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Abstract 
This project is funded by the US National Science Foundation (NSF) through their NSF 
RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The 
project is a joint effort between the Department of Computer & Electrical Engineering 
and Computer Science at FAU and a research group from LexisNexis Risk Solutions.

The novel coronavirus Covid-19 originated in China in early December 2019 and has 
rapidly spread to many countries around the globe, with the number of confirmed 
cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with 
serious clinical manifestations, including death, and it has reached at least 124 coun-
tries and territories. Although the ultimate course and impact of Covid-19 are uncer-
tain, it is not merely possible but likely that the disease will produce enough severe ill-
ness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics 
can place extraordinary and sustained demands on public health and health systems 
and on providers of essential community services.

Modeling the Covid-19 pandemic spread is challenging. But there are data that can be 
used to project resource demands. Estimates of the reproductive number (R) of SARS-
CoV-2 show that at the beginning of the epidemic, each infected person spreads the 
virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston 
and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of 
the population could become infected within 3 months. Preliminary data from China 
and Italy regarding the distribution of case severity and fatality vary widely (Wu and 
McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China 
suggests that 80 % of those infected either are asymptomatic or have mild symptoms; 
a finding that implies that demand for advanced medical services might apply to 
only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have 
severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, 
mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, 
Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher 
for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those 
with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those 
with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially 
deadlier than seasonal influenza, which has a mortality of roughly 0.1 %.

Public health efforts depend heavily on predicting how diseases such as those caused 
by Covid-19 spread across the globe. During the early days of a new outbreak, when 
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reliable data are still scarce, researchers turn to mathematical models that can predict 
where people who could be infected are going and how likely they are to bring the 
disease with them. These computational methods use known statistical equations 
that calculate the probability of individuals transmitting the illness. Modern compu-
tational power allows these models to quickly incorporate multiple inputs, such as a 
given disease’s ability to pass from person to person and the movement patterns of 
potentially infected people traveling by air and land. This process sometimes involves 
making assumptions about unknown factors, such as an individual’s exact travel pat-
tern. By plugging in different possible versions of each input, however, researchers can 
update the models as new information becomes available and compare their results to 
observed patterns for the illness.

In this paper we describe the development a model of Corona spread by using 
innovative big data analytics techniques and tools. We leveraged our experience from 
research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using 
HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). 
Springer, Cham) to successfully model Corona spread, we will obtain new results, and 
help in reducing the number of Corona patients. We closely collaborated with Lexis-
Nexis, which is a leading US data analytics company and a member of our NSF I/UCRC 
for Advanced Knowledge Enablement.

The lack of a comprehensive view and informative analysis of the status of the pan-
demic can also cause panic and instability within society. Our work proposes the HPCC 
Systems Covid-19 tracker, which provides a multi-level view of the pandemic with 
the informative virus spreading indicators in a timely manner. The system embeds 
a classical epidemiological model known as SIR and spreading indicators based on 
causal model. The data solution of the tracker is built on top of the Big Data process-
ing platform HPCC Systems, from ingesting and tracking of various data sources to 
fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the 
Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to 
the county-level. It also provides statistical analysis for each level such as new cases per 
100,000 population. The primary analysis such as Contagion Risk and Infection State is 
based on causal model with a seven-day sliding window. Our work has been released 
as a publicly available website to the world and attracted a great volume of traffic. The 
project is open-sourced and available on GitHub. The system was developed on the 
LexisNexis HPCC Systems, which is briefly described in the paper.

Keywords: Modeling Corona spread, SARS-Cov-2, Covid-19, Spreading indicators, Big 
Data, HPCC system

Modeling Corona spread patterns
Infectious disease spread across populations usually follows well-defined patterns deter-
mined by the transmission mechanisms that the pathogen can use and the network of 
relationships that the pathogenic agent can follow to spread throughout a community. 
For those contagious diseases where the transmission can be direct from person to per-
son and airborne, even short and transient exposures to microscopic particles in the 
air, in enclosed areas where victims breathe, can be sufficient to propagate the disease. 
LexisNexis, as indicated earlier, is committed to providing a large amount of data about 
the relationship of the people in US, as illustrated in Fig. 1.

Using Big Data analytic techniques, data about underlying personal relationships, 
health center locations and the known mechanisms for spread of the Corona virus, 
this research will study computational models to predict the spread of this disease 
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utilizing both, forward simulation from a given patient and the propagation of the 
infection into the community and backward simulation, tracing a number of verified 
infections to a possible patient “zero” [1–5].

It will also be possible to create alternative models that could account for muta-
tions in the virus that could change the mechanism used for spread, taking seasonal 
migrations into account and evaluating the impact on the spreading by mitigating fac-
tors such as quarantine, change of habits, etc. Figure 2 illustrates how the system will 
identify and visualize families and tightly connected social groups who have connec-
tions with a Corona patent. We will use big data analytics tools for combining avail-
able information of an infectious disease process, transforming such information into 
practical knowledge, and detecting and predicting disease epidemics. In this project, 
we propose to investigate compartmental models and dynamic diffusion models in 
mining spread patterns of Corona.

Compartmental models
Mathematical compartmental models have been successfully applied to predict the 
behavior of disease outbreaks in many studies [6, 7]. These models aim to understand 
the dynamics of a disease propagation process and focus on partitioning the popula-
tion into several health states. For example, in the classical SIR model, three compart-
ments are labeled as susceptible (S), infectious (I), and immune (R, for recovered). 
The model estimates the number of people getting infected due to direct contact with 
an infected individual at a certain time. Additional compartments such as exposed 
(E, representing an individual in incubation period), hospitalized (H), and funeral (F) 
can also be added into the model [8]. In these models, a basic reproductive rate is 
usually defined to represent new cases expected to be produced by an infectious indi-
vidual. When control interventions are taken, the rate should decline. In this scenario, 

Fig. 1 A network of individuals associated by personal relationships
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exponential adjustments will be introduced to make the models adaptable to continu-
ous situation changes caused by various control mechanisms [9].

Dynamic diffusion models
With information from multiple sources indicating infected individuals and their personal 
relationships and social groups, dynamic graphs can be created [10, 11] and predictive dif-
fusion models can be used to study key issues of Corona epidemics, e.g., location, time and 
number of expected new cases. Two fundamental diffusion models are Independent Cas-
cade Model (IC) and Linear Threshold Model (LT), both of which follow an iterative dif-
fusion process, and in each iteration uninfected nodes will be infected by their infectious 
neighbors with certain probabilities [11]. Based on fundamental models, advanced propa-
gation models can be built to estimate an influence function by examining past and newly 
infected nodes and predict subsequent infections [12, 13]. Other graph-based data min-
ing and machine learning techniques, including continuous-time Markov process analysis 
[6], label propagation [14], active learning [15, 16], and mixture models [17] could also be 
explored to create realistic computational models for the spread prediction.

Risk score approach in modeling and predicting Corona Spread
Modern disease compartmental models are developed to the point where the most sig-
nificant factors controlling propagation make up components in the name. Since propa-
gation varies from disease to disease, this model naming convention can loosely serve as 

Fig. 2 Identifying families and tightly connected social groups
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a classification for disease type which represents simple diseases: from the common cold 
or influenza (SIS) to pathogens more complex in nature such as Corona (SEIR). Com-
partmental models produce efficient estimates for pathogen prevalence and duration, 
and this insight is vital in stopping highly contagious diseases like Corona. This infection 
period would also be marked with an asymptomatic characteristic, meaning a host is 
infected but no symptoms are presenting (SEIaR).

Because of its protracted asymptomatic period and virulence, Corona can spread 
quickly unless strategic precautions are taken, including re-examining the compartmen-
tal model to account for newly observed spread characteristics.

Beyond compartmental modeling
The basis for compartmental models is making assumptions about social networks or 
graphs. Common assumptions can include: number of individuals, infection probabil-
ity, incubation period, infected recovery time, etc. These phenomenological assumptions 
limit the scope of the model while preserving the most realistic aspects of it, but some 
model dimension assumptions are necessary because actual social network data does 
not exist. In the era of “big data” this is quickly changing.

Corporations across the globe are becoming experts at the collection of transactional 
data. While some of the data captured is specifically to enhance automated decision-
making systems, the majority of data collected is still in a raw, unleveraged form, making 
knowledge extraction the next field to experience an explosion of growth. On the fore-
front of knowledge extraction, LexisNexis produced the RELX Social Graph consisting 
of over 4 billion relationships built from applied identity analytics on a 4 petabyte core of 
content [5].

Physical and social graphs
Unlike user-curated social graphs such as Facebook, the RELX graph coalesces as people 
experience life events. Sharing employers, addresses, insurance policies, and vehicle or 
property ownership are examples of the life events linking two people together. Applied 
graph analytics appends useful measures to help describe the quality of clusters. For the 
purposes of measuring the risk of a cluster contracting/propagating a disease, physical 
proximity of nodes (regardless of social connection) also plays a critical role. The physi-
cal proximity calculation between nodes is a simple distance calculation for each of the 
subject’s most current address. A traditional social network does not imply a physical 
network, but a physical network may imply the subset of a social network. A physical 
network is constructed by proximity resulting in a ‘nearest neighbor’ linking, as illus-
trated in Fig. 3. Proximity, however, does not guarantee contact, and therefore, a combi-
nation of proximity and social linking should be considered.

Graph knowledge extraction
Tools such as Gephi, NodeXL, or SVAT offer intuitive visual searches and a basic 
set of network measures, but to move beyond superficial graph descriptors to real-
world application a different approach must be taken. Similar in nature to Neo4j, the 
RELX Knowledge Engineering Language (KEL) provides the ability to blend massive 
graph databases (billions of records) and derive dimensions beyond simple relational 
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properties. As mentioned earlier, performing a distance calculation between nodes 
creates an additional edge weight distance. KEL can not only calculate the most 
recent difference in addresses, but also a chronology of addresses, providing metrics 
such as cluster mobility, average move distance, physical cluster expansion/contrac-
tion, address density, occupant density, and many others.

Since the SEIR model places emphasis on physical proximity and social cohesivity, 
can the spread of information about the disease outpace the spread of the disease, 
thereby slowing its progression? Is disease transmission highest when a cluster is 
highly proximal, but non- cohesive socially? Do friendly people keep us safe from dis-
eases like Corona by serving as connectors helping to propagate awareness between 
disparate social groups faster than the disease can spread? Research conducted by 
Damon Centola from the University of Pennsylvania titled “The Social Origins of Net-
works and Diffusion” suggests the diffusion of ideas is as sensitive to the homogene-
ity of the network. Idea diffusion requires a network to be “just right”: moderately 
homogenous and moderately connected. A highly homogenous or under-connected 
graph population results in poor idea propagation.

Applying this idea on the national scoped RELX Graph: “Which clusters have: the 
largest first degree count, the lowest average degree (cohesivity measure), the highest 
neighbor count, the highest colleague count, haven’t moved in 5 years, and live in an 
area where there are few single family dwellings and car ownership is 1:10?” These 
people are highly connected, live in a metro area, rely on public transportation, com-
mute to work, and know their neighbors.
The nodes identified by this filter are key influencers and could be leveraged to 

proactively slow the propagation of a physically communicable disease like Corona, 
potentially limiting the exposure to health care workers and their networks. Future 
refinements could include the incorporation of a health care worker flag or proximity 
to a health care facility; homogeneity dimensions such as: political affiliation, eco-
nomic trajectory, or migration velocity; or proximity to public transportation hubs: 
bus and train stations or airports.

Fig. 3 A physical network is constructed by proximity resulting in a ‘nearest neighbor’ linking
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Graph Propagation Points of intervention can also be identified by simulating the 
propagation of a disease based on SEIR model dimensions as edge characteristics. The 
node selected for intervention would be the first non-exposed node found on the most 
infectious, shortest path. The most infectious, shortest path is defined as: the shortest 
path in a sub-graph through which the number of first degree nodes is maximized. KEL 
does not have native graph traversal rules distinguishing between a walk and a path; 
however, KEL does allow for the creation of such rules. To control backtracking, or dou-
ble counting nodes as nth degree relatives, the GLOBAL primitive is used.

Expanding the rules out to eight degrees exceeds the largest inter-cluster diameter 
found in the RELX graph. Applying these rules to a sample data set produced the desired 
results. Graph traversal rules identifies the root, sink, intermediate nodes, total distance 
traveled, the number of unique first degree nodes encountered along the path, the total 
path length, and percent of nodes encountered during traversal. Shortest path does not 
guarantee most infectious.

LexisNexis HPCC systems platform
This research leveraged the Open Source HPCC Systems Big Data technology platform 
originally developed at LexisNexis (shown in Fig. 4).
The HPCC platform incorporates a software architecture implemented on com-

modity computing clusters to provide high-performance, data-parallel processing for 
applications utilizing big data. The HPCC platform includes system configurations 
to support both parallel batch data processing (Thor) and high-performance online 
query applications using indexed data files (Roxie). The HPCC platform also includes 
a data-centric declarative programming language for parallel data processing called 
ECL. The HPCC Systems platform can also efficiently process time-series data, mak-
ing it an ideal tool to process and analyze data that models evolution over time of one 
or many multiple states. In addition to the technology platform, LexisNexis’ data on 
personal relationships and associations in the United States will be used in developing 

Fig. 4 Architecture of the Open Source HPCC Systems
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realistic spread models for the disease, in combination with location data for public 
health services.

Developing Covid-19 tracker
The Covid-19 crisis moves at a very quick pace. Changes in social behavior can result in 
rapid changes to the overall picture. Monthly analysis would be obsolete by the time the 
analysis was available. Daily results are too noisy to be useful for the decision-making. 
We therefore chose weekly analysis as the optimal time frame to understand the situ-
ation. While we present the data on a daily, weekly, and cumulative basis, the primary 
analysis of the current situation is based on a sliding seven-day window.

We start by trying to understand the spread rate of the virus in a particular population 
(i.e. location). Epidemiology uses an effective reproductive growth rate known as “R” to 
represent the speed of spread. R defines the number of people a single individual is likely 
to infect over the course of their infection. Infections spread exponentially, and R rep-
resents the base of the exponent. An R value equal to 1.0 would represent a steady state 
in the number of active infections—each person would infect one other person, so the 
overall infection rate (number of active infections) would not change. An R value greater 
than 1 means that the infection is growing among the population, while an R value below 
1 indicates that the infection is subsiding. With an R of 2.0, an infection would double 
the number of new cases every ten days or so. A higher R value means a faster the infec-
tion rate. Likewise, an R of 0.5 would halve the number of new cases every ten days.

We cannot observe R in practice, so we try to approximate it from the number of 
confirmed cases and the number of deaths due to the virus. The approximation is 
based on confirmed cases that we define as Case Growth (cR). We define the approxi-
mation based on deaths as Mortality Growth (mR). These numbers do not perfectly 
reflect R, but they are the best available approximations. Case Growth cR is biased by 
changing availability and policies around testing. If we had randomized testing, we 
could better approximate R. If we only test hospitalized patients, then cR will under-
state R. If the testing policy is shifting, then cR may either under or overstate R. Mor-
tality Growth mR, on the other hand, is a more objective indicator. It is less affected 
by policy, but may be biased by changes in medical care, such as improved treatments 
over time. mR also lags cR, so it is not as timely an indicator. By combining mR and 
cR, we get a better overall approximation of R.

By approximating R, we can quickly assess the situation in a given location. As an 
infection spreads within a location, one of two situations typically arises:

• The infected people will be quarantined and their contacts traced and also quar-
antined. If this is successful, the infection would be contained, and R will quickly 
decrease.

• The containment fails, either due to late detection, failure to trace all contacts, or 
due to insufficient resources to enact the containment. In this case, the infection 
will spread uncontrolled until social behavior (e.g. social distancing) causes it to 
be controlled. This process is referred as “Mitigation.”
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By following changes in R, we can quickly assess how the infection is responding to 
Containment or Mitigation. In the early emergent stages of the infection, we commonly 
see R values greater than 3, which indicates a very fast exponential infection growth. As 
the infection is contained or social distancing is deployed, R quickly falls to between 1 
and 2, which can still be very rapid growth. At R = 2, the cases will double every 10 days. 
As the case growth increases, people tend to become more and more careful until R 
falls below 1. At this point the active infections stop increasing and gradually begin to 
decrease. We expect that this will tend to make people less careful, and we expect to see 
oscillation above and below 1. If social distancing can be maintained for a longer period, 
then the infection can be ultimately re-contained.

Models and metrics
We use an evolving model of the cause and effect relationships between observed and 
unobserved (latent) variables to inform the definition and interpretation of metrics. This 
model lets us visualize the ways in which measurements are confounded by hidden vari-
ables, and possible ways to de-confound the meanings. J. Pearl [19] has demonstrated 
that people are extremely good at building causal models. It may be that the human 
mind is largely a causality processing machine. Given any occurrence, we can quickly 
assess potential causes and downstream effects. Pearl has further defined an algebra for 
determining whether causes can be de-confounded, and which variables need to be con-
trolled for in order to effect the de-confounding, given a causal model [20].

Using the model depicted in Fig. 5, we were able to show, for example, that changes 
in the rate of growth of reported cases is a reasonable proxy for Social Behavior (i.e. 
Social Distancing). This let us develop the Social Distance Indicator (SDI) metric, which 
is described in later sections.

Epidemiological model
The system embeds a classical epidemiological model known as SIR [18]. The SIR model 
predicts the changes in Susceptibility, Infection, and Recovery using a set of differential 

Fig. 5 Causal model
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equations. This allows us to estimate quantities such as Active Infections, Recovered 
Infections, Percent Immunity, Time-to-peak, Deaths-at-peak, and Time-to-recovery.

In practice, the SIR model gives us a good estimate of Active versus Recovered infec-
tions, but predictive power is limited due to rapidly changing social and societal behav-
iors. In animal epidemiology, the growth rate (R) is typically identical to the Basic 
Reproductive Rate (i.e. R0) of the virus. In human society, there are both innate and 
orchestrated responses to a pandemic that cause R to rapidly diverge from R0. Changes 
in behavior such as quarantines, social distancing, and enhanced hygiene can quickly 
dampen the growth rate, whereas returning to normal behavior can rapidly increase the 
rate. Therefore, any predictions of growth must model the expected changes in human 
behavior, which is beyond the scope of the current system.

Data filtering
In the first iteration of the system, we noticed some unexpected swings in R values. 
Upon analysis, it was discovered that many locations will make corrections to their 
cumulative case and death data retroactively, either due to changes in reporting policy 
or correction of previous errors. This sometimes results in cumulative values shrinking, 
and differential values (e.g. growth) turning negative. Other times, this results in large 
numbers of cases that occurred previously being dumped into a single day’s data. Both 
situations can badly distort differential growth calculations. In fact, these adjustments 
are irrelevant for growth calculations as well as any other calculations that are based on 
sequential changes (such as the Active Cases calculation) since they are anachronous—
not received in the order that they actually occurred. These adjustments, while detri-
mental to sequential calculations, are important to cumulative values.

We therefore added a Smoothing Filter that calculates an alternate time series for 
Cases and Deaths with most of the effect of these anachronistic changes removed. This 
greatly improved the stability and dependability of the sequence dependent metrics, 
while still allowing use of the original time series for sequence independent metrics. This 
filter process is described below under Metric Details.

Infection state
The levels of cR and mR along with some other data, allow us to classify an outbreak 
according to its stage:

• Spreading—Number of active infections is rapidly increasing (R > = 1.5) and the scale 
of the infection is probably beyond containment.

• Emerging—Number of active infections is rapidly increasing (R > = 1.5), but is small 
enough to potentially contain.

• Stabilizing—Infection slowly growing (1.1 < = R < 1.5).
• Stabilized—Number of active infections is approximately stable (0.9 < = R < 1.1).
• Recovering—Number of active infections is shrinking(R < 0.9), but is still beyond 

containment.
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• Recovered—Number of active infections is shrinking or stable, and scale is contain-
able.

These define the potential values of the Infection State at a given location.

Other metrics
Given a reasonable estimate of R, cR, and mR, we can begin to infer some other met-
rics that further illuminate the nature of the infection. Metrics are developed to provide 
insight into the dynamic state of the infection within a location. They may illustrate tem-
poral changes as well as contemporaneous relationships within the data.

Contagion Risk is the likelihood of meeting at least one infected person during one 
hundred random encounters.
The Case Fatality Rate (CFR)is the likelihood that someone who tests positive for the 

virus will die. This is useful for comparing medical conditions between locations with 
a similar testing and reporting protocol and testing constraints. It is somewhat con-
founded by changes in testing availability. It almost always overstates the fatality of the 
infection and should not be confused with the Infection Fatality Rate (IFR).
The Infection Fatality Rate (IFR) is the likelihood that someone who catches the infec-

tion will die. This is a very elusive number due to the difficulty in estimating the actual 
number of infections in a population. This can be retroactively assessed via antibody 
testing, or approximated through calibrated adjustments.

Cases Per 100 K combines location population data with the Covid-19 reported data 
to look at the proportion of a population that has tested positive for the virus. This is 
useful to normalize the infection rates across populations of different sizes. We use “per 
100,000” as our scaling factor since it is an easier number to work with than the tiny 
numbers one would get using a per capita calculation.

Deaths Per 100 K looks at the death rate per 100,000 population at a given location.
Immune Percent identifies the percentage of the population which has recovered from 

the infection and are presumed to be immune. As a larger proportion of the population 
becomes immune, the spread of the virus is dampened until at some level so called “herd 
immunity” is attained. At that point, it is difficult for the infection to continue as there 
are too few non-immune targets.
The Heat Index is a composite metric that combines a number of relevant metrics to 

indicate the relative level of attention a given location needs. This index is calibrated 
such that values greater than 1 indicate that attention is likely needed.

Indicators are a type of metric that can have negative or positive values. We define our 
indicators such that negative values imply negative outcomes. Indicators highlight both 
the direction and relative magnitude of change.
The Social Distance Indicator (SDI), based on change in Case Rate (cR), provides 

insight into the level of social distancing being practiced by a population. All other 
things being equal, a reduction in R is caused by an increase in social distancing, while 
an increasing R is indicative of reduced social distancing. This can be somewhat con-
founded by changes in testing policy and availability, but in practice is a good short-term 
indicator.
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The Medical Indicator (MDI) is based on changes in the ratio of Case Rate (cR) to 
Mortality Rate (mR). If all else is held constant, this ratio would settle at a consistent 
value, as the rate of increase in deaths would be proportional to the rate of growth in 
cases. Therefore, a decrease in the ratio signals that something has changed for the 
worse. In practice, this can be caused by a number of factors: (1) Testing is not growing 
as fast as the infection, (2) Medical Care is worsening or (3) Rapid changes in R com-
bined with the time lag of deaths can cause skew between the two. If we adjust for the 
time lag, then either of the first two causes can be considered medical care issues. Thus 
decreases in this ratio will result in a negative Medical Indicator.
The Short-Term Indicator (STI) is a predictive indicator that attempts to determine if 

the infection is likely to get worse (negative values) or get better within a few days.
The Early Warning Indicator (EWI) predicts major shifts (inflection points) in the 

momentum of the infection. It is meaningful when an infection is moving from a neutral 
or recovering state to a spreading state. It is also meaningful when an infection is transi-
tioning from growth to stability.

Surge detection
The system tracks ebbs and flows in the infection rate to show multiple “surges” or 
“waves” of infection. We define a surge as a transition from a shrinking (R < 0.9) state to 
a growing state (R > = 1.1). We track the start dates, peaks, and durations of each surge. 
Knowing the surge number and start date helps in understanding the oscillations that a 
location goes through over the life of the infection.

Commentary
The metrics above paint a fairly clear picture of the state of the infection in any location 
at any given time. Interpreting them, however, requires a detailed understanding of the 
meaning of each metric and the range of values that it can assume.

We therefore created an interpretive commentary that describes the state of the infec-
tion for each location. This commentary combines the various metrics with expert quali-
tative assessment to form as complete a picture as possible, depending on the Infection 
State. For example:

As of Aug 20, 2020, US-FLORIDA has improved to a Recovering state from a previ-
ous state of Stabilized. The infection is slowly decreasing (R = 0.81). There are cur-
rently 49,270 active cases. New Cases are currently 30,750 per week, down 62% 
from a peak of 79,920 per week. New Deaths are currently 1,035 per week, down 
0% from a peak of 1,035 per week. This is the 4th surge in infections, which started 
on the week of May 29, 2020. With 1,035 new deaths, this is the worst week so far 
for deaths during this surge. The Contagion Risk is very high at 49.9%. This is the 
likelihood of meeting an infected person during one hundred random encounters. 
It appears that the level of social distancing has increased significantly, resulting in 
lower levels of infection growth. The Case Fatality Rate (CFR) is estimated as 1.7%. 
This is much lower than the average CFR of 3.6%. Preliminary estimates suggest that 
7% of the population may have been infected and are presumed immune. This is not 
enough to significantly slow the spread of the virus. This preliminary estimation also 
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implies an Infection Fatality Rate (IFR) of roughly 0.6%. The Short-Term Indicator 
(STI) suggests that the infection is likely to slow somewhat over the next few days.

The commentary consists of several sections, each centered on the interpretation of 
one or more metrics:

• Infection State and Previous state if changed.
• Number of active cases and implications.
• Surge information.
• Contagion Risk and qualitative assessment.
• Social Distancing assessment.
• Medical Conditions.
• Case Fatality Rate.
• Immune Percentage.
• Hot Spots information (if on Hot Spots list).
• Predictive Indicators.

.

Metrics details
Proposed metrics are based on the following definitions:

• Constants.

– Infection Period(IP)—The average length of time during which an individual 
remains infections. This is currently set to 10 days.

– Infection Case Ratio(ICR)—The average ratio of Actual infections to cases. This is a 
gross estimate of the ratio of all infections (Asymptomatic, Subclinical, Clinical) to 
Confirmed Cases. Although this is treated as a constant for rough estimation, it is 
known that this number varies over time as well as location, based on testing avail-
ability. This is currently set to 3.0 based on estimates by Penn State [2].

– Metric Window (MW)—The number of days over which growth metrics are calcu-
lated. This is currently set to 7.

– minActiveThreshold—The minimum fraction of the population with active infec-
tions in a location to be considered beyond containment. This is currently set to 
0.0003.

– hiScaleFactor—A scaling factor for Heat Index that provides a threshold for the Hot 
Spots list. This is calibrated such that Heat Index > = 1.0 identifies locations requir-
ing attention. This is currently set to 5.0.

• Input Statistics.

– Cases—Cumulative cases for a given location.
– Deaths—Cumulative deaths for a given location.
– Hospitalizations—Cumulative hospitalizations for a given location.
– Positive—Cumulative number of positive tests for a given location.
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– Negative—Cumulative number of negative tests for a given location.
– Population—The number of individuals living in a given location.

Adjusted cases and deaths
Various locations will occasionally produce anachronous data. That is, data that is not arriv-
ing in correct time sequence. This typically occurs when there is a change in reporting pol-
icy for the location, or when errors were found in the reporting process and corrections 
are applied retroactively. In these cases, it is common for large batches of cases or deaths 
to be suddenly dumped into a single days reporting. Likewise, downward corrections are 
occasionally seen, that can cause the cumulative values to become non monotonic. These 
occurrences can dramatically distort resulting metrics, especially those that depend on the 
difference in cumulative totals among periods, such as growth rate computations. To com-
pensate for this, we subject the source data to a smoothing filter. This produces a set of 
alternate inputs that have removed these spikes and reversals. These alternate values can 
then be used to calculate more consistent differential values.
This filter is applied to the incoming data, both Cases and Deaths. It limits any daily 

change to the MW-day moving MIN of the series and 1.25 * the MW-day moving MAX of 
the series.

It then reconstructs a new adjusted time series based on these restricted changes. A 
change greater than 1.25 from day to day implies a growth rate(R) greater than 10, which 
is larger than any expected maximum real growth rate, At the same time, the filter removes 
any negative changes, by bounding the newCases and newDeaths to greater than or equal 
to zero.

• newCases(T) = MAX(Cases(T) - Cases(T-1), 0).
• casesMax(T) = MAX(newCases(T-MW − 1), newCases(T-MW), … ,newCases(T-1)).
• casesMin(T) = MIN(newCases(T-MW − 1), newCases(T-MW), … ,newCases(T-1)).
• adjustedNewCases(T) = IF(newCases(T) > 1.25 * casesMax(T), 1.25 * casesMax(T), 

IF(newCases(T) < casesMin(T) / 1.25, casesMin / 1.25, newCases(T))).
• adjustedCases(T) = adjustedNewCases(1) + adjustedNewCases(2) + … 

adjustedNewCases(T).
• newDeaths(T) = MAX(Deaths(T) - Deaths(T-1), 0).
• deathsMax(T) = MAX(newDeaths(T-MW − 1), new Deaths (T-MW), … 

,newDeaths(T-1)).
• deathsMin(T) = MIN(newDeaths (T-MW − 1), newDeaths (T-MW), … ,newDeaths 

(T-1)).
• adjustedNewDeaths (T) = IF(newDeaths(T) > 1.25 * deathsMax(T), 1.25 * 

deathsMax(T), IF(newDeaths(T) < deathsMin(T) / 1.25, deathsMin / 1.25, 
newDeaths(T))).

• adjustedDeaths(T) = adjustedNewDeaths(1) + adjustedNewDeaths(2) + … 
adjustedNewDeaths(T).

.
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Metrices
These are calculated based on an MW (e.g. 7) day sliding window. T refers to the current 
day, while T-MW refers to MW days previous. Note: please see the definition of adjCase 
from section Adjusted Cases and Deaths.

• cR—The effective case growth rate.
• cR = ((adjustedCases(T)– adjustedCases(T-MW)) / (adjustedCases(T-MW)-

adjustedCases(T-2 MW)))^(IP/MW).
• mR—The effective mortality growth rate.
 mR = ((adjustedDeaths(T)– adjustedDeaths(T-MW)) − (adjustedDeaths(T-MW) − 

adjustedDeaths(T-2 MW)))^(IP/MW).
• R—Estimate of the effective reproductive rate. This is based on a geometric mean of 

cR and mR. Some constraints are placed on the values to reduce the effect of very 
noisy data.R =

√
(MIN (cR,mR+ 1.0)∗MIN (mR, cR+ 1.0))

• Active—The estimated number of active (i.e. infectious) cases.
 Active = adjustedCases(T) - adjustedCases(T-IP).
• Recovered—The number of cases that are considered recovered.
 Recovered = Cases - Active - Deaths.
• ContagionRisk—The likelihood of encountering at least one infected person during 

100 random encounters.

• Case Fatality Rate (CFR)—The likelihood of dying given a positive test result.

• Infection Fatality Rate (IFR)—The likelihood of dying, having acquired an infection. 
This is a gross approximation assuming a constant ICR.

 IFR = CFR * ICR.
• immunePct—The fraction of the population that has recovered from the infection 

and are considered immune:

• Infection State (IState)—A qualitative metric that models the state of the infection. It 
will assign one of the following states to the infection within a location:

 1) INITIAL, 2)RECOVERED, 3) RECOVERING, 4) STABILIZED, 5) STABILIZING, 
6) EMERGING, 7) SPREADING. These are assigned based on a series of cascading 
predicate tests. The first true predicate assigns the state.

Contagion Risk = 1 −
(

1 −
(

Active
/

Population
))100

CFR = Adjusted Cases (T − IP)
/

adjusted Deaths (T)

Immune Pct = Recovered ∗ ICR
/

Population.
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• HeatIndex(HI)—A composite metric that takes into account scale, growth rate, social 
distancing, medical conditions, and Contagion Risk. This metric is scaled such that 
values > = 1.0 are considered Hot Spots needing attention.

Indicators
Indicators are zero-based, with negative numbers indicating negative outcomes, and 
positive numbers positive outcomes.

• Social Distance Indicator (SDI)—Based on the ratio of the current cR to the previous 
cR. dcR = cR(T) / cR(T-MW).

• Medical Indicator (MI)—Based on the ratio of case growth (cR) to mortality growth 
(mR).

Heat Index =LOG(Active) ∗ (MIN (cR,mR+ 1)+MIN (mR, cR+ 1)+MI

+ SDI + ContagionRisk)/hiScaleFactor

SDI = IF(dcR > 1, 1 − dcR, 1/dcR − 1).

cmRatio = cR
/

mR.

MI = IF
(

cmRatio > 1, cmRatio − 1, 1 − 1
/

cmRatio
)

.
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• Short-term Indicator (STI)—A short term directional predictor (period 2–3 days).
• Early Warning Indicator (EWI)—EWI is a pseudo-predictor. It uses predictable 

changes in the ratio of newCases to newDeaths to detect major inflections. It gener-
ates a positive signal when R (as computed above) is likely to transition from above 
one to below one within one to two weeks. It generates a negative signal in advance 
of an R transition from below one to greater than one. It is not a true predictor in 
that it detects that the inflection has already occurred, but did not show up in the 
computed R because of its lagging mR component.

Data pipeline
Our data pipeline is a One-Stop-Shop scalable solution from seamless data collecting, 
ingestion, ETL, analytics to governing and monitoring built on top of HPCC Systems. 
Each component of the pipeline runs, as a job in the HPCC Systems cluster. These jobs 
are scheduled to run automatically once the new incoming data is received without 
human intervention. Below is an introduction of each component of the pipeline.

Collection: In our pipeline, the source data is automatically collected by monitoring 
and pulling the new data from data source and automatically uploaded to the HPCC Sys-
tems cluster for Data Ingestion.

Ingestion: once the data are collected and automatically uploaded for ingestion, the 
ingestor will automatically search the newly uploaded files, and perform the ingestion 
process into the ETL system.

ETL: By transforming, enhancing and cleaning the data, the processed data including 
Covid19 metrics are stored in the HPCC Systems Data Lake so that data scientists and 
researchers can apply data analytics to extract useful information.

Analysis: As introduced in the Metrics section, SIR model and Covid-19  indicators 
are developed in the HPCC System for Covid19 analysis and prediction. The built-in 
Machine Learning Library of the HPCC Systems is a great tool for data scientist and 

EWI0 = SDI − MI .

EWI = IF(SDI < −0.2ANDMI > 0.2,EWI0, IF(SDI > 0.2ANDMI < −0.2,EWI0, 0)).
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researcher to conduct data analytics and statistic inference as well. It includes, but is 
not limited to, regression bundles, classification bundles, clustering bundles and Deep 
Learning bundle as well.

Data monitoring
Data monitoring is managed by Tombolo, HPCC Systems Data Catalog tool. Whenever 
a job fails, Tombolo will instantly identify the failure and automatically send an email 
notification to the system administrator for the failure. For data governing, the pipeline 
on HPCC Systems is defined as workflow in Tombolo, as shown in Fig. 6. Each run of 
the workflow is an instance and the status of each job is recorded. If any job failed, it will 
automatically send an email notification to the administrator.
The main data sources are John Hopkins University (daily cases and deaths), US Cen-

sus Bureau (US population), and UN DESA (World population). The lake data and the 
workflow can be viewed using HPCC Systems Data Catalog tool Tombolo (version 0.5).
The system is available at: https ://tombo lo.hpccs ystem s.com.
Log in information: User name: CovidTracker Password: HPCCSystems.
A node in the workflow can be selected and double clicked to view the details. The fol-

lowing is an example of the details of a metrics file (Fig. 6).

HPCC systems COVID-19 tracker results
With a user-friendly interface, an Automatic Big Data Pipeline as powerful data solution 
and the model and metrics as pandemic indicators, the proposed work is available as a 
public Website at https ://covid 19.hpccs ystem s.com.
The Smoothing Filter described above has done a good job of eliminating anachronous 

data dumps, while having little impact on the natural time series. If differential values 
such as R were computed on the raw time series, severe distortions would result.
The charts in Figs. 7 and 8 show the original time series data as well as the filtered 

results at two levels—the county of Bergen, New Jersey, USA, and the state of New Jer-
sey. “deltaCases” is the difference in Cases from period T-1 to period T. “deltaDeaths” is 

Fig. 6 Tombolo Covid-19 Workflow

https://tombolo.hpccsystems.com
https://covid19.hpccsystems.com
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the equivalent for Deaths. “filtNewCases” and “filtNewDeaths” are the adjusted versions 
of the delta time series based on the Smoothing Filter.

Note that the anachronous spike in deaths (red line), and the negative spikes in delta 
cases (green line) have been effectively removed from the filtered series. Also note that 
toward the end of the green line several anomalous spikes have also been attenuated.

Fig. 7 Smoothing filter—County level

Fig. 8 Smoothing filter—State level. The chart illustrates the filter operating at a higher level (the state of 
New Jersey). Note that statewide the Deaths adjustment at 06/25 indicates nearly 1800 one day deaths 
compared to an average of around 50. This is effectively filtered out along with several anomalously high and 
low spikes
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A unique aspect of this system is the ability to produce a daily English commentary 
reflecting the state of each location. The commentary combines metrics-based infer-
ences with enough background information to help the reader understand the impli-
cations. For example, here is a commentary describing the state of the world-wide 
infection for June 18, 2020.

“The World has worsened to a Stabilizing state from a previous state of Stabilized. The 
infection is slowly increasing (R = 1.18). At this growth rate, new infections and deaths 
will double every 42 days. This is the 2nd surge in infections, which started on the week 
of May 28, 2020. With 989,711 new cases and 32,758 new deaths, this is the worst week 
yet for cases and deaths during this surge. It appears that the level of social distancing is 
decreasing, which may result in higher levels of infection growth. The Case Fatality Rate 
(CFR) is estimated as 6.4 %. The Short-Term Indicator suggests that the infection is likely 
to worsen over the course of the next few days.“

User interface
The system provides a user-friendly web-based interface for viewing COVID-19 data and 
metrics. World, Country, and Regional maps are color-coded to represent any of various 
selectable attributes of the infection at those locations. Clicking on any given location 
brings up a set of pages that provides details about that location—from raw statistics to 
charts to advanced metrics and commentary. The user interface provides several ways to 
navigate such as Map View, Trend View, Stats View, Hotspots View and so on. Below is 
detailed introduction of each view. The Website is released to the public at http://covid 
19.hpccs ystem .com (Fig. 9).

Map View shows aspects of the infection through color coding on a map. The map 
can be color coded by a number of attributes including Infection State, New Cases, 
New Deaths, Cases per 100 K, Deaths per 100 K, Total Cases and Total Deaths. On Map 

Fig. 9 World Map View: shows aspects of the infection through color coding on a map. The map can be 
color-coded by a number of attributes including Infection State, New Cases, New Deaths, Cases per 100 K, 
Deaths per 100 K, Total Cases and Total Deaths

http://covid19.hpccsystem.com
http://covid19.hpccsystem.com
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View, users can drilldown to the lowest location as possible. Currently supported Views 
include World View, Country View, Province/State View, City/County View.

Map View displays data in two perspectives: (i) By default the immediate state of the 
infection (current week), and (ii) Use the navigation buttons to check the infection state 
in the past weeks. It can also automatically animate all the historical Map Views one by 
one by clicking the auto-play button (Fig. 10).

Stats View shows the summary statistics and metrics at each location, as illustrated 
in Fig. 11. The location can be at the world level, country level, province/state level 
or city/country level. The statistics include, but are not limited to, daily new cases, 
daily new deaths, cumulative cases and cumulative deaths. It also includes all the 
metrics introduced in the previous section. The metrics are displayed in a bar chart.

Fig. 10 US Country Map View

Fig. 11 Stats View: summary statistics and metrics at each location
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Trend View shows the trend of infection rate, weekly new cases and weekly new 
deaths, as shown in Figs. 12 and 13. The details of the definitions can be found in the 
previous section.

Except for the useful commentary and summary statistics, the indicators represent 
another great tool for COVID-19 trend prediction indifferent communities. Fig-
ure 14 shows an example in Clarke County, Georgia.

As we can see from Fig.  14, when IR shows spreading (IR > 1.0) for at least two 
consecutive weeks, it is likely that in the following weeks there will be a jump of new 
cases and the trend will keep going if no action or policy is taken. With this predic-
tion in mind, we could reduce going out or visiting friends to lower the risk of get-
ting infected.

Fig. 12 Trend View—Infection rate

Fig. 13 Trend View—New cases and new deaths
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Conclusions
The described industry research activities have a great potential to advance knowl-
edge within the proposed field of research as well as across different fields, such as 
medical, healthcare, and public applications. The project helped to build a coalition 
between FAU and LexisNexis to jointly address public health problems of national 
and global significance using the state of the art in computer science, big data analyt-
ics, data visualization techniques, and decision support systems. The proposed meth-
odology, the including the coalition-building effort will support solutions for a wide 
range of other public health issues.
The COVID-19 indicator can be used to predict the future trend of COVID-19, but 

it has its own limitations and cannot explain other factors that can affect the trend 
such as mobility, weather and others. Our future work will build a stronger model to 
predict the trend with comprehensive features.
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Fig. 14 Weekly comparison between Infection Rate (IR) Trend (image on the top) to new Cases Trend (at the 
bottom) of Clarke County, Georgia in the past ten weeks
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