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ABSTRACT

Many emerging novel applications expect "near real-time" process-
ing and responses, which can not be guaranteed by today’s Cloud
and would require processing at the Edge. Serverless computing is
a particularly promising architecture for edge environments since
it offers to improve efficiency by precisely scaling resources to meet
application needs. As the edge applications grow more complex and
get composed from a subset of simpler functions or microservices,
there is a need to support more complicated function topologies
which can be represented as directed acyclic graphs (DAGs). How-
ever, running DAG functions on a serverless platform poses new
challenges related to interconnecting, instantiating, and schedul-
ing function sandboxes. In this paper!, we explore how Sledge, a
Wasm-based serverless runtime, can be extended to support DAG
functions. Sledge’s unique design allows for extremely lightweight
sandbox instantiation — a new sandbox can be started for each func-
tion invocation in under 30usec — which mitigates the cold start
problems that can be especially detrimental to DAGs. Rather than
relying on expensive coordination via shared storage, the enhanced
Sledge framework provides a fast memory communication channel
to propagate data through the DAG. We consider the DAGs with
service level objectives, defined by their execution deadlines. To en-
sure the DAGs meet their performance requirements, we consider,
analyze, and compare two deadline-aware pluggable schedulers
(that we implemented in Sledge) on a variety of realistic workloads.
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1 INTRODUCTION

Getting high value from Industrial IoT and next generation technolo-
gies (such as smart manufacturing, autonomous vehicles, AR/VR,
etc.) requires new approaches along the entire data processing
pipeline: how data is transferred, processed, ingested, and acted
upon. These emerging near real-time systems and applications
might demand latency in the tens of milliseconds or less [30], which
cannot be offered by today’s cloud services. The reliance on cloud-
based technologies for time-critical services is challenging due to
high networking latencies and performance uncertainties implicit
in today’s cloud models. Such latency-sensitive applications have
to be processed at the Edge. Edge computing can offer clear ad-
vantages when dealing with low latency, connectivity, security or
privacy as well as when transmitted data volumes can be an issue.

"Serverless" computing, which is also known as Function-as-a-
Service (FaaS), offers a new execution model, where a user can
upload and execute a small application (micro-service) without
handling operational issues around server provisioning, resource
management, and capacity scaling. Current FaaS solutions sup-
port stateless functions that typically require minimal I/O and
communications. All the major cloud providers offer serverless
solutions [2, 11, 14, 22]. While implementation details differ, most
FaasS offerings utilize some sandboxing environment (like VMs or
containers) for executing serverless functions. These frameworks
are somewhat heavy-weight for operating at the Edge due to their
large memory footprint and high startup time (cold start) [9, 29].
Startup delay varies across different platforms from 125ms for AWS
Lambda [7] to 1sec for Microsoft Azure. While one can improve
"cold start" by caching and reusing containers or minimizing the
invocation time via snapshotting [6, 27], this does not change the so-
lution memory footprint. Other approaches to reduce FaaS resource
footprint and invocation time at the Edge are through light-weight
isolation runtimes based on WebAssembly [8, 13, 24, 26] and uniker-
nels [17].

Among the new recent trends is the use of serverless comput-
ing for complex data processing pipelines, e.g., for video/image
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analytics or ML workflows. Under this model, the data processing
application is defined as a DAG (Direct Acyclic Graph), where each
node represents an invocation of a different serverless function.
To meet user demands, the major serverless providers recently in-
troduced support for serverless function workflow composition,
such as AWS Step Functions [3], Azure Durable Functions [4], and
Google Cloud Composer [10]. Since the existing serverless plat-
forms are stateless the data exchange between the functions in the
DAG requires saving and loading this data through remote storage
(e.g., S3) as shown in Figure 1. It was reported in [20] that passing
data through remote storage could consume over 75% of the func-
tion execution time. Thus exchanging intermediate data between
the functions is a major challenge in the cloud serverless workflows.

The critical difference and problem when designing solutions
for the Edge, compared to the Cloud, is that the Edge represents a
resource-constrained environment, and therefore, some traditional
cloud-based platforms might need to be replaced by a new leaner
and lighter solution for the Edge. While the elimination of long
network delays when accessing the Edge makes it ideal for low
latency services such as cyber physical and AR/VR systems, server-
less cold start delays could eliminate this benefit. For serverless
platforms to meet the requirements of Edge computing, they must
support complex application topologies such as DAGs, while using
minimal resources and providing predictable bounds on response
time. Unfortunately, to our knowledge no serverless platform today
can provide these features.

Our Contributions: In this paper, we extend the open-source
Wasm-based serverless framework Sledge?[8]:

e We explore how Sledge can support efficient processing of
serverless DAGs, in particular by replacing the expensive in-
termediate data coordination and transfer via shared storage
with a fast memory communication channel for propagating
the intermediate data through a given DAG.

o We show that the overheads of sandbox and communication
channel creation can be orders of magnitude faster than
VMs or containers: only around 25 usec due to our use of
lightweight Wasm sandboxes.

e We investigate how to support DAGs with service level ob-
jectives (SLOs) defined by execution deadlines and offer a
set of "pluggable” schedulers, such as (i) Earliest Deadline
First (EDF), driven by the DAGs deadlines, and (ii) Shortest
Remaining Slack First (SRSF), where the DAG remaining
execution time ("slack") defines the priority of its execution.

e We perform a detailed sensitivity analysis of EDF vs SRSF
for a variety of workloads and deadlines. Overall, the effi-
ciency of both policies are close. However, EDF miss rates
are smaller for "short" execution DAGs (with "earlier" dead-
lines) and worse for "longer" executing DAGs, while SRSF
miss rates are similar across different DAGs classes due to
more "fair" slack-based priorities based on the DAGs slack
(remaining execution time).

2 BACKGROUND AND RELATED WORK

Serverless Execution Frameworks. Since the appearance of Ama-
zon Lambda in 2014, all the major cloud providers have designed

Zhttps://github.com/gwsystems/sledge-serverless-framework
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Figure 1: Traditional cloud serverless platforms use shared func-
tion instances for multiple clients of the same type, and propagate
data between functions via shared storage. Sledge allows a dense
deployment of functions instantiated on demand for each user, with
efficient memory-based communication.

and implemented their serverless solutions. These solutions offer to
user functions strong isolation guarantees provided by VMs or Con-
tainers platforms. However, these frameworks are heavy-weight
due to their large memory footprint and high startup time. New low-
overhead sandboxing mechanism were released by cloud providers
such as Google gVisor and Amazon Firecracker. For example, gVi-
sor has a footprint of 15MB and will boot up in 150ms[15]. These
metrics are important and they do reflect that these frameworks
might still be not "light-enough" for using at the Edge.
Light-weight Isolation Platforms for the Edge. Recently, We-
bAssembly (Wasm) [12] with its light-weight memory sanboxing
has emerged as a promising approach for supporting serverless
at the Edge as shown by commercial products introduced in 2019
from Cloudflare [26, 28]. Fastly’s native WebAssembly compiler and
runtime Lucet [19] can instantiate Wasm modules in under 50 usec.
Similarly, in the Sledge framework [8], the average function startup
time is around 30 psec. The single-process Sledge runtime binary
size is 359 KB, and it enables functions to share the library depen-
dencies, while providing a strong spatial and temporal isolation for
multi-tenant functions executions.

Microservices and Stateful Applications Issues. Microservices
offer a new appealing model to ease the application development.
Serverless computing is also embracing this model, which becomes
increasingly popular for defining complex workflows. However,
serverless functions are stateless. Therefore, support for exchang-
ing intermediate data between the functions (e.g., via S3 remote
storage) could lead to a significant performance overhead in the
cloud serverless workflows (up to 75% of overall latency) [20].

In SAND [1], the authors achieve good performance by using
application sandboxing (i.e., running the functions of the same
application DAG as processes within the same container). Similar
ideas are pursued in the Nightcore [16] and Faasm [24] frameworks.
Since Faasm runtime manages and isolates functions by compiling
them to WebAssembly, it is closest to our Sledge-based solution.
Faasm focuses on shared memory abstractions between sandboxes
that require changes to function implementations, and manages
system resources by relying on Linux utilities, while Sledge run-
time gets additional execution efficiency (and user-level function
scheduling) due to kernel bypass.

Latency Critical Applications and SLOs. Many user-facing
or interactive applications have stringent SLOs, where a service
has to be delivered within a specified "soft" deadline. Two recently
introduced solutions Atoll [25] and Kraken [5] pursue these objec-
tives. Atoll framework offers redesigned control and data planes
management and utilizes Shortest Remaining Slack First (SRSF)
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scheduling to demonstrate significantly improved results compared
to state-of-the-art alternatives. Kraken extends these results for
a class of applications defined by Dynamic DAGs. In our work,
we analyze the scheduling efficiency with SRSF and compare its
performance with a simpler EDF request scheduling.

3 DESIGN AND IMPLEMENTATION

3.1 Sledge Framework Background

Sledge is a lightweight, WebAssembly based serverless platform [8].
As shown in Figure 2, Sledge is a single process with multiple worker
threads, each implemented as a Linux pthread. Each worker thread
is pinned to a CPU core to reduce Linux context-switch overhead,
and each provides user-level scheduling of WebAssembly-based
serverless function sandboxes. A single "Listener" thread accepts
client requests using Linux kernel networking, and puts those re-
quests into a global runqueue. At this point, the only memory
allocated for the request is some basic meta data, illustrated by the
Pending Sandboxes in Figure 2. Here each sandbox is labeled with
its Chain type, the stage in the function chain, and the user it is
allocated to (e.g., B2; is a sandbox for service B’s stage 2, instan-
tiated for user 1). The diagram also indicates the deadline, D, for
each task, which is used by the scheduler described below. The A,
B, C chains match those from Figure 1.

Once a request is taken from the global queue, a WebAssembly-
based sandbox is instantiated to handle that specific request. This
can achieve high resource utilization without introducing too much
latency because Sledge provides a micro-second level cold-start
overhead. Sledge relies on its aWsm compiler [9] to generate safe
sandbox code and produces a memory layout that ensures software
fault isolation, i.e., the code inside a function unable to access mem-
ory addresses or jump to instructions outside its sandbox range.

Each worker thread executes sandbox functions by competing
to get requests from the global queue into its local runqueue. Thus,
each worker can execute requests in its local queue, or get a new
request. Checking for a new request happens: 1) when the local
queue is empty, 2) when a sandbox is blocked due to IO, or 3)
when a timer tick interrupts the worker each quantum (sent using
a periodic SIGALRM signal that occurs every 5 milliseconds).

To scale and efficiently execute functions, Sledge uses kernel-
bypass, user-level schedulers which are triggered when functions
terminate, and at each quantum. Each worker thread schedules its
local queue and acquires based on a configurable scheduler policy.
When the scheduler is triggered, it will decide whether to get a
new request from the global queue, or to continue executing the
active request by comparing the task’s priority in the local queue
and global queue.

3.2 DAG/Chain Functions Support

To enhance Sledge for supporting DAG or Chain functions requires
us to resolve two primary questions: 1) how/when should the differ-
ent stages of a complex service be instantiated, and 2) how should
data be communicated between stages.

For typical serverless platforms built using containers or virtual
machines, cold start delays can be particularly damaging for DAG
functions since the startup cost can be incurred at each stage of the
pipeline if the system is not able to preemptively warm the appro-
priate functions. Fortunately, Sledge’s use of lightweight sandboxes
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Figure 2: Sledge Architecture.

sidesteps this challenge by reducing the cost of starting a new func-
tion to microsecond scale instead of the normal 100 milliseconds
or more needed to start a VM or container [7, 21]. Thus we extend
Sledge to support function chains by deploying each function in
the DAG as a separate sandbox, and enqueuing the next stage of
the DAG into the global queue when the prior one finishes. This
means that for a given DAG, only the actively executing stages will
be resident in memory at one time. This is illustrated in Figure 2,
where pending sandboxes for requests still in the global queue re-
quire only a small amount of meta data (A1), runnable sandboxes
are active in memory (A1, Bly, B21, Cly, and C21), and sandboxes
that have finished (C1; and B1;) or have not yet started (B23, C31,
(23, and C33) incur zero memory cost.

We choose do not put the next request of the chain to the local
runqueue for two reasons. First, some worker threads’ runqueues
might be very long, but others might be short. Putting the subse-
quent requests to the local runqueue directly will exacerbate this
imbalance, reducing performance. The second reason is to max-
imize parallelism. When a sandbox finishes execution and adds
the next stage to the queue, there is still some cleanup work to do
for the old sandbox. If the subsequent request is processed by the
same worker thread, it must wait for the cleanup to complete. To
both distribute the load more evenly and maximize concurrency,
we put all subsequent requests to the global queue instead of the
local runqueue.

The next issue for the DAG function support is how to efficiently
share the intermediate state and output between the functions.
Current approaches, using either a remote storage system like S3 or
local storage, have high latency overheads due to network transfers
and slow disk IO. The alternative approach is to use message queues
(e.g., Apache Kafka or KubeMQ), but these frameworks might still
be too overhead-heavy for resource-constrained edge nodes.

Our solution for this problem is to do message passing based
on a memory communication channel. We allocate a temporary
memory space for each function’s output and input. In order to
ensure strong isolation, we rely on the Sledge runtime to copy the
output of a prior function into the input buffer of the next function.
This minimizes the data transfer cost and avoids all locks, but still
retains the strong sandbox isolation guarantees promised by Sledge.

3.3 Pluggable Function Scheduling Algorithms
Sledge avoids the Linux kernel scheduler and takes a full control

of serverless function executions and their management, including
function profiling, scheduling and resource allocation. This design
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opens up a set of interesting opportunities for customizable SLO-
driven performance management of users’ functions and DAGs of
functions based on their deadlines. To achieve this goal, we offer a
set of "pluggable” schedulers, such as EDF and SRSF.

EDF is the earliest deadline first scheduling algorithm. For DAG
functions, each sub-function in the DAG shares the same deadline.
EDF ordering is based on the tasks’ deadlines, i.e., it does not con-
sider the functions’ execution times. A function with the earliest
deadline has the highest priority to be executed. Recall from the
Sledge architecture that workers can either run the lowest deadline
task from their runqueue, or they can take a task from the global
queue if it has a lower deadline; tasks cannot be rebalanced between
workers. Thus in Figure 2, once Worker 1 finishes task C21, it will
process task Alj, even though its deadline, D = 150, may be further
away than a task in Worker 2’s queue, such as C1; with deadline
D = 80. Only if a task with a shorter deadline arrives in the global
queue will A1; be preempted. While this architecture can lead to
suboptimal scheduling decisions, it eliminates the need to have
locks on the local queues and prevents overheads related to task
migration, which is a good trade-off for two reasons. First, as the
number of cores increases, work more easily is balanced across core.
Second, serverless employs transient computations in response to
a client’s invocation, thus long-term work imbalances across cores
are unlikely.

SRSF is the shortest remaining slack first scheduling algorithm.
Here "slack" represents the amount of time a task can safely be
queued without missing its deadline. If the task deadline is D, and
the task execution time is E, then its initial remaining slack R =
D — E. If the task is queued for Q units waiting to be executed, its
remaining slack will be reduced by Q. For an executing task, its
remaining slack will not change. A task with the smallest slack has
the highest urgency. With SRSF, a worker thread always picks the
task with the smallest remaining slack to execute from either its
local runqueue or the global queue.

SRSF algorithm requires profiling information about the func-
tions’ execution times. By collecting the execution times online, we
obtain for each function its execution time distribution. Depend-
ing on the needs of the system, an appropriate percentile can be
used from the distribution, e.g., 50th percentile leads to a more lax
scheduling, while an estimate based on the response time tail leads
to a more conservative scheduler.

Another important SRSF related issue is its efficient implementa-
tion. It relies on the priority queue, where the function’s remaining
slack defines its priority. As we mentioned earlier, the function
queuing time decreases the slack. Therefore, a new request inser-
tion might require O(n + log(n)), where O(n) is needed for updating
all tasks’ remaining slack in the queue and O(log(n)) is for inserting
a new task into the queue. In comparison, the overhead of insert
operation in EDF is O(log(n)). To avoid this extra overhead, our
SRSF implementation maintains an additional timestamp for when
a task’s slack was last updated, and we proactively update the slack
value whenever a task starts to run, rather than waiting until a new
task arrives. In this way we are able to reduce the time complexity
to match EDF.

Lyu, et al.

4 IMPLEMENTATION & EVALUATION

We implemented our design of Sledge extension in C (4K LOC).
Our current implementation® supports linear chain functions. We
leave the more complex DAG functions to be our future work. The
DAG functions’ structure and deadline settings can be defined in a
configuration file.

We perform our experiments and evaluation with the servers
from the CloudLab testbed. We use one node to represent the Edge
environment (running Sledge) and utilize the second node as a
workload generator. The nodes run on the Massachusetts site and
are type rs620, with 16 cores, 264GB memory, and 10Gbps NIC.

4.1 Overhead Assessment

We evaluate the sandbox initialization cost by measuring the over-
head for a chain function with a sequence of simple no-op (null)
functions. By increasing the number of no-op functions in the chain,
we can observe the cost to instantiate and schedule the functions.
Table 1 shows that starting a single function takes only 12 microsec-
onds, and while the cost rises for longer chains, Sledge can start
five functions about 1000x faster than Amazon Firecracker (which
is used to run AWS Lambda serverless functions) can start a single
microVM (125 milliseconds [7]). We also show the end to end la-
tency seen by a client issuing requests to the function chain, which
achieves sub millisecond response times in all cases.

1no-op 2no-op 3no-op 4no-op 5no-op

Sandbox Initiation 12us 50us 86us 120us 159us
E2E Latency 0.40ms  0.49ms  0.50ms  0.70ms  0.80ms

Table 1: Average Cold-Start And Latency of no-op Function Chains.

Note the slight increase in the initiation time for the chain of
sandboxes. This includes additional time for setting up the memory
communication channel between the sandboxes, which takes ap-
proximately 25 microsecond for this operation per sandbox. These
overheads for wasm box initiation and memory channel communi-
cation setup stay consistent in our measurements for the chain of 5
no-op functions as shown in Table 1.

Next, we evaluate the overhead incurred when a monolithic func-
tion is broken into components. In order to arbitrarily subdivide a
function, we use a series of ten computationally intensive Fibonacci
number calculations to represent the workload. We compare run-
ning all of the calculations in a single sandbox versus splitting
them into ten different sandboxes. We find that on average, the sin-
gle monolithic function takes 24.5 milliseconds per request, while
the chain of ten functions takes 25.9 milliseconds. Thus the total
cost of instantiating nine additional sandboxes, scheduling each of
them, and communicating data between them incurs less than 1.5
milliseconds (6%) overhead.

4.2 SRSF vs EDF Performance Comparison

Experimental Workload. While EDF is more popular in real-time
contexts, SRSF has been used in [25] to provide timely serverless
computation. To study both, we perform the analysis and perfor-
mance evaluation with a complex image classification application.
It consists of three sub-functions chained together:

Shttps://github.com/lyuxiaosu/sledge-serverless-framework/tree/linear_chain_srsf
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Figure 3: Deadline Miss Rate for DAGs execution with Different Inputs and 2x,10x Deadline Setting.

(1) Image Resize: resizes a jpg format image to half its original
size and then outputs a png format image.

(2) Format Transformation: transforms an image in png format
to bmp format.

(3) Image Classification: reads a bmp format image and classifies
it (by executing a classifier of 10 classes and writing the
number associated with the resulting class to stdout).

Diverse Workload Mix. To simulate a realistic workload with dif-
ferent function profiles [23] for processing time and communication
costs, we use four sizes of input images for our image classification
application. The four input sizes are 5KB, 40KB, 105KB, and 305KB.
In an edge environment, this could represent data streams from IoT
devices with different fidelity sensors. Table 2 shows the execution
time distribution profile of our four experimental workloads (based
on 1000 execution runs of each workload). The maximum number
of requests per second (RPS), shown in the last column for each
sub-workload, represents the share of each class under 100% load.

DAG Input Size min  50%  80%  95%  Workload Max

KB ms ms ms ms  Percentage RPS

5 KB.jpg 747 817 860  9.16 60% 430

40 KB.jpg 21.67 2391 24.66 25.49 25% 179
105 KB.jpg 3548 39.28 4031 41.24 10% 72
305 KB.jpg 88.19 9638 98.02 99.58 5% 36

Table 2: Execution time distribution profile of the four experimental
workloads under study.

The difference in function execution times across all four work-

load classes is relatively narrow. Therefore, we use 50% percentile
as an estimate of the function execution time. This metric and es-
timate is needed for defining the maximum applied load in our
experiments as well as for estimating the function execution time
used in the SRSF scheduling policy.
Experimental Workload Mix Composition. Commercial server-
less workload studies [23] demonstrate the dominance of small and
medium function sizes. We use this guidance for percentages in
our workload mix as shown in Table 2. Therefore, up to 95% of our
DAGs executions represent small and medium duration functions,
with remaining 5% of the requests being longer duration DAGs
executions.

Mixed Deadline Settings for DAGs. To analyze the impact of dif-
ferent deadline settings in our experimental workload, we partition
the workload so that half of the requests have a tight deadline (two
times the median execution cost) and half of the requests have a
loose deadline (ten times the median execution cost).

Workload Generator. We modified Loadtest [18] - an open-loop
workload generator to let the requests follow a Poisson distribution.
To replay the same workload with different scheduling algorithms,
we used the same random sequence seeds to generate a repeatable
workload. Since we have four workloads with two deadline settings
for each, we started eight Loadtest instances in parallel, with each
Loadtest sending the image classification application chain with
one specified file size and deadline setting. The generators of each
file size send a workload percentage as indicated in Table 2. We
gradually increase the client load as a percentage of the maximum
RPS (requests per second) supported by the system and measure
the miss rate at each load level.

Results: SRSF vs EDF Comparison. Figure 3 shows the deadline
miss rates for DAG executions with different input sizes (5KB, 40KB,
105KB, 305KB) and deadline settings (2x in top row, 10x in bottom).
Table 3 shows the details for the deadline miss rates under 90% load.

5KB 40KB 105KB 305KB
SRSF-2X  11.9% 11.5% 12.3% 6.0%
EDF-2X 3.0% 5.4% 12.2% 24.4%
SRSF-10X  8.4% 8.4% 9.7% 5.3%
EDF-10X 2.9% 7.2% 10.4% 18.1%

Table 3: 2X and 10X Deadline Miss Rates Under 90% Load

These results are interesting: they show mixed performance:
e EDF achieves better deadline miss rates than SRSF for DAGs
with smaller size inputs of 5KB and 40KB;
e EDF and SRSF performance gets very close for DAGs with
inputs of 105KB;
o SRSF achieves better deadline miss rates than EDF for DAGs
with large 305 KB file inputs.
This behavior is due to the smaller request sizes having lower
deadlines (as deadlines are proportional to execution time), which
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EDF will prioritize. By comparing the deadline miss rate in the
top section to the bottom section, we find that Sledge shows a
consistently lower miss rate for requests with the 10X deadline,
since the looser deadline is easier to meet.

The lower miss rate of EDF under small file sizes means that a
resource constrained Edge server could handle a larger request rate
while still meeting a deadline target, while the same is true for SRSF
for handling larger files. If a system had a target miss deadline rate
of 2%, EDF could handle a mixed workload with approximately 378
5KB req/sec, whereas SRSF only handles 300 req/sec. For the larger
305KB files, SRSF can maintain a rate of 28 req/sec with a miss rate
under 2%, whereas EDF only reaches 25 req/sec.

When we consider the workloads as a whole in Figure 4, we
find that EDF consistently achieves a lower total miss-deadline rate.
EDF can maintain 617 total req/sec (86% load) while meeting a 2%
miss rate, whereas SRSF can only achieve 502 req/sec (70% load) for
the same target. Thus in total, EDF is capable of handling about 23%
more requests per second without violating deadlines. It should be
noted that our workload is skewed towards smaller requests with
shorter deadlines (60% are 5KB while only 5% are 305KB), which
benefits EDF. We expect that this will commonly be the case in a
real environment, but our results suggest that for workloads with
an opposite skew, or where heavy requests have greater priority, a
different scheduling algorithm might be preferred.

5 CONCLUSION AND FUTURE WORK

Edge applications deployed as DAGs or chains create significant
challenges for serverless platforms due to the high cost of cold
start delays and communication overheads. Our work has shown
how the lightweight sandboxes used by Sledge provide an ideal
environment for deploying chains of functions. Instantiating a chain
of five functions can be done in as little as 159 microseconds, multiple
orders of magnitude faster than existing container and micro VM
approaches. By allowing direct communication between functions —
while still retaining strong isolation guarantees — Sledge minimizes
the cost of data transfer between functions. Finally, our evaluation
of different scheduling algorithms shows that even a simple earliest-
deadline first policy can support a low miss rate at high utilization,
although it may lead to longer delays for larger requests.

In our future work, we are continuing to expand Sledge with
support for more complex DAG functions and exploring how the
scheduling and admission control systems can be improved to pro-
vide stronger deadline guarantees. We are evaluating how machine
learning models can be used to predict the execution cost of func-
tions within a DAG in order to make better scheduling and resource
allocation decisions.

Lyu, et al.
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