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SUMMARY

Demand response (DR) is rapidly gaining attention as a solution to enhance the
grid reliability with deep renewable energy penetration. Although studies have
demonstrated the benefits of DR in mitigating price volatility, there is limited
work considering the choice of locations for DR for maximal impact. We reveal
that very small load reductions at a handful of targeted locations can lead to a sig-
nificant decrease in price volatility and grid congestion levels based on a synthetic
Texas grid model. We achieve this through exploiting the highly nonlinear nature
of congestion dynamics and by strategically selecting DR locations. We demon-
strate that we can similarly place energy storage to achieve an equivalent impact.
Our findings suggest that targeted DR at specific locations, rather than across-
the-board DR, can have substantial benefits to the grid. These findings can inform
energy policy makers and grid operators how to target DR initiatives for
improving grid reliability.

INTRODUCTION

Electricity markets are increasingly facing significant price volatility because of extremeweather events that

are becoming more frequent. Furthermore, the large-scale integration of renewable energy poses serious

challenges to grid reliability. It has been widely recognized that demand response (DR) holds the potential

to integrate consumers in the market at a large scale to smooth out price volatility and mitigate the impact

of uncertain renewable energy on grid reliability (Qdr, 2006; Albadi and El-Saadany, 2007, 2008). The pur-

pose of DR is to provide end consumers incentives to change their real-time demand when the system is

overly stressed or in an emergency, thereby promoting system-wide operational, economic, and social wel-

fare (Albadi and El-Saadany, 2007). When the demand is very high, there is a risk of not serving the loads,

thereby resulting in social welfare losses (Conchado and Linares, 2012). Furthermore, increased carbon

emissions may occur during high demand periods for certain generation mixes where more polluting gen-

erators such as oil and natural gas are used tomeet peak demands (Stoll et al., 2014; Conchado and Linares,

2012). Therefore, DR programs could substantially benefit economic welfare and carbon emissions. Eco-

nomic assessments suggest that well-designed DR programs may be effective in mitigating these impacts

by significantly decreasing price volatility as quantified by locational marginal prices (LMPs) (Walawalkar

et al., 2008; Feuerriegel and Neumann, 2014; Asadinejad and Tomsovic, 2017) and carbon emissions

(Choi and Thomas, 2012; Van Horn and Apostolopoulou, 2012). From an operational perspective, high de-

mand may result in grid congestion, which may significantly impact grid reliability toward extreme events.

Once again, DR programs may hold the potential to enhance grid reliability under such extreme events

(Mousavizadeh et al., 2018; Kopsidas and Abogaleela, 2018; Hafiz et al., 2019; Khalili et al., 2020), even if

only to blunt their impact to some extent.

However, there are several studies indicating that DR programs, if improperly designed in terms of mechanism

or location, can have adverse effects including increased price volatility (Roozbehani et al., 2012) and carbon

emissions (Stoll et al., 2014; Nilsson et al., 2017). In particular, owing to the nonlinear dynamics of the power flows

and congestion in the grid, demand reduction at certain locations may in fact lead to increased LMPs (Wu, 2013;

Yang and Chen, 2009). However, traditional DR studies have typically focused on locations with high LMPs or

population centers (Wu, 2013; Zhao and Wu, 2013). In this context, there is limited work actively considering

grid dynamics to inform the choice of locations for DR-based load reductions in order to avoid these adverse

impacts. Here, we study the impacts of targeted DR to the grid and bridge this gap by developing a machine
iScience 25, 103723, February 18, 2022 ª 2021 The Author(s).
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learning (ML)-based framework that actively integrates the grid congestion dynamics to carefully select DR

locations that can achieve maximum impact on price volatility and grid reliability.

We begin to investigate the DR framework on a large-scale open-source synthetic representation of the

Electric Reliability Council of Texas (ERCOT) electricity grid developed in the community (Birchfield

et al., 2016; Wu et al., 2021). The synthetic model on the ERCOT grid is one of the largest models

(2,000-bus) publicly available to research communities. Moreover, the synthetic model has generator ca-

pacities and time series such as hourly demand profiles, wind and solar generation profiles over years taken

from the public open-access dataset that statistically match the real ERCOT grid (Xu et al., 2020). Building

an electricity market on top of the synthetic grid model, we empirically demonstrate the effectiveness of

targeted nodal demand reductions at certain locations due to the nonlinear dynamics of grid congestion.

We also demonstrate a counterexample that DR may result in adverse impacts like increased LMPs due to

the nonlinear dynamics of grid congestion, motivating the need for carefully targeted DR. We propose a

targeted DR framework that employs a ML-based algorithm to select locations where very small targeted

load reductions can achieve nonlinear transitions to operating points of the system state that achieve

significantly lower price volatility and congestion levels by exploiting the highly nonlinear dynamics of

the congestion in the grid. Using this targeted DR framework, we demonstrate that extremely small

DR-based load reductions (10.41 MW of a total system load of 48,948 MW) at a carefully targeted handful

of locations (10 of 2,000 nodes) can in fact achieve a significant reduction in price volatility, as indicated by

an z70% decrease, respectively, in mean LMPs (averaged over all locations) over a year, as well as an 80%

decrease in grid congestion levels in the ERCOT case study. We further compare the performance of the

targeted DR framework with a traditional DR framework, where the DR locations are chosen to be those

with maximum LMPs, typically aligned with the major population centers. We demonstrate that targeted

DR can achieve a similar reduction in price volatility and grid congestion as compared with traditional

DR with only a fraction (z20%) of the load reduction required by traditional DR. Finally, we show that

the ML-based DR algorithm can also be used to determine locations for placement of energy storage to

achieve maximum impact on grid reliability, especially in the presence of renewable generation.

Our case study finds that the locations where DR load reductions achieve maximum impact with minimal

load reductions could be far from major load or population centers and do not coincide with locations

where high LMPs are observed, indicating that the nonlinear dynamics of congestion in the grid play a

key role in shaping price volatility and grid reliability. We illustrate this nonlinear dynamics using a simple

two-bus example because high dimensions are not possible to draw. These findings can directly inform

policy makers in targeting future DR initiatives for maximum impact on operational, economic, and social

welfare. In summary, we believe that this is the first work to propose and demonstrate the impact of well-

targeted DR schemes that actively exploit the nonlinearities in grid congestion dynamics toward achieving

significant reductions in price volatility and grid congestion in electricity markets.
RESULTS

Demand response framework

We begin by developing electricity markets on a synthetic representation of a 2,000-node ERCOT electric

grid. Although the synthetic grid model is fictitious since any real grid has privacy and confidentiality re-

quirements, it matches the size, complexity, and characteristics of the actual ERCOT grid (Birchfield

et al., 2016) and is one of the largest grid (2,000-node) with publicly available open-access dataset such

as time series profiles including hourly demand and renewable profiles. (More details about creation

and calibration are given in Method details.) Using day-ahead renewable profiles (forecast estimates), a se-

curity-constrained unit commitment (SCUC) problem is solved to determine for day-ahead planning with

ballpark estimates that SCUC determines howmany and which generating units are committed throughout

each day with less precise estimates in advance. This is a standard scheduling problem in power systems as

generating units have many physical constraints such as ramping rates to reach a target supply. Then, a se-

curity-constrained economic dispatch (SCED) problem is solved in real time with more precise estimates

and provides the LMP at every node. In our DR framework, we consider the LMPs obtained every hour

from the solution of the SCED problem. The LMP is a basic electricity market price signal ($/MWh) at every

location, which can be interpreted as the extra cost incurred to serve an additional unit of load at a partic-

ular location. In addition, the dual variables for the transmission capacity constraints in SCED are referred to

as shadow prices in the literature, which measure the level of grid congestion and grid reliability. In this

work, we are interested in the impacts of targeted DR in terms of LMPs and shadow prices as they represent
2 iScience 25, 103723, February 18, 2022
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Figure 1. Examples of two-bus networks and a Demand Response event in synthetic Texas electricity markets

(A) Two-bus networks, (B) feasible load sets for two-bus network, (C–E) county-wise locational marginal prices (LMPs) when a DR event happens in the ERCOT

market in Texas. Counties are colored by the value of the LMPs, as indicated by the color bar at the bottom. In each county, LMP is averaged over all locations

in that county. A counter example of improperly designed DR programs showing adverse effects of increased price volatility.
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price volatility and grid reliability. To appeal to a broader audience, a detailed description of the SCUC and

SCED problem formulations can be found in Method details. We remark that both SCUC and SCED are

repeatedly solved with different timescales. For example, SCUC is typically solved once per day or week

with ballpark estimates, and SCED is solved in real time once every 5 min with more precise estimates. After

solving SCUC and SCED problems, for this system, we develop a DR framework based on both physical and

market constraints (see Method details for the architecture of the DR framework). Physical constraints

including fuel-based generating units, renewable generating units, transmission lines, and demand pro-

files all together determine the operational balance of supply and demand.

We now describe geometric properties of DR that we will exploit in this work. It is commonly known that

the feasible nodal load profiles of SCED are a union of polytopes (Jia et al., 2013). Consider a simple two-

bus example shown in Figure 1A. The loads are l1, l2; the generations are g1,.g2; the line capacity is C

with line susceptance b; the generation limits are G1, G2; and LMPs are l1, l2. When generation costs

are linear or quadratic, it can be shown that the feasible load set is the union of three sets S1, S2, and

S3 as in Figure 1B where the intersection of interior points is empty. The blue polytopes represent the

congestion-free load sets, whereas the red polytope represents congested load sets. Within each poly-

tope, it is known that the LMPs are continuous, whereas it is discontinuous between polytopes. When the

nodal demand changes, the solution may move to a different polytope, which is a nonlinear behavior. In

our work, we exploit this idea by essentially changing the nodal demand to another demand such that

the system state is switched from an undesirable polytope to another desirable polytope. We give a sim-

ple example of two-bus networks in which the geometric properties of polytopes look simple because we

cannot draw higher dimensional polytopes. However, the geometric properties may be very complicated

in a large-scale system as each polytope is characterized by a set of congested lines and a set of mar-

ginal generators (Jia et al., 2013).
iScience 25, 103723, February 18, 2022 3
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In general, larger demand reductions are positively correlated with decreased LMPs. However, demand re-

ductions may not always lead to successful DR. Figure 1C illustrates this fact based on a sample DR event

from our aforementioned ERCOT test study, where the mean LMP increased from $105/MWh to

$108/MWh, although 36 MW of demand was reduced at some selected DR locations. This result demon-

strates that demand reductions may lead to adverse effects, such as increased mean LMPs, when DR loca-

tions are not carefully selected. Such effects of DR can be attributed to the nonlinear behavior in the system

as demonstrated in Figure 1A (two-bus network) that it is possible that the nodal demand profile moves

from one polytope to another polytope. Figure 1C provides evidence of this phenomenon, mathematically

predicted in earlier work for small systems (Yang and Chen, 2009), through a large-scale real-life test study.

In order to prevent such adverse impacts, it is important to design DR programs that explicitly take into

account the nonlinear behavior of the system. Along the same vein, it may actually be possible to actively

exploit these nonlinear effects to construct well-targeted DR programs that achieve significant LMP reduc-

tions with small demand reductions. This is the key idea behind this work. In the following section, we

demonstrate how the nonlinearity of the system can be leveraged to design carefully targeted DR that

achieves significant reductions in LMPs. We consider the impacts of both traditional DR and ML-based

DR proposed in this paper.

At any time period of a day, when the mean LMP (averaged LMP over all locations) or zonal LMP (averaged

LMP over all locations in a zone/region) exceeds $100/MWh, then a DR event is called for. There are case

studies for DR programs by the New England Independent System Operator (ISO-NE) (Faria et al., 2011)

and PJM (Walawalkar et al., 2008), a Regional Transmission Organization (RTO), where these programs

used DR threshold points of $100 and $75, respectively. In this work, we chose the threshold as $100, which

is also consistent with public data of LMPs released by the ERCOT. Moreover, the typical retail price is

$0.10–0.12/kWh (which is equal to $100–120/MWh) in the ERCOT electricity market in 2021. Hence,

$100/MWh is around where marginal benefits approximately equal marginal costs for retailers.

When DR events are triggered that the mean LMP is greater than $100/MWh, identify a certain number of

locations for DR candidates and reduce the demand at these locations. If the reduced demand profile re-

sults in the mean LMP below $100/MWh, the DR event is declared to be successful. Otherwise, a larger de-

mand reduction is carried out at the selected locations or a greater number of locations are selected to

participate in DR. This process is repeated until the mean LMP drops below $100/MWh. By iterating this

process, there will be a list of successful DR candidate pairs of targeted locations and targeted demand

reductions. Such a list is useful because there always is a trade-off between targeted demand reductions

and market welfare gains, such as the resulting mean LMP, which can be used by DR program administra-

tors to target appropriate DR measures.

Lastly, the idea of DR is based on the fact that the dual variables (LMPs and shadow prices) are sensitive to

the nodal demand changes. Therefore, the system state after DR could become again unstable in principle

when there are small perturbations in some locations as noise might push the system back to an undesir-

able operating state. For example, if nodal demand changes tiny enough to get to a desirable polytope

such that it is very close to boundaries between polytopes as shown in Figure 1, then a tiny change could

push the system back to the original polytopes. Clearly, it is possible to overcome such issues by requesting

more than tiny nodal demand changes. To evaluate sensitivity analysis of DR on the synthetic ERCOT grid

model, we added perturbation noise to DR locations incrementally starting from 0 to infinity until the sys-

tem becomes infeasible. We observed that adding tiny perturbation noise makes the dual variables remain

the same, whereas too much perturbation noise makes the system infeasible.
Machine learning-based targeted demand response

We now propose detailed descriptions for ML-based DR framework. As mentioned in the introduction, the

impacts of DR can be assessed in the following three contexts: economic, operational, and social welfare

gains (Qdr, 2006; Conchado and Linares, 2012; Van Horn and Apostolopoulou, 2012). We focus to quantify

the impacts in terms of LMPs and shadow prices in which they characterize price volatility and grid conges-

tion level, respectively.

Besides measuring the impacts of DR to the grid, many studies focused on DR programs on customer ends.

To operate DR programs, it is important to know customers’ consumption baselines and short-term

load and price forecasts. Surveys (Vázquez-Canteli and Nagy, 2019; Antonopoulos et al., 2020) summarize
4 iScience 25, 103723, February 18, 2022
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Figure 2. Demand response events in synthetic Texas electricity markets

(A, D, G and J) High LMPs in several counties on each of the 4 days before DR. (B, E, H, and K) Traditional DR andML-based DR locations to achieve low LMPs

(note that traditional DR locations coincide with population centers or high LMPs, whereas ML-based DR locations do not). (C, F, I and L) Significantly

decreased LMPs after both traditional DR and ML-based DR for the corresponding time periods and required total reduced demands for successful DR

methods.
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Figure 3. Zonal map of ERCOT electricity markets

The ERCOT grid is visualized on top of the Texas counties map. Counties marked in gray were not part of the ERCOT

market during the period considered in this study.
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AI/ML algorithms used to predict these variables. On the other hand, this study focuses on the impacts

induced by targeted DRs to the grid. Most studies (Wu, 2013; Zhao and Wu, 2013) focused on locations

with high LMPs or population centers. This is a natural choice because, otherwise, some participants in

electricity ecosystems such as load-serving entities may experience immediate monetary losses when

extremely high LMPs are observed. Therefore, there are immediate monetary incentives for some partici-

pants to utilize the flexibility of demands from end users at locations with high prices. Moreover, the LMP at

each location can be interpreted as an extra cost when an additional unit of demand is added at the loca-

tion; thus, it is reasonable to reduce demands at locations with high LMPs. Our test study also confirms this

wisdom that significant LMP reductions can be obtained by selecting locations with high LMPs (typically

situated near large population centers) as DR locations (Figure 2) in a large-scale system on a synthetic

ERCOT grid. Furthermore, it is possible to exploit the nonlinearities (Figure 2B) to find alternative locations

where DR may have a more significant impact. We develop an ML-based DR framework to achieve these

dual objectives.

The simulation time period is over 1 year in 2020 (January 1, 2020 to December 31, 2020), where SCUC is

solved once a day and SCED is solved once every hour. Our ML-based DR framework uses one of the

simplest ML algorithms called k-nearest neighbor (the detailed algorithm is provided in the experimental

procedures section). Here, we mainly focus on intuition and the main idea is summarized as follows. Sup-

pose the grid faces a system state x (the nodal demand) that results in high LMPs, we first identify from his-

torical data k-nearest neighborhood of x, denoted by ~x, so that ~x is close to x and ~x had low LMPs. DR is

essentially moving the system state of the nodal demand x toward ~x in the hope that the resultant system

state has low LMPs. The algorithm identifies a handful of DR locations (a subset of x to move toward ~x),

which is 10 of 2,000 in our test study. The intuition to move x toward ~x is that we know ~x resulted in low

LMPs and are closest to x. Therefore, it may be possible to move a small amount, while achieving a

nonlinear jump that results in significantly lower LMPs.

We visualize the impacts of the proposed ML-based DR algorithm using our ERCOT test study in Fig-

ure 2. There are 254 counties in Texas, and the power supply in 63 counties was not administered by

ERCOT by the time of this study. Each county has multiple locations; hence, the LMP value for each

county is averaged over all locations in that county. In Figure 2, the first column represents LMPs before

DR during four distinct DR events where the mean LMPs were significantly higher than their typical

levels for this system (Figures 2A, 2D, 2G, and 2J). Figure 3 and Table 1 further presents the statistics
6 iScience 25, 103723, February 18, 2022



Table 1. Several representative DR events to show traditional DR and ML-based DR

Total reduced

demands (MW)

Mean LMP

($/MWh)

Mean shadow

price

June 8, 2020

4–5 p.m.

Before DR 105.53 1,170.4

After traditional DR 30.13 42.00 339.7

After ML-based DR 8.6 42.08 340.8

June 12, 2020

4–5 p.m.

Before DR 118.11 2,456.7

After traditional DR 54.96 30.15 157.3

After ML-based DR 8.49 53.91 813.5

June 14, 2020

5–6 p.m.

Before DR 170.19 3,185.9

After traditional DR 55.94 42.31 320.0

After ML-based DR 8.63 46.65 591.8

June 24, 2020

5–6 p.m.

Before DR 245.05 4,868.8

After traditional DR 55.94 42.73 341.9

After ML-based DR 8.63 42.82 343.1

July 4, 2020

5–6 p.m.

Before DR 112.79 1,920.1

After traditional DR 34.39 41.86 324.9

After ML-based DR 8.72 44.80 519.8

July 8, 2020

4–5 p.m.

Before DR 194.59 4,973.6

After traditional DR 56.17 49.09 540.0

After ML-based DR 8.97 55.61 1,011.0

July 15, 2020

4–5 p.m.

Before DR 125.73 4,729.3

After traditional DR 60.46 34.96 398.8

After ML-based DR 9.25 48.48 992.6
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of the LMP changes, demand reductions, and grid congestion (quantified in terms of shadow prices) for

another set of DR events. Finally, Tables 2–4 present the statistics of LMPs, shadow prices, and demand

reductions for all DR events through the 1-year period in the case study. For these DR events, we

compare the economic and social welfare impacts of traditional DR at locations with high LMPs with

that of DR at locations selected by the proposed ML-based algorithm. Both traditional DR and ML-

based DR achieve significantly reduced LMPs (75% and 70%, respectively) and shadow prices (91%

and 80%, respectively) in these cases. Surprisingly, however, the ML-based DR algorithm achieves wel-

fare gains that are comparable with traditional DR, with only a fraction (<20%) of the total amount of

load reductions required to achieve the same impact with traditional DR (Figures 2C, 2F, 2I, 2L and Ta-

ble 4). Furthermore, we note that the total load reduction required in the ML-based DR algorithm com-

prises only 10.41 MW out of a total system load of 48,948 MW (Table 4). A closer examination of the DR

locations in Figures 2B, 2E, 2H, and 2K reveals another interesting insight—DR locations in the tradi-

tional framework that are concentrated in population centers or locations with high LMPs do not remain

the same for different DR events, whereas the ML-based DR locations turn out to be the same for each

of the different DR events. These two observations confirm the key idea that nonlinearities in the grid

play a significant role in the outcomes of DR; the ML-based framework exploits these nonlinearities to

select those locations that achieve nonlinear jumps to operating points that result in significant eco-

nomic and operational welfare gains with very small demand reductions. Interestingly, this study re-

veals that the locations where DR can achieve maximum impact with minimal demand reductions
Table 2. Statistics of LMP changes of all DR events before/after DR for Zones 1–8

LMP ($/MWh) Mean Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8

Before DR 165.85 111.08 101.38 103.08 98.83 104.13 128.36 365.62 121.19

After traditional DR 40.08 39.28 35.18 36.07 31.57 36.26 39.67 52.54 37.52

After ML-based DR 50.93 43.36 38.55 39.72 37.08 39.54 44.48 88.11 41.25

iScience 25, 103723, February 18, 2022 7



Table 3. Statistics of shadow price changes of all DR events, which indicate changes in congestion levels in the grid,

before/after DR

Shadow prices Absolute prices Standard deviation

Before DR 4,169 7,633.8

After traditional DR 855.7 1,405.6

After ML-based DR 387.9 733.5
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may not coincide with the intuitive wisdom of carrying our DR at locations with high LMPs or large pop-

ulation centers. Furthermore, we note that the ML algorithm has another inherent advantage. By con-

struction, the algorithm cannot lead to adverse impacts like increased LMPs, since it actively seeks out

operating points with low LMPs.
Machine learning framework for targeted storage placement

Energy storage also holds the potential to benefit operational, market, and social welfare gains because of

its flexibility to discharge to the grid when systems are overly stressed and charge back when not. In this

sense, energy storage is akin to DR resources. Moreover, energy storage capacity has grown rapidly over

the past decade owing to the decrease in battery cell manufacturing costs (Nykvist and Nilsson, 2015). En-

ergy storage also has the potential to mitigate the intermittency and uncertainty induced by limited supply

and renewable energy sources. Typically, themost common and traditional approach tomitigating demand

peaks and variability of renewable generation is to operate fast-ramping generators such as combined-cy-

cle combustion turbines and gas turbines (Energy, 2010). However, recent works suggest that energy stor-

age with large enough capacity can instead replace fast-ramping traditional generation toward in this

context (Su and El Gamal, 2011). Therefore, it is natural to explore if the ML-based DR algorithm proposed

in the previous section can also be extended toward choosing locations for energy storage. We explore this

question using the same ERCOT case study as in the previous sections. We assume that energy storage re-

sources operate as controllable loads instead of price-responsive loads; that is, batteries can discharge/

charge within their capacity limits as needed and do not operate to maximize profits.

Mobility, storage locations, and total capacities together are interrelated. In general, the larger the total

capacities, the more the benefit gains that are possible. On the other hand, as shown in Figure 1, it may

not always be possible to draw benefit from energy storage if locations are not strategically selected. In

this regard, a feature of ML-based DR that was discussed earlier, namely, that it finds a set of locations

that remains fixed over almost all DR events, turns out to be a key advantage. Although some energy stor-

age systems are mobile that it is possible to move energy storage to different locations, there are addi-

tional burdens in terms of operational time and costs. In this context, ML-based DR locations could be

excellent candidate locations for placing energy storage to achieve the same benefit gains as DR pro-

grams. Placing storage units at the locations selected by the ML-based DR locations will also provide

the advantage of achieving maximum impact on price volatility and grid reliability, while requiring signif-

icantly less mobility of energy storage. Moreover, ML-based DR locations will require much less invest-

ments in terms of total energy capacity as compared with traditional DR as demonstrated in Figure 3, Ta-

bles 2–4; that is, achieving the same level of benefit gains of traditional DR by installing energy storage in

traditional DR locations requires nearly five times more total energy capacity, since traditional DR requires

nearly five times more demand reductions compared with ML-based DR.

We now demonstrate how the ML-based DR algorithm can be leveraged toward installing energy storage

at a few targeted locations to avoid extreme operating points. In our ERCOT test study, we assume that

energy storage units are contracted to discharge energy into the grid when DR events are called for and
Table 4. Quantity of DR demand reduction required to achieve the LMP and Shadow Price statistics in Tables 2

and 3

Changes in loads MW

Total reduced loads in traditional DR 51.49

Total reduced loads in ML-based DR 10.41

Total system loads 48,948

8 iScience 25, 103723, February 18, 2022
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Figure 4. Battery energy storage scenarios in synthetic Texas electricity markets

(A, D, G and J) High LMPs in several counties on each of the 4 days without storage. (B, E, H, and K) Locations of battery energy storage in ML-based DR

locations to achieve low LMPs. (C, F, I and L) Significantly decreased LMPs with battery energy storage installed for the corresponding time periods and the

total energy discharged.
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charge energy back between 12 and 6 AM. In general, energy storage units have multiple parameters such

as charging and discharging power rating, energy capacity, charging and discharging efficiency, battery

cycle life, battery shelf life, or maintenance costs (Xu et al., 2018). In this work, for simplicity, we assume

that the energy storage units all have the following simplified specifications—a charging and discharging

power rating of 10 MW, energy capacity of 3 MWh, and charging and discharging efficiency of 95%. Sup-

pose that we install energy storage in the ML-based DR locations as shown in Figure 4. Then, we obtain

equivalent welfare gains from energy storage compared with DR programs because installing energy stor-

age inML-based DR locations can be viewed as equivalent to decreasing demand in the installed locations.

Hence, installing energy storage with capacity specified as above in 10ML-based DR locations is equivalent

to participating inML-based DR program that reduces 8–10MW in 10 locations. As seen in Figure 4, placing

battery energy storage at theML-based DR locations is equally effective in decreasingmean LMPs that very

small amount of energy is discharged from battery energy storage capacity.
DISCUSSION

In this work, we demonstrate both traditional DR and ML-based frameworks in a large-scale system on

the synthetic ERCOT grid to understand targeted DR that achieves reductions in price volatility and

grid congestion in Texas electricity markets. We also showed how this framework can be used to deter-

mine locations for battery energy storage to achieve excellent impacts on grid reliability, as the grid

transitions to very large-scale renewable integration. Our findings demonstrate that very small but highly

targeted DR, rather than across-the-board DR, can have a significant impact on decreasing price volatility

and improving grid reliability in Texas electricity markets. Furthermore, we demonstrate that considering

the nonlinear grid dynamics can also be actively exploited toward choosing targeted locations for DR

and can achieve excellent impacts, as compared with the typical wisdom of targeting DR schemes to-

ward large population centers or locations with high price volatility. These findings can inform energy

policy makers and grid operators on how to target DR initiatives for price volatility as well as the oper-

ational reliability. The recent Federal Energy Regulatory Commission (FERC) order 2222 in the United

States has paved the way for distributed energy resources, including DR providers and storage re-

sources, to participate in the capacity, energy, and ancillary services markets. In this context, this work

will directly inform policy makers on how DR participation mechanisms can be targeted in these

emerging market structures.
Limitations of the study

The essential idea of DR is based on the fact that the dual variables (LMPs and shadow prices) are sensitive

to the nodal demand changes. Therefore, the system state after DR could become again unstable in prin-

ciple when there are small perturbations in some locations as noise might push the system back to an un-

desirable operating state. On the other hand, DR is expected to gain more attention owing to increasing

adoption of renewable generations and electric vehicle fleets as they both pose challenges and opportu-

nities to the future grid.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Synthetic Texas Grid (Birchfield et al., 2016) http://electricgrids.engr.tamu.edu/

Time series profiles (Xu et al., 2020) https://zenodo.org/record/4538590

Software and algorithms

MatPower (Zimmerman et al., 2010) https://matpower.org/

Gurobi (Gurobi Optimization, LLC, 2021) https://www.gurobi.com/

Demand Response Framework This paper (GitHub: Lee et al., 2021)
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and materials should be directed to and will be fulfilled by

the Lead Contact, Dr. Le Xie (le.xie@tamu.edu).
Materials availability

No materials were used in this study.

Data and code availability

d This paper only analyzes publicly available data. Sources of dataset are listed in the key resources

table.

d Demand Response Framework is built on MatPower (Zimmerman et al., 2010) which is a Matlab package

for solving power system simulations. While it is not necessary, the framework takes advantage of Gurobi

(Gurobi Optimization, LLC, 2021), which provides free academic licenses, for faster computation of po-

wer flow simulations. All code for Demand Response Framework is publicly available on Github (Lee

et al., 2021).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Synthetic grid-creation and calibration

A U.S. test system with high spatial and temporal resolution is utilized for the DR case study (Xu et al.,

2020). This existing open-access test system is built using only publicly available data sets. The high

granularity of the model aligns with the need of having accurate statistics of the power grid infrastruc-

ture and capturing the time series dynamics of demand and variable resources in the present work. The

synthetic grid model in this study is adapted from the ERCOT part of the U.S. test system with fine-

tuned parameters. Note that multiple versions of the test system are available (Xu et al., 2020), which

are built on different years of raw data. The year 2020 is selected here to make the study best represent

current reality. To provide a better understanding of how the synthetic baseline network is constructed,

how the input profiles are generated, and how the model is calibrated, a brief recap of the existing con-

tent (Xu et al., 2020) together with detailed descriptions of the specific modifications on the model in

this study are provided in the rest of this section.
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System topology. The system topology is adopted from the synthetic Texas 2,000-bus grid as described

in the literature (Birchfield et al., 2016). The original motivation of the synthetic grid model is to provide a

transparent system without any confidential information that statistically matches the real grid. Thus, this

test system is well-suited to our DR case study.

Generator capacity. The original capacities of the generator inventory in the model are designed based

on the public information pertaining to the year 2016 (Birchfield et al., 2016). Major new generator units and

retirements up to 2019 are captured with the whole generator fleet scaled up to match the total capacity at

the beginning of 2020 by type and ERCOT weather zone (The Electric Reliability Council of Texas, 2021) in

the 2020 test system (Xu et al., 2020).

Generator cost curve. Quadratic cost curves for fossil fuel generators such as natural gas and coal are

provided in the original model (Birchfield et al., 2016). Cost curves of different types of generators in

each state are scaled by constant factors to make the capacity-weighted average of electricity prices

agree with historical data (Xu et al., 2020). During the simulations in the present study, the quadratic

cost curves are transformed into 10-piece (or more) piece-wise linear cost curves to improve the

computational performance of solving Security-Constrained Unit Commitment (SCUC) and maintain

realistic cost estimations of generation.

Time series profiles. Hourly zonal demand, per-plant solar, wind, and hydro profiles which are

compatible with the test system (Xu et al., 2020) are provided in the open-access data set. Demand pro-

files are generated based on historical time series profiles from ERCOT (Electric Reliability Council of

Texas, 2021). Geographic load distribution in the synthetic network is provided based on the demo-

graphic information of ZIP codes (Birchfield et al., 2016). Renewable profiles are generated based on

historical weather traces such as wind speed and solar irradiance from public available data sets,

whereas hydro profiles are composed by historical hourly data of real hydroelectric dams and monthly

net generation from EIA Form 923 (Administration, 2019). Detailed methodologies and data sources

are described in the literature (Xu et al., 2020).

Calibration. The U.S. test system is calibrated by comparing the historical and simulated results of the

state-level generation mix obtained by running a full-year production cost model (Xu et al., 2020). In partic-

ular, for this study, the statistics of historical and simulated results of Locational Marginal Prices (LMP) are

compared for model calibration.

Feasibility check. The existing test system is tuned to be year-long feasible by running a multi-period

DC Optimal Power Flow (OPF) in different scenarios (Xu et al., 2020). However, SCUC induces more

restrictive conditions in the optimization. The total demand is further scaled down by 4% on days

221–224 in order to achieve feasibility, which we believe is innocuous to the main conclusions of the

present work.
Architecture of DR frameworks

Figure shows the architecture of the basic DR framework. Grid operations are based on generator

unit schedules, renewable generator profiles, demand profiles, and DR contracts included to

describe the DR programs in the market. When the mean LMP is not expected to be higher than

$100, the electricity market simply cleared; otherwise, DR program administrators contact DR

contractors to perform demand shaping in order to regulate the mean LMP to less than $100. If

the optimal scheduling with demand shaping is successful, then the market is cleared with demand

reductions.
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Architecture of the basic DR framework

Optimal scheduling (SCED) is solved in real time (or every 5 min), whereas generator unit schedules (SCUC) are solved 1

day ahead. Details on SCUC and SCED are given in method details.
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Sensitivity analysis of the mean LMP on all DR events

Recall from Figure 3 that ML-based DR requires 10.41MW nodal demand changes in average for all DR

events. That is, given a nodal demand x with high mean LMP before DR, the mean LMP becomes low

when 10.41MW is removed from x. We added both positive and negative perturbation noise to the nodal

demand x. This is summarized in Figure where it shows the sensitivity of LMP with respect to noise as the

perturbation noise increases from x-10 MW to infinity. Again, we note that the essential idea of demand

response is based on the fact that the dual variables (LMPs and shadow prices) are sensitivity to the nodal

demand changes.
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Sensitivity of the mean LMP on DR events
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Demand response algorithm

We now describe the ML-based DR framework implemented using the pseudo-code provided in Algo-

rithms 1 and 2. In order to frame proper DR programs, we first start with the simulation setup in our case

study. An open-source synthetic representation of the ERCOT electricity grid is built by communities

only using publicly available data sets. The high granularity of the model (Birchfield et al., 2016;

Wu et al., 2021) aligns with the need of having accurate statistics of the power grid infrastructure and

capturing the time series dynamics of demand and variable resources in the present work. As described

above in MEthod Details, the synthetic grid model in this study is adapted from the ERCOT part of the

U.S. test system with fine-tuned parameters. To provide electric services in the ERCOT electricity grid, a

security-constrained unit commitment (SCUC) problem is solved one day ahead and a security-constrained

economic dispatch (SCED) is solved in real-time (More details on SCUC and SCED are provided below).

Thus, we solve SCUC and SCED for each day at appropriate time, and open DR programs if the resulting

mean LMP is higher than $100 for any time of the day.

We define a demand profile as a set of positive demands over locations and assume that there is a collec-

tion of demand profiles accumulated over time. We divide the collection of demand profiles into two

distinct sets, namely a good set Sg and a bad set Sb. Each demand profile is classified into a good set

Sg if the demand profile results in low mean LMP (mean LMP is less than $100) and is classified into a

bad set Sb if the demand profile results in highmean LMP (mean LMP is higher than $100). Any new demand

profile is also classified based on this rule.

When a new demand profile denoted by newd is observed to belong to Sb, the traditional DR frame-

work focus exclusively on lowering demands in newd at locations with population centers or high LMPs.

Unlike traditional DR, our ML-based DR algorithm utilizes Sg; given a new demand profile newd that

belongs to Sb, we compute its distance from all elements of Sg - these distances indicate how far

newd is from all good demand profiles. Since Sg is a set of demand profiles with mean LMPs less

than $100, the ML-based DR algorithm reduce demands in a few locations in newd toward so that

newd can be classified into Sg, i.e., results in mean LMPs less than $100. Note that we can only reduce

demands in a small number of locations. Therefore, we consider ten locations that have the largest dis-

tance from Sg. Also, the number of elements in Sg could be very large; therefore, we choose to consider

k-nearest-neighbors in Sg, where k = 20.
Security-constrained unit commitment (SCUC) and security-constrained economic dispatch

(SCED)

Nomenclature. Here, we establish some notations and describe the SCUC and problems. The sets of lo-

cations (buses), transmission lines, generators, wind farms, and loads are denoted byN, ε, g,W, L respectively.
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Algorithm 1. SCUC and SCED

for each day do

Solve SCUC with renewable unit profiles and demand profiles

for each hour h = 1:24 do

Solve SCED with unit schedules, profiles and demand profiles

Let demand profiles be denoted as demand(B) which is a vector of size 2000 locations

if Mean LMP at hour h R $100 then

Perform Algorithm 2 with input : original_demand(B) := demand(B)

end if

end for

end for
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Decision variables in both SCUC and SCED:

� gi [t]: MW output of generator i at time t;

� pi [t]: net MW power injection at bus i at time t;

� qi [t]: voltage angle of bus i at time t;

� fij [t]: power flow on line ði; jÞ at time t.

Decision variables in SCUC:
Algorithm 2. Demand Response

Parameters : k = 20

Input : original_demand(B)

Compute L1 distance between original_demand(B) and all other load profiles in the library

Identify 20 nearest_neighbors to original_demand(B) by sorting out L1 distance vector in ascending order (closest to

farthest)

for each nearest_neighbor = 1:k do

Find 10 buses denoted as DR_BUS that have the most differences in demands between original_demand(B) and

nearest_neighbor

for i = 0.85 : 0.01 : 0.99 do

reduced_original_demand(B) = original_demand(B)

reduced_original_demand(DR_BUS) = original_demand(DR_BUS) * i

Solve SCED with reduced_original_demand(B)

end for

if Mean LMP < $100 then

DR is successful. STOP

end if

end for

iScience 25, 103723, February 18, 2022 17



ll
OPEN ACCESS

iScience
Article
� zi½t�˛f0; 1g: commitment (on/off states) decisions; zi [t] = 1 if generator i is on at time t;

� ui½t�˛f0; 1g: generator i is turned on at time t if ui [t] = 1;

� vi ½t�˛f0; 1g: generator i is turned off at time t if vi [t] = 1.

Parameters and constants:

� cgi ð ,Þ: (piecewise linear or quadratic) cost function of generator i;

� czi : no load cost of generator i;

� cui : startup cost coefficient of generator i;

� cvi : shutdown cost coefficient of generator i;

� di [t]: forecast of load at bus i at time t;

� gi ;g i
: MW upper/lower bounds of generator i;

� gi [0]: generation level of generator i at the beginning of operation planning horizon (t = 0);

� qi ;q i : upper/lower bounds on voltage angles at bus i;

� ri; r i: ramping upper/lower bounds of generator i;

� f ij; f ij: upper/lower bounds on flow of line (i,j);

� u i;v i: minimum on (off) time for generator i

� xij: reactance of line (i,j).
Security-constrained economic dispatch (SCED)

minimize
Xnt
t = 1

X
i˛G

cgi ðgi½t�Þ (Equation 1a)

subject to p ½t� = g ½t� � d ½t� : ðl ½t�Þ i ˛ N ; t = 1;2;/; n : (Equation 1b)
i i i i t
fij ½t� = qi½t� � qj½t�
xij

ði; jÞ ˛ E; t = 1;2;/;nt : (Equation 1c)
X

pi½t� =
ði;jÞ˛E

fij ½t� i ˛ N ; ði; jÞ ˛ E; t = 1;2;/;nt : (Equation 1d)

� �

f ij % fij ½t�%f ij : mij½t� ði; jÞ ˛ E; t = 1; 2;/;nt : (Equation 1e)
q i % qi½t�%qi i ˛ N ; t = 1; 2;/;nt : (Equation 1f)

r %g ½t� � g ½t� 1�%r i ˛ G; t = 1;2;/;n : (Equation 1g)
i i i i t

g %g ½t�%g i ˛ G; t = 1;2;/;n : (Equation 1h)

i i i t

Security-Constrained Economic Dispatch (SCED) seeks the optimal generation that minimizes total costs in

the upcoming nt snapshots. The main decision variables are the MW outputs of generators gi [t]. Given

values of gi [t], the voltage angles qi [t], nodal MW injections pi [t]pi½t�, and line flows fjj [t] are determined

by equality constraints (Equations 1b), (1c) and (1d). Security constraints ensure: transmission line flow

within limits (Equation 1e), voltage angles within limits (Equation 1f), generation capacity limits (Equa-

tion 1h), and ramping limits (Equation 1g).

The SCED formulation (1) also provides some critical dual variables. The dual variables for the transmission

capacity constraints, which are often referred to as transmission shadow prices in the literature, are de-

noted by mij [t] in (Equation 1e). The dual variables li [t] for the nodal balancing constraint (Equa-

tion 1b) are called locational marginal prices (LMPs) in electricity markets. As their name suggests, LMPs

li [t] represent the marginal value of one additional unit of demand di [t] at bus i at time t. Since SCED is

often the key component of real-time electricity market, we term the LMPs li [t] of SCED as real-time prices.

Also note that for a multi-period look-ahead SCED formulation (1), only the dual variables for the first snap-

shot t = 1 (i.e., li [t]) are used for pricing and settlement purposes, and the prices li [t] (t = 2,3, ,nt) are only

advisory.
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Security-constrained unit commitment (SCUC)

minimize
XT
t = 1

X
i˛G

cgi ðgi½t�Þ + cz
i z½t�+ cu

i u½t�+ cvi v½t� (Equation 2a)

subject to p ½t� = g ½t� � d ½t� : ðl ½t�Þ i ˛ N ; t = 1;2;/; T : (Equation 2b)
i i i iX

pi½t� =

ði;jÞ˛E
fij½t� i ˛ N ; ði; jÞ ˛ E; t = 1;2;/; T : (Equation 2c)

� �

f ij % fij ½t�%f ij : mij½t� ði; jÞ ˛ E; t = 1; 2;/;T : (Equation 2d)

q ½t� � q ½t�

fij½t� = i j

xij
ði; jÞ ˛ E; t = 1;2;/; T : (Equation 2e)

r %g ½t� � g ½t� 1�%r i ˛ G; t = 1;2;/;T : (Equation 2f)
i i i i

z ½t� ,g %g ½t�%z ½t�,g i ˛ G; t = 1;2;/; T : (Equation 2g)
i i i i i

u ½t�R z ½t� � z ½t� 1� i ˛ G; t = 1;2;/; T : (Equation 2h)
i i i

v ½t�R z ½t� 1� � z ½t� i ˛ G; t = 1; 2;/;T : (Equation 2i)
i i ih n oi

zi½t� � zi½t� 1�%zi½i�; i ˛ t + 1;min t + u i � 1;T ; t = 2; 3;/;T : (Equation 2j)

h n oi

zi½t� 1� � zi½t�%1� zi½i�; i ˛ t + 1;min t + v i � 1;T ; t = 2;3;/; T : (Equation 2k)

The objective of SCUC (2) is to find the optimal commitment zi [t] and dispatch decisions gi [t] that minimize

the total cost, which includes no-load costs czi zi½t�, startup costs cui ui½t�, shutdown costs cvi vi ½t�, and generation

costs cgi ðgi½t�Þ. Note that constraints (Equations 2b, 2c, 2d, 2e, 2f, and 2g) in SCUC are the same as the con-

straints (Equations 1b, 1c, 1d, 1e, 1f, and 1g) in SCED. Constraint (Equation 2g) differs from (Equation 1h) by

adding the commitment variable zi [t]. When generator i is not committed, i.e., zi [t] = 0, (Equation 2g) forces gi

[t] = 0. When generator i is committed, i.e., zi [t] = 1, (Equation 2g) is the same as (Equation 1h). Constraints

(Equations 2h and 2i) are the logistic constraints pertaining to commitment zi [t], and startup and shutdown

decisions (ui [t], vi[t]). When generator i is turned on at time t, i.e., zi [t-1] = 0 but zi [t-1] = 1; then, constraint

(Equation 2h) forces ui [t] = 1. When generator i is turned off at time t, i.e., zi [t-1] = 1 but zi [t] = 0, constraint

(Equation 2h) forces vi [t] = 1. Minimum on/off time constraints for all generators are in (Equations 2j and 2k).

Similar to SCED, we also provide critical dual variables of SCUC in (Equation 2b). Since SCUC lies at the heart

of day-ahead electricity market, we term LMPs li [t] of SCUC as day-ahead prices.

Although the SCUC and SCED formulations share similar constraints, we would like to point out two major

differences. First, SCED is solved in real-time (or 5 minutes before), while SCUC is often solved one day

ahead. Consequently, SCUC incorporates the day-ahead wind and load forecast, while SCED takes up-

dated and more accurate real-time predictions of load and wind generation into account. Second, only

the LMPs of the first snapshot li [1] in SCED are used for pricing and settlement purposes, while all day-

ahead prices (li [t] s in (Equation 2b)) will be used for settlement.
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