and macroscopic evolution patterns). As such, labeling
a temporal graph is usually expensive and also requires background
knowledge. To learn a good metric over temporal graphs, we pro-
pose a temporal graph metric learning framework, Temp-GFSM.
With only a few labeled temporal graphs, Temp-GFSM outputs a
good metric that can accurately classify different temporal graphs
and be adapted to discover new subspaces for unseen classes. Each
proposed component in Temp-GFSM answers the following ques-
tions: What patterns are evolving in a temporal graph? How to
weigh these patterns to represent the characteristics of different
temporal classes? And how to learn the metric with the guidance
from only a few labels? Finally, the experimental results on real-
world temporal graph classification tasks from various domains
show the effectiveness of our Temp-GFSM.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Learning latent representations.

KEYWORDS
Meta-Learning; Metric Learning; Temporal Graph Classification

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539313

ACM Reference Format:
Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, and Jingrui He.
2022. Meta-Learned Metrics over Multi-Evolution Temporal Graphs. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539313

1 INTRODUCTION

Figure 1: Metric Learning on Temporal Graphs G𝑖 , G𝑗 , G𝑘 ,
etc., from 3 Classes. In the right box (i.e., metric space), each
‘X’ denotes the representation of a single temporal graph,
and each ‘O’ denotes the representation of a class.

Metric learning aims to learn a proper distance metric among
data items in the input space, which reflects their underlying re-
lationship. With the prevalence of graph data in many real-world
applications, it is of key importance to design a good distance met-
ric function for graph data, such that the output is small for similar
(e.g., same class) graphs and large for dissimilar (e.g., different class)
ones, as shown in Figure 1. Many downstream tasks on the graph
data can benefit from such a graph metric. For example, it could
lead to significantly improved classification accuracy for graph
classification in many domains such as protein and drug discov-
ery [11, 46], molecular property prediction [15, 23], and epidemic
infectious pattern analysis [12, 41].

Most graph metric learning methods [4, 37, 47, 52, 67] assume
the input graph data as static and ignore the evolution patterns of
temporal graphs [17, 19–21, 62, 71, 72], which can also provide in-
sights for identifying the graph property. To bridge this gap, we aim
to learn a good metric over temporal graphs such that it is accurate
(e.g., high temporal graph classification accuracy) and comprehen-
sive (i.e., coordinating and adapting numerous seen and unseen

https://doi.org/10.1145/3534678.3539313
https://doi.org/10.1145/3534678.3539313

classes appropriately in the space). Several metric learning works
have been proposed for i.i.d data [2, 25, 42, 45, 50, 55]. However,
the relational data such as graphs especially the time-evolving ones
challengemetric learning in the following aspects: (1)When a graph
evolves, different evolution patterns are observed from different
angles, e.g., microscopic dynamics from continuous time and macro-
scopic dynamics from discrete time [30, 35, 36]. What patterns and
their weights are dominating the temporal graph similarity and
largely influencing the metric space formation? (2) Because labeling
graph data is typically expensive and requires background knowl-
edge [27, 28, 43, 76], each class may only have a few labeled graphs,
and some new classes may appear at a later time. How could we
leverage a few labeled graphs to learn an accurate metric, which
could accommodate the arrival of future unseen classes?

To answer these questions, we propose the Temp-GFSM frame-
work to learn a good metric over temporal graphs. Temp-GFSM is
an end-to-end trainable framework, which consists of three com-
ponents: (1) Multi-Time Evolution modeling, which preserves multi-
scope evolution patterns of a single temporal graph for the down-
stream metric learning process; (2) Multi-Time Attention modeling,
which receives the output from the previous component, and as-
signs different weights to different evolution patterns in order to
improve the effectiveness of the learned metric; (3) Temporal Graph
Few-Shot Metric Learning process with the bi-level optimization.
With Temp-GFSM, on the one hand, the learned metric will be ac-
curate for the classes observed so far; on the other hand, it could be
fast adapted to unseen classes to ensure metric comprehensiveness.
Tuning the whole metric learning process is based on the loss of
mis-classification, with only a few labels needed.

Our main contributions can be summarized as follows.
• We define the problem of temporal graph metric learning, and
identify the challenges from real-world temporal graph data.
• We propose the temporal graph metric learning framework,
Temp-GFSM, which addresses three challenges: (1) model a tem-
poral graph with multiple dynamics, (2) weigh various evolution
patterns, and (3) leverage a few labels to make the learned metric
accurate and comprehensive.
• We test the accuracy and comprehensiveness of themetric learned
by Temp-GFSM through few-shot temporal graph classification
tasks from the biological network domain and social network do-
main, comparing with state-of-the-art baselines. We also demon-
strate the convergence speed, the parameter sensitivity, and the
ablation studies of Temp-GFSM.
The rest of the paper is organized as follows. We define the

problem of temporal graph metric learning and review necessary
preliminaries and corresponding challenges in Section 2. To solve
the identified challenges, we propose a generic framework Temp-
GFSM, with the detailed introduction of each component in Section
3. Then, in Section 4, we demonstrate the effectiveness of the metric
learned by our Temp-GFSM through experiments. Finally, we con-
clude the paper in Section 6 after reviewing related work in Section
5. In this paper, we use "graph" and "network" interchangeably.

2 PROBLEM DEFINITION AND CHALLENGES
First of all, we formally describe the problem of Learning Metrics
over Temporal Graphs as follows.

Problem. Learning Metrics over Temporal Graphs
Input: a set of 𝑛 temporal graphs D = {G1, . . . ,G𝑛}.
Output: the metric spaceM parameterized by 𝜃 , where similar (e.g.,

same class) temporal graphs are closer and dissimilar (e.g.,
different class) graphs are farther apart.

To solve the above problem, our desired metricM should be both
accurate, i.e., making similar graphs close and dissimilar ones far
apart, and comprehensive, i.e., being able to handle not only the
classes seen so far, but also new classes appearing at a later time.
To achieve these goals, we first review preliminaries (Subsection
2.1) and then identify key challenges (Subsections 2.2 and 2.3).

2.1 Preliminary
According to [24, 45], learning a metric over a bunch of data items
is closely related to the problem of extracting their hidden repre-
sentation vectors. To be specific, given a metricM, we can measure
the distanceM(x𝑖 , x𝑗) between two input feature vectors x𝑖 ∈ R𝑚
and x𝑗 ∈ R𝑚 by computingM′(𝑓𝜃 (x𝑖), 𝑓𝜃 (x𝑖)), where 𝑓𝜃 is a learn-
able function mapping the input feature x𝑖 into the latent feature
h𝑖 = 𝑓𝜃 (x𝑖) ∈ Rℎ . An example is shown below.

M(x𝑖 , x𝑗) =
√︃
(x𝑖 − x𝑗)⊤M(x𝑖 − x𝑗)

=

√︃
(x𝑖 − x𝑗)⊤W⊤W(x𝑖 − x𝑗)

=

√︃
(Wx𝑖 −Wx𝑗)⊤ (Wx𝑖 −Wx𝑗)

= M′(𝑓𝜃 (x𝑖), 𝑓𝜃 (x𝑗))

(1)

where M is a symmetric positive semi-definite matrix in the Ma-
halanobis metricM, and it can be decomposed by a certain matrix
𝑾 as M = W⊤W. Then, learning the metricM (e.g., Mahalanobis)
on input features is equivalent to learning hidden features with a
fixed metricM′ (e.g., Euclidean) [50, 57]. 𝑓𝜃 can take a variety of
forms. In addition to the linear transformation shown in Eq. 1, 𝑓𝜃
can also correspond to a non-linear transformation. In this way, it
is able to model the higher-order correlations between input data
dimensions than linear transformations [45, 50, 57].

Based on the above analysis, we are ready to introduce our tem-
poral graph metric learning problem: learning a metric M over
pairs of temporal graphs is to learn a function 𝑓𝜃 mapping tempo-
ral graphs to their representation vectors in the Euclidean space,
such that similar (or same class) temporal graphs are closer and
dissimilar (or different class) graphs are farther apart. In the rest of
this paper, we refer to this objective as learning a metricM (or
transformation 𝑓𝜃) controlled by parameters 𝜃 .

To reduce the computational complexity, learning metricMwith
labels can be scaled by involving the class representation concept
(e.g., chunklet in [5] and prototype in [50]), such that a sample only
need to be close to its class representation and far from other class
representations in the learned metric space. In the rest of the paper,
we refer to class representations as prototypes, and will introduce
how the prototypes get generated in our Temp-GFSM.

2.2 Label Scarcity and Meta-Learning
As discussed in the previous subsection, the learning metric M
is controlled by 𝜃 , a set of finite parameters. Next we use the
supervised temporal graph classification task as an example to

view the utility of the metricM as in Figure 1, where the nearest
class prototype will dictate the graph label. It can be formalized as
P(𝑦 = G | 𝜃) = P(𝑦 = G | 𝜃,D), which means any prediction 𝑦 of
temporal graphs is independent of the observed data D given the
parameters 𝜃 . More specifically, we have the following claim.

Claim 1. The parameters of parametric models are capturing ev-
erything to know about the data that is relevant for predictions [22].

Basically, Claim 1 suggests that the ideal 𝜃 should capture every-
thing about the data D needed for making future predictions. For
our problem, this means that the ideal 𝜃 should be able to distin-
guish similar and dissimilar temporal graphs (accuracy). However,
labeling temporal graph data is typically expensive and requires
background knowledge [27, 28, 43, 76]. Therefore, in data D, each
class may contain only a few labeled temporal graphs G. Even chal-
lenging, some classes may be absent during the training process
but appear at a later time. So 𝜃 should also enable the model to
have good generalization capabilities to accommodate future un-
seen classes (comprehensive). To achieve these goals, we aim to
answer the following questions.

(C.1) How could we ensure the accuracy ofM when the learning
process could not leverage a large amount of labeled data?

(C.2) How could we adjust the learned metric spaceM to a new
subspace to accommodate newly arrived classes while main-
taining the acceptable margin for all existing classes?

Therefore, we formulate the problem of learning the metric
M (i.e., 𝑓𝜃) into a bi-level meta-learning paradigm [16] such that:
(1) given few-shot labeled temporal graph data of each class, the
learned metric M should accurately assign each observed graph
into correct classes; (2) when a new (i.e., unseen) class arrives,
previous learned metric M should be fast adapted (by updating
to a new subspace for the new class’s boundary) to achieve the
comprehensiveness of the graph metric and to maintain the utility
(e.g., classification accuracy). The details of the proposed bi-level
optimization can be found in Subsection 3.4.

2.3 Evolution Patterns of Temporal Graphs
In addition to the questions in the last subsectioin, another key
aspect is the modeling of the evolution patterns of temporal graphs
(i.e., what dynamics features of graphs are fed into the learning
process), which brings the following two additional questions.

(C.3) What are evolving in the input temporal graphs?
(C.4) Which evolution patterns are dominating the similarity (e.g.,

class labels) of input temporal graphs?

For (C.3), different studies gave different answers from different
angles, such as discrete time and continuous time [30], macroscopic
evolution and microscopic evolution [35, 36]. This phenomenon
reminds us that even for the same temporal graph, the evolution
patterns are different if we view it differently, which requires us
to design a comprehensive model that could provide exhaustive
dynamics information for the downstream learning process (e.g.,
selection and extraction). Therefore, we provide the Multi-Time
Evolution model, which jointly models continuous time to observe
microscopic evolution and discrete time to observe macroscopic
evolution. The details about how these two are combined can be
found in Subsection 3.2.

Figure 2: Overview of Temp-GFSM Framework.
For (C.4), after we provide exhaustive dynamics patterns for the

learning process, we need to decide which patterns are dominating
the similarity (or class labels) of temporal graphs that directly affects
the utility of M, e.g., the temporal graph classification accuracy.
Therefore, we propose the Multi-Time Attention mechanism for
assigning different attention weights to different evolution patterns.
The details can be found in Subsection 3.3.

3 PROPOSED TEMP-GFSM FRAMEWORK
After discussing challenges (from C.1 to C.4) and proposing the
corresponding solutions, we compose all these proposed techniques
into an end-to-end trainable framework, named Temp-GFSM, which
is responsible for learning an effective (e.g., accurate graph classifi-
cation) and comprehensive (e.g., can be fast adapted to new unseen
classes) metric via few-shot labeled temporal graph data. Before
we dive into each module (from Subsection 3.2 to Subsection 3.4) of
our Temp-GFSM, we would like to give an architectural overview
of Temp-GFSM in Subsection 3.1. We use bold lowercase letters
to denote column vectors (e.g., a), bold capital letters to denote
matrices (e.g., A), and A(𝑖, :) to denote the 𝑖-th row of A. Also, we
let the parenthesized superscript to denote the timestamp like A(𝑡) .

3.1 Overview of Temp-GFSM
As shown in Figure 2, first, real-world interactions are modeled
into a temporal graph G byMulti-Time Evolution such that the tem-
poral graph G contains continuous time tracing the microscopic
evolution patterns and discrete time tracing the macroscopic evo-
lution patterns. Second, each temporal graph G goes through the
Multi-Time Attention and gets represented by an embedding vec-
tor z, which embeds different-level dynamics in G with different
attention weights. Third, different class vectors go into the meta-
training to seek for an effective metric spaceM. After that,M gets
updated when unseen class joins the meta-testing phase.

In Temp-GFSM, above three steps are combined by an end-to-end
manner as follows. Given the multi-time evolution modeled tem-
poral graphs and their labelsD = {(G1, 𝑦1), . . . , (G𝑛, 𝑦𝑛)}, we split
D into training set D𝑡𝑟𝑎𝑖𝑛 for meta-training and D𝑡𝑒𝑠𝑡 for meta-
testing, where D𝑡𝑒𝑠𝑡 only has unseen graph labels from D𝑡𝑟𝑎𝑖𝑛 .
• At the meta-training stage, we first shuffle D𝑡𝑟𝑎𝑖𝑛 to sample
graph metric learning tasks T𝑗 following the distribution T𝑗 ∼
P(T). Controlled by 𝜃 𝑗 , each T𝑗 is instanced by a 𝑁 -way 𝐾-shot
temporal graph classification task based on the graph representa-
tion 𝑓𝜃 𝑗 (G𝑖) (i.e., z𝑖) in Euclidean space. To optimize 𝜃 𝑗 , we again

sample a support set D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and a query set D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 within
each T𝑗 , such that D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is used to train 𝑓𝜃 𝑗 to accurately
predict the labels of graphs from D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 .
• After we transfer the learned knowledge (i.e., 𝜃 𝑗) from each ob-
served task T𝑗 to the meta-learner (i.e., Θ), then at the meta-
testing stage, we fine-tune Θ a few times by classifying unseen
temporal graphs only in D𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡 . Finally, we report the classifi-
cation accuracy of fine-tuned Θ in query set D𝑡𝑒𝑠𝑡𝑞𝑢𝑒𝑟𝑦 .

3.2 Multi-Time Evolution
Even in the same temporal graph, different modeling methods focus
on different (partial) dynamic patterns. For example, a temporal
graph can be modeled by an initial state𝐺 with a set of timestamped
events𝑂 , and each event can be node/edge addition/deletion, which
modeling is called continuous-time [30] or streaming [1]. Also, that
temporal graph can be modeled as a sequence of time-respecting
snapshots 𝐺 (1) ,𝐺 (2) , . . ., and each 𝐺 (𝑡) has its own node set and
edge set, which modeling is called discrete-time [30] or snapshot [1].
These two modeling methods have non-trivial complements [1, 30]:
(1) continuous-time models rapid node/edge-level evolution, i.e.,
microscopic evolution [35], for example, protein molecule interac-
tions in a cell [18]; (2) However, it loses control to represent the
episodic and slowly-changing evolution patterns, which can be
captured by discrete-time modeling (snapshot), i.e., macroscopic
evolution [36], for example, the periodical metabolic cycles in that
cell [18]. To the best of our knowledge, different evolution patterns
in a single graph are currently not jointly considered for improving
the graph representation learning.

Figure 3: Part (a) shows a streaming graph with only edge
timestamps 𝑡𝑒 . Part (b) shows a snapshot-modeled graphwith
only snapshot timestamps 𝑡𝑠 , where each 𝑡𝑠 elapses every 4 𝑡𝑒 .
Part (c) shows our multi-time evolution modeling with edge
timestamps 𝑡𝑠 and snapshot timestamps 𝑡𝑒 .

To bridge this gap, in our multi-time evolution modeling, each
temporal graph G is defined as G = (𝑉 , 𝐸, 𝑡𝑒 , 𝑡𝑠). 𝑉 stands for the
set of nodes, where each one ever exists in the whole life time
of G. 𝐸 is the set of temporal edges, where each edge is defined
as 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 , 𝑡𝑠), where 𝑡𝑒 ∈ {0, 1, . . . ,𝑇𝑒 } is named as edge
timestamp and 𝑡𝑠 ∈ {0, 1, . . . ,𝑇𝑠 } is named as snapshot timestamp.
As shown in Figure 3, for the record 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 , 𝑡𝑠), at the edge
level, (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒) means the connection between 𝑣𝑖 , 𝑣 𝑗 exists at time
𝑡𝑒 ; if it still exists in the future, 𝑡𝑒 will increase correspondingly,
and if it is deleted, then this tuple (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒) does not exist, neither
does (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 , 𝑡𝑠). At the snapshot level, 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 , 𝑡𝑠) means
that the event (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒) happens in the interval of snapshot S (𝑡𝑠) .
According to [30], in our multi-time evolution modeling, the edge

timestamp 𝑡𝑒 is continuous, and snapshot timestamp 𝑡𝑠 is discrete.
Because each snapshot S (𝑡𝑠) at 𝑡𝑠 is generated by aggregating the
event at each 𝑡𝑒 with a certain range (e.g., every 4 𝑡𝑒 in Figure 3).

Note that, two timestamps (𝑡𝑒 and 𝑡𝑠) are both real, and some
temporal graphs have both naturally (furthermore, 𝑡𝑠 do not need
to be the equal interval in items of 𝑡𝑒 like Figure 3). For example,
in [18], each dynamic protein-protein interaction network (PPI)
has 36 continuous observations (i.e., 36 edge timestamps), every
12 observations compose a metabolic cycle (i.e., 3 snapshot times-
tamps), and each cycle reflects 25 mins in the real world. Also, for
those temporal graphs that only have edge timestamps, we can
manually set the snapshot timestamp as a period hyperparameter
(i.e., how many 𝑡𝑒 compose a 𝑡𝑠) like Figure 3. Moreover, in experi-
ments, we show how we set this hyperparameter to learn episodic
or slowly-changed patterns to further help the learned metric util-
ity (e.g., temporal graph classification). As for the data structure,
we store each edge (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒) in an array and each snapshot S (𝑡𝑠)

by an adjacency matrix as A(𝑡𝑠) ∈ R |𝑉 (𝑡𝑠) |× |𝑉 (𝑡𝑠) | , i.e., 𝑉 (𝑡𝑠) ⊆ 𝑉
and |𝑉 (𝑡𝑠) | ≠ |𝑉 (𝑡𝑠+1) | is allowable. For the notation clarity, we
denote the node feature matrix X ∈ R𝑛×𝑚 , such that the input node
feature of temporal graph G is already time-aware, and 𝑛 = |𝑉 | and
𝑚 denotes the dimension of features1.

3.3 Multi-Time Attention
Given the multi-scope dynamics of temporal graph G modeled
by Multi-Time Evolution, the next step in our Temp-GFSM is to
assign different weights to different evolution patterns, such that
the dominating evolution pattern(s) can be discovered to make
the learned metric accurate for downstream tasks, e.g., temporal
graph classification. Hence, we propose the Multi-Time Attention
scheme. As shown in Figure 4, our proposed Multi-Time Attention
has three sequential components, Node-Level Lifelong Attention,
Intra-Snapshot Attention, and Inter-Snapshot Attention. Hence, a
temporal graph G𝑖 gets represented by an embedding vector z𝑖
with its evolution patterns getting appropriate attention weights.

Node-Level Lifelong Attention. As shown in Figure 4, this
mechanism first learns microscopic evolution patterns by the con-
tinuous timestamp 𝑡𝑒 . To achieve this learning, we need to sample
a time-aware adjacent node sequence N𝑣 for each node 𝑣 in the
temporal graph G (as shown in Algorithm 1 in Appendix), then we
apply the node-level time attention mechanism on N𝑣 to learn the
time-aware embedding u𝑣 for each node 𝑣 .

The self-attentionmechanism has become the key component for
representing sequential data [53], which itself could not deal with
ordering informationwithout a positional encoding function tomap
discrete position indexes into a differentiable functional domain.
Therefore, we need a time encoding function K for our node-level
time attention mechanism, which could map every observed time
interval of node connections into a continuous differentiable func-
tional domain, i.e., K : [𝑡𝑒 − Δ𝑡, 𝑡𝑒] → R𝑑 . Another intuition of
involving K is that, suppose node 𝑣𝑖 connects with node 𝑣 𝑗 at edge
timestamp 𝑡𝑒 − Δ𝑡 , when we need to represent node 𝑣 𝑗 at edge
timestamp 𝑡𝑒 , we wish the encoded node representation u(𝑡𝑒)𝑣𝑗 to be
time-aware by containing the temporal relation information of 𝑣𝑖

1Our implementation is readily designed for evolving input features according to
different timestamps, which means that X(𝑡𝑠) ∈ R|𝑉 (𝑡𝑠) |×𝑚 (𝑡𝑠)

Figure 4: Multi-Time Attention Mechanism. A temporal graph G gets represented by the embedding vector z.

(i.e.,K(𝑡𝑒−Δ𝑡, 𝑡𝑒)). This time functionK should be able to reflect the
time relation between u(𝑡𝑒−Δ𝑡)𝑣𝑖 and u(𝑡𝑒)𝑣𝑗 , and many previous works
solve K with different kinds of kernel methods [14, 60, 61, 69, 73].
For example, in [60, 61],

K(𝑡𝑒 − Δ𝑡, 𝑡𝑒) = Ψ(𝑡𝑒 − (𝑡𝑒 − Δ𝑡)) = Ψ(Δ𝑡) (2)

and

Ψ(Δ𝑡) =
√︂

1
𝑑
[cos𝜔1 (Δ𝑡), cos𝜔2 (Δ𝑡), . . . , cos𝜔𝑑 (Δ𝑡)] (3)

where Δ𝑡 = 𝑡𝑒 − (𝑡𝑒 − Δ𝑡) denotes the input time interval, and
{𝜔1, . . . , 𝜔𝑑 } are learnable parameters.

With the above time encoding (i.e., Eq. 3), we are now ready to
learn node representation u(𝑡𝑒)𝑣 . Intuitively, we set node 𝑣 as the
query node to query and aggregate attention weights from nodes in
N (𝑡𝑒)𝑣 . To be more specific, after sampling temporal adjacent nodes
N (𝑡𝑒)𝑣 for the target (or query) node 𝑣 , we apply a self-attention
like mechanism on N (𝑡𝑒)𝑣 and then stack cross-attention layers to
aggregate the target node and its neighbour nodes’ hidden repre-
sentations, to learn the time-aware node representation u(𝑡𝑒)𝑣 .

Similar with the self-attention mechanism [53], we first use
the multi-head cross-attention module and form, for each head 𝑘 ,
queries Q, keys K and values V. Then the time-aware node repre-
sentation of each head 𝑘 , a𝑘 (𝑡𝑒)𝑣 ∈ R𝑟 , can be computed as follows.

a𝑘 (𝑡𝑒)𝑣 = Attention(Q,K,V) = softmax(QK
⊤
√
𝑟
)V ∈ R𝑟 (4)

where Q = [X(𝑣, :)∥K(𝑡𝑒 , 𝑡𝑒)] ·W𝑄 is generated by the target node
𝑣 . K = N ·W𝐾 and V = N ·W𝑉 are generated by the adjacent node
sequence with number |N (𝑡𝑒)𝑣 |. N ∈ R |N

(𝑡𝑒)
𝑣 |×(𝑚+𝑑) is the matrix

whose rows are [X(𝑣 ′, :)∥K(𝑡, 𝑡𝑒)] ∈ R(𝑚+𝑑) from the adjacent
node sequence N (𝑡𝑒)𝑣 , and W𝑄 ,W𝐾 ,W𝑉 ∈ R(𝑚+𝑑)×𝑟 are three
learnableweightmatriceswith 𝑟 denoting the dimension of the time-
aware node representation vector a𝑘 (𝑡𝑒)𝑣 . We concatenate the output
a𝑘 (𝑡𝑒)𝑣 of each head 𝑘 and feed it to a fully-connected feed-forward
neural network, of which the parameters are W0 ∈ R𝑘 (𝑚+𝑑)×𝑟 and
b0 ∈ R𝑟 , in order to generate the time-aware node representation
a(𝑡𝑒)𝑣 . The aggregation of multi-head attention is as follows.

a(𝑡𝑒)𝑣 = ([a1(𝑡𝑒)𝑣 ∥ . . . ∥a𝑘 (𝑡𝑒)𝑣])W0 + b0 (5)

As mentioned above, one (multi-head) attention layer actually ag-
gregates 1-hop neighbours temporal information according to the
node adjacency sequence sampled by N (𝑡𝑒)𝑣 Algorithm 1. Then, we
propose to stack time-aware cross-attention layers to capture tem-
poral information frommulti-hop away neighbour nodes. Hence, in
the 𝑙-th attention layer, the time-aware node representation u𝑙 (𝑡𝑒)𝑣

can be computed as follows.

u𝑙 (𝑡𝑒)𝑣 = ReLU([a𝑙 (𝑡𝑒)𝑣 ∥u𝑙−1(𝑡𝑒)𝑣]W𝑙
1 + b

𝑙
1)W

𝑙
2 + b

𝑙
2 (6)

whereW𝑙
1, b

𝑙
1,W

𝑙
2, and b

𝑙
2 are parameters of the feed-forward neural

network at layer 𝑙 . Also, When 𝑙 = 1, u𝑙−1(𝑡𝑒)𝑣 = [X(𝑣, :)∥K(𝑡𝑒 , 𝑡𝑒)].
Intra-Snapshot Attention. After we learn the time-aware node

embedding u(𝑡𝑒)𝑣 that follows the streaming pattern based on the
edge timestamp 𝑡𝑒 , we also want the node in the snapshot S (𝑡𝑠)
follows the snapshot pattern of A(𝑡𝑠) w.r.t the snapshot timestamp
𝑡𝑠 . Therefore, intra-snapshot time attention is proposed to add
constraints on node embeddings u(𝑡𝑒)𝑣 in terms of timestamp 𝑡𝑠 by
reconstructing A(𝑡𝑠) via a graph autoencoder.

Note that snapshot S (𝑡𝑠) may not have all nodes of the input
temporal graph. Thus, we construct the snapshot feature matrix
U(𝑡𝑠) ∈ R |𝑉 (𝑡𝑠) |×𝑟 in which rows are time-aware node embed-
ding vectors, i.e., for the edge (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 , 𝑡𝑠), U(𝑡𝑠) (𝑣𝑖 , :) = u(𝑡𝑒)𝑣𝑖 and
U(𝑡𝑠) (𝑣 𝑗 , :) = u(𝑡𝑒)𝑣𝑗 . If there is also another edge (𝑣𝑖 , 𝑣 𝑗 , 𝑡 ′𝑒 , 𝑡𝑠), we
will sample the most recent edge timestamp. For example, if 𝑡 ′𝑒 > 𝑡𝑒 ,
then U(𝑡𝑠) (𝑣𝑖 , :) = u(𝑡

′
𝑒)

𝑣𝑖 and U(𝑡𝑠) (𝑣 𝑗 , :) = u(𝑡
′
𝑒)

𝑣𝑗 . As shown in Fig-
ure 4, for snapshotS (𝑡𝑠=1) , there exists two edges connecting nodes
𝑣𝑖=1 and 𝑣 𝑗=3, i.e., (𝑣𝑖=1, 𝑣 𝑗=3, 𝑡𝑒=1, 𝑡𝑠=1) and (𝑣𝑖=1, 𝑣 𝑗=3, 𝑡𝑒=4,
𝑡𝑠=1). Then, for node 𝑣𝑖=1, vector 𝒖

(𝑡𝑒=4)
1 other than 𝒖 (𝑡𝑒=1)1 goes

into 𝑼 (𝑡𝑠=1) (1, :) . The reason we adopt the latest node embedding
is that, according to the sampling strategy in Algorithm 1, the latest
node embedding contains early node information.

Now, with adjacency matrix A(𝑡𝑠) and snapshot feature matrix
U(𝑡𝑠) , we next learn the latent intra-snapshot representation matrix
H(𝑡𝑠) . Particularly, we add a reconstruction loss to refine the time-
aware node embedding vectors in matrix U(𝑡𝑠) to learn H(𝑡𝑠) via
the graph autoencoder model [31], and the snapshot reconstruction
loss L𝑟𝑒𝑐 for the snapshot topology of S (𝑡𝑠) is defined as follows.

L𝑟𝑒𝑐 (A(𝑡𝑠) ,U(𝑡𝑠)) = ∥A(𝑡𝑠) − Â(𝑡𝑠) ∥𝐹 (7)

where Â(𝑡𝑠) = 𝜎 (H(𝑡𝑠)H(𝑡𝑠)⊤) is the reconstructed adjacency ma-
trix computed by the sigmoid of the inner production of H(𝑡𝑠) and
its transpose. H(𝑡𝑠) = GNN𝑒𝑛𝑐 (A(𝑡𝑠) ,U(𝑡𝑠)) ∈ R |𝑉

(𝑡𝑠) |×𝑞 denotes
the intra-snapshot representation matrix, and ∥ · ∥𝐹 is the Frobenius
norm. GNN𝑒𝑛𝑐 can be realized by GCN [32] or GAT [54]. Note that
H(𝑡𝑠) and U(𝑡𝑠) share the same number of rows, but each column
is updated from u(𝑡𝑒)𝑣 to ũ(𝑡𝑒)𝑣

Given the extracted intra-snapshot representation matrix H(𝑡𝑠) ,
we apply a Readout function to get the intra-snapshot representa-
tion vector h(𝑡𝑠) for each snapshot timestmap 𝑡𝑠 as follows.

h(𝑡𝑠) = Readout(H(𝑡𝑠) (𝑣, :) | 𝑣 ∈ {1, . . . , |𝑉 (𝑡𝑠) |}) ∈ R𝑞 (8)

where the Readout function could be a graph pooling layer like [66,
68] or any specifically designed attention pooling layers.

Inter-Snapshot Attention. After we obtain the intra-snapshot
representation vector h(𝑡𝑠) for each snapshot timestamp 𝑡𝑠 indi-
vidually, we are not sure which one or ones should represent the
temporal graph representation vector z to make it class-distinctive.
For example, if a certain snapshot S is shared by different classes of
temporal graphs, then that snapshot is less representative and we
should decrease its weight during the snapshot representations ag-
gregation process, to make different class temporal graph-level rep-
resentation distinguishable. Therefore, we design a inter-snapshot
time attention mechanism on vectors h(𝑡𝑠) to obtain the final tem-
poral graph representation vector z ∈ R𝑞 . Especially, the inter-
snapshot time attention is realized by an attention pooling layer [3]
with attention weight 𝛼 (𝑡𝑠) for each snapshot time 𝑡𝑠 . Moreover,
that inter-snapshot time attention weight is parameterized by the
learnable query vector w(𝑡𝑠) ∈ R𝑞 . The temporal graph representa-
tion can then be calculated as follows.

z =
𝑇𝑠∑︁
𝑡𝑠=1
(𝛼 (𝑡𝑠)h(𝑡𝑠)) ∈ R𝑓 , 𝛼 (𝑡𝑠) = softmax(w(𝑡𝑠)⊤h(𝑡𝑠)) (9)

3.4 Temporal Graph Few-Shot Metric Learning
For using few-shot labeled data to learn the metric, we involve the
above discussed representation learning process into the few-shot
learning setting, i.e., Bi-Level Optimization. First, in each graph met-
ric learning task T𝑖 during the meta-training, Prototype Generator
generates the prototype for each class, such that each 𝜃𝑖 built on
D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 can be in-depth optimized for the accurate classification
on D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 . Second, the meta-learner Θ transfers the knowledge
from each 𝜃𝑖 of T𝑖 in the meta-training phase to new tasks T𝑗 in the
meta-testing phase for the fast adaption on unseen classes.

Prototype Generator. After we encode a temporal graph G into
a vector z as shown in Figure 1, we want the same class temporal
graphs closer and different class graphs farther apart in metric
M, i.e., same class representation vectors are closer to their class
prototype and farther from other class prototypes. Thus, in each
graph metric learning task T𝑖 with support set D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and query
setD𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 , we can first learn prototypes inD𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and then use
them to predict graph class labels in D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 . The construction of
prototype p𝑘 of class 𝑘 in D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is expressed as follows.

p𝑘 =
1
𝐶𝑘

𝐶𝑘∑︁
𝑗

(z𝑗) , G𝑗 ∈ D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝑦 𝑗 = 𝑘 (10)

where G𝑗 is a graph with label 𝑦 𝑗 , z𝑗 is the embedding of G𝑗 , and
𝐶𝑘 denotes the number of temporal graphs in class 𝑘 in D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 .

To help the class prototype distinctive to each other, we design
the temporal graph classification loss L𝑐𝑙𝑠 in each graph metric
learning task T𝑖 to tune 𝜃𝑖 in D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 .

L𝑐𝑙𝑠 = −
𝐶𝑘∑︁
𝑗

log
exp(−𝑑𝑖𝑠𝑡 (z𝑗 , p𝑘))∑
𝑘 exp(−𝑑𝑖𝑠𝑡 (z𝑗 , p𝑘))

,

G𝑗 ∈ D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 and 𝑦 𝑗 = 𝑘

(11)

where p𝑘 denotes the prototype of class 𝑘 learned from D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ,
𝑘 denote the class other than 𝑘 , 𝑑𝑖𝑠𝑡 (·) denotes Euclidean distance
between two vectors, z𝑗 is the representation vector of G𝑗 , and 𝐶𝑘
denotes the number of class 𝑘 graphs in D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 .

Bi-Level Optimization. We have introduced the whole learning
procedure with two loss functions L𝑟𝑒𝑐 (i.e., Eq. 7) and L𝑐𝑙𝑠 (i.e.,
Eq. 11). The entire loss is the weighted sum (i.e., by the balancing
hyperparameter𝛾 ,L𝑐𝑙𝑠 +𝛾L𝑟𝑒𝑐) for extracting knowledge 𝜃𝑖 from a
single taskT𝑖 . Next, we need to break though the knowledge transfer
and adaption cross tasks given only few-shot examples. Here, we
introduce a meta-learner to transfer the learned knowledge 𝜃𝑖 and
tailor the globally shared knowledge Θ, the theory behind is that
transferring shareable knowledge could obtain the fast convergence
on unseen tasks [9, 38], and the bi-level optimization is able to find
meta-learner Θ that could be fast converged in each graph metric
learning task [16].

The detailed meta-training process is shown in Algorithm 2 in
Appendix, and the detailed meta-testing process of Temp-GFSM is
similar to Algorithm 2, i.e., after changing D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 into D𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡

and D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 into D𝑡𝑒𝑠𝑡𝑞𝑢𝑒𝑟𝑦 , the only difference is changing Step 10
of Algorithm 2 to directly report the accuracy based on 𝜃𝑖 instead
of updating a new Θ.

4 EXPERIMENTS
In this section, we test Temp-GFSM in terms of the temporal graph
classification accuracy and convergence speed. More experimental
details like data preprocessing (e.g., how to set 𝑡𝑒 and 𝑡𝑠 if anyone is
not given), parameter sensitivity analysis, and ablation study about
multiple dynamics can be found in Appendix.

4.1 Experiment Setup
Datasets. Our experiments include 12 temporal graph datasets (i.e.,
12 classes) from the biological domain [18] and 6 temporal graph
datasets (i.e., 12 classes) from the social network domain [39]. Each
biological graph is a dynamic protein-protein interaction network,
where each edge describes the protein-protein interaction of meta-
bolic cycles of yeast cells. Each social graph is a human-contact
relation network, where the edges between two individuals stand
for the online or offline contacts. The statistics of all network data
are summarized in Table 1 and Table 2.

Baselines. The selection of baseline algorithms includes two as-
pects, i.e., graph kernel or graphmetric learning and static or dynamic.
Graph kernel methods include Shortest Path [7], Neighborhood
Hash [26], andWeisfeiler-Lehman Optimal Assignment [33]. Graph
metric learning or graph representation learning algorithms include
GL2Vec [10], Graph2Vec [40], tdGraphEmbed [6], TGAT [61], and

Table 1: Statistics of Biological Temporal Graph Data
Graph #Classes #Graphs Total Nodes Total Edges Timestamps Graph #Classes #Graphs Total Nodes Total Edges Timestamps
Uetz 1 11 922 2,159 36 Ito 1 11 2,856 8,638 36
Ho 1 11 1,548 42,220 36 Gavin 1 11 2,541 140,040 36

Krogan-LCMS 1 11 2,211 85,133 36 Krogan-MALDI 1 11 2,099 78,297 36
Yu 1 11 1,163 3,602 36 Breitkreutz 1 11 869 39,250 36

Babu 1 11 5,003 111,466 36 Lambert 1 11 697 6,654 36
Tarassov 1 11 1,053 4,826 36 Hazbun 1 11 143 1,959 36

Table 2: Statistics of Social Temporal Graph Data
Graph (Online) #Classes #Graphs Total Nodes Total Edges Timestamps Graph (Offline) #Classes #Graphs Total Nodes Total Edges Timestamps

Facebook 2 995 95,224 267,673 104 Infectious 2 200 10,000 91,944 48
Tumblr 2 373 19,811 74,520 89 HighSchool 2 180 9,418 98,066 203
DBLP 2 755 39,917 241,674 46 MIT 2 97 1,940 142,508 5,576

Table 3: Temporal Graph Classification Accuracy on Biological Temporal Graphs
Method \ Few-shot Setting 3 way - 5 shot 3 way - 3 shot 3 way - 2 shot 3 way - 1 shot

Graph
Kernel

Weisfeiler-Lehman Opt + kNN 0.6833 ± 0.1486 0.5722 ± 0.1554 0.4958 ± 0.1843 0.3417 ± 0.1371
Neighborhood Hash + kNN 0.6833 ± 0.1858 0.5972 ± 0.1222 0.5833 ± 0.2050 0.5500 ± 0.2082
Shortest Path + kNN 0.5433 ± 0.1988 0.5306 ± 0.0728 0.5292 ± 0.0946 0.2333 ± 0.1217

Graph
Metric
Learning

GL2Vec + kNN 0.0717 ± 0.0900 0.0917 ± 0.0793 0.0333 ± 0.0471 0.0333 ± 0.0667
Graph2Vec + kNN 2 – – – –
TGAT + kNN 0.1200 ± 0.0960 0.1250 ± 0.0793 0.1208 ± 0.0865 0.0917 ± 0.0319
CAW + kNN 0.0400 ± 0.0362 0.0435 ± 0.0441 0.0569 ± 0.0370 0.0528 ± 0.0210
tdGraphEmbed + kNN 0.2167 ± 0.1736 0.1056 ± 0.0814 0.1500 ± 0.1800 0.0750 ± 0.0877
GL2Vec + Protonet 0.7100 ± 0.0361 0.6625 ± 0.0407 0.6075 ± 0.0496 0.5750 ± 0.0537
Graph2Vec + ProtoNet 0.3792 ± 0.0459 0.3958 ± 0.0731 0.3958 ± 0.0241 0.3958 ± 0.0798
TGAT + ProtoNet 0.2417 ± 0.0500 0.3083 ± 0.0739 0.2917 ± 0.1167 0.2417 ± 0.0319
CAW + ProtoNet 0.1496 ± 0.0104 0.2113 ± 0.0110 0.2404 ± 0.0117 0.2842 ± 0.0044
tdGraphEmbed + ProtoNet 0.6562 ± 0.1882 0.6791 ± 0.1141 0.6271 ± 0.1159 0.4229 ± 0.0463
Temp-GFSM (Ours) 0.7292 ± 0.0682 0.7917 ± 0.1278 0.7062 ± 0.0762 0.6833 ± 0.0589

Table 4: Temporal Graph Classification Accuracy on Social Temporal Graphs
Method \ Few-shot Setting 3 way - 5 shot 3 way - 3 shot 3 way - 2 shot 3 way - 1 shot

Graph
Kernel

Weisfeiler-Lehman Opt + kNN 0.3631 ± 0.0298 0.2941 ± 0.1023 0.2700 ± 0.1105 0.2133 ± 0.0388
Neighborhood Hash + kNN 0.3938 ± 0.0371 0.3185 ± 0.1030 0.2178 ± 0.1500 0.3022 ± 0.1137
Shortest Path + kNN 0.3996 ± 0.0317 0.3296 ± 0.1413 0.3556 ± 0.1139 0.3844 ± 0.0420

Graph
Metric
Learning

GL2Vec + kNN 0.2716 ± 0.0839 0.2637 ± 0.0482 0.1711 ± 0.0700 0.0000 ± 0.0000
Graph2Vec + kNN 0.3360 ± 0.0352 0.3756 ± 0.0241 0.2400 ± 0.0149 0.1933 ± 0.0723
TGAT + kNN 0.0289 ± 0.0096 0.0407 ± 0.0123 0.0333 ± 0.0068 0.0200 ± 0.0199
CAW + kNN 0.0284 ± 0.0106 0.0378 ± 0.0178 0.0322 ± 0.0099 0.0333 ± 0.0192
tdGraphEmbed + kNN 0.3600 ± 0.0208 0.3000 ± 0.1310 0.2767 ± 0.1185 0.2267 ± 0.0268
GL2Vec + Protonet 0.3400 ± 0.0306 0.3822 ± 0.0290 0.2633 ± 0.0606 0.1933 ± 0.0723
Graph2Vec + Protonet 0.3573 ± 0.0203 0.3711 ± 0.0279 0.2467 ± 0.0380 0.1933 ± 0.0723
TGAT + ProtoNet 0.3227 ± 0.0171 0.3293 ± 0.0156 0.3243 ± 0.0110 0.3363 ± 0.0010
CAW + ProtoNet 0.3340 ± 0.0113 0.3333 ± 0.0229 0.3380 ± 0.0155 0.3270 ± 0.0189
tdGraphEmbed + ProtoNet 0.5083 ± 0.0121 0.4523 ± 0.0353 0.4670 ± 0.0199 0.3973 ± 0.0164
Temp-GFSM (Ours) 0.6161 ± 0.0139 0.5931 ± 0.0148 0.6074 ± 0.0164 0.5605 ± 0.0201

CAW [59]. Among those, tdGraphEmbed is a dynamic algorithm
that could take a temporal graph as input and output the graph
embedding of each snapshot individually, and TGAT and CAW
are dynamic graph representation learning algorithms but focus
on the node-level representation learning. To enable graph kernel
and metric learning methods the few-shot learning capability, we
also include ProtoNet and its special case kNN method [50]. To
enable static baselines to handle evolving graphs, we use Reduced
Graph Representation [41] to map temporal graphs into dynamics-
preserving static graphs. We use the mean pooling function for
TGAT, CAW, and tdGraphEmbed when an aggregation is necessary.

2Cannot get the results within 48 hours.

4.2 Temporal Graph Classification
First, in the biological dataset, given the 12 classes, we divide 8
classes into meta-training setD𝑡𝑟𝑎𝑖𝑛 and 4 classes into meta-testing
set D𝑡𝑒𝑠𝑡 . Note that D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 do not share any class label.
We shuffle D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 4 times for the cross-validation and
report the average classification accuracy in Table 3, where our
Temp-GFSM outperforms all baseline algorithms. For example, in
the 3-way 3-shot setting, our Temp-GFSM achieves 79.17% tem-
poral graph classification accuracy, which is 16.58% higher than
the second place. An intuitive explanation is that compared with
single-dynamics baselines (e.g., TGAT and CAW for streaming, and
tdGraphEmbed for snapshots), Temp-GFSM could encode multiple

evolution patterns of protein networks and weigh them appropri-
ately. Second, in the social dataset, the amount of offline graph
data is less than online data as shown in Table 2. Thus, we aim to
investigate whether sufficient online temporal graph data could
provide transferable knowledge to help the offline temporal graph
classification. To this end, we select online networks (i.e., Facebook,
Tumblr, and DBLP) for D𝑡𝑟𝑎𝑖𝑛 and offline networks (i.e., Infectious,
HighSchool, and MIT) for D𝑡𝑒𝑠𝑡 . By comparing the performance
in Table 4, we know that our Temp-GFSM achieves the best per-
formance. An intuitive explanation is that online network patterns
indeed share some knowledge that helps identify offline patterns.
Also, our experiments show that increasing the number of shots
during the meta-training is not always the good choice for improv-
ing the performance of meta-testing 3 because intra-class variances
may be amplified [8].

4.3 Convergence during Meta-Testing
Following the same setting on the biological temporal graph data,
we vary the number of shots and the number of ways during the
meta-training 4, to investigate the convergence of our Temp-GFSM
in the meta-testing phase. We report the loss of Θ onD𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and
the accuracy of 𝜃𝑖 onD𝑡𝑒𝑠𝑡𝑞𝑢𝑒𝑟𝑦 by every update ofΘ onD𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡 . As
shown in Figure 5, we observe that our Temp-GFSM could achieve
the fast convergence to the unseen tasks with only a few updates
(e.g. 3 or 4 times) of the meta-learner like [16]. Interestingly, the
ideal case occurs that the meta-training and meta-testing tasks
share the global knowledge, i.e., Θ could perform well even without
parameters update on D𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , which partially prove that the
prototype construction could deal with the zero-shot learning [50].

(a) Loss of Θ on D𝑡𝑒𝑠𝑡
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 before

Different Update Iterations.
(b) Accuracy of 𝜃𝑖 on D𝑡𝑒𝑠𝑡

𝑞𝑢𝑒𝑟𝑦

after Different Iterations.

Figure 5: Convergence Speed of Temp-GFSM on Bio Data.

5 RELATED WORK
Graph Metric Learning. Learning a good metric in the input fea-
ture space can be transferred to learn proper graph representation in
Euclidean space, then graph embedding based graphmetric learning
methods are proposed [4, 37, 47]. Facing the label scarcity prob-
lem, many generic metric learning methods consider the few-shot
learning or meta-learning strategy [2, 42, 50] to adapt knowledge
across different tasks [74, 75] with only a few labeled samples in
each task. Inspired by that, several graph metric learning methods
cooperate with the few-shot learning manner, but most of these
algorithms focus on learning the node-level metric across different
graphs [13, 29, 34, 51, 58, 64]. Only a few graph metric learning
methods learn the metric for the whole graph level to distinguish
the similarity [9, 38]. Currently, graph few-shot metric learning

3The number of shots in the query set during meta-testing is 2.
4We randomly pick one class from D𝑡𝑟𝑎𝑖𝑛 and add it to D𝑡𝑒𝑠𝑡 for the 5-way

1-shot setting.

methods ignore considering the dynamics of graphs into the metric
learning process. We are the first effort to involve temporal depen-
dencies of entire graphs into the learned metric via the few-shot
learning.Graph Kernel. Given a distance metricM, it should main-
tain four properties: non-negativity (i.e.,M(x, y) ≥ 0), coincidence
(i.e., M(x, y) = 0 iff x = y), symmetry (i.e., M(x, y) = M(y, x)),
and subadditivity (i.e.,M(x, y) +M(y, z) ≥ M(x, z)) [57]. While in
the graph kernel research, only the symmetry and non-negativity
need to be satisfied for a kernel function, i.e., the symmetric graph
kernel function K should be a positive semi-definite function [56].
To measure the similarity among graphs, one category graph ker-
nel methods explicitly define the kernel function from the graph
topological view, such as Random Walk graph kernel [56] and
Weisfeiler-Lehman graph kernel [48]. To handle the evolving graph
scenario, some methods map dynamic graphs into constant repre-
sentation and then apply static graph kernel functions for dynamic
node classification [65] and temporal graph classification [41]. On
the other hand, another category graph kernel methods learn the
kernel function instead of hand-crafted designing it [63, 70]. For
example, in [63], the kernel is determined by learning the latent
representation of substructures of input graphs.

6 CONCLUSION
In this paper, we propose a temporal graph few-shot metric learning
framework, named Temp-GFSM. In Temp-GFSM, firstly, multi-time
evolution modeling describes multiple dynamics of a single tempo-
ral graph. Secondly, the multi-time attention scheme is proposed to
weigh and aggregate each evolution pattern to optimize the metric
utility. Third, we involve the bi-level optimization in Temp-GFSM
to achieve the fast adaption of the learned metric to unseen classes.
We execute extensive experiments to show the effectiveness of our
Temp-GFSM with different categorical baselines.

ACKNOWLEDGEMENT
This work is supported by the National Science Foundation (Award
Number IIS-1947203, IIS-2117902, and IIS-2137468), the U.S. Depart-
ment of Homeland Security (Award Number 17STQAC00001-05-00),
and in part by the National Institute on Aging of the NIH (Award
Number P01AG039347). The views and conclusions are those of the
authors and should not be interpreted as representing the official
policies of the funding agencies or the government.

REFERENCES
[1] Charu C. Aggarwal and Karthik Subbian. Evolutionary network analysis: A

survey. ACM Comput. Surv., 2014.
[2] Kelsey R. Allen, Evan Shelhamer, Hanul Shin, and Joshua B. Tenenbaum. Infinite

mixture prototypes for few-shot learning. In ICML, 2019.
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. In ICLR, 2015.
[4] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.

Simgnn: A neural network approach to fast graph similarity computation. In
WSDM, 2019.

[5] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning
a mahalanobis metric from equivalence constraints. J. Mach. Learn. Res., 2005.

[6] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky. tdgraphem-
bed: Temporal dynamic graph-level embedding. In CIKM, 2020.

[7] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs.
In ICDM, 2005.

[8] Tianshi Cao, Marc T. Law, and Sanja Fidler. A theoretical analysis of the number
of shots in few-shot learning. In ICLR, 2020.

[9] Jatin Chauhan, Deepak Nathani, and Manohar Kaul. Few-shot learning on graphs
via super-classes based on graph spectral measures. In ICLR, 2020.

[10] Hong Chen and Hisashi Koga. Gl2vec: Graph embedding enriched by line graphs
with edge features. In ICONIP, 2019.

[11] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In ICML, 2016.

[12] Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu C. Aggarwal, and Jiliang Tang.
Epidemic graph convolutional network. InWSDM, 2020.

[13] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.
Graph prototypical networks for few-shot learning on attributed networks. In
CIKM, 2020.

[14] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes: Embedding
event history to vector. In KDD, 2016.

[15] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convo-
lutional networks on graphs for learning molecular fingerprints. In NeurIPS,
2015.

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In ICML, 2017.

[17] Dongqi Fu, Yikun Ban, Hanghang Tong, RossMaciejewski, and Jingrui He. DISCO:
comprehensive and explainable disinformation detection. CoRR, 2022.

[18] Dongqi Fu and Jingrui He. DPPIN: A biological repository of dynamic protein-
protein interaction network data. CoRR, 2021.

[19] Dongqi Fu and Jingrui He. SDG: A simplified and dynamic graph neural network.
In SIGIR, 2021.

[20] Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. A view-adversarial
framework for multi-view network embedding. In CIKM, 2020.

[21] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-evolving
graphs. In KDD, 2020.

[22] Zoubin Ghahramani. Bayesian non-parametrics and the probabilistic approach
to modelling. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, (1984), 2013.

[23] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In ICML, 2017.

[24] Amir Globerson and Sam T. Roweis. Metric learning by collapsing classes. In
NeurIPS, 2005.

[25] Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, and Ruslan Salakhutdinov.
Neighbourhood components analysis. In NeurIPS, 2004.

[26] Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In ICDM, pages
179–188, 2009.

[27] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In
ICLR, 2020.

[28] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-
GNN: generative pre-training of graph neural networks. In KDD, 2020.

[29] Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. In
NeurIPS, 2020.

[30] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. Representation learning for dynamic graphs:
A survey. JMLR, 2020.

[31] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, 2016.
[32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.
[33] Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. On valid optimal

assignment kernels and applications to graph classification. In NeurIPS, 2016.
[34] Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan.

Node classification on graphs with few-shot novel labels via meta transformed
network embedding. In NeurIPS, 2020.

[35] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic
evolution of social networks. In KDD, 2008.

[36] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD, 2005.

[37] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph
matching networks for learning the similarity of graph structured objects. In
ICML, 2019.

[38] Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng
Zhou, and Xifeng Yan. Adaptive-step graph meta-learner for few-shot graph
classification. In CIKM, 2020.

[39] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
andMarion Neumann. Tudataset: A collection of benchmark datasets for learning
with graphs. CoRR, 2020.

[40] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Li-
hui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed
representations of graphs. CoRR, 2017.

[41] Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra Mutzel. Tem-
poral graph kernels for classifying dissemination processes. In SDM, 2020.

[42] Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. TADAM: task
dependent adaptive metric for improved few-shot learning. In NeurIPS, 2018.

[43] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. GCC: graph contrastive coding for graph neural
network pre-training. In KDD, 2020.

[44] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate club: An API oriented
open-source python framework for unsupervised learning on graphs. In CIKM,
2020.

[45] Ruslan Salakhutdinov and Geoffrey E. Hinton. Learning a nonlinear embedding
by preserving class neighbourhood structure. In AISTATS, 2007.

[46] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel Methods in
Computational Biology. MIT press, 2004.

[47] Blake Shaw, Bert Huang, and Tony Jebara. Learning a distance metric from a
network. In NeurIPS, 2011.

[48] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn.
Res., 2011.

[49] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. Grakel: A graph kernel library in
python. J. Mach. Learn. Res., 2020.

[50] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for
few-shot learning. In NeurIPS, 2017.

[51] Qiuling Suo, Jingyuan Chou, Weida Zhong, and Aidong Zhang. Tadanet: Task-
adaptive network for graph-enriched meta-learning. In KDD, 2020.

[52] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander M. Bronstein, and
Emmanuel Müller. Netlsd: Hearing the shape of a graph. In KDD, 2018.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NeurIPS, 2017.

[54] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[55] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. Matching networks for one shot learning. In NeurIPS, 2016.

[56] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. Graph kernels. J. Mach. Learn. Res., 2010.

[57] Fei Wang and Jimeng Sun. Survey on distance metric learning and dimensionality
reduction in data mining. Data Min. Knowl. Discov., 2015.

[58] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. Graph few-shot learning with attribute matching. In CIKM, 2020.

[59] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive
representation learning in temporal networks via causal anonymous walks. In
ICLR, 2021.

[60] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
Self-attention with functional time representation learning. In NeurIPS, 2019.

[61] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
Inductive representation learning on temporal graphs. In ICLR, 2020.

[62] Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, and Hanghang Tong. Dynamic
knowledge graph alignment. In AAAI, 2021.

[63] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In KDD, 2015.
[64] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,

Nitesh V. Chawla, and Zhenhui Li. Graph few-shot learning via knowledge
transfer. In AAAI, 2020.

[65] Yibo Yao and Lawrence B. Holder. Scalable svm-based classification in dynamic
graphs. In ICDM, 2014.

[66] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. In NeurIPS, 2018.

[67] Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Learning inter-
pretable metric between graphs: Convex formulation and computation with
graph mining. In KDD, 2019.

[68] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In AAAI, 2018.

[69] Qiang Zhang, Aldo Lipani, Ömer Kirnap, and Emine Yilmaz. Self-attentive
hawkes process. In ICML, 2020.

[70] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and
applications for graph classification. In NeurIPS, 2019.

[71] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph
generative model for temporal interaction networks. In KDD, 2020.

[72] Dawei Zhou, Lecheng Zheng, Jiejun Xu, and Jingrui He. Misc-gan: A multi-scale
generative model for graphs. Frontiers Big Data, 2019.

[73] Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-
dimensional hawkes processes. In ICML, 2013.

[74] Yao Zhou, Lei Ying, and Jingrui He. Multic2: an optimization framework for
learning from task and worker dual heterogeneity. In SDM, 2017.

[75] Yao Zhou, Lei Ying, and Jingrui He. Multi-task crowdsourcing via an optimization
framework. ACM Trans. Knowl. Discov. Data, 2019.

[76] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities.
Nature communications, 2018.

A NOTATION

Table 5: Table of Notation
Symbol Definition and Description
D temporal graph set {(G0, 𝑦0), (G1, 𝑦1), . . . , (G𝑛, 𝑦𝑛)}
G𝑗 the 𝑗-th temporal graph with snapshots {S (𝑡𝑠)

𝑗
}𝑇𝑠
𝑡𝑠=1

S (𝑡𝑠)
𝑗

the 𝑡𝑠 timestamped snapshot of the 𝑗-th temporal graph G𝑗
𝑡𝑒 , 𝑡𝑠 edge timestamp, snapshot timestamp
𝑚 input node feature dimension
𝑑 time feature dimension
𝑟 node-level embedding dimension
𝑞 snapshot-level and graph-level embedding dimension
T𝑖 the 𝑖-th graph metric learning task sampled from P(T)
𝜃𝑖 all learnable parameters of task T𝑖
Θ meta-learner over all tasks in meta-training
D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 set of support temporal graphs in meta-training
D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 set of query temporal graphs in meta-training
D𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡 set of support temporal graphs in meta-testing
D𝑡𝑒𝑠𝑡𝑞𝑢𝑒𝑟𝑦 set of query temporal graphs in meta-testing

B ALGORITHM
The time-aware adjacent node sampling is summarized in Algo-
rithm 1. Starting from a user-initialized timestamp and a target node,
Algorithm 1 captures its time-aware 1-hop neighbours, which actu-
ally forms a star network surrounding the target node at a specific
temporal scope. Note that, if a node 𝑣 ′ connects the target node 𝑣
at different timestamps, then each 𝑣 ′ is a different node towards
the target node 𝑣 .

Algorithm 1 Sample Time-Aware Adjacent Node Sequence N (𝑡𝑒)𝑣

for Node 𝑣 at Edge Timestamp 𝑡𝑒
Input: target node 𝑣 at 𝑡𝑒 , temporal graph G
Output:

time-aware adjacent node sequence N (𝑡𝑒)𝑣

1: Initialize the starting timestamp 𝑡
2: while 𝑡 ≤ 𝑡𝑒 do
3: if edge (𝑣 ′, 𝑣, 𝑡) exists then ▷ existing connections before 𝑡𝑒
4: N (𝑡𝑒)𝑣 appends X(𝑣 ′, :)∥K(𝑡, 𝑡𝑒) ▷ concatenation of

X(𝑣 ′, :) ∈ R𝑚 and K(𝑡, 𝑡𝑒) ∈ R𝑑
5: end if
6: 𝑡++
7: end while

The meta-training phase is shown in Algorithm 2, we randomly
initialize Θ in Step 1. Then, in each graph metric learning task
T𝑖 ∼ P(T), we obtain the temporal graph representation vector in
Step 5 and build the class prototype for each class of the support set
in Step 6. In Step 8, we tune Θ to get 𝜃𝑖 for current task T𝑖 . In Step
10, we aggregate the loss from each task T𝑖 and fine tune Θ to end
the meta-training process. After that, we can use the fine-tuned Θ
as the initialized parameter in the meta-testing stage for unseen
graph metric learning tasks, aiming to the fast adaptation via only
a few labeled samples. The meta-testing phase of Temp-GFSM is
similar to Algorithm 2. After changing D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 into D𝑡𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡

andD𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦 intoD𝑡𝑒𝑠𝑡𝑞𝑢𝑒𝑟𝑦 , the only difference is that Step 10 directly
reports the accuracy based on 𝜃𝑖 instead of getting new Θ.

Algorithm 2 Meta-Training Process of Temp-GFSM

Input: graph metric learning task distribution P(T), step size hy-
perparameters 𝛼 and 𝛽 , loss balancing hyperparameter 𝛾

1: Randomly initialize Θ ▷ Θ denotes all parameters
2: while not done do
3: Sample task T𝑖 ∼ P(T) with its support set D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and

query set D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦

4: for support set of each task T𝑖 do
5: Compute z𝑗 = 𝑓Θ (G𝑗) ▷ G𝑗 ∈ D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡

6: Construct p𝑘 for each class 𝑘 in D𝑡𝑟𝑎𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 according to
Eq. 10.

7: Evaluate snapshot reconstruction loss ∇ΘL𝑟𝑒𝑐,T𝑖 (𝑓Θ) and
classification loss ∇ΘL𝑐𝑙𝑠,T𝑖 (𝑓Θ)

8: Compute parameter 𝜃𝑖 ← Θ − 𝛼 (∇ΘL𝑐𝑙𝑠,T𝑖 (𝑓Θ) +
𝛾∇ΘL𝑟𝑒𝑐,T𝑖 (𝑓Θ))

9: end for
10: Update Θ← Θ − 𝛽∇Θ

∑
T𝑖 (L𝑐𝑙𝑠,T𝑖 (𝑓𝜃𝑖) + 𝛾L𝑟𝑒𝑐,T𝑖 (𝑓𝜃𝑖)) ▷

On query set D𝑡𝑟𝑎𝑖𝑛𝑞𝑢𝑒𝑟𝑦

11: end while

C PREPROCESSING OF BIOLOGICAL DATA
As shown in Table 1, there are 36 timestamps in each class, and we
adopt them as edge timestamps 𝑡𝑒 . According to [18], 11 graphs
of each class in Table 1 are formed in this way: 𝑡𝑒 = {1, 2, 3, 4, 5}
composes the first temporal graph, and 𝑡𝑒 = {4, 5, 6, 7, 8} composes
the second temporal graph, until 𝑡𝑒 = {31, 32, 33, 34, 35} composes
the eleventh temporal graph. For each graph, we split it into 5 snap-
shots, i.e., 𝑡𝑠 ∈ {1, 2, 3, 4, 5}. To be more specific, first, we follow the
edge timestamp even distribution, such that one edge timestamp
solely occupies one snapshot timestamp; Second, if there are no
interactions (i.e., no edges) at a certain edge timestamp, we alterna-
tively split the graph into 5 snapshots based on the total number of
edges evenly distributed into 5 snapshots.

The four cross-validation groups are listed as follows.
1. D𝑡𝑟𝑎𝑖𝑛 = {Babu, Breitkreutz, Gavin, Hazbun, Ho, Ito, Krogan-

LCMS, Krogan-MALDI},
D𝑡𝑒𝑠𝑡 = {Lambert, Tarassov, Uetz, Yu}

2. D𝑡𝑟𝑎𝑖𝑛 = {Breitkreutz, Ho, Krogan-MALDI, Tarassov, Yu, Gavin,
Ito, Babu,},
D𝑡𝑒𝑠𝑡 = {Krogan-LCMS, Hazbun, Lambert, Uetz}

3. D𝑡𝑟𝑎𝑖𝑛 = {Babu, Breitkreutz, Ho, Hazbun, Krogan-MALDI, Lam-
bert, Tarassov, Uetz,},
D𝑡𝑒𝑠𝑡 = {Yu, Gavin, Ito, Krogan-LCMS}

4. D𝑡𝑟𝑎𝑖𝑛 = {Babu, Hazbun, Lambert, Tarassov, Yu, Gavin, Uetz,
Krogan-LCMS},
D𝑡𝑒𝑠𝑡 = {Breitkreutz, Ho, Krogan-MALDI, Ito}

D PREPROCESSING OF SOCIAL DATA
In the social network data, we adopt the given timestamp as edge
timestamp 𝑡𝑒 , such that every temporal graph in each class shares
the same range of continuous timestamp 𝑡𝑒 . In each social temporal
graph, all edge timestamps 𝑡𝑒 are evenly divided into 5 snapshots,
𝑡𝑠 ∈ {1, 2, 3, 4, 5}, based on the ascending order of 𝑡𝑒 . Again, if there
are no interactions (i.e., no edges) at a certain edge timestamp, we
alternatively split the graph into 5 snapshots based on the total
number of edges evenly distributed.

We separate the dataset into five cross-validation groups as fol-
lows by randomly shuffling the classes of online (for meta-training)
and offline (for meta-testing) social networks, respectfully.
1. D𝑡𝑟𝑎𝑖𝑛 = {dblp_1, dblp_0, facebook_1, facebook_0, tumblr_1,

tumblr_0},
D𝑡𝑒𝑠𝑡 = {highschool_1, highschool_0, infectious_1, infectious_0,
mit_1, mit_0}

2. D𝑡𝑟𝑎𝑖𝑛 = {dblp_1, facebook_0, tumblr_1, tumblr_0, dblp_0,
facebook_1},
D𝑡𝑒𝑠𝑡 = {highschool_1, highschool_0, infectious_1, infectious_0,
mit_1, mit_0}

3. D𝑡𝑟𝑎𝑖𝑛 = {dblp_1, dblp_0, facebook_1, facebook_0, tumblr_1,
tumblr_0},
D𝑡𝑒𝑠𝑡 = {highschool_1, infectious_0, mit_1, highschool_0,
infectious_1, mit_0}

4. D𝑡𝑟𝑎𝑖𝑛 = {facebook_1, facebook_0, tumblr_1, tumblr_0, dblp_1,
dblp_0},
D𝑡𝑒𝑠𝑡 = {highschool_1, infectious_0, mit_1, highschool_0,
infectious_1, mit_0}

5. D𝑡𝑟𝑎𝑖𝑛 = {facebook_1, facebook_0, tumblr_1, tumblr_0, dblp_1,
dblp_0},
D𝑡𝑒𝑠𝑡 = {highschool_1, infectious_0, mit_1, highschool_0, mit_0,
infectious_1}

E ABLATION STUDY
In Temp-GFSM, we design the multi-time attention mechanism
to encode the temporal graph evolution patterns into the repre-
sentation vector, which has three components: node-level lifelong
attention, intra-snapshot attention, and inter-snapshot attention.
In the ablation study, we aim to remove them individually to inves-
tigate the effectiveness of each part. Thus, we design the following
ablation experiment on the biological temporal graph data.

Figure 6: Variants of Temp-GFSM for Temporal Graph Clas-
sifications in the 3 Way - 3 Shot Setting.

To ablate the node-level lifelong attention, we remove Eq. 3
directly, such that each node could only look for its previous neigh-
bors but omit the corresponding interval time information. To
ablate the intra-snapshot attention, we eliminate the snapshot re-
construction loss function (i.e., Eq. 7) by setting 𝛾 = 0. Then, there
will be no constraints on the intra-snapshot level. To remove the
inter-snapshot attention, we replace Eq. 9 with the average pool-
ing scheme, such that each snapshot will contribute equally to
form the temporal graph representation vector. After we remove
each component respectively, in Figure 6, we report the dynamic

protein-protein interaction networks classification accuracy in the
3-way 3-shot setting with the same hyperparameters mentioned
in Appendix G. As shown in Figure 6, we can observe that each
proposed component plays its own role in improving the metric
learning ability to help the temporal graph classification problem.
Moreover, when we ablate the intra-snapshot attention scheme,
the ablated Temp-GFSM achieves the worst performance with the
larger variance. It suggests that the snapshot reconstruction loss
(i.e., capturing episodic patterns in the streaming graph) is impor-
tant in identifying the property of temporal graphs for the accurate
and stable classification performance. The above observation means
that adding the snapshot reconstruction loss L𝑟𝑒𝑐 is vital, but to
what extent should we pay attention to the snapshot reconstruction
loss L𝑟𝑒𝑐 in the streaming graph is not clear. Next, we design the
parameter analysis in terms of different values of 𝛾 .

F PARAMETER SENSITIVITY
Here, we change the weight of the snapshot reconstruction loss
L𝑟𝑒𝑐 by changing the value of 𝛾 , to investigate the effect of cap-
turing episodic patterns in streaming graphs. In Figure 7, we show
the dynamic protein-protein interaction networks classification
accuracy in the 3-way 1-shot setting with different 𝛾 . Other hyper-
parameters are consistent with Appendix G. As shown in Figure 7,
we can see that neither trivial nor dominant snapshot reconstruc-
tion loss L𝑟𝑒𝑐 is ideal such as 𝛾 = 0.3 or 𝛾 = 1.5, because when
the proportion of loss L𝑟𝑒𝑐 is too small or too large, the accuracy
of Temp-GFSM is not that high and stable. Also, we can see that
when the loss L𝑟𝑒𝑐 has considerable attention weights like 𝛾 = 0.7,
Temp-GFSM could classify accurately and robustly.

Figure 7: Effectiveness of Temp-GFSM with Different 𝛾 in the
3-Way 1-Shot Setting.

G IMPLEMENTATION DETAILS
Our implementation is released here 5. For the graph kernel meth-
ods, the implementation [49] can be found here 6. For the graph
metric learning and graph representation learning algorithms, we
set the dimension of graph representation vectors as 64, and the
implementation [6, 44, 59, 61] can be found here 7 8 9 10. As for the
performance of our Temp-GFSM method in Table 3 and Tabel 4, we
set the learning rate 𝛼 and 𝛽 as 0.001, and the weight for the snap-
shot reconstruction loss 𝛾 = 0.7. The experiments are performed
on a Linux machine with a single NVIDIA Tesla V100 32GB GPU.

5https://github.com/DongqiFu/Temp-GFSM
6https://ysig.github.io/GraKeL/0.1a8/documentation/introduction.html
7https://github.com/moranbel/tdGraphEmbed
8https://github.com/benedekrozemberczki/karateclub
9https://github.com/snap-stanford/CAW
10https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-

on-temporal-graphs

https://github.com/DongqiFu/Temp-GFSM
https://ysig.github.io/GraKeL/0.1a8/documentation/introduction.html
https://github.com/moranbel/tdGraphEmbed
https://github.com/benedekrozemberczki/karateclub
https://github.com/snap-stanford/CAW

	Abstract
	1 Introduction
	2 Problem Definition and Challenges
	2.1 Preliminary
	2.2 Label Scarcity and Meta-Learning
	2.3 Evolution Patterns of Temporal Graphs

	3 Proposed Temp-GFSM Framework
	3.1 Overview of Temp-GFSM
	3.2 Multi-Time Evolution
	3.3 Multi-Time Attention
	3.4 Temporal Graph Few-Shot Metric Learning

	4 Experiments
	4.1 Experiment Setup
	4.2 Temporal Graph Classification
	4.3 Convergence during Meta-Testing

	5 Related Work
	6 Conclusion
	References
	A Notation
	B Algorithm
	C Preprocessing of Biological Data
	D Preprocessing of Social Data
	E Ablation Study
	F Parameter Sensitivity
	G Implementation Details

