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ABSTRACT

Contextual bandits aim to identify among a set of arms the optimal
one with the highest reward based on their contextual information.
Motivated by the fact that the arms usually exhibit group behaviors
and the mutual impacts exist among groups, we introduce a new
model, Arm Group Graph (AGG), where the nodes represent the
groups of arms and the weighted edges formulate the correlations
among groups. To leverage the rich information in AGG, we pro-
pose a bandit algorithm, AGG-UCB, where the neural networks
are designed to estimate rewards, and we propose to utilize graph
neural networks (GNN) to learn the representations of arm groups
with correlations. To solve the exploitation-exploration dilemma
in bandits, we derive a new upper confidence bound (UCB) built
on neural networks (exploitation) for exploration. Furthermore,
we prove that AGG-UCB can achieve a near-optimal regret bound
with over-parameterized neural networks, and provide the conver-
gence analysis of GNN with fully-connected layers which may be
of independent interest. In the end, we conduct extensive exper-
iments against state-of-the-art baselines on multiple public data
sets, showing the effectiveness of the proposed algorithm.
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1 INTRODUCTION

Contextual bandits are a specific type of multi-armed bandit (MAB)
problem where the learner has access to the contextual information
(contexts) related to arms at each round, and the learner is required
to make recommendations based on past contexts and received
rewards. A variety of models and algorithms have been proposed
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and successfully applied on real-world problems, such as online
content and advertising recommendation [28, 40], clinical trials
[15, 36] and virtual support agents [31].

In this paper, we focus on exploiting the accessible arm infor-
mation to improve the performance of bandit algorithms. Among
different types of contextual bandit algorithms, upper confidence
bound (UCB) algorithms have been proposed to balance between
exploitation and exploration [3, 11, 34]. For conventional UCB algo-
rithms, they are either under the "pooling setting" [11] where one
single UCB model is applied for all candidate arms, or the "disjoint
setting” [28] where each arm is given its own estimator without
the collaboration across different arms. Both settings have their
limitations: applying only one single model may lead to unantici-
pated estimation error when some arms exhibit distinct behaviors
[40, 41]; on the other hand, assigning each arm its own estimator
neglects the mutual impacts among arms and usually suffers from
limited user feedback [5, 18].

To deal with this challenge, adaptively assigning UCB models
to arms based on their group information can be an ideal strategy,
i.e,, each group of arms has one estimator to represent its behav-
ior. This modeling strategy is linked to "arm groups" existing in
real-world applications. For example, regarding the online movie
recommendation scenario, the movies (arms) with the same genre
can be assigned to one (arm) group. Another scenario is the drug de-
velopment, where given a new cancer treatment and a patient pool,
we need to select the best patient on whom the treatment is most
effective. Here, the patients are the arms, and they can be naturally
grouped by their non-numerical attributes, such as the cancer types.
Such group information is easily accessible, and can significantly
improve the performance of bandit algorithms. Although some
works [12, 30] have been proposed to leverage the arm correlations,
they can suffer from two common limitations. First, they rely on the
assumption of parametric (linear / kernel-based) reward functions,
which may not hold in real-world applications [46]. Second, they
both neglect the correlations among arm groups. We emphasize
that the correlations among arm groups also play indispensable
roles in many decision-making scenarios. For instance, in online
movie recommendation, with each genre being a group of movies,
the users who like "adventure movies" may also appreciate "action
movies". Regarding drug development, since the alternation of some
genes may lead to multiple kinds of tumors [32], different types of
cancer can also be correlated to some extent.

To address these limitations, we first introduce a novel model,
AGG (Arm Group Graph), to formulate non-linear reward assump-
tions and arm groups with correlations. In this model, as arm at-
tributes are easily accessible (e.g., movie’s genres and patient’s
cancer types), the arms with the same attribute are assigned into
one group, and represented as one node in the graph. The weighted
edge between two nodes represents the correlation between these
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two groups. In this paper, we assume the arms from the same group
are drawn from one unknown distribution. This also provides us
with an opportunity to model the correlation of two arm groups
by modeling the statistical distance between their associated distri-
butions. Meantime, the unknown non-parametric reward mapping
function can be either linear or non-linear.

Then, with the arm group graph, we propose the AGG-UCB
framework for contextual bandits. It applies graph neural networks
(GNNs) to learn the representations of arm groups with correlations,
and neural networks to estimate the reward functions (exploitation).
In particular, with the collaboration across arm groups, each arm
will be assigned with the group-aware arm representation learned
by GNN, which will be fed into a fully-connected (FC) network
for the estimation of arm rewards. To deal with the exploitation-
exploration dilemma, we also derive a new upper confidence bound
based on network-gradients for exploration. By leveraging the arm
group information and modeling arm group correlations, our pro-
posed framework provides a novel arm selection strategy for deal-
ing with the aforementioned challenges and limitations. Our main
contributions can be summarized as follows:

e First, motivated by real-world applications, we introduce a
new graph-based model in contextual bandits to leverage the
available group information of arms and exploit the potential
correlations among arm groups.

e Second, we propose a novel UCB-based neural framework
called AGG-UCB for the graph-based model. To exploit the
relationship of arm groups, AGG-UCB estimates the arm
group graph with received contexts on the fly, and utilizes
GNN to learn group-aware arm representations.

e Third, we prove that AGG-UCB can achieve a near-optimal
regret bound in the over-parameterized neural works, and
provide convergence analysis of GNN with fully-connected
layers, which may be of independent interest.

o Finally, we conduct experiments on publicly available real
data sets, and demonstrate that our framework outperforms
state-of-the-art techniques. Additional studies are conducted
to understand the properties of the proposed framework.

The rest of this paper is organized as following. In Section 2, we
briefly discuss related works. Section 3 introduces the new problem
settings, and details of our proposed framework AGG-UCB will be
presented in Section 4. Then, we provide theoretical analysis for
AGG-UCB in Section 5. After presenting experimental results in
Section 6, we finally conclude the paper in Section 7. Due to the
page limit, readers may refer to our arXiv version of the paper for
the supplementary contents (https://arxiv.org/abs/2206.03644).

2 RELATED WORKS

In this section, we briefly review the related work on contextual ban-
dits. Lin-UCB [11] first formulates the reward estimation through a
linear regression with the received context and builds a confidence
bound accordingly. Kernel-UCB [34] further extends the reward
mapping to the Reproducing Kernel Hilbert Space (RKHS) for the
reward and confidence bound estimation under non-linear settings.
Besides, there are algorithms under the non-linear settings. Simi-
larly, CGP-UCB [27] models the reward function through a Gauss-
ian process. GCN-UCB [33] applies the GNN model to learn each

Yunzhe Qj, Yikun Ban, and Jingrui He

context an embedding for the linear regression. Then, Neural-UCB
[46] proposes to apply FC neural network for reward estimations
and derive a confidence bound with the network gradient, which is
proved to be a success, and similar ideas has been applied to some
other models [4, 6, 45]. [8] assigns another FC neural network to
learn the confidence ellipsoid for exploration. Yet, as these works
consider no collaboration among estimators, they may suffer from
the performance bottleneck in the introduction.

To collaborate with different estimators for contextual bandits,
various approaches are proposed from different perspectives. User
clustering algorithms [5, 7, 19, 29] try to cluster user with alike
preferences into user groups for information sharing while COFIBA
[30] additionally models the relationship of arms. Then, KMTL-UCB
[12] extends Kernel-UCB to multi-task learning settings for a refined
reward and confidence bound estimation. However, these works
may encounter with performance bottlenecks as they incline to
make additional assumptions on the reward mapping by applying
parametric models and neglect the available arm group information.

GNNs 17, 25, 26, 39] are a kind of neural models that deal with
tasks on graphs, such as community detection [44], recommender
systems [38] and modeling protein interactions [16]. GNNs can
learn from the topological graph structure information and the
input graph signal simultaneously, which enables AGG-UCB to
cooperate with different arm groups by sharing information over
the arm group neighborhood.

3 PROBLEM DEFINITION AND NOTATION

We suppose a fixed pool C = {1,..., N.} for arm groups with the
number of arm groups being |C| = N, and assume each arm group
¢ € C is associated with an unknown fixed context distribution D,.
At each time step ¢, we will receive a subset of groups C; € C. For
each group ¢ € C;, we will have the set of sampled arms X ; =
{xglt), e xir;“”)} with the size of | X, ¢| = n¢ . Then, Vi € [ne;] =
{1,...,nc:}, we suppose xgit) ~ D, with the dimensionality xiiz €
RYx. Therefore, in the t-th round, we receive

{(Xetle € Y and X = {x0, - xF Y vee e, ()

c,t?

With W* € RNeXNe being the unknown affinity matrix encoding
(i)

. i
the true arm group correlations, the true reward rc( t) for arm x

is defined as
rc(’lt) =h(W", xilt)) + eg (2)
where h(-) represents the unknown reward mapping function, and
€ is the zero-mean Gaussian noise. For brevity, let x; be the arm
we select in round ¢ and r; be the corresponding received reward.
Our goal is recommending arm x; (with reward r;) at each
time step ¢ to minimize the cumulative pseudo-regret R(T) =
ST E[(rf = ro)] where Elr}] = max(ceciefne, 1) [HW* x0))]-
At each time step ¢, the overall set of received contexts is defined as
X = {xglt) }eecyieln,, |- Note that one arm is possibly associated
with multiple arm groups, such as a movie with multiple genres. In
other words, for some c, ¢’ € Cy, we may have X N Xy ¢ # 0.
In order to model the arm group correlations, we maintain an
undirected graph G; = (V, E, W;) at each time step ¢, where each
arm group from C is mapped to a corresponding node in node set V.
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ALGORITHM 1: AGG-UCB

1 Input: Number of rounds T, exploration parameter y,
regularization parameter A, network width m, network
depth L, neighborhood size k.

2 Output: Arm recommendation x; for each time step ¢.

3 Initialization: Initialize the arm group graph as a
connected graph G; = (V, E, Wp). Initialize gradient matrix
Zy = M. Initialize parameter ©y for the model (G, X; ©y).
4 fort=1,2,...,T do

5 Receive a set of arm contexts X; = {xilg teeCricnes ]

6 Embed the arm set X; into Xt w.r.t. Eq.4.

7 for each embedded arm }~((lt) € X; do

8 Obtain the point estimate 7 A(l) = f(Gr. X Elt) ;9¢-1).

9 Obtain network gradlent
95’3 —Veof(Gt. ct,@t—1)-

10 Calculate confidence bound as
T =gl 2 1g) m.

11 end

12 Recommend X; = argmaxx(,) _ (;:glt) +y- "(l)) with

the received reward represented as r¢.

13 Calculate arm group distances w.r.t. Eq.3, and update
the arm group graph G; to Gr41.

14 Update the model parameter ©¢_1 to ©; according to
Algorithm 2.

15 Retrieve the X;’s gradient vector g;, and update
gradient matrix Z; = Z;_1 + 9, - g .

16 end

Then, E = {e(ci, cj) }¢;c;ec is the set of edges, and W; represents
the set of edge weights. Note that by definition, G; will stay as a
fully-connected graph, and the estimated arm group correlations are
modeled by the edge weights connecting pairs of nodes. For a node
v € V, we denote the augmented k-hop neighborhood N (v) =
N (v) U{o} as the union node set of its k-hop neighborhood N (v)
and node v itself. For the arm group graph G;, we denote A; €
RNeXNe a5 the adjacency matrix (with added self-loops) of the
given arm group graph and D; € RNeXNe a5 jts degree matrix. For
the notation consistency, we will apply a true arm group graph G*
instead of W* in Eq. 2 to represent the true arm group correlation.

4 PROPOSED AGG-UCB FRAMEWORK

In this section, we start with an overview to introduce our proposed
AGG-UCB framework. Then, we will show our estimation method
of arm group graph before mentioning the related group-aware arm
embedding. Afterwards, the two components of our proposed frame-
work, namely the aggregation module and the reward-estimation
module, will be presented.

4.1 Overview of AGG-UCB Framework

In Algorithm 1, we present the pseudo-code of proposed AGG-
UCB framework. At each time step ¢ € [T], AGG-UCB would

receive a set of input arm contexts X; = {xilt) }eecyie[ne,] (line 5).

ALGORITHM 2: Model Training

1 Input: Initial parameter @y, step size 7, training steps J,
network width m. Updated arm group graph G;.1. Selected
embedded contexts {X T};:l

2 Output: Updated model parameter O;.

3 0 — 0.

+ Let L(©) = 3 X7, |f(Gr+1. Xr:©) = 1|

5 for j=1,2,...,] do

o | ©=0]"-5-voL(®™

7 end

8 Return new parameter @){ .

Then, we embed the arm set X} to Xt based on Eq.4 from Subsection
4.3 (line 6). For each embedded arm X € X, its estimated reward
7 and confidence bound i would be calculated (line 8-10) with the
model f(-) in Subsection 4.4. After recommending the best arm X
(line 12) and receiving its true reward r;, we update the current
arm group graph G; based on Subsection 4.2 (line 13). Then, the
model parameters ©¢_1 will be trained based on Algorithm 2
(line 14), and we incrementally update the gradient matrix to Z; =
Z;_1+g, g, with the gradient vector g, of model f(-) given the
selected arm X; (line 15).

The steps from Algorithm 2 demonstrate our training process
for AGG-UCB parameters. With the updated arm group graph G+1
and the past embedded arm contexts {X 7}!_, until current time
step t, we define the loss function as the straightforward quadratic
loss function (line 4). Finally, we run gradient descent (GD) for J
steps to derive the new model parameters ©; (lines 5-7) based on
the initial parameters @y (initialized in Subsection 4.5). Next, we
proceed to introduce the detail of framework components.

4.2 Arm Group Graph Estimation

Recall that at time step ¢, we model the similar arms into an arm
group graph G; = (V, E, W;) where the nodes V are corresponding
to the arm groups from C and edges weights W; formulate the
correlations among arm groups. Given two nodes Ve, ¢’ € C, to
measure the similarity between them, inspired by the kernel mean
embedding in the multi-task learning settings [9, 12], we define
edge weight between ¢ and ¢’ as:

D[Pk ()] = Exrep,, [Py ()17 /05)

where ¢y (+) is the induced feature mapping of a given kernel kg,
e.g., a radial basis function (RBF) kernel. Unfortunately, V¢ € C,
D is unknown. Therefore, we update the edge weight based on
the empirical estimation of arm group correlations. Here, let X! =
{xéf?},e [t],i€[ne.] Tepresent the set of all arm contexts from group
¢ € C up to time step t. We define the arm similarity measurement
between arms ¢, ¢’ € C through a Gaussian-like kernel as

we(e,¢’) = exp(= ¥ (De) = ¥ (De)||*/5) ®)

w*(c,c’) = exp(—||Bx~

where ¥ (D,) = lXLC,‘ er/\’f. kg (-, x) denotes the kernel mean esti-
mation of D, with a given kernel kg; and o; refers to the bandwidth.
Then, at time step ¢ and V¢, ¢’ € C, we update the corresponding
weight of edge e(c, ¢’) in the weight set W; with w;(c, ¢”).
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4.3 Group-Aware Arm Embedding

To conduct the aggregation operations of GNN, we reconstruct a
matrix for each arm context vector. Recall that for an arm group

c € C, if ¢ € Cs, we receive the contexts x(i) e R je [nc,:] at

()

time step ¢. Then, the reconstructed matrix for x,, is defined as

(ngz)T 0 0
(i)
~(i 0 (x T
Xit) = ) e RNexXdz  (y)
0 0 (x(l))T

where dy = dy - N; is the column dimension of X Elz Here, for the
¢’-th row in matrix )?E’t) the ((¢/ —1) - dx + 1)-th to the (¢’ - dy)-th

. . i .
entries are the transposed original arm context (xi t))T, while the
other entries are zeros. Receiving a set of arm contexts X;, we derive

the corresponding embedded arm set as Xi = {X£’3 YeeCricnes]-

4.3.1 Aggregation of arm group representations. To leverage the
estimated arm group graph for downstream reward estimations, we
propose to aggregate over the arm group neighborhood for a more
comprehensive arm representation through the GNN-based module,
named as group-aware arm representation. It has been proven that
the local averaging operation on the graph neighborhood can be
deemed as applying the low-pass filter on the corresponding node
features [23, 39], which would give locally smooth node features
within the same neighborhood. Inspired by the SGC model [39], we
propose to aggregate over the k-hop arm group neighborhood /\~/k(-)
for incorporating arm group correlations to obtain the aggregated

group-aware embedding for an embedded arm X Elt) denoted by

Hgnn = 4 / — -o(sk- X(’)og,m) € RNexm (5)

1

where Sy = D AtD is the symmetrically normalized adjacency

matrix, and we have

91 Rdxxm

gnn

Ognn =| O, € Rbxm | ¢ pdxm,

Oprin € e

being the trainable weight matrix with width m. Here, o(-) denotes
the non-linear activation function, which is added after the aggrega-
tion operation to alleviate potential concerns when the contexts are

not linearly separable [23]. Note that the ¢’-th row of (X i’f “Ognn),
x

denoted by [X¢.t *Ognnlc,:, is the hidden representation of arm x in
terms of ¢’-th arm group in C. Then, these hidden representations
will then be aggregated over Nj(c), ¢ € C by multiplying with S];
to derive the aggregated arm representation for x, i.e., Hgnn (x).

4.3.2  Incorporating initial embedded contexts. Moreover, solely
aggregating information from neighbors through the GNN-based
models can lead to "over-smoothing" problems [42, 43]. Aggregating
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from the node neighborhood will end up with identical representa-
tions for all the nodes if they form an isolated complete sub-graph,
which may not correctly reflect the relationship among these nodes
in real-world applications. Therefore, we propose to apply skip-
connections to address this potential problem by combining the
initial contexts with the aggregated hidden features. Similar ideas
have been applied to boost the performance of neural models. For
instance, JK-Net [42] and GraphSAGE [20] concatenate hidden fea-
tures from different levels of node neighborhoods; and ResNet [21]
adopts additive residual connections.

Putting these two parts together and setting d’ = m + dz, we then
have Hy € RNeXd” 35 the output group-aware arm representation

for X glg represented by

Hy —fgnn(gt,xcp@gnn) = [U(Sk X(I)G)gnn) X(l)] (6)

where [-; -] refers to the column-wise concatenation of matrices.

4.4 Reward Estimation Module

In this subsection, we estimate the rewards with a FC network of L
layers and width m, based on group-aware arm representation Hy.
4.4.1 Reward and confidence bound estimation. Here, let © ¢,
{O1} (1] be the set of trainable weight matrices of a fully- connected

network, where the specifications are: ©1 € RY Xm @r € R™ and
©; e R™™ V] € {2,...,L — 1}. Then, given the group-aware rep-
resentation H(, we have the reward estimation module as follows

’1
Hl: —-U(Hl_l-@)l),lE{l,...,L—l},
m

- [1
Tar = fre(Ho; Op;) = —Hi-1-6p

where 7,;; € RNe represents the point-estimation vector for the
received contexts embedding H with respect to all the arms groups.

™)

Given that the arm x( ) belonging to c-th group, we will then have

the reward estimation r = [Fa1]c € R for the embedded context

matrix X ét), which is the c-th element of 7 ;.

Finally, combining the aggregation module with the reward esti-
mation module, given arm group graph G at time step ¢, the reward
estimation for the embedded arm X . t (1 e., the reward estimation
given its arm group) can be represented as

?L("l) f(gta ct’ )

(ffc( Ofc) © fynn(: @gnn))(gt, x ] .

Setting p = (2N - d) - m + (L — 1) - m? + m, we have © € R? being
the set of all the parameters from these two modules.

4.4.2  Arm pulling mechanism. We obtain confidence bounds for the
point estimation with the network gradientsasi = \/gT - Z;_1 - g/m
V@f(g,, Ct,@)) € R? is the gradient vector, and
Zi1 =1+ Zt _19. - g7 with g_ being the gradient vector of the
embedded arm which is selected at step 7 € {1,...,t — 1}. Af-
ter obtaining the reward and confidence bound estimations for
all embedded arm in set Xt, we choose the best arm as X; =
( Te, Ver

eter, and fhe theoretlcal upper confidence bound will be given in

where g =

argmaxg(,-) ) where y is the exploration param-
ot
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Section 5. Note that based on our problem definition (Section 3),
one arm may associate with multiple arm groups. Here, we will sep-
arately estimate rewards and confidence bounds of each arm group
it belongs to, and consider them as different arms for selection.

4.5 Model Initialization

For the aggregation module weight matrix ©4np, each of its entries
is sampled from the Gaussian distribution N(0, 1). Similarly, the
parameters from the first L — 1 reward estimation module layers
([©1,...,01_1]) are also sampled from N(0, 1). For the final (L-th)
layer, its weight matrix Oy is initialized by drawing the entry values
from the Gaussian distribution N (0, 1/m).

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis for our pro-
posed framework. For the sake of analysis, at each time step t,
we assume each arm group ¢ € C would receive one arm xc s,
which makes |X1t| = ... = |vac| = t. We also apply the ad-
jacency matrix A; instead of S; for aggregation, and set its ele-
ments [As];; = ﬁ 2521 ¢k§ (xCi,T)T¢k§ (ij,T) for arm group
similarity between group c;,cj € C. Here, ¢, (-) is the kernel
mapping given an RBF kernel kg. With G* being the unknown
true arm group graph, its adjacency matrix elements are [A*];; =
NLCEXPDC,-,XfDCj (P (xi) T i (xj)). Note that the norm of adja-
cency matrices [|A* [z, | A¢llz < 1 since (g, (x), g, (x')) < 1 for
any x,x” € R%, which makes it feasible to aggregate over k-hop
neighborhood without the explosion of eigenvalues. Before present-
ing the main results, we first introduce the following background.

LEMMA 5.1 ([4, 46]). For any t € [T], given arm x € RY% sat-
isfying ||x|l2 = 1 and its embedded context matrix X, there exists
O;_, € R at time step t, and a constant S > 0, such that

hG* X) = (9(G", X;0:-1),0}_, — Op) ®)

where [|©;_; — Oqllz < S/vm, ¥t € [T], and G* stands for the
unknown true underlying arm group graph.

Note that with sufficient network width m, we will have 8;‘_1 =
G)(’;, Vt € [T], and we will include more details in the full version
of the paper. Following the analogous ideas from previous works
[6, 46], this lemma formulates the expected reward as a linear func-
tion parameterized by the difference between randomly initialized
network parameter @ and the parameter ©;_;, which lies in the
confidence set with the high probability [1]. Then, regarding the
activation function o(-), we have the following assumption on its
continuity and smoothness.

ASSUMPTION 5.2 ({-LIPSCHITZ CONTINUITY AND SMOOTHNESS
[4,13]). For non-linear activation function o(-), there exists a positive
constant { > 0, such thatVx,x’ € R, we have

lo(x) =o() < {-llx ="l o’ (x) =" (N < & llx =l
with o’ () being the derivative of activation function o (-).

Note that Assumption 5.2 is mild and applicable on many acti-
vation functions, such as Sigmoid. Then, we proceed to bound the
regret for a single time step ¢.
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5.1 Upper Confidence Bound

Recall that at time step ¢, given an embedded arm matrix X, the
output of our proposed framework is 7 = (G, X;0,_1) with G,
©;_1 as the estimated arm group graph and trained parameters
respectively. The true function h(G*, X) is given in Lemma 5.1.
Supposing there exists the true arm group graph G*, the confidence
bound for a single round t will be

CB:(X) = |f(Gr, X;04-1) — h(G*, X)|
< |f(Gr. X:0:-1) = h(Gr. X)| + |h(Gr. X) — H(G*, X)|  (9)

R, R,

where R; denotes the error induced by network parameter estima-
tions, and Ry refers to the error from arm group graph estimations.
We will then proceed to bound them separately.

5.1.1 Bounding network parameter error Ry. For simplicity, the
G notation is omitted for this subsection. To bridge the network
parameters after GD with those at random initialization, we define

the gradient-based regression estimator (St =Z ;1bt where Z; =

AL+ % Zi—zl 9()~Q; 07) '9()?1; ©:)7,b; = Z'trzl rr ‘g(iri 91)/\/%-
Then, we derive the bound for R; with the following lemma.

LEMMA 5.3. Assume there are constants fp > 0, 1 < B, P2, 3, fa <

2, B = max{pf, fo, B3, fa}, and
By = max{{P1, {Pa+*Brfo. (L +1, (B "2(LP2+ 2p1p2)}

With a constant § € (0,1), and L as the layer number for the FC
network, let the network widthm > Poly(t, L, ﬁip % ((ﬁL)L, log( %))

and learning raten < O((t - Lﬁi(z{ﬁL)ZL)’l). Denoting the terms

A LTy RNy A S RN £ e 1. it

F m 2B -1
L=t (L2 (BLO)™ +m)+ AN (OL+mD),
L=AL+1-Y/Vm,

at time step t, given the received contexts and rewards, with proba-
bility at least 1 — § and the embedded context X, we have

|h(X) = f(X:©t-1)| < B1llg(X;©;-1)/Vmll 71 + Bz +Bs

with the terms

B, = \/10g(w) — 210g(8) + 135,

T

~] o~

det(AI)
_(Tl'\/ZB3+fVL'TZ+ L)
2= mA mA

(AN m T e mT L B2 (BLOE 4 m)
By =m "3 (B3(A+Bp) +L- Y- (A+ ) (A/ B +1)).

Proof. Given the embedded context X , and following the state-
ment in Lemma 5.1, we have

Ih(X) ~ f(X;0-1)
< [(g(X; ©11) [Nm,Nm(O}_, — ©9)) — (9(X: ;1) /Vm, ©;-1)]
+1(g(X:0:-1)/Vm, ©,-1) — f(X;0;-1)| = R3 + Ra.
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With Theorem 2 from [1], we have R3 < B1||g(X; ®t_1)/\/ﬁ||z;_11,
Then, for Ry, we have |f(X;0;_1) — (g(X;0,_1/vm), 0;_1)]
< Rs+Re = |f(X;0:-1) - (9(X;04-1), 0,1 — )|
+(9(X:©4-1). 041 — O — ©_1/Vm)|

where Rs can be bounded by B3 with Lemma A.6. Then, with con-
clusions from Lemma B.3 and Lemma A.5, we have

Rs < [©1-1 — O — ©r—1/Vmllz - |9(X; ©1-1)l2
< By = ((I - VtBs + m - 1) /(mA) ++/t/(md))

(A NOL+m e mT L B2 (LYY +m),

which completes the proof. m

5.1.2 Bounding graph estimation error Ry. Regarding the regret
term R and for the aggregation module, we have

1 —_
Hgnn = 4/ — o(AK - X@n,) € RNm

as the output where @y, refers to the trainable weight matrix.
Then, we use the following lemma to bound R;.

LEMMA 5.4. At this time step t + 1, given any two arm groups
ci.¢j € C and their sampled arm contexts X{, = {x¢,z}!_,, Xctj =
{xcj’f}izl, with the notation from Lemma 5.3 and the probability at

least 1 — 8, we have

" 1 1
A" — A¢llmax < Fe Zlog(

N? - N,

5 )

where ||-||max refers to the greatest entry of a matrix. Then, we will

have Ry < By+J/1/t with

k 2_N,
= e e+ 26000 Do S

and N = |C| is the number of arm groups.

Proof. Recall that for ¢, ¢; € C, the element of matrix [A*]; =
N%Ex,w@ci,x,wﬂcj (Prg (xi) T iy (x7)), Vi, j € [Ne], and [As]ij =
ﬁ 25:1 ¢k§ (x¢;,0) T ¢k§ (xcj,f). Here, suppose a distribution D;;

where E[D;;] = N%Expoci,xfocj (Prg (xi) T iy (x)). Given Ne
arm groups, we have N; (N, — 1)/2 different group pairs. For group
pair cj,cj € C, each ¢y, (xc,r) TP, (xc;2), 7 € [t] is a sample
drawn from 9;;, and the element distance |[A;];j — [A™]ij| can
be regarded as the difference between the mean value of samples
and the expectation. Applying the Hoeffding’s inequality and the
union bound would complete the proof. As ||-||2 < n||-||max for an
n X n square matrix, we have the bound for matrix differences.
Then, consider the power of adjacency matrix A (for graph
G) as input and fix X. Analogous to the idea that the activation
function with the Lipschitz continuity and smoothness property
will lead to Lipschitz neural networks [2], applying Assumption
5.2 and with Lemma A.2, Lemma A.3, we simply have the gradient
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9(G, X;©;_1) being Lipschitz continuous w.r.t. the input graph as
Ry < [19(G*, X;0¢-1) — 9(Gr, X;©;-1) |2 - 1©7_, — O ll2

< %f(ﬁh +M)(Epr+ %)O“) HICAD 2 = (A" L2l
5 %(ﬁh + M) (L + %)O@) A - A2

where (i) is because A;, A* are symmetric and bounded polynomial
functions are Lipschitz continuous. Combining the two parts will
lead to the conclusion. m

5.1.3 Combining Ry with Ry. At time step ¢, with the notation and
conclusions from Lemma 5.3 and Lemma 5.4, re-scaling the constant
d, we have the confidence bound given embedded arm X as

~ ~ 1
CB/(X) < Billg(Gr. X;©1-1)/Vmli 7,1 +By+Bs + B4\/;' (10)

5.2 Regret Bound

With the UCB shown in Eq. 10, we provide the following regret
upper bound R(T), for a total of T time steps.

THEOREM 5.5. Given the received contexts and rewards, with the
notation from Lemma 5.3, Lemma 5.4, and probability at least 1 — 6,
if m, nj satisfy conditions in Lemma 5.3, we will have the regret

R(T) < 2- (2B4NT +2 — By) + 2\/221'T log(1+T/A) +2T

- (VAS + \/1 —2log(6/2) + (dlog(1 +T/A)))

log det(I+G(0)/2) .
Tog(+ T/ With

G(0) = GoG] and Gy = (9(X1:00)7,....g9(X1;00)7).

where the effective dimension d =

Proof. By definition, we have the regret R; for time step ¢ as
Ry =h(G", X,) - h(G". X)

< CB¢(X;) + f(G1. X1:0:-1) ~ h(G". X1)

< CB(X1) + f(Gr, X1:01-1) — h(G*, X;) < 2- CB4(Xy)

where the second inequality is due to our arm pulling mechanism.
Then, based on Lemma 5.4, Lemma 5.3, and Eq. 10, we have R(T) =

T T
— 1
DRe<2) (Blng(gt,x; ©;-1)/Vmllz,1 +By +Bs +B4\E)

t=1 t=1
T —~
<2-(2BVT+2-By) +2 ) (Billg(Gr. X:0:-1) Vil 7.1 )
t=1

with the choice of m for bounding the summation of By, B3, and the
bound of ZiTzl [t_i/z] in [10]. Then, with Lemma 11 from [1],

T
> (Billg(Gr, X:©:-1) /Nl 7.1 )

t=1

L . ) det(Z7)
<B T;||g(gt,x;@m>/m|zﬁls«/m 21og( o)

(s_) \/2[1“T log(1+T/A) +2T(VAS + \/1 —2log(6/2) + (dlog(1+T/A)))

where (i) is based on Lemma 6.3 in [4] and Lemma 5.4 in [46]. m
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Here, the effective dimension d measures the vanishing speed of
G(0)’s eigenvalues, and it is analogous to that of existing works on
neural contextual bandits algorithms [4, 6, 46]. As d is smaller than
the dimension of the gradient matrix G(0), it is applied to prevent
the dimension explosion. Our result matches the state-of-the-art
regret complexity [4, 45, 46] under the worst-case scenario.

5.3 Model Convergence after GD

For model convergence, we first give an assumption of the gradi-
ent matrix after j iterations of GD. First, we define el (©r-1) =
(9(X:0).....9(X7:0Y)) T (9(X1:0)).....9(X:07))
where g(X;©p_1) is the gradient vector w.r.t. ©p_1.

ASSUMPTION 5.6. With widthm > Poly(T, L, ﬁlp % (ZBL)E, log((ls))

and for j € [J], we have the minimal eigenvalue of GU) as
Anin(G) (1)) 2 Ao/2

where Ay is the minimal eigenvalue of the neural tangent kernel (NTK)
[24] matrix induced by AGG-UCB.

Note that Assumption 5.6 is mild and has been proved for various
neural architectures in [13]. The NTK for AGG-UCB can be derived
following a comparable approach as in [14, 24]. Then, we apply
the following lemma and theorem to prove the convergence of
AGG-UCB. The proof of Lemma 5.7 is given in the appendix.

LEMMA 5.7. After T time steps, assume the network are trained
with the J-iterations GD on the past contexts and rewards. Then, with

Br>0andfr-n <1, foranyje []]:
1P~ FF15 < Jnpe - NFY vl
with network width m defined in Lemma 5.3.

The Lemma 5.7 shows that we are able to bound the difference
in network outputs after one step of GD. Then, we proceed to prove
the convergence with the theorem below.

THEOREM 5.8. After T time steps, assume the model with width
m defined in Lemma 5.3 is trained with the J-iterations GD on the
contexts {XT}Z:1 and rewards {rT}Zzl. With probability at least
1 — &, a constant g such that fr - n < 1, set the network width
m > Poly(T, L, ﬁ_lp’ %, ({ﬁL)L,log(%)) and the learning rate n <

O(T_IL_lﬁ;lz(ZgﬂL)_ZL). Then, for any j € [J], we have
P — vl < (1= e - IFS =¥l
where the vector F()) = [f(gT,)?,;@(i))]Z:l, and ¥t = [r:]L

7=1"

Proof. Following an approach analogous to [13], we apply and
induction based method for the proof. The hypothesis is that || F g.] )
Yr|2 < (1—/3F~;7)J'.||F(T°) -Y7l% j € [J]. With a similar procedure
in Condition A.1 of [13], we have

o . .
P — vl < IFY - vrl - 2 FY - vl
—2(Yr - F)TvO) 4 FY+) —F))2

withV) = (v (Xy),...,VU) (X)) T.For @’ € {Ognn, ..., 011},

(D (x| = (J) 1)y _ 1(J)
v (X)I—Uorgfgn[;llvll((a DIFIV©) - (@, 5)lF
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where V£(©'U) 5) = Vf(@)’(j) -s- VL(G)'U))). The notation
G, X is omitted for simplicity. Then, based on the conclusions from
Lemma C.1, Lemma 5.7 and Assumption 5.6, we can have

IFY™D —y7)13 < (1= nao)|IFY) —v7| - 2vr - F)Tv )
. . 2 )
+IFYY - FPIE < (1= ZOIFY - vrll

by setting fr = Ao/2. ®

This theorem shows that with sufficiently large m and proper 7,
the GD will converge to the global minimum at a linear rate, which
is essential for proving the regret bound.

6 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed
framework by comparing its performances with state-of-the-art
baselines through experiments on four real data sets. As linear
algorithms have been outperformed in previous works [12, 45, 46],
we will not include these linear methods in the experiments below.
Our six baseline algorithms are:

e KMTL-UCB [12] estimates the "task similarities" with re-
ceived contextual information. The estimations are based on
a variant of kernel ridge regression.

e Kernel-Ind is Kernel-UCB [34] under the "disjoint setting”
[28] where it learns individual estimators for each arm group.

o Kernel-Pool represents Kernel-UCB under the "pooling set-
ting" where it applies a single estimator for all arm groups.

o Neural-TS stands for Neural Thompson Sampling [45] with
group-aware embedding, which enables it to leverage the
group information. It applies a neural network for exploita-
tion and Thompson sampling strategy for exploration.

e Neural-Pool is for Neural-UCB [46] with a single neural
network to evaluate the reward, and calculate the upper
confidence bounds with the network gradients.

o Neural-Ind represents Neural-UCB with group-aware em-
bedding for utilizing the group information.

Note that COFIBA [30] is naturally Kernel-Ind (with linear ker-
nel) given the arm group information and one single user to serve,
so we do not include it in our benchmarks. To find the best ex-
ploration parameter, we perform grid searches over the range
{10_1, 1072, 10_3} for all algorithms. Similarly, the learning rate for
neural algorithms are chosen from {1072,1073, 107*}. For Neural-
UCB, Neural-TS and our reward estimation module, we apply a
two-layer FC network with m = 500. RBF kernels are applied for
KMTL-UCB and Kernel-UCB as well as our graph estimation mod-
ule. Kernel-Pool and Neural-Pool will not fit into the multi-class
classification setting, as we only receive one arm (context) at each
time step without the arm group information.

6.1 Real Data Sets

Here, we compare our proposed model with baseline algorithms
on four real data sets with different specifications.

MovieLens and Yelp data sets. The first real data set is the "Movie-
Lens 20M rating data set" (grouplens.org/datasets/movielens/20m/)
. To obtain the user features, we first choose 100 movies and 4000
users with most reviews to form the user-movie matrix where
the entries are user ratings, and the user features v, € RY are
obtained through singular value decomposition (SVD) where the
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Figure 1: Cumulative regrets for reccommendation data sets.

dimension d = 20. Then, since the genome-scores of user-specified
tags are provided for each movie, we select 20 tags with the high-
est variance to construct the movie features v; € RY with their
scores on these tags. Then, these movies are allocated into 19
groups based on their genres (|C| = 19). Receiving a user u; at
each time step t, we follow the idea of Generalized Matrix Fac-
torization (GMF) [22, 47, 48] to encode user information into the

contexts as 35?2 = [oy, O] € Ric e Cni € [ne:], and let

|X:| = 20. Finally, we concatenate a constant 0.01 to each 3?212 to
obtain xilt) € Rd’f, which makes dx = 21, before normalizing xglt)
Rewards rglt) are user ratings normalized into range [0, 1].

Then, for the Yelp data set (https://www.yelp.com/dataset), we
choose 4000 users with most reviews and restaurants from 20
different categories as arms (|C| = 20). Both user features and arm
features are obtained through SVD with the dimension d = 20.
Analogous to the MovieLens data set, we follow the GMF based
approach and the fore-mentioned constant concatenation to get the
arm context xélz (dx = 21,|X¢| = 20) to encode the user information,
and the rewards are the normalized user ratings.

MNIST data set with augmented classes (MNIST-Aug). MNIST is a
well-known classification data set with 10 original classes where
each sample is labeled as a digit from 0 to 9. Here, we further divide
the samples from each class into 5 sub-divisions through K-means
clustering, which gives us a total of 50 augmented sub-classes (i.e.,
arm groups) for the whole data set. Given a sample x;, the reward
would be r; = 1 if the learner accurately predicts its sub-class; or
the learner will receive the partial reward r; = 0.5 when it chooses
the wrong sub-class, but this sub-class and the correct one belong
to the same digit (original class). Otherwise, the reward r; = 0.

XRMB data set. XRMB data set [37] is a multi-view classification
data set with 40 different labels. Here, we only apply samples from
the first 38 classes as there are insufficient samples for the last
two classes. The arm contexts x; are the first-view features of the
samples. Then, learner will receive a reward of r; = 1 when they
predict the right label, and r; = 0 otherwise.

6.2 Experimental Results

Figure 1 shows the cumulative regret results on the two real recom-
mendation data sets where our proposed AGG-UCB outperforms
all strong baselines. In particular, we can find that algorithms with
group-aware arm embedding tend to perform better than those
without the arm group information (Kernel-Pool, Neural-Pool). This
confirms the necessity of exploiting arm group information. Never-
theless, these baselines fed with group-aware are outperformed by
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Figure 2: Cumulative regrets for classification data sets.
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Figure 3: Cumulative regrets on MovieLens and MNIST-Aug
data sets with different neighborhood parameter k.

AGG-UCB, which implies the advantages of of our new graph-based
model. Meantime, it can be observed that neural algorithms (AGG-
UCB, Neural-Ind, Neural-TS) generally perform better compared
with other baselines due to the representation power of neural
networks. Note that since the user features and arm features of the
Yelp data set are directly extracted with SVD, the reward estima-
tion on the Yelp data set is comparably easy compared with others
data sets. Therefore, the performances of benchmarks do not differ
dramatically with AGG-UCB. In opposite, MovieLens data set with
true arm features tends to be a more challenging task where a more
complex mapping from arms to their rewards can be involved. This
can be reason for AGG-UCB’s superiority over the competitors.

Then, Figure 2 shows the cumulative regret results on the two
classification data sets where our AGG-UCB achieves the best per-
formance compared with other baselines. In particular, since sub-
classes from each digit are highly correlated in the MNIST-Aug
data set, our proposed AGG-UCB tends to perform significantly
better due to its ability of leveraging arm group correlations com-
pared with other neural methods. Thus, these two aspects verify
our claim that associating the neural models with arm group rela-
tionship modeling can lead to better performance.

6.3 Parameter Study

In this section, we conduct our parameter study for the neighbor-
hood parameter k on the MovieLens data set and MNIST-Aug data
set with augmented labels, and the results are presented in Figure 3.
For the MovieLens data set, we can observe that setting k = 1 would
give the best result. Although increasing k can enable the aggrega-
tion module to propagate the hidden representations for multiple
hops, it can potentially fail to focus on local arm group neighbors
with high correlations, which is comparable to the aforementioned
"over-smoothing" problem. In addition, since the arm group graph
of MovieLens data set only has 19 nodes, k = 1 would be enough.
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Meantime, setting k = 1 also achieves the best performance on the
MNIST data set. The reason can be that the 1-hop neighborhood of
each sub-class can already include all the other sub-classes from
the same digit with heavy edge weights within the neighborhood
for arm group collaboration. Therefore, unless setting k to consider-
ably large values, the AGG-UCB can maintain robust performances,
which reduces the workload for hyperparameter tuning.

7 CONCLUSION

In this paper, motivated by real applications where the arm group
information is available, we propose a new graph-based model
to characterize the relationship among arm groups. Base on this
model, we propose a novel UCB-based algorithm named AGG-UCB,
which uses GNN to exploit the arm group relationship and share
the information across similar arm groups. Compared with existing
methods, AGG-UCB provides a new way of collaborating multiple
neural contextual bandit estimators for obtaining the rewards. In
addition to the theoretical analysis of AGG-UCB, we empirically
demonstrate its superiority on real data sets in comparison with
state-of-the-art baselines.
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A LEMMAS FOR INTERMEDIATE VARIABLES
AND WEIGHT MATRICES

Due to page limit, we will give the proof sketch for lemmas at the
end of each corresponding appendix sect10n Recall that each input

(D)

ct?’
brevity). Supposing X belongs to the arm group c, denote hy =
[Altc X]. as the corresponding row in matrix AI; X based on index of
group c in C (if group c is the ¢’-th group in C, then h4 is the ¢’-th
[Hile

respectively. Given received contexts {(x T}Z and rewards {r;}1
the gradient w.r.t. weight matrix @}, VI € {1, ...,L—1} will be

L-1
ﬂ rq(—);)rl)

g=1+1

context x,/,i € [n¢;] is embedded to XC ; (represented by X for

row in A];X). Similarly, we have hgnn = [Hgnn]c and hy =

=1’

0.L(®)
00;

T
_L-I+1 -~
£ Y IARrs0) - s
=1
where Ty = diag([c’(hq-104)]) is the diagonal matrix whose
entries are the elements from o’ (hg-10© ) The coefficient 5 of the
cost function is omitted for simplicity. Then for @gnn, we have

L-1
2 (hAOE ( H Fq@f})rleergnn)

q=2

Ie Rme

where Tgnn = diag([o’(ha®gnn)]). Q = (W) €
RY*M_Given the same G, we provide lemmas to bound the Ry
term of Eq. 9. For brevity, the subscript 7 € [T] and notation G;
are omitted below by default.

LEMMA A.1. Given the randomly initialized parameters e =
{0(0) 6(0) 9(0) e OI(JO) }, with the probability at least 1-O(TL)-

gnn>
e~ (M) and constants 1 < B1, Ba, P3, Pa < 2, we have

1O%mll2 < frvm, 1181lz < povim, 10”2 < fs,
ISonllz < - i 17Nl < - B+ 0 ifo
IF(X:0N) <0 Bs- ({72 fo+ {2+ B1B2)/m,

1011z < pevim, 10 Ollz < (- )N - B+ 8- Bife),
vie{2,...,L -1}

Proof. Based on the properties of random Gaussian matrices

(B1-/dz/m-1)2m
[4, 13, 35], with the probability of at least 1 — e~ 2 =

1- e 20m we have

1©ll2 < prvm

where 1 > +/dz/m + 1 with m > dgz. Applying the analogous
approach for the other randomly initialized matrices would give
similar bounds. Regarding the nature of A, we can easily have
lhall2 < 1. Then,

3% E

gnnllz =m”~ Hlo(ha - Ognn)ll2 < Im ™2 - hall2|@gnnll2 < £ - B

due to the assumed {-Lipschitz continuity. Denoting the concate-

nated input for reward estimation module as x” = [h;(,)l)n,X e €
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RIX(dz+m) e can easily derive that ||x’||s < ¢ - f1 + 1. Thus,

1ROl = mHlo(x’ - @)z < fm % - 12121104l
<SPl -Pr+1) =0 Po+ % Prfo.

Following the same procedure recursively for other intermediate
outputs and applying the union bound would complete the proof.

LEMMA A.2. After T time steps, run GD for J-iterations on the

network with the received contexts and rewards. Suppose ||hl(J ) _

|l < AD,Vj € [J]. With the probability of at least 1 — O(TL) -

e M gnde e {Ognn,O1,...,0L}, we have

10V~ < x/vm

where Y = Zﬁ—\ft(ﬁh +A(j))(ﬂL + kL,

Proof. We prove this Lemma following an induction-based pro-
cedure [4, 13]. The hypothesis is 10 —eW | < Y/ym, VO €
{G)g,m, 0O1,...,0r}, and let f; = max{pf1, f2, B3, fa}. According to
Algorithm 2, we have for the j + 1-th iteration and [ € [L],

T
oy e lp = m= 2"y 1Y I (X 09) = o - B (7))

=1
L-1 . . .
. ( l_[ rl(]]) . (9‘(]}))1—) . rl(j)”F
g=I1+1
L-l+1 i i i L= I i
Ve IR - bR e e [ 101 | iy 1l
g=1+1 q=l

L-1 L-1
L-l+1 i : . . R
Ve IFY =Y lin alle 1. [T 1o 11 [ Jirg 1.

<m 2
g=I1+1 q=l

by Cauchy inequality. For ||®((]j) [l2, we have

L-1
[Tneg: <[]

g=l+1 q=l+1

< (Brvm+x/Nm)t

(n@;‘”nz L0y — e ||2)

while for ||I‘£Ij) |2, we have Hs;llﬂréj) ll2 < {L_l. Combining all
the results above and based on Lemma 5.8, it means that for [ € [L],
j j _Lln ;
10" ~ 0 I < m™ F Ve (1= Y2 I ~ Yol
AR 12 - 1012 - (B m + Y Vm)E I
_1 i i Il
< m™2 (1= fpn) PV = Y llo((B + AD) (B + Y /myb T

where the last inequality is due to Lemma A.3. Then, since we have
1eV* ~eU|ir < |07 — 0|5+ 0! 07|, it leads to

2Vt

loy™ -e || < \/_IIF(O) Yillz(By + AU (B + X /m)ElgL
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For the last layer ©p, the conclusion can be verified through a
similar procedure. Analogously, for 4p,, we have
logh - e<nn||

L-1
L+
=m 2 ’]||Z|f(xr,®)_rr|2 (hA ®T l_qu GT) rl@T)

=1 q=2
' Q : I‘grm”F
L+1 ; 0 L
<m™ Vi = B )P IE <Y lalihall2 ] | €gll2d Q112
g=1
_1 ;
< Vim™2 (1= pp )2y I = Yol - CE - (B + X /)t
which leads to

2 1
10" = Ogunlle < - im™s -1} =Yl £ (B + Y/t
Since ||F§0) —Y|l2 < V2t (Lemma 5.8) and Y/m < 1 with suffi-

ciently large m, combining all the results above would give the
conclusion.

LEMMA A.3. After T time steps, with the probability of at least
1-O(TL)-e~2(m) gnqd running GD of J-iterations on the contexts and
rewards, we have f; = max{{-p1, - Batl %P1 Po. (L-Pa) 2L o+l
PrB2)} and f, = max{{ - fr+1, B }. Withh € {hgnn, h1,... . hp-1},

we have

(2p)E -1

G _py < S a0
B9 RO < -

=AD KD, < B, + AV

Proof. Similar to the proof of Lemma A.2, we adopt an induction-
based approach. For [ € [L — 1], we have

11 =102 = ~llo(h?) - 01) ~ o (h”) - 0[)l;

< / { (”h(}) @(1) h(o) 9(1)” +||h(0) 9(]) h(o) (0)“)

\/ - (187112 + 18 ~ 0! |[p) - 17 ~ ||z +

N PR SRR

s\/;§-</3L«/a+Y/x/a)-||h§“ W\l +¢ - X/m
S ravim) (o A T X
<{ (P 2gp AT =AY

where the last two inequalities are derived by applying Lemma A.2
and the hypothesis. For the aggregation module output n?

gnn>
Vg = gunllz = A (O - hs) -

¢

(j) 0 Y
< \/_ﬁnegnn - G)gnn”F . ”hS”Z < Eﬁh

(Ol - hs)ll2
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Then, for the first layer [ = 1, we have

j 1 ;
11 =10l = o’ - 0) ~ o+ - 0]

< \/%”@;ﬁ)n _G(O)HF llx]l2 < §— (- pr+1) < é/_ B

Combining all the results, for h € {hg,m, hy,...,hy_1}, it has

(gp)t -1

jAC)]
I 20pL -1

_hO), < L g, _ A0,
m
which completes the proof.

LEmMMA A.4. With initialized network parameters © and the prob-
ability of at least 1 — O(TL) - e~ 20 e have

Ve f(X:0)IF < Bubs - (B /m. IV, f(X:@0D)|[F < Bu/vim,
and the norm of gradient difference

IVof(X:0©) - Vo f(X:0)||p <3- AV,

Vo, f(X;0) - Vg, £(X;0U)|IF < AV /v/m.

with© € {G)g,m,el, ...,0r_1}
Proof. First, for [ € [L — 1], we have
_ _L- l+1
Ve, f(X:0O)lr = m™Z ") (01" ﬂ Iq-0y") T)llr
q—l+1
_L-l+1
<sm 2 b e |- ||1_[rq||z ||ﬂ oIz
g=1+1
_L-lv1
<m0 e 10 Iz ||1_[Fq||2 ||1_[ 0 Il2
gq=I+1
_L-I+1 _ _I_
<m™r - pups- it ’-(&%)L < s (BLO/m.

For ©4nn, we can also derive similar results. For O,
Ve, f(Xs @) = m~0% - 1% ll2 < B/ Vim
Then, with V) = m= 7" . (/)7 - (T2, T ©y)1) -1,
we have the norm of gradient difference
Vo, f(X:0) ~ Vo, f(X: 05 = 11, - V(O — ) . v
<% 9 bl + g -9 - h“) VPl

< B p - 19 =V OUp + 11V 1 ||h‘°) h(”n

< (B +A9) 19} =V g+ A0 9O
Here, for the difference of V, we have

v - v g

L-1 L-1
Ll+1 . .
— ”(_)(0) 1_[ qué()))r _ei})( 1_[ rq@é}))rl”F
q=I+1 gq=I+1
_1
=m 2V O = VT O e
o qv® . O _g© oW 0 o) _vl) o)
S\/_m (v I+1° I+1 l+1 0l+1|| +|IVl+1 G)I+1 Vl+1 0l+1|| )
s\/%-uw}finlcue;fi O lIr +101IFIVY — v 1p).
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To continue the proof, we need to bound the term ||V(0) ||F as

0 — 0 0 0
1V Ollp = m™5 0,00 - v |1p < 2pr - (9,0 -

— 1 we have

(0) §ﬁ3
Vv F<>—

Since for [ = L

we can derive

9Ol < 2ot <

with sufficiently large m, and this bound also applies to ||V;n)n IE-
For

”V(O) V(]) ”F m—O 5||h(0) h£]31”F < A(])/\/ﬁ

Therefore, we have

S g rm ) -l

(0) ()
v, =V, llF < 41~ Ve

By following a similar approach as in Lemma A.3, we will have

» Y @p)t-1 AD
||Vl(°) _vl(f)”F SO @)1 AT
m 20 -1 Bn

Therefore, we will have

AW .
Ve, f(X:01)) — Vo, f(R:0) 5 < (B + AD) - 22 4 AD)

() .
< A—-(zﬁh+1)=A(1) SO
Bn

) < 3.A0)
Bn

with sufficiently large m. This bound can also be derived for || Vngn f (X; o M2

with a similar procedure. For L-th layer, we have
IV6, f(X:017) = Vo, f(X: @)l <m0 - |11
< AY) /y/m,

which completes the proof.

()
—h " F

LEMMA A.5. With the probability of at least 1 — O(TL) - e~ (™)
we have the gradient for all the network as

lg(X: 0Nl < m™ fy - \JL- 3 - (PO +m,

lg(X: 0l < AD VoL 4+ mT +m™ By \JL- B2 - (BLO +m
lg(X;0®) - g(X;0W)[l; < AV - VoL + m~1.

Proof. First, for the gradient before GD, we have

L
lg(X; 0l = J V6, f (X: 012+ Y11V, f(X; 0|2

=1

<m7 By L L (B +m.

Then, for the norm of gradients, ® € {ngn, 04...,
have

©r-1}, we
lg(X;0 ) - g(X;0)|;

- \]va@fo?;@@)) Vo (X002
(C]

< \/9L C(AD)2 4+ (ADY2/m = AU AL + L.
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Then, for the network gradient after GD, we have

lg(X;0)]l2 < [l9(X;0() - g(X;0)||2 + [|g(X; 0,

<AD AL+ m 4 mg, - \/L'ﬁg C(BLO +m

LEMMA A.6. With the probability of at least 1 — O(TL) - e Q(m)
for the initialized parameter 09, we have

(X0 - (g(X:01"),01) -]
<m0 (A (1+ B3) + B3Py + L - BrY),

and for the network parameter after GD, ©Y) | we have

F(X:01) - (g(X:017)),01) — )] < Bs

=m 3 (B(AY + B) + L1 - (AY) + B) (A /By + 1))

Proof. For the sake of enumeration, we let @y = Ognpn, Vo =
Vgnn,ho = hgnn and h_1 = hg. Then, we can derive

F(X:0) - (g(x:0(), 0V

1 . .
_ @)(0)>| =| (h(]) ’9(])>
\/_ L-1~L

L 0 o0
- el

m Ik — b lzll0 l; + m—°<5||h<°>1|| 1o 11

(_)(])) Z(h(o))T 9(0) 9(1))V(0))|

+Z||h<°>||z||e<°’ O IFIV.” IIF

<m OAD (Y /m+ B3) + m O3 Bsfy + L - ﬁh%_
m

< m05 . (A(j)(l +p3)+ p3fp+L- ﬂhY)'

On the other hand, for network parameter after GD, we can have

_— T »
If(X;0W)) - (g(x;0)), e o)

~00)y = =@V
\/— L-1

LTO)NPNG)! (0) () (0) Ny (D)
- e -e)- IZ:(h H1 e —e/)vi)

L-1
<m w0l - Y )6 -e)v]

L-1
m O, 1211057 12 + > I 11210, — 0 11V I

m =033 (AY) + ) + L - (AY) + B) (X /Vm) (AD) /By + 1)
<m 5 (B3 (A + By + LY (AY) + ) (A /By +1)).

This completes the proof.

Proof sketch for Lemmas A.1-A.6. First we derive the conclu-
sions in Lemma A.1 with the property of Gaussian matrices. Then,
Lemmas A.2 and A.3 are proved through the induction after break-
ing the target into norms of individual terms (variables, weight
matrices) and applying Lemma A.1. Finally, for Lemmas A.4-A.6,
we also decompose targets into norms of individual terms. Then,
applying Lemmas A.1-A.3 the to bound these terms (at random
initialization / after GD) would give the result. m
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B LEMMAS FOR GRADIENT MATRICES

Inspired by [4, 46] and with sufficiently large network width m,
the trained network parameter can be related to ridge regression
estimator where the context is embedded by network gradients.
With the received contexts and rewards up to time step ¢, we have

the estimated parameter O as 60 = (Zo)™' - by where Zy = AI +
i 1 9(Xe100)g(Xe:00)T.bo = = N re - 9(Xri @) We
also define the gradient matrix w.r.t. the network parameters as

G = (g(f(l;@(j)),”.,g()?t;@(j)))
f9 = (X0, f(Xi:09)), r=(r1,....,n)
el+) — @) _ n- ((G(j))'r(f(j) _ r))

where the t notation is omitted by default. Then, we use the follow-
ing Lemma to bound the above matrices.

LEMMA B.1. After j iterations, with the probability of at least
1-0(L) - e_Q(’"), we have

IGONF < Gr=m™ -\t (L B2 (LD +m),
16 =6 Wlp < AV - (9L +m7),
IGD NI <Tr = \Jt - (L- B3 (BLO)2E +m) + AV (OL+m 1)
1f9 - @) 7@ -8 < Vi - Bs
= Vi m ™ (B5(AV + ) +L-X - (A + ) (A /5y, + 1)

Proof. For the gradient matrix after random initialization, we
have

t
16 O1E = | D llg(Res 02 < m™ e L- 2 (B +m
7=1

with the conclusion from Lemma A.5. Then,

=1
<AY) At (9L +mY).
For the third inequality in this Lemma, we have

. . ~(j ~(0
If9 - ) 1@" -8 "),

t
16 -6V = Jan(i,;@@)) —9(Xr;0))|2

t
= J D If(Xr0) - (g(Xr0),00) — 002
=1

<VE-m 3 (B3 (AD + By + LY - (AY) + B (AY) /By + 1))
based on Lemma A.6.

Analogous to [4, 46], we define another auxiliary sequence to

bound the parameter difference. With 6(0) =0 ,we have (:)(Hl) =

(:)(j) - G(f)((G(j))T((:)(j) _(:)(0)) ) +m/1(6(j) _(:)(0)) _

LEMMA B.2. After j iterations, with the probability of at least
1-0(L) - e~2(m) \ye have

1869 —0© — 8, /vmlly < Vi (mh)
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Proof. The proof is analogous to Lemma 10.2 in [4] and Lemma
C.4 in [46]. Switching Gy to G; would give the result. m

Then, we can have the following lemma to bridge the difference
between the regression estimator © and the network parameter ©.

LEMMA B.3. At this time step t, with the notation defined in Lemma
5.3 and the probability at least 1 — O(L) - e~ (M) e will have

1©¢ = © — 6/ Vimllz < (I - ViBs + m-Tp)/(mA) + 't/ (m2)
with proper m,n as in Lemma 5.3

Proof. With an analogous approach from Lemma 6.2 in [4], we
can have

18V — U,

<6V lfV ~ ()T (@) ~ ), +yma|e'” — 0.

A =g (mAl+GD G ) 10D =8|, = + I + .

With Lemma B.1, we can bound them as

L <n-T-ViBs

L
L < quJZHOZ(O) - @l(j)lep < r]m~72 =gmAVL+1-Y/yYm.

i=0
based on the conclusion from Lemma A.2. For I3, we have

n-(mAI+G OGNy <p-T

mA+ (m™ (L B2 (PO 4+ m)?) < T
with proper choice of m and 7. It leads to

||6(j+1)

-0 < (1= g[8 - U)o +T; - ViBs +pm - T
which by induction and 6(0) =0 we have
=)

187" =0y < (I - VB3 +m - T)/ (m)).

Finally,
10 - 8 - 8, /vill2 < 186" — 0 ||, + (|8, — 8 - 8o/ Vil
< (I - VtBs +m - Tp) [ (md) +\Jt] (mA),

which completes the proof.

LEMMA B.4. At this time step t, with the probability at least 1 —
O(L) - e~ \ye will have
1Z:]l2 < A+

ML AD NSL T +m™ L B (B0 4 ),
IG] Gt — Gl Gollp < 2t - m™1(AY) - V9L + m~1)
A(ADNVIL+ m T+ m7 By - \/L - p3- (BLO? +m) = Bg/m

with proper m,n as in Lemma 5.3.

Proof. For the gradient matrix of ridge regression, we have

t
1Zellz < A+ m™' ) llg(Xes ©0) 15 < A+

=1

MEAD (AD oLmt+m AL B2 (B2 m)?
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with the results from Lemma A.5. Then,

IGI G — Gl Gollp <m™

t
\J Z 9(Xi:01) +9(Xj:00) 15 + l9(Xi:01) — 9(X; 00|13
ij=1

<2t-m-

L ADVOL 4 m T 4w - (L B2 (LYY + m)
(AY) 9L + m~1) = Bg/m.

The proof is then completed.

Proof sketch for Lemmas B.1-B.4. Analogous to lemmas in
Section A, Lemma B.1 is proved by Lemmas A.5, A.6 by breaking the
target into the product of norms. The proof of Lemma B.2 is analo-
gous to Lemma 10.2 in [4] and Lemma C.4 in [46], then replacing Gg
with G; would give the result. Then, based on Lemma B.2 results,

Lemma B.3 will be proved with after bounding ||®(] D - U+ |2
by induction. Finally, Lemma B.4 is proved by decomposing the
norm into sum of individual terms, and bounding these terms with
bounds on gradients in Lemma A.5. m

C LEMMAS FOR MODEL CONVERGENCE

LeEmMA C.1. After T time steps, assume the model with width m
defined in Lemma 5.3 are trained with the J-iterations GD on the
past contexts and rewards. Then, there exists a constant B, such that

Br-n <1, foranyje [J]:
; 1 .
VOl < Sne- IFY - vrll,

where FU) = ,andYT = [VT]T

[f(6r. Xrs0)L, L
Proof. We prove this lemma following an analogous approach
as Lemma B.6 in [13]. Given X, we denote V.E(G)(j)) = %@(;U))’
and Vf(G)(j)) = af(g+§;®(j)), where @ € {Oynn, O1, ..
By the definition of ||V(j) ||, we have its element |V(j) (X)|

.0},

<1 max
0<s<p

D IVLEONEIVF©Y) - VF@©Y), 9k .

(S]

With the notation and conclusion from Lemma A.2, we have
IVLO)Ip < m 2 2VTIFY —Yrl2 - ¢ (2B1) By

L-1+1

Meantime, ||Vf(®(j)) Vf(@)(j) S)|lp=m""2

”h(J) (@(1))1' ( nq o r(l) (e(])) ) Fl(j) _ hl(i')lys(gij):s)T
([—[5 11+1 I‘(J) S (G)((IJ) S)T) . I‘I(J) *|lF. A similar form can also be

derived for Ognn-

With Y/+/m < 1and AY) < P and a similar procedure as in
Lemma A.3 and Lemma A.2, we have

) . YU) .
10U — oWy < v 10VIF < 2B.Vm
||h(j+1) h(})” <n 5&1 (2§ﬁL)LY(]) ||h(j)||2 < 2B,
IEGD — PO |lp < 2022 (20X, POy < ¢
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With Lemma G.1 from [13], for © € {Ognn, 0,...,01},
. . 4 .
IV£(©) ~ VF©U 5)llp < < px0) g L(2¢ 1)
m
Combining with [|V£L(®’ )| p, we have
4T i
—@+27f - IFY - vl

Since this inequality holds for an arbitrary X € {X threT

V(X)) < n?

] and
||F(TO) —Y7|l2 = O(VT), given network width m, we finally have

. 1 .
WVl < JnbellFE ~ Yl

with the choice of learning rate n < O(T_IL_lﬁ}_l2 (2¢B) %) m
Proof of Lemma 5.7. We prove this lemma following an analo-
gous approach as Lemma B.7 in [13]. By the model definition and

substituting Y() /vim with m™22VTIIFY = Yrllz - £ (2p1) By as
the upper bound based on Lemma A.2, with AU ) < B, we have

T
1P = P01 = = 5 () Tef™! - i, )ref?)”
=1
2 (100 _ o012 3 (4 )2 Ny G+ _ 5 ()
+ + +
s;(neg -o/ ||§Z||h;_1,,||§+||e>; ”32“”5-” h

IA

2
2P @p IEY =Yl + e 5/@

(20pr) DY )

1 .
< Py -~ yrll

where the last inequality is due to sufficiently large m and the choice
of learning rate . m

IIZ)
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