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ABSTRACT

Many emerging novel applications expect "near real-time" process-

ing and responses, which can not be guaranteed by today’s Cloud

and would require processing at the Edge. Serverless computing is

a particularly promising architecture for edge environments since

it offers to improve efficiency by precisely scaling resources to meet

application needs. As the edge applications growmore complex and

get composed from a subset of simpler functions or microservices,

there is a need to support more complicated function topologies

which can be represented as directed acyclic graphs (DAGs). How-

ever, running DAG functions on a serverless platform poses new

challenges related to interconnecting, instantiating, and schedul-

ing function sandboxes. In this paper1, we explore how Sledge, a

Wasm-based serverless runtime, can be extended to support DAG

functions. Sledge’s unique design allows for extremely lightweight

sandbox instantiation Ð a new sandbox can be started for each func-

tion invocation in under 30𝜇sec Ð which mitigates the cold start

problems that can be especially detrimental to DAGs. Rather than

relying on expensive coordination via shared storage, the enhanced

Sledge framework provides a fast memory communication channel

to propagate data through the DAG. We consider the DAGs with

service level objectives, defined by their execution deadlines. To en-

sure the DAGs meet their performance requirements, we consider,

analyze, and compare two deadline-aware pluggable schedulers

(that we implemented in Sledge) on a variety of realistic workloads.

CCS CONCEPTS

·Computingmethodologies→Distributed computingmethod-

ologies; · Computer systems organization → Real-time system

architecture.
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1 INTRODUCTION

Getting high value from Industrial IoT and next generation technolo-

gies (such as smart manufacturing, autonomous vehicles, AR/VR,

etc.) requires new approaches along the entire data processing

pipeline: how data is transferred, processed, ingested, and acted

upon. These emerging near real-time systems and applications

might demand latency in the tens of milliseconds or less [30], which

cannot be offered by today’s cloud services. The reliance on cloud-

based technologies for time-critical services is challenging due to

high networking latencies and performance uncertainties implicit

in today’s cloud models. Such latency-sensitive applications have

to be processed at the Edge. Edge computing can offer clear ad-

vantages when dealing with low latency, connectivity, security or

privacy as well as when transmitted data volumes can be an issue.

"Serverless" computing, which is also known as Function-as-a-

Service (FaaS), offers a new execution model, where a user can

upload and execute a small application (micro-service) without

handling operational issues around server provisioning, resource

management, and capacity scaling. Current FaaS solutions sup-

port stateless functions that typically require minimal I/O and

communications. All the major cloud providers offer serverless

solutions [2, 11, 14, 22]. While implementation details differ, most

FaaS offerings utilize some sandboxing environment (like VMs or

containers) for executing serverless functions. These frameworks

are somewhat heavy-weight for operating at the Edge due to their

large memory footprint and high startup time (cold start) [9, 29].

Startup delay varies across different platforms from 125ms for AWS

Lambda [7] to 1sec for Microsoft Azure. While one can improve

"cold start" by caching and reusing containers or minimizing the

invocation time via snapshotting [6, 27], this does not change the so-

lution memory footprint. Other approaches to reduce FaaS resource

footprint and invocation time at the Edge are through light-weight

isolation runtimes based onWebAssembly [8, 13, 24, 26] and uniker-

nels [17].

Among the new recent trends is the use of serverless comput-

ing for complex data processing pipelines, e.g., for video/image
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analytics or ML workflows. Under this model, the data processing

application is defined as a DAG (Direct Acyclic Graph), where each

node represents an invocation of a different serverless function.

To meet user demands, the major serverless providers recently in-

troduced support for serverless function workflow composition,

such as AWS Step Functions [3], Azure Durable Functions [4], and

Google Cloud Composer [10]. Since the existing serverless plat-

forms are stateless the data exchange between the functions in the

DAG requires saving and loading this data through remote storage

(e.g., S3) as shown in Figure 1. It was reported in [20] that passing

data through remote storage could consume over 75% of the func-

tion execution time. Thus exchanging intermediate data between

the functions is a major challenge in the cloud serverless workflows.

The critical difference and problem when designing solutions

for the Edge, compared to the Cloud, is that the Edge represents a

resource-constrained environment, and therefore, some traditional

cloud-based platforms might need to be replaced by a new leaner

and lighter solution for the Edge. While the elimination of long

network delays when accessing the Edge makes it ideal for low

latency services such as cyber physical and AR/VR systems, server-

less cold start delays could eliminate this benefit. For serverless

platforms to meet the requirements of Edge computing, they must

support complex application topologies such as DAGs, while using

minimal resources and providing predictable bounds on response

time. Unfortunately, to our knowledge no serverless platform today

can provide these features.

Our Contributions: In this paper, we extend the open-source

Wasm-based serverless framework Sledge2[8]:

• We explore how Sledge can support efficient processing of

serverless DAGs, in particular by replacing the expensive in-

termediate data coordination and transfer via shared storage

with a fast memory communication channel for propagating

the intermediate data through a given DAG.

• We show that the overheads of sandbox and communication

channel creation can be orders of magnitude faster than

VMs or containers: only around 25 𝜇sec due to our use of

lightweight Wasm sandboxes.

• We investigate how to support DAGs with service level ob-

jectives (SLOs) defined by execution deadlines and offer a

set of "pluggable" schedulers, such as (i) Earliest Deadline

First (EDF), driven by the DAGs deadlines, and (ii) Shortest

Remaining Slack First (SRSF), where the DAG remaining

execution time ("slack") defines the priority of its execution.

• We perform a detailed sensitivity analysis of EDF vs SRSF

for a variety of workloads and deadlines. Overall, the effi-

ciency of both policies are close. However, EDF miss rates

are smaller for "short" execution DAGs (with "earlier" dead-

lines) and worse for "longer" executing DAGs, while SRSF

miss rates are similar across different DAGs classes due to

more "fair" slack-based priorities based on the DAGs slack

(remaining execution time).

2 BACKGROUND AND RELATED WORK

Serverless Execution Frameworks. Since the appearance of Ama-

zon Lambda in 2014, all the major cloud providers have designed

2https://github.com/gwsystems/sledge-serverless-framework
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Figure 1: Traditional cloud serverless platforms use shared func-

tion instances for multiple clients of the same type, and propagate

data between functions via shared storage. Sledge allows a dense

deployment of functions instantiated on demand for each user, with

efficient memory-based communication.

and implemented their serverless solutions. These solutions offer to

user functions strong isolation guarantees provided by VMs or Con-

tainers platforms. However, these frameworks are heavy-weight

due to their large memory footprint and high startup time. New low-

overhead sandboxing mechanism were released by cloud providers

such as Google gVisor and Amazon Firecracker. For example, gVi-

sor has a footprint of 15MB and will boot up in 150ms[15]. These

metrics are important and they do reflect that these frameworks

might still be not "light-enough" for using at the Edge.

Light-weight Isolation Platforms for the Edge. Recently, We-

bAssembly (Wasm) [12] with its light-weight memory sanboxing

has emerged as a promising approach for supporting serverless

at the Edge as shown by commercial products introduced in 2019

from Cloudflare [26, 28]. Fastly’s nativeWebAssembly compiler and

runtime Lucet [19] can instantiate Wasm modules in under 50 𝜇sec.

Similarly, in the Sledge framework [8], the average function startup

time is around 30 𝜇sec. The single-process Sledge runtime binary

size is 359 KB, and it enables functions to share the library depen-

dencies, while providing a strong spatial and temporal isolation for

multi-tenant functions executions.

Microservices and Stateful Applications Issues. Microservices

offer a new appealing model to ease the application development.

Serverless computing is also embracing this model, which becomes

increasingly popular for defining complex workflows. However,

serverless functions are stateless. Therefore, support for exchang-

ing intermediate data between the functions (e.g., via S3 remote

storage) could lead to a significant performance overhead in the

cloud serverless workflows (up to 75% of overall latency) [20].

In SAND [1], the authors achieve good performance by using

application sandboxing (i.e., running the functions of the same

application DAG as processes within the same container). Similar

ideas are pursued in the Nightcore [16] and Faasm [24] frameworks.

Since Faasm runtime manages and isolates functions by compiling

them to WebAssembly, it is closest to our Sledge-based solution.

Faasm focuses on shared memory abstractions between sandboxes

that require changes to function implementations, and manages

system resources by relying on Linux utilities, while Sledge run-

time gets additional execution efficiency (and user-level function

scheduling) due to kernel bypass.

Latency Critical Applications and SLOs. Many user-facing

or interactive applications have stringent SLOs, where a service

has to be delivered within a specified "soft" deadline. Two recently

introduced solutions Atoll [25] and Kraken [5] pursue these objec-

tives. Atoll framework offers redesigned control and data planes

management and utilizes Shortest Remaining Slack First (SRSF)
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scheduling to demonstrate significantly improved results compared

to state-of-the-art alternatives. Kraken extends these results for

a class of applications defined by Dynamic DAGs. In our work,

we analyze the scheduling efficiency with SRSF and compare its

performance with a simpler EDF request scheduling.

3 DESIGN AND IMPLEMENTATION

3.1 Sledge Framework Background

Sledge is a lightweight, WebAssembly based serverless platform [8].

As shown in Figure 2, Sledge is a single processwithmultipleworker

threads, each implemented as a Linux pthread. Each worker thread

is pinned to a CPU core to reduce Linux context-switch overhead,

and each provides user-level scheduling of WebAssembly-based

serverless function sandboxes. A single "Listener" thread accepts

client requests using Linux kernel networking, and puts those re-

quests into a global runqueue. At this point, the only memory

allocated for the request is some basic meta data, illustrated by the

Pending Sandboxes in Figure 2. Here each sandbox is labeled with

its Chain type, the stage in the function chain, and the user it is

allocated to (e.g., 𝐵21 is a sandbox for service B’s stage 2, instan-

tiated for user 1). The diagram also indicates the deadline, D, for

each task, which is used by the scheduler described below. The A,

B, C chains match those from Figure 1.

Once a request is taken from the global queue, a WebAssembly-

based sandbox is instantiated to handle that specific request. This

can achieve high resource utilization without introducing too much

latency because Sledge provides a micro-second level cold-start

overhead. Sledge relies on its aWsm compiler [9] to generate safe

sandbox code and produces a memory layout that ensures software

fault isolation, i.e., the code inside a function unable to access mem-

ory addresses or jump to instructions outside its sandbox range.

Each worker thread executes sandbox functions by competing

to get requests from the global queue into its local runqueue. Thus,

each worker can execute requests in its local queue, or get a new

request. Checking for a new request happens: 1) when the local

queue is empty, 2) when a sandbox is blocked due to IO, or 3)

when a timer tick interrupts the worker each quantum (sent using

a periodic SIGALRM signal that occurs every 5 milliseconds).

To scale and efficiently execute functions, Sledge uses kernel-

bypass, user-level schedulers which are triggered when functions

terminate, and at each quantum. Each worker thread schedules its

local queue and acquires based on a configurable scheduler policy.

When the scheduler is triggered, it will decide whether to get a

new request from the global queue, or to continue executing the

active request by comparing the task’s priority in the local queue

and global queue.

3.2 DAG/Chain Functions Support

To enhance Sledge for supporting DAG or Chain functions requires

us to resolve two primary questions: 1) how/when should the differ-

ent stages of a complex service be instantiated, and 2) how should

data be communicated between stages.

For typical serverless platforms built using containers or virtual

machines, cold start delays can be particularly damaging for DAG

functions since the startup cost can be incurred at each stage of the

pipeline if the system is not able to preemptively warm the appro-

priate functions. Fortunately, Sledge’s use of lightweight sandboxes
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Figure 2: Sledge Architecture.

sidesteps this challenge by reducing the cost of starting a new func-

tion to microsecond scale instead of the normal 100 milliseconds

or more needed to start a VM or container [7, 21]. Thus we extend

Sledge to support function chains by deploying each function in

the DAG as a separate sandbox, and enqueuing the next stage of

the DAG into the global queue when the prior one finishes. This

means that for a given DAG, only the actively executing stages will

be resident in memory at one time. This is illustrated in Figure 2,

where pending sandboxes for requests still in the global queue re-

quire only a small amount of meta data (𝐴12), runnable sandboxes

are active in memory (𝐴11, 𝐵12, 𝐵21, 𝐶12, and 𝐶21), and sandboxes

that have finished (𝐶11 and 𝐵11) or have not yet started (𝐵22, 𝐶31,

𝐶22, and 𝐶32) incur zero memory cost.

We choose do not put the next request of the chain to the local

runqueue for two reasons. First, some worker threads’ runqueues

might be very long, but others might be short. Putting the subse-

quent requests to the local runqueue directly will exacerbate this

imbalance, reducing performance. The second reason is to max-

imize parallelism. When a sandbox finishes execution and adds

the next stage to the queue, there is still some cleanup work to do

for the old sandbox. If the subsequent request is processed by the

same worker thread, it must wait for the cleanup to complete. To

both distribute the load more evenly and maximize concurrency,

we put all subsequent requests to the global queue instead of the

local runqueue.

The next issue for the DAG function support is how to efficiently

share the intermediate state and output between the functions.

Current approaches, using either a remote storage system like S3 or

local storage, have high latency overheads due to network transfers

and slow disk IO. The alternative approach is to use message queues

(e.g., Apache Kafka or KubeMQ), but these frameworks might still

be too overhead-heavy for resource-constrained edge nodes.

Our solution for this problem is to do message passing based

on a memory communication channel. We allocate a temporary

memory space for each function’s output and input. In order to

ensure strong isolation, we rely on the Sledge runtime to copy the

output of a prior function into the input buffer of the next function.

This minimizes the data transfer cost and avoids all locks, but still

retains the strong sandbox isolation guarantees promised by Sledge.

3.3 Pluggable Function Scheduling Algorithms

Sledge avoids the Linux kernel scheduler and takes a full control

of serverless function executions and their management, including

function profiling, scheduling and resource allocation. This design
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opens up a set of interesting opportunities for customizable SLO-

driven performance management of users’ functions and DAGs of

functions based on their deadlines. To achieve this goal, we offer a

set of "pluggable" schedulers, such as EDF and SRSF.

EDF is the earliest deadline first scheduling algorithm. For DAG

functions, each sub-function in the DAG shares the same deadline.

EDF ordering is based on the tasks’ deadlines, i.e., it does not con-

sider the functions’ execution times. A function with the earliest

deadline has the highest priority to be executed. Recall from the

Sledge architecture that workers can either run the lowest deadline

task from their runqueue, or they can take a task from the global

queue if it has a lower deadline; tasks cannot be rebalanced between

workers. Thus in Figure 2, once Worker 1 finishes task 𝐶21, it will

process task𝐴11, even though its deadline, 𝐷 = 150, may be further

away than a task in Worker 2’s queue, such as 𝐶12 with deadline

𝐷 = 80. Only if a task with a shorter deadline arrives in the global

queue will 𝐴11 be preempted. While this architecture can lead to

suboptimal scheduling decisions, it eliminates the need to have

locks on the local queues and prevents overheads related to task

migration, which is a good trade-off for two reasons. First, as the

number of cores increases, work more easily is balanced across core.

Second, serverless employs transient computations in response to

a client’s invocation, thus long-term work imbalances across cores

are unlikely.

SRSF is the shortest remaining slack first scheduling algorithm.

Here "slack" represents the amount of time a task can safely be

queued without missing its deadline. If the task deadline is D, and

the task execution time is E, then its initial remaining slack R =

D ś E. If the task is queued for Q units waiting to be executed, its

remaining slack will be reduced by Q. For an executing task, its

remaining slack will not change. A task with the smallest slack has

the highest urgency. With SRSF, a worker thread always picks the

task with the smallest remaining slack to execute from either its

local runqueue or the global queue.

SRSF algorithm requires profiling information about the func-

tions’ execution times. By collecting the execution times online, we

obtain for each function its execution time distribution. Depend-

ing on the needs of the system, an appropriate percentile can be

used from the distribution, e.g., 50th percentile leads to a more lax

scheduling, while an estimate based on the response time tail leads

to a more conservative scheduler.

Another important SRSF related issue is its efficient implementa-

tion. It relies on the priority queue, where the function’s remaining

slack defines its priority. As we mentioned earlier, the function

queuing time decreases the slack. Therefore, a new request inser-

tion might require O(n + log(n)), where O(n) is needed for updating

all tasks’ remaining slack in the queue and O(log(n)) is for inserting

a new task into the queue. In comparison, the overhead of insert

operation in EDF is O(log(n)). To avoid this extra overhead, our

SRSF implementation maintains an additional timestamp for when

a task’s slack was last updated, and we proactively update the slack

value whenever a task starts to run, rather than waiting until a new

task arrives. In this way we are able to reduce the time complexity

to match EDF.

4 IMPLEMENTATION & EVALUATION

We implemented our design of Sledge extension in C (4K LOC).

Our current implementation3 supports linear chain functions. We

leave the more complex DAG functions to be our future work. The

DAG functions’ structure and deadline settings can be defined in a

configuration file.

We perform our experiments and evaluation with the servers

from the CloudLab testbed. We use one node to represent the Edge

environment (running Sledge) and utilize the second node as a

workload generator. The nodes run on the Massachusetts site and

are type rs620, with 16 cores, 264GB memory, and 10Gbps NIC.

4.1 Overhead Assessment

We evaluate the sandbox initialization cost by measuring the over-

head for a chain function with a sequence of simple no-op (null)

functions. By increasing the number of no-op functions in the chain,

we can observe the cost to instantiate and schedule the functions.

Table 1 shows that starting a single function takes only 12 microsec-

onds, and while the cost rises for longer chains, Sledge can start

five functions about 1000x faster than Amazon Firecracker (which

is used to run AWS Lambda serverless functions) can start a single

microVM (125 milliseconds [7]). We also show the end to end la-

tency seen by a client issuing requests to the function chain, which

achieves sub millisecond response times in all cases.

1 no-op 2 no-op 3 no-op 4 no-op 5 no-op

Sandbox Initiation 12us 50us 86us 120us 159us

E2E Latency 0.40ms 0.49ms 0.50ms 0.70ms 0.80ms

Table 1: Average Cold-Start And Latency of no-op Function Chains.

Note the slight increase in the initiation time for the chain of

sandboxes. This includes additional time for setting up the memory

communication channel between the sandboxes, which takes ap-

proximately 25 microsecond for this operation per sandbox. These

overheads for wasm box initiation and memory channel communi-

cation setup stay consistent in our measurements for the chain of 5

no-op functions as shown in Table 1.

Next, we evaluate the overhead incurred when a monolithic func-

tion is broken into components. In order to arbitrarily subdivide a

function, we use a series of ten computationally intensive Fibonacci

number calculations to represent the workload. We compare run-

ning all of the calculations in a single sandbox versus splitting

them into ten different sandboxes. We find that on average, the sin-

gle monolithic function takes 24.5 milliseconds per request, while

the chain of ten functions takes 25.9 milliseconds. Thus the total

cost of instantiating nine additional sandboxes, scheduling each of

them, and communicating data between them incurs less than 1.5

milliseconds (6%) overhead.

4.2 SRSF vs EDF Performance Comparison

Experimental Workload.While EDF is more popular in real-time

contexts, SRSF has been used in [25] to provide timely serverless

computation. To study both, we perform the analysis and perfor-

mance evaluation with a complex image classification application.

It consists of three sub-functions chained together:

3https://github.com/lyuxiaosu/sledge-serverless-framework/tree/linear_chain_srsf
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