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platform for electric distribution systems
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ABSTRACT

Substantial changes are occurring in electric distribution systems due to ambitious targets towards carbon-neutrality in many re-
gions around the world. One of the key challenges is how to analyze the interactions of massive amount of energy end-users with
the electric distribution grid operator. In this paper, we introduce a comprehensive simulation platform, Al4Dist, that is capable to
perform a wide collection of distribution system studies that capture multiple timescales ranging from market planning to transient
event analysis. Al4Dist is designed to effortlessly integrate with off-the-shelf machine learning packages and algorithm implement-
ations. We envision that Al4Dist will serve as a platform to empower researchers with different expertise to contribute to the devel-

opment of low carbon electricity sector.
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tor has inspired and accelerated the adoption of many new

technologies in power distribution systems. Carbon-free
energy sources such as wind and solar photo-voltaic (PV) are
quickly gaining more momentum in the energy mix composition.
The share of electric vehicles (EVs) in the consumer market has
increased significantly over the past few years due to their lower
millage cost, better driving experience and low environmental im-
pact. Demand side management programs such as price-sensitive
load and incentivized demand response are emerging across the
globe to compensate uncertainties and difficulties introduced by
the new changes to conventional energy paradigm that have been
used for decades.

Along with the rapid development of these grid-edge compon-
ents, the uncertainty they bring began to emerge as a problem for
operators in power grid companies. For example, the output of
distributed renewable generators can vary greatly in a few minutes
due to weather change and greatly disrupt the power flow pattern;
the charging capacity of EVs" can reach 3 times the total power
consumption from everything else in homes while their schedules
are tied to the user-specific life and mobility patterns which are
not known to distribution grid operators. In contrast, the second-
largest component of household power consumption, the heating,
ventilation and air conditioning (HVAC) systems, are closely re-
lated to climate and thus much easier to predict compared to EVs.
Demand response programs that encourage users to adjust their
consumption time to adapt changes in the grid can help to allevi-
ate the load-side uncertainty, but the inherent human-factor and
difference in price sensitivity among customers are still difficult to
rely upon. These problems are particularly obvious in power dis-
tribution systems compared to the transmission grid, which has a
much higher inertia and size to damp out the uncertainties.

Recent developments in data science and artificial intelligence
(AI) have shown enormous potential of offering solutions to

T he ambitious goal of decarbonizing the electric power sec-

problems that accompanies the transition and evolution to low-
carbon energy sector. Al-based approaches have demonstrated as-
tonishing performance in many aspects of power distribution sys-
tem and micro-grid operation, examples including
renewable/load®” and market” forecasting, voltage regulation”,
monitoring", protection” and demand response®. Data-driven al-
gorithms are also seen in many applications such as load model-
ling® and fault detection®.

Despite the increasing popularity of developing AI and data
science based solution on power system problems, there still ex-
ists a major roadblock in the path of converting these technolo-
gies into real-world applications: the algorithms in literature need
to be evaluated and compared on a common simulation bench-
mark. However, existing power distribution system simulators are
not ready for this task as they lack the key features needed to ac-
curately re-produce the dynamics of future distribution systems.
First, they are not designed to integrate with commonly-used Al
and data science software packages, which requires every re-
searcher to develop a work-around implementation that is mostly
exclusive to their own algorithm and make cross-comparison and
benchmarking impossible. Moreover, to simulate systems with
multiple Al-based components serving different roles and have
dynamics with various timescales ranging from micro-seconds to
minutes, the simulator will need to account for the interaction
among decision-makers as their behavior depend on not only
exogenous static inputs, as in the case of conventional simulation,
but also the policy and action of other decision makers in the
same circuit.

There already exist several recognized tools for simulation
power distribution systems. Popular ones include OpenDSS™ and
HELICS"™, both are free, open-source and can be controlled
through Python. Based upon these original simulation engines,
various customized expansions such as MA-OpenDSS"™ and
OpenDSS-Wrapper™ are also developed to better suit the need to
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study specific problems, high DER penetration and control in
these cases. AMES™ is an open-source simulator developed in
Java that focuses on wholesale power market analysis. Grid2OP"
is a pioneer among the efforts to introducing reinforcement
learning (RL) into power system by providing a well-defined for-
mulation for real-time transmission grid operation. Our previous
work OpenGridGym" provides a Python-based toolkit to test
possible designs of market mechanisms in distribution systems
and strategies of market participants. We propose a similar, more
general simulation platform for distribution grids.

Suggested contributions

We aim to provide a simulation and analysis platform, AI4Dist ",
that fills the gap between conventional power distribution simu-

lators and the needs to model, study and evaluate the perform-

ance of potential Al and data science based grid components. We
propose a generalized formulation to model inter-dependent de-

cision makers controlling and monitoring various components in
power distribution networks. In contrast to most conventional
simulators that assumes a deterministic behavior from grid com-

ponents (dispatch, loads, relays, reactive power support devices,
etc.), AI4Dist models them as Agents that can be programmed us-
ing any AI or data science based methods and seamlessly fit into
the simulation workflow. Under this multi-agent framework, the
effect of all types of decision makers on the physical grid and on
others' actions can be easily captured. Another unique feature of
AI4Dist is its ability to run integrated scenarios that involves user-
modelled decision makers that act at different timescales ranging
from market intervals (10-min scale) to fault study (millisecond)
levels. This allows users to discover induced events between de-

cision makers with different timescales that are usually not con-

sidered during conventional studies. For instance, a surge of load
capacity due to EV charging could cause a sudden system under-
voltage; or a persisting fault that caused the tripping of part of the
circuit could have a significant impact on the market prices.
AI4Dist provides a consistent and easy-to-use platform for the de-
velopment, evaluation and benchmarking of control algorithms
for various distribution grid components.

1 Design of AI4Dist

1.1 Design Objectives

As power distribution systems have started the transition to in-

corporate distributed energy resources (DERs), electric vehicles
and demand side management technologies at unprecedented
speed, various data-driven and artificial-intelligence based solu-
tions are proposed to tackle the challenges that arise along with
this transition. A suitable simulation test-bed that can easily integ-
rate with these new solutions and provide accurate simulation res-
ults is necessary to advance the integration of data-driven solu-
tions toward real-world applications. We envision AI4Dist to be a
comprehensive platform that includes the physical models of
many new elements in modern distribution systems and provide a
plug-and-play style interface for external control algorithms. Fig-
ure 1 shows the concept of AI4Dist.

Al4Dist is designed to have the following features that we con-
sider to be indispensable to perform realistic simulation for mod-
ern power distribution systems:

User friendliness for data science and Al expertise

The difficulties to develop, evaluate and benchmark data science
or Al methods using conventional distribution system simulators
mainly lie in three aspects: (1) The automation capability of most
simulators are not efficient enough as users need to design and
implement workflow control scripts that instruct the simulators to
run repetitive simulations. Most studies using conventional ana-

lytical approaches usually consider only a few representative scen-
arios. However, the amount of data required to train and calibrate
data-driven methods is enormous and must be generated through
simulating the system under different operating conditions thou-
sands of times; (2) The implementation of data science and Al al-
gorithms relies heavily on existing libraries such as stable-
baselines" which have dependencies and requirement such as
machine learning back-ends (e.g. Tensorflow, PyTorch) that are
not directly compatible with power system simulators; (3) Most
conventional simulators offer very limited expandability for con-

trolling circuit elements using external algorithms. The control of
most circuit elements (e.g. loads, relays, voltage regulators) is de-

termined by built-in models, getting around them typically re-

quire tedious work that is confined to the specific experiment.
Al4Dist allows users to efficiently create, modify and duplicate
agents that can be integrated into the simulation workflow auto-

matically.

Interaction among interdependent agents

In the analysis and simulation of conventional power distribution
systems, most components are assumed to be completely passive
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Fig.1 Envisioned concept of AI4Dist.
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(e.g. load, capacitors) or have deterministic closed-from models
(e.g. voltage regulators, relays). This assumption becomes less and
less appropriate as distribution systems become more dynamic
and decentralized. For example, loads are usually modelled as
fixed power/current/impedance, or a combination of these three
components. These parameters are not related to conditions in the
distribution circuit. With the introduction of demand-side man-
agement technologies, load capacities might change in real-time
depending on their prices, which is related to the other DERs in
the circuit, or incentives, which can be tied to supply and demand
balance in the bulk transmission system. The responsive compon-
entin load capacity becomes even more significant with the in-
creasing popularity of EV, which represents both very high peak
power and a large part of total household energy consumption.
Accurate modeling of the active interaction between most system
components and other parts of the distribution circuit is crucial
while being a missing feature in most existing simulators.

Multi-timescale simulation

A necessary prerequisite for modelling the interaction among dif-
ferent types of active decision makers is the coordination between
different timescales, as the behaviors of many active decision
makers are affected by grid data computed with different time res-
olution. For example, market clearings usually occur periodically
with a relatively long interval (15 min in many transmission sys-
tems), while the behaviors of price sensitive loads (EVs) and gen-
erators (gas/diesel turbines) depend heavily on prices. Hence, to
perform simulation that contains accurate load dynamics, one
must also generate the price data by running market simulation
that also depends on inputs from generators. Figure 2 shows an
example of DER output in two timescales, in which the real-time
physical fluctuation around the settled capacity within market in-
tervals is significant and must be accounted for separately. Such
scenarios require the simulator to be able to run several different
timescales in parallel to correctly capture all the dynamics in the
distribution system.

1.2 Program design and structure
We present the program design of our simulation platform that
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Fig.2 Fluctuation of DER output under different timescales.

meets the various requirements to simulate modern power distri-
bution systems summarized in the previous subsection. A block
diagram showing the architecture is presented in Figure 3, which
will be explained in detail below.

Architecture

Al4Dist takes a modular approach in its workflow, i.e. the input
data, user-defined decision maker models and simulation engines
can all run individually or simultaneously in any combinations.
Users may implement their algorithms by providing an Agent that
controls an element in the distribution circuit. Each agent com-

municates with the simulation engine, the environment ,by ac-

cessing and storing to certain pre-defined fields in the agent struc-
ture during the simulation. The environment passes the states of
the distribution circuit that each Agent need to measure, also by
storing into the fields that correspond to observations in each
Agent object. Agents then compute their actions, ie. change of
parameters in the circuit, based on the observations they receive.
Take a conceptual voltage regulator as example, its duty is to reg-
ulate the terminal voltage at which it is connected to the distribu-
tion system by adjusting its reactive power output. In this case, the
observations would be the terminal voltage and the actions will be
the net reactive power output. This framework provides users
with maximum freedom, as they can implement a mapping
between observations and actions in a completely standalone pro-
gram, which may use any libraries or even external software as
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long as the final actions are given in the end.

Environment and computational engine

We choose Python as the codebase of AI4Dist as it has several
unique advantages among all alternatives. First, Python is widely
considered as the most common and convenient language among
the machine learning community. Many learning, optimization
and computing toolboxes are readily available for use. Second,
several distribution simulators already have a Python interface that
can be accessed to control the simulation workflow. We choose
for AI4Dist the use of the open-source software OpenDSS™ as the
computational engine mainly because it performs three-phase un-
balanced power flow and short-circuit calculations, and because
the authors believe it is easier to interact with via Python than ex-
isting alternatives. On top of the physical grid simulation from
OpenDSS, we built a market layer that can be interfaced with user-
defined market participants to determine generator dispatch, load
allotment and the financial aspect. The OpenAI Gym™ simula-
tion framework is considered as a widely accepted standard for
the development of reinforcement learning (RL) algorithms, and
many RL toolkits"” are designed to adapt to OpenAl Gym.
AI4Dist is also compliant with the Gym API standard to allow
prototyping using off-the-shelf packages directly.

Interaction with agent modules

The AI4Dist platform is defined to interface with multiple user-

defined agents that may have different mechanisms (e.g. learning,

optimization, analytic, etc.) controlling various components of the

distribution circuit. Every agent has three basic functions:

1. Collect measurements (observations) derived from the cur-
rent state of the grid.

2. Selectactions as a function of present (or also past) observa-
tions.

3. Modify the grid component it controls in the environment to
reflect the selected action.

At every time step of the simulation, the three functions are
automatically called by the environment for every agents in the
model to retrieve and implement their control actions. The only
information needed by the environment from the agents are (1)
what observation they need and (2) the final change in paramet-
ers of grid component in simulation. This way the decision-mak-
ing process is completely isolated from the environment, so users
are able to use any external packages or existing software libraries
without causing compatibility issues. A template and many ex-
amples of agent implementation are provided with the installa-
tion of AI4Dist.

Multi-timescale simulation flow

Power system components need to be analyzed and simulated at
their appropriate timescale. For example, electricity price usually
stay constants for minutes during each market clearance interval,
while the response of protective relay only need to be simulated
for at most a few seconds after faults. The coordination among
agents with different timescales is pivotal to the efficiency of the
simulation workflow. In AI4Dist, we divide the simulation to
three brackets of timescales: Market, Steady-State and Transient.
Agents need to declare their operation speed, as part of one of the
brackets above, so that they are called at the right time as the sim-
ulation progresses.

The market simulation takes all exogenous pre-determined in-
put files including weather (related to wind and solar output), load
profiles and locational marginal price (LMP) from the transmis-
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sion system. Market participants may be controlled by a pro-
sumer agent that submit market actions including price-curve,
bids, offers, etc. depending on type of market mechanism, or be
deterministic and produce/consume their default amount at
whatever price decided by the market. At the beginning of each
market interval, the market collects the market actions from all
pro-sumers and computes the LMP at each bus of the circuit.
Generators get their scheduled real power output during the
whole market interval and flexible loads that contain demand re-
sponse options receive the capacity they need to curtail as well as
the financial incentive for being flexible. During the interval, mis-
match between scheduled and actual capacities can be cleared at
the LMP of each load. The generator dispatch and load capacity
are passed over to the next timescale, the steady-state simulation.

The main purpose of the steady-state module is to implement
market result and compute the corresponding power flow solu-
tions. Depending on the resolution of input files, the steady-state
power flow can be run multiple times during each market interval.
In each solution, the voltage, current and power are obtained
throughout the distribution circuit. Agents that work around these
measurements can submit their actions after every power flow
solution. For example, active voltage regulation algorithm for ca-
pacitors, voltage regulators and inverters can adjust their active
power output. Each power flow solution serves as the initial con-
dition for potential disturbances and transient events that follow.

For disturbances such as faults, lightning surges or sudden loss
ofload and generators, transient analysis is necessary for the eval-
uation of grid stability and equipment effectiveness. Users can in-
put a list of timestamped disturbance events prior to simulation or
instruct the environment to randomly create them with specified
rate and range of events. Immediately after a disturbance occurs in
the circuit, a transient simulation is initialized using the closest
available power flow solution. The time-step of this simulation can
be adjusted but is usually set at the millisecond level. At each time
step, the newest value of voltage, current and power is calculated
and provided to agents that are set to operate during disturbances.
Typical agents including protective devices (fuses, recloser/break-
errelay, etc.) and generator/inverter control loops. The simula-
tion is continued until the transient component has decayed or
the circuit is forced to shut down due to cascading failures or os-
cillations. If the circuit is able to enter a new steady-state with a
different topology, caused by the disturbance, the new state will be
preserved in the following steady-state simulation.

1.3 Agent module implementation

In this section, we explain the simulation workflow of AI4Dist in
detail and give instructions and examples on how to build an
agent using any customized algorithm and how to integrate it with
the simulation platform. By default, the environment attempts to
call certain private functions for each agent object at various stages
of the simulation. These functions need to be implemented by
users and are expected to return values or update the values of
some fields in the agent object they belong to. Every agent needs
to have these functions defined before attempting to run a simu-
lation (even though their definitions can simply be empty or re-
turn nothing, i.e. null actions). As a minimally working example,
an agent should at least implement the following two functions:
(1) the function observe() to get observation from the environ-
ment, and (2) set_action() that updates the parameters of the grid
component which is controlled by the agent.

Figure 4 shows the cyclical data flow during the simulation
process. At the beginning of simulation and after obtaining each
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Fig.4 Interaction between agent and environment.

solution, The environment goes through all agents that are set to
operate at the current timescale by calling the observe() function
and let agents obtain the grid measurements they need. Agents are
also free to keep any number of type of internal states in case they
are needed. The most critical part of an agent is the mapping from
states and observations to actions. This function will be called after
all observation routines have finished. In a simple Markovian
model, the action can be determined solely from the updated
states, but the user is also free to include external data if needed.
For machine-learning based models, the raw action obtained
thorough model will most likely be a combination of encoded val-
ues, which then need to be interpreted and converted to paramet-
er changes in the corresponding grid component. It would be
cleaner to separate the model itself and the function that interpret
and implement actions, as the latter is mostly of uniform format
across all different agents. Table 1 shows a list of basic method
functions required for every agents that will be automatically
called during the simulation workflow.

A special module beside standardized agents that can also be
customized by users is the market mechanism. Similarly to the
agents implementation, each market is also an independent Py-
thon object that inherits from a provided abstract class in the
market module. A market object sets the dispatch of generators,
loads and nodal price using the supply and demand information
provided by generators and loads. We provide three examples of

Table1 Standard function names for agent objects

market mechanisms with AI4Dist: (1) Fully regulated distribution
in which the price for generation and consumption across the en-
tire circuit is fixed and distributed generators are given the same
price as loads' energy price; (2) An optimal power flow (OPF)
based market, in which generators and loads submit
fanxiexian_myfh/kWh offers and bids, then the market runs se-
curity-constrained OPF to determine the price distribution and
dispatch; (3) A peer-to-peer (P2P) transaction based market, in
which distributed generators and loads are individually paired by
their supply and consumption capacity and negotiate a private
price between peers using game-theoretic approach.

1.4 Run-time benchmark

The AI4Dist platform along with its simulation engine is able to
effectively simulate distribution networks with different scales in a
multi-agent setting. Note that the total simulation time of experi-
ments heavily relies on the quantity and type of agents. The train-
ing of machine-learning or data-science based agents can take the
majority of simulation time even the physical simulation of net-
work model in the platform is relatively fast. To provide a bench-
mark of the computation speed of the platform, we test and docu-
ment the time taken to run episodes of transient simulation with 5
naive agents that execute actions according to simple logical ex-
pression. Each episode simulates 10 seconds of transient with a
time-step length of 1 cycle (16.7 ms). The test is conducted on a

Name Description

initialize() Pre-allocate containers and get necessary grid information before simulation (optional)

observe() Collect required measurement values from the environment

getAction() Compute the action using the newest observations

setAction() Adjust component parameters in environment to match the new actions
reset() Re-initialize internal states before each episode of simulation for stateful agents (optional)
build() Initialize a handle to external model or neural-network of given dimension (optional)
train() The routine to train the agent before running simulation (learning-based agents only)
load() Load previously stored model (learning-based agents only)
save() Save weights of trained model to a provided path (learning-based agents only)
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mid-range desktop computer with 16 GB of RAM, AMD Ryzen 5
3600 and Samsung 970-evo SSD and the results are listed in
Table 2. Initialization time refers to the time taken for this plat-
form to read case files (including topology, bus positions, connec-
tion, load, etc.).

Table2 Simulation time of network models with different sizes

Network size Initialization time (s) Simulation time (s)
34 0.163 0.112
123 0.209 0.178
772 0.352 0.830
1692 0.441 1.597
5240 1.246 5.696

2 Case studies

In this section, we provide two concrete examples to demonstrate
the capability of AI4Dist on potential use cases. Each case study
requires the use of a combination of different agent types and
simulation timescales. The code and Jupyter notebooks for
demonstration of all case studies will be available on the GitHub
repository.

2.1 Case 1: adaptive protective relay

In conventional protection design for distribution systems, the
network is often considered to be radial with only one power sup-
ply which represents the substation that pulls power from the
transmission grid. The detection of faults using current mag-

nitude and the coordination between protection devices
(breaker/recloser relay, fuse, sectionalizers) is developed based on
this radial assumption which implies one-way power flow from
source to loads in every branch. However, the increasing penetra-
tion of DER may render this assumption invalid by creating back-
ward power flow during both normal and fault conditions. The
fault current contribution from DERs can severely disrupt the re-
liability and selectivity of conventional protection system by redu-
cing the fault current measured at the source and smaller than the
fault current measured near the fault point. For future distribu-

tion with many DER and more volatile load profiles, a robust pro-
tection design that is not affected by the new characteristics of dis-
tribution system operation will be necessary.

We test the performance of several data science and Al based
methods on AI4Dist and compare them with conventional inverse-
time overcurrent protection. Each agent is placed at the substa-
tion, receive local voltage and current measurements during tran-
sient simulation and output the fault flag signal to a recloser at the
same bus. The measurements are generated through running a
multi-timescale simulation that starts with weather and load data,
which is used to compute a series of minute-level power flow
snapshots of the feeder circuit. Fault scenarios are created by ran-
domly adding disturbances to the system based on initial condi-
tions defined by the snapshots. Figure 5 shows the current wave-
form from 10 days of continuous simulations and a fault scenario
created through transient simulation based on one snapshot.

During the fault scenarios, the agents are expected to initiate a
reclosing sequence and try to clear transient faults as quickly as
possible before any fuses in the circuit melts, as long as the fault is
within the agents' designated operational region. A total of 4 dif-
ferent fault detection methods: overcurrent, support-vector-ma-
chine, deep neural network and reinforcement are implemented
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as agent and tested in several circuits from the synthetic Austin
low-voltage distribution feeders™. AI4Dist also provides many
handy tools for automation, visualization and analysis of result.
Circuit information is automatically read, sorted and converted to
accessable format upon initialization. An example is shown in
Figure 6 to demonstrate the visualization capability. Under the
plug-and-play framework of AI4Dist, implementing and testing
agents that have vastly different mechanisms is very simple, as in
this example, the user only need to modify the function that com-
pute an output flag from the incoming measurement to switch to
a different algorithm.

® Source of
® Fuse
Bus . t..‘,

itk

Fig.6 Example configuration of one synthetic Austin distribution feeders.

2.2 Case 2: reinforcement learning-based voltage support
from PV inverters

Most DER and renewable generation require inverter interfacing
to connect to the AC grid. Conventionally, many inverter con-
trollers are programmed to produce the maximum real power at
1.0 power factor regardless of the grid operating condition.
However, the newly revised IEEE Std. 1547-2018 requires DERSs to
provide voltage regulation support when they are connected to the
grid. Although the reactive power adjustment of a standalone in-
verter is a trivial task, it becomes more complex when there are
many grid-connected DERs that have different power factor set-
tings, speeds and feedback loops for voltage regulation. Conflict-
ing control could result in voltage ripple and create unwanted os-
cillations throughout the whole distribution circuit. Hence, a reli-
able control scheme is needed to maintain power quality under
DER-heavy grids.

We design a case study based on the DER reactive power sup-
port problem using a 240-bus distribution system®’ that is based
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on a real circuit in the Midwest region of the USA, used to test the
performance of agents that control the inverters. This case effect-
ively demonstrate scenarios in which many external agents work
in the same simulation setting to achieve an unified objective as
shown in Figure 7. User-defined agents are assigned to each DER
in the circuit to control their reactive power output while main-
taining the apparent power that is determined by weather profile.
The design of AI4Dist enables the use of decentralized control for
agents and they collectively learn to develop a de-centralized
policy that stabilizes the voltage profile in the circuit for different
load and DER output capacities based on real profile data.

Reward and terminal voltage

N
"™ [ Market scheduling \

and grid simulation
P/Q
 Read weather and load
profile and determine
DER capacity

« Solve power flow to
obtain voltage profiles

: « Provide feedback and
Reward for RL agents
) 8

Fig.7 Agentand environment interaction for voltage support control.

To illustrate the capabilities of AI4Dist, we implement the fully
decentralized RL-based control proposed in ref. [5] on the same
240-bus distribution system™’. Agents were trained to collectively
maximize the same reward function, in attempt to regulate
voltage. Figure 8 illustrates how the collective average rewards in-
crease during the training process (top), and how the voltage is
driven closer to nominal (bottom).
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Fig.8 Sample results from Case 2.
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Note that the simulation result is shown in Figure 8 is per-
formed at a relatively fast timescale compared to that of the mar-
ket. Namely, each time step in this simulation is on the order of 10
ms, whereas market clearance resolution is on the order of 10
min. To account for the coupling between both the physical
voltage regulation process and the market clearing process, the
voltage regulation process receives the slow-time-scale dispatch
from the market as initial conditions at every market clearance. As
a result, every 60, 000 steps or so, the initial conditions of the fast-
time-scale simulation are updated, and the power flow solutions
are recalculated accordingly.

3 Concluding remarks

This paper presents a new power distribution simulation and ana-
lysis platform, AI4Dist. It offers several features that are desirable
in future distribution grid operation with many DERs. The plat-
form allows easy integration of state-of-the-art data science and Al
tools to be integrated with power distribution simulation. It also
allows for a cross-time-scale simulation ranging from electro-
mechanical transients to market operations. Example implement-
ations and case studies are illustrated to demonstrate the capabil-
ity of this platform. AI4Dist could serve as a convenient and
powerful tool for developing, testing and benchmarking innovat-
ive algorithms for the control and monitoring of modern and fu-
ture distribution systems.

Building upon AI4Dist, the research community can further
extend its capability to include more timescales (e.g. electromag-
netic transient). We plan to work on an extension to realistically
model uncertainties in distribution grid operations that comes
from weather impacts and human factors at demand side, as the
current version relies on exogenous inputs as baselines. We will
also implement more examples of agents and market mechan-
isms to assist users in bootstrapping their own studies.
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