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ABSTRACT
Substantial changes are occurring in electric distribution systems due to ambitious targets towards carbon-neutrality in many re-
gions around the world. One of the key challenges is how to analyze the interactions of massive amount of energy end-users with
the electric distribution grid operator. In this paper, we introduce a comprehensive simulation platform, AI4Dist, that is capable to
perform a wide collection of distribution system studies that capture multiple timescales ranging from market planning to transient
event analysis. AI4Dist is designed to effortlessly integrate with off-the-shelf machine learning packages and algorithm implement-
ations. We envision that AI4Dist will serve as a platform to empower researchers with different expertise to contribute to the devel-
opment of low carbon electricity sector.

KEYWORDS
Power distribution system, machine learning, simulation platform.

 

T he ambitious goal of decarbonizing the electric power sec-
tor has inspired and accelerated the adoption of many new
technologies  in  power  distribution  systems.  Carbon-free

energy  sources  such  as  wind  and  solar  photo-voltaic  (PV)  are
quickly gaining more momentum in the energy mix composition.
The  share  of  electric  vehicles  (EVs)  in  the  consumer  market  has
increased  significantly  over  the  past  few years  due  to  their  lower
millage cost, better driving experience and low environmental im-
pact. Demand side management programs such as price-sensitive
load  and  incentivized  demand  response  are  emerging  across  the
globe  to  compensate  uncertainties  and  difficulties  introduced  by
the new changes to conventional energy paradigm that have been
used for decades.

Along with the rapid development of these grid-edge compon-
ents, the uncertainty they bring began to emerge as a problem for
operators  in  power  grid  companies.  For  example,  the  output  of
distributed renewable generators can vary greatly in a few minutes
due to weather change and greatly disrupt the power flow pattern;
the  charging  capacity  of  EVs[1] can  reach 3  times  the  total  power
consumption from everything else in homes while their schedules
are  tied  to  the  user-specific  life  and  mobility  patterns  which  are
not known to distribution grid operators. In contrast, the second-
largest component of household power consumption, the heating,
ventilation and air  conditioning (HVAC) systems,  are  closely  re-
lated to climate and thus much easier to predict compared to EVs.
Demand  response  programs  that  encourage  users  to  adjust  their
consumption time to adapt changes in the grid can help to allevi-
ate  the load-side uncertainty,  but  the inherent  human-factor  and
difference in price sensitivity among customers are still difficult to
rely upon. These problems are particularly obvious in power dis-
tribution systems compared to the transmission grid, which has a
much higher inertia and size to damp out the uncertainties.

Recent  developments  in  data  science  and  artificial  intelligence
(AI)  have  shown  enormous  potential  of  offering  solutions  to

problems  that  accompanies  the  transition  and  evolution  to  low-
carbon energy sector. AI-based approaches have demonstrated as-
tonishing performance in many aspects of power distribution sys-
tem  and  micro-grid  operation,  examples  including
renewable/load[2, 3] and  market[4] forecasting,  voltage  regulation[5],
monitoring[6], protection[7] and demand response[8]. Data-driven al-
gorithms are also seen in many applications such as load model-
ling[9] and fault detection[8].

Despite  the  increasing  popularity  of  developing  AI  and  data
science based  solution  on  power  system  problems,  there  still  ex-
ists a  major  roadblock  in  the  path  of  converting  these  technolo-
gies into real-world applications: the algorithms in literature need
to be  evaluated  and  compared  on  a  common  simulation  bench-
mark. However, existing power distribution system simulators are
not ready for this task as they lack the key features needed to ac-
curately  re-produce  the  dynamics  of  future  distribution  systems.
First,  they are  not  designed to integrate  with commonly-used AI
and data  science  software  packages,  which  requires  every  re-
searcher to develop a work-around implementation that is mostly
exclusive to their own algorithm and make cross-comparison and
benchmarking  impossible.  Moreover,  to  simulate  systems  with
multiple  AI-based  components  serving  different  roles  and  have
dynamics with various timescales ranging from micro-seconds to
minutes,  the  simulator  will  need  to  account  for  the  interaction
among  decision-makers  as  their  behavior  depend  on  not  only
exogenous static inputs, as in the case of conventional simulation,
but  also  the  policy  and  action  of  other  decision  makers  in  the
same circuit.

There  already  exist  several  recognized  tools  for  simulation
power distribution systems. Popular ones include OpenDSS[10] and
HELICS[11],  both  are  free,  open-source  and  can  be  controlled
through  Python.  Based  upon  these  original  simulation  engines,
various  customized  expansions  such  as  MA-OpenDSS[12] and
OpenDSS-Wrapper[13] are also developed to better suit the need to 
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study  specific  problems,  high  DER  penetration  and  control  in
these  cases.  AMES[14] is  an  open-source  simulator  developed  in
Java that focuses on wholesale power market analysis. Grid2OP[15]

is  a  pioneer  among  the  efforts  to  introducing  reinforcement
learning (RL) into power system by providing a well-defined for-
mulation for real-time transmission grid operation. Our previous
work  OpenGridGym[16] provides  a  Python-based  toolkit  to  test
possible  designs  of  market  mechanisms  in  distribution  systems
and strategies of market participants. We propose a similar, more
general simulation platform for distribution grids.

Suggested contributions
We aim to provide a simulation and analysis platform, AI4Dist [17],
that fills  the  gap  between  conventional  power  distribution  simu-
lators and  the  needs  to  model,  study  and  evaluate  the  perform-
ance of potential AI and data science based grid components. We
propose a  generalized  formulation  to  model  inter-dependent  de-
cision makers controlling and monitoring various components in
power  distribution  networks.  In  contrast  to  most  conventional
simulators that assumes a deterministic behavior from grid com-
ponents  (dispatch,  loads,  relays,  reactive  power  support  devices,
etc.), AI4Dist models them as Agents that can be programmed us-
ing any AI or data science based methods and seamlessly fit  into
the  simulation workflow.  Under  this  multi-agent  framework,  the
effect of all  types of decision makers on the physical  grid and on
others'  actions  can be  easily  captured.  Another  unique  feature  of
AI4Dist is its ability to run integrated scenarios that involves user-
modelled decision makers that  act  at  different timescales  ranging
from market  intervals  (10-min scale)  to  fault  study  (millisecond)
levels. This  allows  users  to  discover  induced  events  between  de-
cision makers  with  different  timescales  that  are  usually  not  con-
sidered during conventional studies. For instance, a surge of load
capacity due to EV charging could cause a sudden system under-
voltage; or a persisting fault that caused the tripping of part of the
circuit  could  have  a  significant  impact  on  the  market  prices.
AI4Dist provides a consistent and easy-to-use platform for the de-
velopment,  evaluation  and  benchmarking  of  control  algorithms
for various distribution grid components.

1    Design of AI4Dist

1.1    Design Objectives
As power  distribution  systems  have  started  the  transition  to  in-

corporate  distributed  energy  resources  (DERs),  electric  vehicles
and  demand  side  management  technologies  at  unprecedented
speed, various  data-driven  and  artificial-intelligence  based  solu-
tions  are  proposed  to  tackle  the  challenges  that  arise  along  with
this transition. A suitable simulation test-bed that can easily integ-
rate with these new solutions and provide accurate simulation res-
ults is  necessary  to  advance  the  integration  of  data-driven  solu-
tions toward real-world applications. We envision AI4Dist to be a
comprehensive  platform  that  includes  the  physical  models  of
many new elements in modern distribution systems and provide a
plug-and-play style  interface  for  external  control  algorithms. Fig-
ure 1 shows the concept of AI4Dist.

AI4Dist is designed to have the following features that we con-
sider to be indispensable to perform realistic simulation for mod-
ern power distribution systems:

User friendliness for data science and AI expertise
The  difficulties  to  develop,  evaluate  and  benchmark  data  science
or AI methods using conventional distribution system simulators
mainly lie in three aspects: (1) The automation capability of most
simulators  are  not  efficient  enough  as  users  need  to  design  and
implement workflow control scripts that instruct the simulators to
run repetitive  simulations.  Most  studies  using  conventional  ana-
lytical approaches usually consider only a few representative scen-
arios. However, the amount of data required to train and calibrate
data-driven methods is enormous and must be generated through
simulating the system under different operating conditions thou-
sands of times; (2) The implementation of data science and AI al-
gorithms  relies  heavily  on  existing  libraries  such  as  stable-
baselines[18] which  have  dependencies  and  requirement  such  as
machine  learning  back-ends  (e.g.  Tensorflow,  PyTorch)  that  are
not  directly  compatible  with  power  system  simulators;  (3)  Most
conventional simulators  offer  very  limited  expandability  for  con-
trolling circuit elements using external algorithms. The control of
most circuit  elements (e.g.  loads,  relays,  voltage regulators)  is  de-
termined by  built-in  models,  getting  around  them  typically  re-
quire  tedious  work  that  is  confined  to  the  specific  experiment.
AI4Dist  allows  users  to  efficiently  create,  modify  and  duplicate
agents that  can be integrated into the simulation workflow auto-
matically.

Interaction among interdependent agents
In the analysis and simulation of conventional power distribution
systems,  most components are assumed to be completely passive
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(e.g.  load,  capacitors)  or  have  deterministic  closed-from  models
(e.g. voltage regulators, relays). This assumption becomes less and
less  appropriate  as  distribution  systems  become  more  dynamic
and  decentralized.  For  example,  loads  are  usually  modelled  as
fixed  power/current/impedance,  or  a  combination  of  these  three
components. These parameters are not related to conditions in the
distribution circuit.  With  the  introduction  of  demand-side  man-
agement  technologies,  load  capacities  might  change  in  real-time
depending on their  prices,  which is  related to  the  other  DERs in
the circuit, or incentives, which can be tied to supply and demand
balance in the bulk transmission system. The responsive compon-
ent in  load  capacity  becomes  even  more  significant  with  the  in-
creasing popularity  of  EV,  which represents  both very  high peak
power  and  a  large  part  of  total  household  energy  consumption.
Accurate modeling of the active interaction between most system
components  and  other  parts  of  the  distribution  circuit  is  crucial
while being a missing feature in most existing simulators.

Multi-timescale simulation
A necessary prerequisite for modelling the interaction among dif-
ferent types of active decision makers is the coordination between
different  timescales,  as  the  behaviors  of  many  active  decision
makers are affected by grid data computed with different time res-
olution.  For  example,  market  clearings  usually  occur  periodically
with a relatively long interval  (15 min in many transmission sys-
tems), while the behaviors of price sensitive loads (EVs) and gen-
erators  (gas/diesel  turbines)  depend  heavily  on  prices.  Hence,  to
perform  simulation  that  contains  accurate  load  dynamics,  one
must  also  generate  the  price  data  by  running  market  simulation
that  also  depends  on  inputs  from  generators. Figure  2 shows  an
example of DER output in two timescales, in which the real-time
physical fluctuation around the settled capacity within market in-
tervals  is  significant  and  must  be  accounted  for  separately.  Such
scenarios require the simulator to be able to run several different
timescales  in  parallel  to  correctly  capture  all  the  dynamics  in  the
distribution system.

1.2    Program design and structure
We  present  the  program  design  of  our  simulation  platform  that

meets the various requirements to simulate modern power distri-
bution  systems  summarized  in  the  previous  subsection.  A  block
diagram showing the architecture is presented in Figure 3, which
will be explained in detail below.

Architecture
AI4Dist  takes  a  modular  approach  in  its  workflow,  i.e.  the  input
data, user-defined decision maker models and simulation engines
can  all  run  individually  or  simultaneously  in  any  combinations.
Users may implement their algorithms by providing an Agent that
controls an  element  in  the  distribution  circuit.  Each  agent  com-
municates  with  the  simulation  engine,  the environment , by  ac-
cessing and storing to certain pre-defined fields in the agent struc-
ture  during the simulation.  The environment passes  the states  of
the  distribution circuit  that  each Agent  need to  measure,  also  by
storing  into  the  fields  that  correspond  to  observations  in  each
Agent  object.  Agents  then  compute  their actions ,  i.e.  change  of
parameters  in the circuit,  based on the observations they receive.
Take a conceptual voltage regulator as example, its duty is to reg-
ulate the terminal voltage at which it is connected to the distribu-
tion system by adjusting its reactive power output. In this case, the
observations would be the terminal voltage and the actions will be
the  net  reactive  power  output.  This  framework  provides  users
with  maximum  freedom,  as  they  can  implement  a  mapping
between observations and actions in a completely standalone pro-
gram,  which  may  use  any  libraries  or  even  external  software  as
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Fig. 2    Fluctuation of DER output under different timescales.
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long as the final actions are given in the end.

Environment and computational engine
We  choose  Python  as  the  codebase  of  AI4Dist  as  it  has  several
unique  advantages  among all  alternatives.  First,  Python is  widely
considered as the most common and convenient language among
the  machine  learning  community.  Many  learning,  optimization
and  computing  toolboxes  are  readily  available  for  use.  Second,
several distribution simulators already have a Python interface that
can  be  accessed  to  control  the  simulation  workflow.  We  choose
for AI4Dist the use of the open-source software OpenDSS[10] as the
computational engine mainly because it performs three-phase un-
balanced  power  flow  and  short-circuit  calculations,  and  because
the authors believe it is easier to interact with via Python than ex-
isting  alternatives.  On  top  of  the  physical  grid  simulation  from
OpenDSS, we built a market layer that can be interfaced with user-
defined market participants to determine generator dispatch, load
allotment  and  the  financial  aspect.  The  OpenAI  Gym[19] simula-
tion  framework  is  considered  as  a  widely  accepted  standard  for
the  development  of  reinforcement  learning  (RL)  algorithms,  and
many  RL  toolkits[18] are  designed  to  adapt  to  OpenAI  Gym.
AI4Dist  is  also  compliant  with  the  Gym  API  standard  to  allow
prototyping using off-the-shelf packages directly.

Interaction with agent modules
The  AI4Dist  platform  is  defined  to  interface  with  multiple  user-
defined agents that may have different mechanisms (e.g. learning,
optimization, analytic, etc.) controlling various components of the
distribution circuit. Every agent has three basic functions:
1.      Collect measurements  (observations)  derived  from  the  cur-

rent state of the grid.
2.      Select actions as a function of present (or also past) observa-

tions.
3.      Modify the grid component it controls in the environment to

reflect the selected action.
At  every  time  step  of  the  simulation,  the  three  functions  are

automatically  called  by  the  environment  for  every  agents  in  the
model  to  retrieve  and  implement  their  control  actions.  The  only
information  needed  by  the  environment  from  the  agents  are  (1)
what observation they need and (2) the final  change in paramet-
ers of grid component in simulation. This way the decision-mak-
ing process is completely isolated from the environment, so users
are able to use any external packages or existing software libraries
without causing  compatibility  issues.  A  template  and  many  ex-
amples of  agent  implementation  are  provided  with  the  installa-
tion of AI4Dist.

Multi-timescale simulation flow
Power system components need to be analyzed and simulated at
their  appropriate  timescale.  For  example,  electricity  price  usually
stay constants for minutes during each market clearance interval,
while  the  response  of  protective  relay  only  need  to  be  simulated
for  at  most  a  few  seconds  after  faults.  The  coordination  among
agents  with  different  timescales  is  pivotal  to  the  efficiency  of  the
simulation  workflow.  In  AI4Dist,  we  divide  the  simulation  to
three  brackets  of  timescales:  Market,  Steady-State  and  Transient.
Agents need to declare their operation speed, as part of one of the
brackets above, so that they are called at the right time as the sim-
ulation progresses.

The market simulation takes all exogenous pre-determined in-
put files including weather (related to wind and solar output), load
profiles and  locational  marginal  price  (LMP)  from  the  transmis-

sion  system.  Market  participants  may  be  controlled  by  a  pro-
sumer  agent  that  submit  market  actions  including  price-curve,
bids,  offers,  etc.  depending  on  type  of  market  mechanism,  or  be
deterministic  and  produce/consume  their  default  amount  at
whatever  price  decided  by  the  market.  At  the  beginning  of  each
market  interval,  the  market  collects  the  market  actions  from  all
pro-sumers  and  computes  the  LMP  at  each  bus  of  the  circuit.
Generators  get  their  scheduled  real  power  output  during  the
whole market interval and flexible loads that contain demand re-
sponse options receive the capacity they need to curtail as well as
the financial incentive for being flexible. During the interval, mis-
match  between scheduled  and actual  capacities  can  be  cleared  at
the  LMP of  each  load.  The  generator  dispatch  and load  capacity
are passed over to the next timescale, the steady-state simulation.

The main purpose of  the steady-state  module is  to implement
market result  and  compute  the  corresponding  power  flow  solu-
tions.  Depending on the resolution of input files,  the steady-state
power flow can be run multiple times during each market interval.
In  each  solution,  the  voltage,  current  and  power  are  obtained
throughout the distribution circuit. Agents that work around these
measurements  can  submit  their  actions  after  every  power  flow
solution. For example,  active voltage regulation algorithm for ca-
pacitors,  voltage  regulators  and  inverters  can  adjust  their  active
power output. Each power flow solution serves as the initial con-
dition for potential disturbances and transient events that follow.

For disturbances such as faults, lightning surges or sudden loss
of load and generators, transient analysis is necessary for the eval-
uation of grid stability and equipment effectiveness. Users can in-
put a list of timestamped disturbance events prior to simulation or
instruct the environment to randomly create them with specified
rate and range of events. Immediately after a disturbance occurs in
the  circuit,  a  transient  simulation  is  initialized  using  the  closest
available power flow solution. The time-step of this simulation can
be adjusted but is usually set at the millisecond level. At each time
step, the newest value of voltage,  current and power is  calculated
and provided to agents that are set to operate during disturbances.
Typical  agents including protective devices (fuses,  recloser/break-
er relay,  etc.)  and  generator/inverter  control  loops.  The  simula-
tion  is  continued  until  the  transient  component  has  decayed  or
the circuit is forced to shut down due to cascading failures or os-
cillations.  If  the  circuit  is  able  to  enter  a  new  steady-state  with  a
different topology, caused by the disturbance, the new state will be
preserved in the following steady-state simulation.

1.3    Agent module implementation
In this section, we explain the simulation workflow of AI4Dist in
detail  and  give  instructions  and  examples  on  how  to  build  an
agent using any customized algorithm and how to integrate it with
the simulation platform. By default,  the environment attempts to
call certain private functions for each agent object at various stages
of  the  simulation.  These  functions  need  to  be  implemented  by
users  and  are  expected  to  return  values  or  update  the  values  of
some fields in the agent object they belong to. Every agent needs
to have these functions defined before attempting to run a simu-
lation (even  though their  definitions  can  simply  be  empty  or  re-
turn nothing, i.e.  null  actions).  As a minimally working example,
an  agent  should  at  least  implement  the  following  two  functions:
(1)  the  function observe()  to get  observation  from  the  environ-
ment, and (2) set_action() that updates the parameters of the grid
component which is controlled by the agent.

Figure  4 shows  the  cyclical  data  flow  during  the  simulation
process.  At  the  beginning of  simulation and after  obtaining each
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solution, The environment goes through all  agents that are set to
operate  at  the  current  timescale  by  calling  the observe()  function
and let agents obtain the grid measurements they need. Agents are
also free to keep any number of type of internal states in case they
are needed. The most critical part of an agent is the mapping from
states and observations to actions. This function will be called after
all  observation  routines  have  finished.  In  a  simple  Markovian
model,  the  action  can  be  determined  solely  from  the  updated
states,  but  the user is  also free to include external  data if  needed.
For  machine-learning  based  models,  the  raw  action  obtained
thorough model will most likely be a combination of encoded val-
ues, which then need to be interpreted and converted to paramet-
er  changes  in  the  corresponding  grid  component.  It  would  be
cleaner to separate the model itself and the function that interpret
and implement actions,  as  the latter  is  mostly  of  uniform format
across  all  different  agents. Table  1 shows  a  list  of  basic  method
functions  required  for  every  agents  that  will  be  automatically
called during the simulation workflow.

A  special  module  beside  standardized  agents  that  can  also  be
customized  by  users  is  the  market  mechanism.  Similarly  to  the
agents implementation,  each  market  is  also  an  independent  Py-
thon  object  that  inherits  from  a  provided abstract  class in  the
market  module.  A  market  object  sets  the  dispatch  of  generators,
loads and nodal  price using the supply and demand information
provided by generators and loads.  We provide three examples of

market mechanisms with AI4Dist: (1) Fully regulated distribution
in which the price for generation and consumption across the en-
tire  circuit  is  fixed and distributed generators  are  given the same
price  as  loads'  energy  price;  (2)  An  optimal  power  flow  (OPF)
based  market,  in  which  generators  and  loads  submit
fanxiexian_myfh/kWh offers  and  bids,  then  the  market  runs  se-
curity-constrained  OPF  to  determine  the  price  distribution  and
dispatch;  (3)  A  peer-to-peer  (P2P)  transaction  based  market,  in
which distributed generators and loads are individually paired by
their  supply  and  consumption  capacity  and  negotiate  a  private
price between peers using game-theoretic approach.

1.4    Run-time benchmark
The AI4Dist  platform along with  its  simulation engine  is  able  to
effectively simulate distribution networks with different scales in a
multi-agent setting. Note that the total simulation time of experi-
ments heavily relies on the quantity and type of agents. The train-
ing of machine-learning or data-science based agents can take the
majority of  simulation  time  even  the  physical  simulation  of  net-
work model in the platform is relatively fast. To provide a bench-
mark of the computation speed of the platform, we test and docu-
ment the time taken to run episodes of transient simulation with 5
naive agents  that  execute  actions  according  to  simple  logical  ex-
pression.  Each  episode  simulates  10  seconds  of  transient  with  a
time-step length of  1  cycle  (16.7 ms).  The test  is  conducted on a
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Table 1    Standard function names for agent objects

Name Description

initialize() Pre-allocate containers and get necessary grid information before simulation (optional)

observe() Collect required measurement values from the environment

getAction() Compute the action using the newest observations

setAction() Adjust component parameters in environment to match the new actions

reset() Re-initialize internal states before each episode of simulation for stateful agents (optional)

build() Initialize a handle to external model or neural-network of given dimension (optional)

train() The routine to train the agent before running simulation (learning-based agents only)

load() Load previously stored model (learning-based agents only)

save() Save weights of trained model to a provided path (learning-based agents only)
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mid-range desktop computer with 16 GB of RAM, AMD Ryzen 5
3600 and  Samsung  970-evo  SSD  and  the  results  are  listed  in
Table  2. Initialization  time  refers  to  the  time  taken  for  this  plat-
form to read case files (including topology, bus positions, connec-
tion, load, etc.).
  
Table 2    Simulation time of network models with different sizes

Network size Initialization time (s) Simulation time (s)

34 0.163 0.112

123 0.209 0.178

772 0.352 0.830

1692 0.441 1.597

5240 1.246 5.696
 

2    Case studies
In this section, we provide two concrete examples to demonstrate
the  capability  of  AI4Dist  on  potential  use  cases.  Each  case  study
requires  the  use  of  a  combination  of  different  agent  types  and
simulation  timescales.  The  code  and  Jupyter  notebooks  for
demonstration of  all  case studies  will  be available  on the GitHub
repository.

2.1    Case 1: adaptive protective relay
In  conventional  protection  design  for  distribution  systems,  the
network is often considered to be radial with only one power sup-
ply  which  represents  the  substation  that  pulls  power  from  the
transmission grid.  The  detection  of  faults  using  current  mag-
nitude  and  the  coordination  between  protection  devices
(breaker/recloser relay, fuse, sectionalizers) is developed based on
this  radial  assumption  which  implies  one-way  power  flow  from
source to loads in every branch. However, the increasing penetra-
tion of DER may render this assumption invalid by creating back-
ward  power  flow  during  both  normal  and  fault  conditions.  The
fault current contribution from DERs can severely disrupt the re-
liability and selectivity of conventional protection system by redu-
cing the fault current measured at the source and smaller than the
fault current  measured  near  the  fault  point.  For  future  distribu-
tion with many DER and more volatile load profiles, a robust pro-
tection design that is not affected by the new characteristics of dis-
tribution system operation will be necessary.

We test  the  performance  of  several  data  science  and AI  based
methods on AI4Dist and compare them with conventional inverse-
time overcurrent  protection.  Each  agent  is  placed  at  the  substa-
tion, receive local voltage and current measurements during tran-
sient simulation and output the fault flag signal to a recloser at the
same  bus.  The  measurements  are  generated  through  running  a
multi-timescale simulation that starts with weather and load data,
which  is  used  to  compute  a  series  of  minute-level  power  flow
snapshots of the feeder circuit. Fault scenarios are created by ran-
domly adding  disturbances  to  the  system based  on  initial  condi-
tions defined by the snapshots. Figure 5 shows the current wave-
form from 10 days of continuous simulations and a fault scenario
created through transient simulation based on one snapshot.

During the fault scenarios, the agents are expected to initiate a
reclosing  sequence  and  try  to  clear  transient  faults  as  quickly  as
possible before any fuses in the circuit melts, as long as the fault is
within the agents'  designated operational  region.  A total  of  4 dif-
ferent  fault  detection  methods:  overcurrent,  support-vector-ma-
chine,  deep  neural  network  and  reinforcement  are  implemented

as  agent  and  tested  in  several  circuits  from  the  synthetic  Austin
low-voltage  distribution  feeders[20].  AI4Dist  also  provides  many
handy  tools  for  automation,  visualization  and  analysis  of  result.
Circuit information is automatically read, sorted and converted to
accessable  format  upon  initialization.  An  example  is  shown  in
Figure  6 to  demonstrate  the  visualization  capability.  Under  the
plug-and-play  framework  of  AI4Dist,  implementing  and  testing
agents that have vastly different mechanisms is very simple, as in
this example, the user only need to modify the function that com-
pute an output flag from the incoming measurement to switch to
a different algorithm.
 
 

Source

Fuse

Bus

Fig. 6    Example configuration of one synthetic Austin distribution feeders.
 

2.2    Case  2:  reinforcement  learning-based  voltage  support
from PV inverters
Most  DER and renewable  generation require  inverter  interfacing
to connect  to  the  AC  grid.  Conventionally,  many  inverter  con-
trollers are programmed to produce the maximum real  power at
1.0  power  factor  regardless  of  the  grid  operating  condition.
However, the newly revised IEEE Std. 1547-2018 requires DERs to
provide voltage regulation support when they are connected to the
grid. Although the reactive power adjustment of a standalone in-
verter  is  a  trivial  task,  it  becomes  more  complex  when  there  are
many grid-connected  DERs  that  have  different  power  factor  set-
tings, speeds  and feedback  loops  for  voltage  regulation.  Conflict-
ing control could result in voltage ripple and create unwanted os-
cillations throughout the whole distribution circuit. Hence, a reli-
able  control  scheme  is  needed  to  maintain  power  quality  under
DER-heavy grids.

We design a case study based on the DER reactive power sup-
port  problem using a  240-bus distribution system[21] that  is  based
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