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Abstract—The continued increase in Cyber-Physical System
(CPS) complexity and tightening of Size, Weight and Power
(SWaP) constraints are driving the need for consolidation of
software tasks onto fewer microcontrollers. Many embedded
systems, prominently including those in the Internet-of-Things
(IoT), use software packages from multiple untrusted sources,
while their network interfaces expose new attack surfaces that are
not present in traditional off-line devices. Increased consolidation
with untrusted code of various assurance levels complicates
system design, and requires increased spatial and temporal
isolation between the applications. Current microcontroller pro-
tection domain designs are limited by their long interrupt
latencies to isolated applications, forcing the system designers to
place timing-sensitive application code into the kernel interrupt
handlers, trading spatial isolation for tightly-bounded femporal
predictability.

SBI (Secure Baremetal Interrupt) enables zero-software-cost
delivery of interrupts to protection domains in a secure manner
that maintains isolation. We demonstrate an implementation
of SBI using the new hardware-accelerated interrupt delivery
features on TrustZone-M-enabled microcontrollers. This imple-
mentation reduces interrupt latencies by up to 95%, while
maintaining strong spatial and temporal isolation. We believe SBI
could significantly enable future real-time systems that require
both isolation and high responsiveness.

I. INTRODUCTION

The design of traditional cyber-physical systems employs
multiple microcontrollers, e.g. vehicle electronics, avionics,
and programmable logic controllers. Each microcontroller is
responsible for a specific type of real-time or best-effort task,
and a shared bus interconnect (e.g. controller area network)
is responsible for mediating communication between them.
Currently, this traditional design paradigm is facing challenges
from both system complexity and tight Size, Weight and Power
constraints. These challenges are further exacerbated with
the difficulties in orchestrating development between different
microcontroller systems.

The difficulties faced by the traditional multi-
microcontroller designs, e.g. autonomous vehicles, call
for microcontroller consolidation, which replaces multiple
microcontrollers with a single consolidated instance. However,
traditional standalone microcontroller software commonly
runs on the bare-metal, or uses a lightweight Real-Time
Operating System (RTOS) without isolation facilities. A
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rewrite of the software to consolidate multiple of these
traditionally stand-alone systems into one may invalidate
potential safety certifications and lead to new rounds of
engineering effort. Moreover, the timing of different real-time
applications may interfere with each other due to the sharing
of CPU, potentially threatening schedulability.

With the advent of Internet-of-Things (IoT), software pack-
ages from multiple potentially untrusted sources are also
required to run on the same piece of hardware. Addition-
ally, the network interfaces expose new attack surfaces that
are not present in traditional off-line devices. Contrary to
the traditional multi-microcontroller designs, the consolidated
design faces various new challenges. An error in one of the
software components may corrupt other software components,
and one compromised software component may in turn com-
promise the whole system; the real-time applications may also
compete for CPU execution time, which potentially leads to
deadline misses. Thus, isolation is required between software
components. This includes spatial isolation in which memory
is segregated between protection domains to ensure integrity,
and ftemporal isolation in which all execution is properly
prioritized, and the impact of even high-priority malicious or
errant execution is bounded.
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Fig. 1: SBI-TZ design overview. Kernel-mode is grey-colored while
user-mode is white-colored. Dotted lines indicate Interrupt Service
Routines (ISRs), and solid curves indicate application threads. Rect-
angles indicate protection domains. Lightning bolts indicate ISR
activation, and arrows indicate the message passing from the ISRs to
applications. The bare-metal OS architecture shown on the left has
low interrupt latency but no isolation; the protected OS architecture
shown in the middle has full isolation but high latency; the proposed
SBI-TZ architecture with SBI shown on the right has low interrupt
latency and full isolation.

Outside of the microcontroller field, virtualization has long



Class Application Latency Explanation
Baremetal USB I/O emulation 0.5us Emulation must be cycle-accurate or communication will fail [1]
Baremetal 1-Wire interface emulation 0.5us 1-Wire bus requires accurate management of its time slots [2] —_
Baremetal Stepping motor control Tus Stepping motor with a fine step angle needs rapid pulses [3] 2
Baremetal Rotary encoders lus Servo motor reports positions with encoders that toggle rapidly ~
Baremetal BLDC motor control Tus BLDC servo motor needs accurate control over the transistors g>j‘
Baremetal External ADC data logging Tus Low-jitter external ADC driving produces high-quality data [4] 5
Baremetal Machine vision strobed LEDs 10us Use high-speed blinkers for good imaging quality o
Baremetal Communication protocols 10ps TDMA and FH protocols require accurate data transfer timing —
Baremetal IR remote control decoding 10ups IR codewords need to be captured with external interrupts
Baremetal Engine control units 10us Engine ignition timing needs to be considerably accurate 0
Threaded Quadcopter control loops 100us The typical high-criticality quadcopter task period is 1ms [5] ~°\ Q> S
Threaded SPI interface emulation Ims Higher 1/0 toggling rate means a higher data rate 9 <& (Q:b
Threaded USB packet processing Sms The typical timeout for a USB request is 50ms ‘{g’ &

TABLE I: Application latency requirements (left) and comparison between latencies (right). Baremetal-class applications require tight
interrupt latencies whereas threaded-class applications do not. Latency means the maximum allowed interrupt latency. sbi is the confined
SBI latency, kernel is the privileged kernel interrupt latency, and thread is the thread unblock latency upon receiving an interrupt.

been adopted for microprocessor architectures (e.g. x86, ARM,
MIPS and PowerPC) as a mechanism for providing isolation.
A virtualization infrastructure simulates a number of mutually
isolated virtual hardware platforms given a single piece of real
hardware. This makes it ideal for accommodating applications
or systems that used to run on multiple pieces of hardware
without significantly modifying the codebase.

Significant research has been performed on microcontroller
protection domains [6], [7], [8], [9], and the paravirtualiza-
tion platform built on them. However, in these designs, the
hardware interrupts are serviced by the kernel-level software
first before they are passed to any user-level protection do-
main. These indirections impose high overheads including
kernel context switches between protection domains. Such
overhead, though acceptable in many cases, is prohibitive
for certain applications that directly interact with the timing-
sensitive actuators or I/O pins, e.g. high-speed servo motor
controllers. These applications require tight interrupt latencies
only achievable by installing their handlers in the kernel, thus
must be isolated from code of lesser timing assurance on the
system. Additionally, a faulty or malicious handler should have
its negative impact on the rest of the system’s software be
bounded, despite having low-level access to interrupt-based
execution.

This paper introduces SBI (Secure Bare-metal Interrupt), a
mechanism that (1) enables interrupt service routine activation
to be vectored directly to a user-level protection domain,
thus bypassing the system kernel and providing bare-metal
latencies, (2) interrupts are properly prioritized with respect
to the thread scheduler [10], [11], and (3) application ISR ex-
ecution is constrained to have only a bounded and predictable
overhead on other applications and Virtual Machines (VMs).
Thus, SBI enables bare-metal interrupt handling overheads,
while enabling the spatial and temporal isolation requirements
for predictable and secure real-time systems.

A practical implementation of SBIs is enabled by recent
advances in microcontroller designs such as those provided
by ARM TrustZone-M for interrupt delivery to a “Normal
World”. Upon this foundation, we provide a virtualization
infrastructure “SBI-TZ” (Figure 1) to enable consolidation of
VMs with varying assurances, and fast ISR execution. Due to
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TrustZone-M hardware restrictions, the current implementation
only supports one SBI-enabled VM per TrustZone-M-enabled
CPU core. The value of this implementation is an existence
proof of the SBI concept even on hardware that isn’t well
suited for it, and motivates a more directed implementation
on other hardware in the future. To this end, this paper also
discusses some hardware design suggestions that synergize
with the proposed SBI mechanism, which help to overcome the
restrictions that come with the current TrustZone-M hardware.
Contributions. The contributions of this paper include:

o an introduction of the SBI design (§III) and its adaptation
of the hardware-accelerated interrupt delivery features to
enable tight interrupt latencies while maintaining strong
temporal isolation between protection domains;

a prototype implementation of SBI in the Composite
microkernel as a foundation for the SBI-TZ accelerated
microcontroller virtualization prototype (§IV);

an evaluation of the SBI-TZ prototype compared to an
existing bare-metal OS without SBI to understand the
fundamental predictability and efficiency properties of the
system’s operations (§V); and

an evaluation of a VM with SBI-TZ compared to the same
VM without SBI-TZ to demonstrate the applicability of SBI
in real-world virtualization applications (§V).

II. BACKGROUND AND RELATED WORK

Application interrupt latency requirements. The maximum
interrupt latencies allowed for typical applications are shown
in Table I, alongside different latencies found on a typical
microcontroller. It may be observed that the applications
are divided into two categories - the threaded-class whose
maximum latencies allow execution in OS threads, and the
baremetal-class whose maximum latency is tight so that exe-
cution in hardware ISRs is required.

However, current microcontroller isolation facilities are
limited by their long interrupt latencies to isolated OS
threads (thread), forcing the system designer to place timing-
sensitive application code into the privileged kernel-level ISRs
(kernel), trading spatial isolation for temporal predictabil-
ity. Note that microcontroller manufacturers may have their
own names for the kernel and user modes; for Cortex-M



devices leveraged in this paper, we refer to “privileged
handler mode” as kernel, and refer to “unprivileged
thread mode” as user to simplify terminology. Note also
that microcontrollers are often clocked in the 10s to 100s of
MHz, thus achieving these latencies doesn’t allow for much
overhead. Though efficient handling of events is often required
to minimize the time in a higher-power mode, in this paper
we focus on the real-time behavior. In this work, we propose
SBI which enables bare-metal interrupt latencies (sbi) while
enforcing both spatial and temporal isolation.

From Current processor mode
To K Secure K Normal U Secure U Normal
K Secure v X X X
Target K Normal v v X X
U Secure v X v X
U Normal 4 4 4 4

TABLE II: Access permission matrix for TrustZone-M in ARMv8-
M processors. K denotes kernel mode, while U denotes user mode.

Direct TrustZone-M applications. ARM TrustZone-M exten-
sions to microcontroller hardware enable two domains that
segregate system software: Normal and Secure. As shown in
Table II, Normal runs conventional software and has access
only to the subset of resources provided to it by Secure. Secure
has access to all system resources, and can map a subset of
interrupt vectors to Normal. It provides an asymmetric model
in which Secure has access to all resources in Normal.

Some researchers have leveraged the TrustZone-M to pro-
vide protection domain isolation. For example, virtualization
of two operating systems has been attempted on TrustZone-
M-enabled ARM Cortex-M microcontrollers [12], [13]. One
of the guest VMs runs in the Secure domain while another
one runs in the Normal domain. These implementations al-
low hardware-level predictable interrupt latencies. However,
(1) only two VMs are allowed, which is inflexible in the case
of microcontroller consolidation that requires multiple VMs
be orchestrated together, (2) the Secure VM have full access
permissions to the memory held by the Normal VM, breaking
the mutual, strong isolation between the two VMs, and (3) the
Secure VM’s execution may indefinitely preempt or interfere
with the Normal VM’s execution, causing the Normal VM to
miss its deadlines. On contrary, the SBI-TZ infrastructure may
host multiple VMs with full spatial and temporal isolation
between them.

Language- and software-based isolation. Many microcon-
troller systems provide isolation via language safety [14],
[15]. These have the benefit that software bugs are confined
by software checks based on type-safety which leads to
low overheads for many common operations. However, these
approaches (1) restrict the programming languages used, and
make virtualization of separate code bases difficult, (2) pro-
hibit linking against third-party precompiled libraries, which
is required in functionality consolidation, and (3) isolates the
applications spatially but not temporally.

Other projects use safe languages on microcontrollers, but
focus on programmability instead at the cost of performance
and predictability [16], [17], [18], [19]. These software VMs
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allow setting up protection domains regardless of the un-
derlying processor architecture and hardware features given
the application bytecode. However, these approaches incur
execution efficiency and I/O interaction overheads due to their
interpreted execution, and are unpredictable due to potential
freeze-the-world garbage collections. The memory footprints
of the language VM themselves also put extra pressure on
the scarce microcontroller internal memories. The application
must be written in the language that the VM supports, which
in the automotive domain may require rewriting legacy C/C++
applications. Aside from these downsides, security vulnerabil-
ities also hamper these solutions due to the large code base of
language VMs themselves.

Some software systems use verifiers [20] to statically bound
the execution of their code. However, these approaches (1) re-
quire statically bounded implementations that might not match
application execution patterns, (2) require a verifier and a code
generator that have been repetitive sources of security issues,
(3) complicate dynamic application updates, and (4) still have
a performance impact.

Recently, the WebASseMbly (WASM) [21] has been ported
to the microcontroller platform [7]. It is an intermediate
bytecode assembly language that decouples the language from
the VM, and it allows precompilation from bytecode to native
code. The shortcomings of software VMs mentioned above are
somewhat mitigated with WASM but still not eliminated.

Interrupts as operating system dispatch. Some researchers
(e.g. [22]) have leveraged ISRs as operating system thread dis-
patch, and [8] combines this approach with isolation between
the applications. These designs reach low interrupt latencies
due to their use of hardware ISRs as thread dispatch, and
spatial isolation between tasks is enforced by leveraging Mem-
ory Protection Units (MPUs). Though [8] has multiple modes,
the one that provides security properties runs applications at
the user-level, thus we focus on its comparison to this work.
In this mode, a MPU reprogramming and a kernel- to user-
level transition are required for each interrupt to run it at
the user-level, which leads to significant latencies. Addition-
ally, [8] requires protection domain annotations throughout the
application source code, and all isolation boundaries must be
known at compile-time. In contrast, this work combines bare-
metal interrupt latencies with security, and allows dynamic
protection domain boundaries, which is more flexible.

Hardware multitasking support. Some processors feature
hardware task switching facilities e.g. task gates in 32-bit
x86. A specific instruction or an interrupt may activate one
of the task gates, and the hardware will automatically context
switch to the target task and its protection domain, saving
and restoring all the necessary registers. However, though this
mechanism in x86 performs hardware task switches, (1) it
is only supported on legacy 32-bit x86 that is generally not
receiving feature updates, (2) it has been noted to have even
more overhead than software approaches, and (3) it provides
neither execution budget accounting nor temporal isolation.
This makes them unsuitable for SB/ implementation. On the



contrary, the TrustZone-M hardware leveraged in this work
switches task context and protection domain with far less over-
head than software, and we use prevalent debugging facilities
to provide budget accounting. In addition, Intel’s forthcoming
“Sapphire Rapids” processor (not publicly available yet) also
has a user-level interrupt feature. However, to the best of our
knowledge, it does not switch protection domains, thus cannot
be used to preempt lower-priority execution to service event-
triggered execution.

Hardware virtualization extensions. Some recent high-
performance microcontrollers [23] feature hardware virtual-
ization extensions. When an interrupt to the currently active
VM occurs, it will be directly delivered to the VM’s kernel
mode, eliminating hypervisor-incurred latency [23]. When the
target VM is not currently active, the hypervisor still needs
to be invoked to switch to it so that the interrupt can be
delivered, hampering predictability. By comparison, this work
enables bare-metal interrupt latencies no matter the target VM
is currently active or not, and may be implemented in low-
power or low-cost microcontrollers.

Multi-core systems and resource partitioning. Significant
work is performed on memory scheduling [24], task par-
titioning [25] and cache partitioning [26], [27], [28], [29],
[30] for microprocessor-based embedded systems, and it is
not uncommon for current microprocessors to have multiple
cores that share a last-level cache [31], [32], [33], [34], [35],
[36]. Microcontrollers, on the contrary, are simpler and usually
don’t have multiple cores. In cases where they do, these cores
usually don’t share a last-level cache. However, the complexity
of microcontroller systems is also increasing, and some micro-
processor designs may translate to them e.g.future Cortex-R-
based multi-core automotive microcontrollers. Multi-core ca-
pabilities are orthogonal to the SBI mechanism. For example,
when the memory allocations are cache-colored, the memory
accessed by the SBIs may be on dedicated cache sets so that
they will not be interfered with by other system components;
memory accesses of SBIs may also be treated specially by the
memory access scheduler so that they preempt other requests;
SBIs on different CPU cores may be assigned different cache
sets as well so that they do not interfere with each other.
Additionally, SBIs of different protection domains may be
partitioned among the cores so that they do not compete for
CPU.

Embedded virtualization. Embedded virtualization have been
proposed on MMU-based microprocessor systems such as
MIPS-VZ and ARM Cortex-A9 [37], [38], and commercial-
ized off-the-shelf products have appeared [39], [40], [41].
These virtualization use-cases allow hosting heterogeneous
operating systems on the same microprocessor, or port the
same software infrastructure over different core counts [42].
A specific use-case is to run feature-rich operating systems that
provide commodity high-level API functions alongside a real-
time operating system (RTOS). Provided that the hypervisor
delivers interrupts to the RTOS with minimal latency, real-
time responsiveness of the legacy functionality is delivered.
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Some research also leverages virtualization to provide isolation
between protection domains [42], [37], [43], and enable
function integration from multiple firmware binary sources.
However, this research only addresses high-functionality
feature-rich embedded systems that are microprocessor-
powered, and doesn’t discuss the possibility of microcontroller
virtualization. In contrast, the virtualization infrastructure pro-
posed in this work provides bare-metal interrupt latencies
without sacrificing CPU and memory efficiency, making vir-
tualization possible for MPU-based microcontrollers that are
prevalent in resource-constrained embedded systems.
Task model. The system consists of a set of threads, each
assigned a fixed priority. Each thread might execute within an
application, a VM, and can execute in the user-level or, via
system calls, in the kernel. The scheduler implements preemp-
tive fixed-priority scheduling, always choosing the highest-
priority thread for execution. The scheduler programs and
receives timer notifications for time-triggered activation and
preemption. SBIs are also assigned fixed priorities. A SBI is
activated when the hardware interrupt triggers, and the SBI
has a higher priority than the currently active execution. Ad-
ditionally, each SBI is associated with a deferrable server [44].
A SBI’s budget is expended upon its execution, and the SBI
is suspended should the budget fall to zero. The budget is
periodically replenished to a fixed initial value. The deferrable
servers enable the system to limit the interference of SBIs
on lower-priority computations. We’ll focus on a single-core
model, but this could be extended to multi-core systems with
partitioned scheduling. This research assumes a task model
that is intentionally simple, and focuses on ensuring that SBIs
properly implement the model.
Summary. Comparisons to the discussed systems are shown
in Table III. It may be observed that the SBI-TZ is capable
of accommodating all the applications or requirements listed,
while other methods have their respective shortcomings.

III. SYSTEM DESIGN
A. Fundamental Hardware Requirements for SBIs

The critical hardware features to implement SBIs are:
each ISR is assigned to one of the protection domains,
the interrupt hardware understands how to switch between
the protection domains without software intervention,
such hardware task switches have far less latency than
software equivalents, and

the interrupt hardware provides means to limit the ex-
ecution for ISRs, e.g. dedicated count-down timers and
interrupts on timer expiration.

These features allow the processor hardware to preempt the
current protection domain and switch automatically to a pro-
tection domain where a higher-priority interrupt is targeting.
After executing the interrupt handler, the processor automat-
ically switches back to the former protection domain and re-
sumes execution there. Note that such switches are performed
entirely by the hardware, and no extra software overheads
are involved. This allows the ISRs to be untrusted and even



L Language-based OS [14] Direct - Composite
Application Baremetal OS Compiler-checked OS [8] TrustZone-M OS [12] Composite with SBI

Multiple applications v v X v v
Third-party binaries v X v v v
Temporal isolation X v v v v
Spatial isolation X v v v v
Baremetal-class 4 v v X 4
Threaded-class v 4 v v v

TABLE III: Application latency requirements met. Direct TrustZone-M OS means directly leveraging the TrustZone-M mechanism and
running two VMs; Composite means interrupt notification to user-level threads; Composite/SBI means leveraging the SBI mechanism and
directly placing the critical code into the SBI. * means partial support depending on the implementation.

potentially malicious while still experiencing hardware-level
latencies, hence the name Secure Bare-metal Interrupts (SBI).
Given the minimal underlying hardware support, the guar-
antees of SBI are as follows.
G1: Bare-metal latency. All SBIs are directly routed via
hardware, thus avoiding all software overheads, exhibit-
ing bare-metal latency.
Spatial isolation. All SBI execution is spatially isolated
from the OS kernel and all protection domains that they
do not have access to, so that the SBIs cannot read from
or write to memory beyond their applications or VM’s
protection domain.
Temporal isolation. The SBI execution is bounded,
which means that no SBI may execute for longer than
system-defined limits and thus hamper system respon-
siveness. Each protection domain has a SBI time budget,
and when this budget is expended, the execution of all
SBIs in that protection domain has to stop until that
budget is replenished again.

G2:

G3:

B. Spatial Isolation

The SBIs are untrusted and hence must be spatially isolated
from the rest of the system, except for the protection domain
they target. As each protection domain corresponds to a
dedicated hardware access control register set for restricting its
memory and I/O access at the kernel-level, we program these
registers much like how we program the MPU to restrict the
accesses of these SBIs. When a SBI-enabled protection domain
has its memory map changed, we program both the MPU
and the corresponding kernel-level access control registers.
When the protection domain executes at the user level, the
MPU is responsible for restricting the accesses of its threads;
when the protection domain executes at the kernel level, the
dedicated access control registers are responsible for restricting
the access of its SBIs. In this way, we spatially isolate both
the user- and kernel-level execution of the protection domain
from the rest of the system.

C. Temporal Isolation

Even if the SBIs are spatially isolated, they may enter
infinite loops either due to software faults or malicious intents
and hamper the responsiveness of the system. To prevent this,
each SBI-enabled protection domain has a budget assigned to
all its SBIs, and when the SBIs execute, the budget expends.
As the hardware provides dedicated per-domain timers only
programmable by the kernel, we preprogram these timers with
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the execution budgets of each respective protection domain. As
the SBIs in the protection domain execute, the corresponding
timer counts down and an interrupt targeting the kernel will fire
when the budget expends. This allows the kernel to preempt
the execution of the SBIs and disable further interrupts to the
protection domain when the budget is overrun. When more
budget is allocated to this protection domain by the scheduler,
the kernel will reprogram the timer with this budget and
reenable the SBIs targeting this domain.

D. SBI-enabled Virtualization Infrastructure

Microcontroller virtualization has been used to run multiple
legacy code-base on the same microcontroller, facilitating
functionality consolidation. Each VM is provided with the
ability to call hypervisor services e.g. memory management,
I/O management and scheduling. In public designs, the inter-
rupt signals need to pass through the hypervisor before they
are sent to the VM, which introduces extra latencies that render
many real-time applications difficult to implement.

In this paper, we leverage the SBI mechanism to implement
SBI-TZ, a hardware-accelerated virtualization infrastructure
whose VM interrupts are delivered with bare-metal latencies
(Figure 2). To achieve this, all timing-critical VM interrupt
handlers are implemented with SBIs. When the interrupt is
triggered, the hardware automatically switches to the acceler-
ated VM and executes its interrupt handlers. Thus, the use of
SBI makes bare-metal latencies possible for the legacy appli-
cations without sacrificing mutual isolation between them.

IV. IMPLEMENTATION
A. SBl-enabled Composite u-Kernel

The SBI-TZ is implemented with the Composite pu-
kernel [45] that has a strong security model based on
capability-based access control. In Composite, all kernel ob-
jects such as threads, communication endpoints and protection
domains are only accessed through unforgeable tokens called
capabilities. These capabilities are shared between protection
domains via delegation. Each protection domain has a capabil-
ity table that tracks its access to kernel objects. A component
is synonymous with a protection domain, and includes both a
page-table to constrain memory access, and a capability table
to constrain kernel object access.

At boot time, a single constructor component with access to
all system resources (aside from the kernel) is tasked with cre-
ating the rest of the components including VMs and real-time
applications, and separates resources between them. In SBI-TZ



that support both native composite applications and FreeRTOS
VMs, the management components include the scheduler, the
memory manager and the I/O manager that manages device
and interrupt access. Applications such as VMs use highly
optimized synchronous invocations and asynchronous signals
to request and handle I/O communication. In Composite,
privileged components such as the I/O manager use a hardware
capability to connect an interrupt vector to a user-level thread
that will handle that interrupt. SBI-TZ expands the kernel logic
for this to enable connecting SBIs directly to the corresponding
thread, thus enabling direct hardware dispatch to the protection
domain. In SBI-TZ, the I/O manager is extended to be aware of
the SBIs, and is responsible for redirecting them to the correct
VM. SBI-TZ may also be implemented in other systems that
provide protection domains on microcontrollers.

VM VM

VM VM Composite
Interrupt 1y reads Interrupt T reads Native
Vector Vector Application
Threads
____________________________
FreeRTOS FreeRTOS
............. _ . ey
Paravirtualization! Paravirtualization!
Extensions 1 Extensions [ I I S
i 1
1 1 Composite
1 I Scheduler I I 1/0 Manager | 1 Native
1 1 API
1 Virtual Machine Monitor 1
1 Composite User-level Components 1 +
B S S S S S S -

- —
I Composite Kernel I . Secure Baremetal Interrupts

Fig. 2: Virtualization infrastructure. Memory isolation is denoted
by the dark solid lines, logical separation is denoted by the dashed
lines, and VM monitor is denoted by the dotted lines. Specifically,
memory separation by the security extension is denoted by the dark
dash-dotted lines, and is in white background.

AppL [ crypt Appl i App3iiCrypto!

App2 R o App2 :__pp L_f‘fp -4

App3 Update e S (R
) SBI| RTOS

Libs Root of trust L

RTOS || Secure HAL I u-Kernel/TCB

(a)
[ Kernel secure
71 U =
771 User secure o

(b)
[ Kernel normal
-
_1 User normal

Fig. 3: Comparison between conventional TrustZone-M systems (a)
and SBI-TZ (b). Contrary to the conventional design, the SBIs are
in Kernel Normal, while other software components are in Secure.
Protection domains are denoted by rectangles. In (b), the Composite
kernel is also the Trusted Computing Base (TCB).

B. TrustZone-M Hardware.

TrustZone-M was marketed as a virtualization extension;
however, it is in fact a security extension that separates the
system resources, including CPU registers, memory and 1/O
into Secure and Normal worlds. It is important to note that
the Secure and Normal are orthogonal to the kernel (“privi-
leged handler”) and user (“unprivileged thread”) modes, for
a combination of four CPU states: Kernel Secure, Kernel
Normal, User Secure and User Normal. As shown in Table II,
CPU running in Secure mode may access both Secure and
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,,,,,, State  ----> Deprivileging transition
O Instruction —> Privileging transition

Fig. 4: TrustZone-M design by ARM. Its original intention is to
isolate the key secure software components from the other software
components.

Normal resources, while in Normal mode only accesses to
Normal resources are allowed. The resources include CPU,
memory and I/O. Switching from Secure to Normal needs only
a specialized branch instruction (BXNS)', however switching
from Normal to Secure requires executing a specific secure
gate (SG)? instruction residing in the Secure but Normal-
callable code memory. As shown in Figure 4, the TrustZone-M
design optimizes for these cases, thus supporting fast switches
between Secure and Normal worlds, and enabling the vectoring
of interrupts directly from one state to another.

That said, TrustZone-M has notably asymmetric access to
resources: the Secure is trusted to access its own resources
and that of Normal. This makes it challenging to provide
strong isolation of code executing in Normal from Secure.
The TrustZone-M enables direct transitions from User Secure
directly into User Normal using BXNS, thus enabling whatever
is running in Secure to cause arbitrary control flow in Normal.
SBI prevents this by disabling computation in User Normal,
and instead enabling isolated VM execution in User Secure,
and coordination with SBIs in Kernel Normal. To sum up, we
carefully design SBI-TZ to take the naturally asymmetric trust
of TrustZone-M, and create a symmetric protection domain
model that isolates the applications.

C. TrustZone-M as an Interrupt Accelerator

In this particular work, we implement SBI-TZ in
a TrustZone-M-enabled microcontroller. In conventional
TrustZone-M-based designs, we run the critical small code-
bases in Secure while the bulk of the operating system and
all of its applications execute in Normal, which is shown in
Figure 3 (a). However, interrupts to be handled by ISRs in the
Normal RTOS cannot be handled by a Secure handler. Doing
so would enable the ISR to access not only the Normal RTOS,
but also the Secure code, which violates isolation guarantees.
Previous work has multiplexed TrustZone [46] to share it
between multiple VMs; in contrast, to enable selected isolated
VMs to reach bare-metal interrupt latencies while isolating all
applications from each other, we choose to leverage TrustZone-
M in an unconventional way as shown in Figure 3 (b). The
SBIs are placed in the Kernel Normal while the Composite

'Once BXNS is executed, the processor will switch to Normal and begin
execution at the location designated by the BXNS’s register operand.

20Once SG is executed, the processor will switch to Secure, and then the
instructions immediately following it will be executed.



kernel is placed in Kernel Secure; all applications run in the
User Secure while the User Normal is empty. As shown in
Figure 3 (b), the Normal is only used for SBI execution. The
protection domain for the VM/application that uses SBIs spans
the Normal and Secure, but is identical in both. The TrustZone-
M MPU is banked between Secure and Normal and may only
restrict memory accesses at the user level. Due to the fact
that the Secure MPU only isolates application execution in
the User Secure but not SBI execution in the Kernel Normal,
the TrustZone-M Security Attribution Unit (SAU) must be
programmed to confine the SBI execution. Also, should any
User Secure application attempt to maliciously switch to the
SBIs, SBI-TZ guarantees that an exception is delivered to
the Composite kernel. This is ensured as the Normal MPU
is locked into enabling access to no memory at the user-
level. As the Normal MPU is locked, all MPU references
follow refer to the Secure MPU unless otherwise noted. To
sum up, we’ll be able to support SBIs and multiple mutually
mistrusting protection domains simultaneously, enabling both
tight latencies and true multi-tenancy.

Timing-sensitive SBIs run at high priorities in the system,
and this is necessary because they need to meet tight deadlines.
To ensure that SBIs cannot monopolize the CPU or prevent
other tasks from meeting their deadlines, we rely on hardware
facilities to track the cycles executed in Normal. Should the
SBIs execute enough to expend their budget, the Normal
execution cycle tracking hardware will generate an interrupt.
The kernel uses this interrupt to suspend the SBIs until
a budget replenishment. Unfortunately, TrustZone-M alone
does not provide such facilities. However, broadly deployed
debugging facilities [47] do, thus SBI-TZ uses these to ensure
temporal isolation.

To summarize how these mechanisms approach the guar-
antees laid out in §III, we have the following findings:

G1: SBI-TZ SBIs are executed in Normal using TrustZone-
M’s support for nested interrupt handers. This support
enables the preemption of even non-preemptible kernel
code in Secure, and performs hardware context switches
to guarantee bare-metal overheads for interrupt dispatch.
TrustZone-M implements a set of SAU access control
registers for Normal that allow the kernel to preprogram
and restrict the access of the SBIs, enforcing spatial
isolation. The access control registers for TrustZone-
M provide ample flexibility when it comes to memory
range programming, so we may always program it to
reflect the same protection domain that the MPU is
enforcing, placing no restrictions on memory allocations.
However, they do not allow setting independent read,
write and execute permissions for the memory segments.
Additionally, the TrustZone-M only supports two worlds
on each CPU core. Thus, a single SBI-enabled protection
domain can execute on each core.

G2:
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G3: Composite provides a TCaps abstraction®[48] that al-
lows programming execution budgets, and this mech-
anism is adapted for SBIs to place a bound on their
execution time, enforcing temporal isolation. Note that
the TrustZone-M itself does not provide cycle-accurate
execution accounting of the SBIs. However, we adapt
a common debugging facility to enable this tracking.
A privileged, programmable counter decreases as the
Normal world is executing, and when the value reaches
zero, an interrupt is activated so that the kernel may stop
the execution of the SBIs. We use this facility to interrupt
SBI execution only if it overruns its budget.

To this end, all three guarantees are met in SBI-7Z by carefully

leveraging the asymmetric TrustZone-M to provide hardware-

level interrupt latencies, yet strong symmetrical spatial and
temporal isolation.

D. SBI Integration Overview

We integrate SBIs into the Composite system with the

guarantees in mind.
Spatial isolation. To enforce spatial isolation (G2), both the
MPU and SAU hardware must be administered. The MPU is
responsible for isolating the applications in User Secure. The
SBIs execute in Kernel Normal thus the MPU is incapable
of restricting its memory accesses alone, and we leverage the
SAU to restrict their memory accesses.

Each address range programmed in the SAU are labeled
with one of the two security attributes: Normal or Secure
but Normal-callable which may contain Security Gate (SG)
instructions that are callable from Normal code. The (SG)
instruction, when executed, switches the CPU from Normal to
Secure. As such, the SAU registers are used to control Normal-
accessible memory.

In this implementation, we program the SAU so that all
RAM of the SBI-enabled component is marked as Normal. The
MPU and the SAU are programmed to cover identical address
ranges so that the component is executable from both Normal
(SBIs) and Secure (application code). The SAU may only be
programmed in Secure, so that malicious SBIs never expand
their set of accessible memory, thus enforcing strong spatial
isolation between the SBI code and the rest of the system.

For SBIs, TrustZone-M’s Nested Vectored Interrupt Con-
troller (NVIC) is enabled to directly deliver interrupts to han-
dlers in Normal. In particular, the NVIC’s Interrupt Target Non-
Secure (ITNS) registers are configured so that all the SBIs now
target Normal by hardware. When the Normal interrupts fire,
all Secure CPU registers are saved onto the Secure stack then
set to zero by hardware, and the CPU switches to the Kernel
Normal state to execute the SBIs. This prevents accidental
leakage of Secure register information to untrusted SBIs.

3TCaps are time budgets that fit into the capability-based access model.
They integrate CPU management into a capability-based access-control system
and distribute authority for scheduling. They enable controlled delegation of
time between different schedulers, and track budgets associated with execu-
tion. SBI budgets and accounting are integrated into the TCaps abstraction,
thus integrating SBIs into the timing and access control mechanisms of the
system. Please see [48] for details.



Temporal isolation. To enforce temporal isolation (G3), we
need to guarantee that the SBIs cannot execute for longer
than system-defined limits, though they may preempt the
Composite kernel. To this end, the ARM standard debugging
facility registers and its special features are leveraged so that
we may (1) track time spent in different worlds — most notably,
in Normal, thus SBI execution, and (2) preempt the SBI’s
execution with a high-priority interrupt when that time reaches
a threshold, even Composite is a non-preemptible kernel.

The SBIs are executed at a higher priority than the Com-
posite kernel without any intervention so the kernel may not
know when they started execution and how long they executed
for. To complicate things further, the SBIs may preempt even
the Composite kernel, and this makes the original TCaps
support of Composite unfit for enforcing execution budgets
of SBIs. Thus, a hardware mechanism is needed so that the
Kernel Normal execution time is accounted for whenever the
handlers execute, and the kernel needs to be notified of when
the budget depletes so that it can preempt the SBI.

In particular, we use the Data Watchpoint and Trace
(DWT) facility which is broadly deployed in Cortex-M mi-
crocontrollers. The DWT built into the processor has a 32-
bit DWT CYCCNT counter that (1) may be programmed to
only account for the number of CPU cycles spent in the
Kernel Normal state, where the SBIs execute.This is done by
programming the CYCDISS (bit [23]) and CYCCNTENA (bit [0])
of the DWT _CTRL register. If the DEMCR and DWT _FUNCTIONn
registers are also configured, (2) the Debug Monitor Exception
(DebuglMon) may be fired when the DWT _CYCCNT value equals
a predefined value in the corresponding DWT COMPn. This
gives us an opportunity to fire a Kernel Secure interrupt when
the SBIs overrun their budget, effectively implementing a finite
budget server for them.

Composite activates threads in response to interrupts, and
executes them using budgets defined by TCaps. TCaps enable
access control for time [48] and are the mechanisms by which
time is accounted to, and limit interrupt thread execution.
User-level management components (e.g. the scheduler) de-
fine policies for replenishing these budgets, and we use a
deferrable server policy [44] in this work. To interface the
software abstractions with SBIs, we introduce a new TCaps
type called hardware TCaps. Different from other TCaps, it
is associated not with any thread but with the Normal world.
When transferred time to, the SBIs will be enabled and the
DWT COMPn will be programmed with the budget allotted for
their execution. When the budget is expended, the processor
will be taken to the DebugMon Handler executing in Kernel
Secure, where we (1) disable the SBIs and (2) modify the
preempted SBI’s stack so that an immediate return from it will
be performed. In this way, the currently executing SBI will be
suspended and the interrupt stacks will be unwinded correctly,
and we’re back in the execution context on the Secure side.
The SBIs will be re-enabled by the hypervisor only when
more budget is allocated to the Kernel Normal vectors, and
the DWT COMPn register will be programmed accordingly so
that the next budget overrun interrupt will fire when this
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budget is exhausted. The system scheduler is responsible for
replenishing the hardware TCaps on a regular basis so that the
time allocated manages to service the SBIs.

DMA engines. It is necessary to administer the DMA engines
securely so that they are not exploited to bypass memory
access control. The MPU and SAU settings only apply to
the CPU but not to the DMA engines, and manufacturer-
specific extensions are required to confine DMA accesses
so that the SBIs may directly initiate them. When such
manufacturer-specific extensions are not present, the system
requires a trusted intermediary that programs the DMA en-
gines securely. Our hardware platform does provide such
manufacturer-specific extensions, however we do not enable
them for simplicity of the implementation. Instead, we lever-
age the I/O manager as the trusted intermediary to perform
DMA transfers.

E. SBI-TZ Virtualization Overview

SBI-TZ builds upon a public work [49] on microcontroller
paravirtualization in MPU-enabled Composite. Here we pro-
vide an overview of this public work, and detail the changes
for SBI-TZ.

CPU virtualization. Composite system scheduling facilities
that supports user-level scheduling policies are leveraged so
that each FreeRTOS VM uses its own scheduler. Between
different FreeRTOS VMs, hierarchical scheduling is applied,
and strict temporal isolation is enforced by Composite’s
TCaps support so that the VMs don’t interfere with each
other [49]. In this particular implementation, the root scheduler
uses a fixed-priority round-robin scheduling strategy, as does
FreeRTOS.

Memory virtualization. In MPU-enabled Composite, each
VM is associated with a Path-Compressed radix Trie (PCTrie)
at creation time. The PCTrie is responsible for holding all the
descriptors of memory regions that it has access to [49]. The
memory manager is responsible for translating VM memory
allocation and deallocation requests into PCTrie operations,
which finally updates the MPU register* content and enforces
spatial isolation.

I/0 virtualization. To enforce strong isolation, all I/O op-
erations, as well as interrupts, are virtualized so each VM
is provided with a restricted set of hardware that it may
interface. In Composite microkernel, I/O virtualization on
TrustZone-M devices is much like memory management due
to the fact that all devices are memory-mapped. The devices
monopolized by one VM only are directly mapped to their
address space, enabling zero-overhead access to device data.
Nevertheless, some devices may be shared between different
VMs. In that case, each VM makes requests via protected
component invocation to the I/O manager to operate the
device.

Accelerated interrupt handling and passing. We've dis-
cussed how the TrustZone-M is leveraged to enable SBI

4Region Number Register (RNR), Region Base Address Register (RBAR) and
Region Attribute and Size Register (RASR).
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Fig. 5: Accelerated interrupt delivery. Memory isolation is denoted
by the dark solid lines, execution resulting from interrupts is denoted
with arrows. Numbers denote the step sequence. Rounded rectangles
denote User and rectangles denote Kernel. Accelerated SBIs start
from step 1, while non-accelerated interrupts start from step 0.

execution. However, it is common in RTOSes for ISRs to
activate threads that further process the device’s data. In this
case, SBI-TZ must provide means to activate the application’s
threads (in Secure) from the SBI. First, we use the TrustZone-
M facilities for efficiently communicating from Normal to
Secure to invoke the Composite kernel, which then routes
the notification using Composite activates to the application
threads in Secure.

As shown in Figure 5, when the SBI gets activated @ it
will begin execution via direct activation from hardware. After
handling the activation, the SBI may need to notify a thread in
a VM of this event. A small veneer function beginning with SG
is linked into a Normal-callable Kernel Secure address, and is
responsible for triggering a dedicated interrupt routine in the
Composite kernel.

When the SBI wants to notify the underlying accelerated
VM, it executes the veneer @ where an interrupt in the
Kernel Secure-side Composite kernel is triggered after @
The SBI then finishes its execution, and the Secure side
resumes its execution. If the Secure side was not executing
in the kernel, the Kernel Secure interrupt now activates and
notify (asnd) @ the I/O manager which will notify the VM
as well @ After the VM internal handler is notified, the
thread running in the VM will be notified subsequently by a
xQueueSendFromISR() @ The kernel may also notify the
VM internal handler directly where only one VM needs to
be notified @, bypassing the I/O manager. If the Secure side
was executing in kernel vector, upon exiting of the kernel, the
Kernel Secure interrupt vector will be activated, performing
the notification.

V. EVALUATION

Hardware configurations. For the evaluation, we use
an ARM Cortex-M33 microcontroller running at 150MHz
(LPC55S69JBD100). Since this processor has a low clock
frequency, no cache is implemented in the CPU.
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Fig. 6: Hardware overheads. user secure-kernel secure is
the interrupt latency from User Secure to Kernel Secure, user
secure-kernel normal is the interrupt the latency from User
Secure to Kernel Normal, kernel secure-skernel normal is the
interrupt latency from Kernel Secure to Kernel Normal, system
call is system call overhead including the system call stub register
pushes and pops, and sg/bxns is the total time to perform security
gate transition from Kernel Normal to Kernel Secure and returning
from Kernel Secure to Kernel Normal.

Software configurations. We run the Composite system with
the supporting components including the I/O manager and
system scheduler. Due to memory footprint constraints, we
only evaluate the overheads of a single VM as the rest of
the memory is required to store measurement results. We use
FreeRTOS version 9.0.0, and the gcc compiler version 9.2.1,
with the -O3 optimization flag in all cases.

Measurement criteria. For interrupt latency measurements,
the time between the triggering of the interrupt and the
activation of the corresponding ISR or handler thread is
measured. For round-trip context switching measurements,
the time between switching to another thread and switching
back to the original thread is measured. For communication
measurements, the time between the sending of the sender and
receiving of the receiver is measured.

All measurements are repeated 10000 times; the average and
maximum values are calculated. All bar graphs in this section
depict the average (the bottom darker bar) and maximum (the
lighter top bar) measurements.

A. Microbenchmarks

Hardware overheads. Many system operations require inter-
action with the hardware features such as privilege modes,
security gates, and interrupts. Three types of interrupts are
leveraged in SBI-TZ: User Secure-to-Kernel Secure (for regu-
lar interrupts), User Secure-to-Kernel Normal (for SBIs when
the system was executing the components), and Kernel Secure-
to-Kernel Normal (for SBIs when the system was executing
the kernel). To understand the operating system, virtualization
and SBI overheads, we first investigate the hardware overheads
for the relevant operations. These provide upper bounds on
the performance of the software abstractions that use them.
Figure 6 includes the hardware overheads for privilege mode
transitions, security state transitions, and interrupts.

We measure the bare-metal latency for an interrupt. Such
latency is defined as the time that the interrupt gets triggered
to the time that the first instruction in the ISR gets executed. In



contrast, system call overhead is measured using the handler
in Composite which is modified to return immediately, and
accounts for both system call vector entering & returning,
system call routing logic, and the saving & restoring of
additional registers.

The costs of security transitions involve hardware operations

on the register sets and redirection of the control flow.
Discussion. These results show that the performance of the
hardware is not prohibitive for real-time applications, espe-
cially the bare-metal interrupt overheads. When comparing the
different int latencies, we observe that they are all within
70 cycles. When we compare the SG and BXNS overheads
with interrupt latencies, we see that these overheads are
significantly smaller because they don’t trigger exceptions.
Also, notice that all system overheads are fairly deterministic,
and the maximum value deviates little, if any, from the average
value.
Operating system operation overheads. To investigate the
cost of various primitive system abstractions in Compos-
ite and FreeRTOS, we compare: (1) Composite component
execution with the user-level scheduling and kernel bypass-
ing library [9], and (2) FreeRTOS which has no protection
facilities thus represents the overhead of a state-of-the-art
lightweight RTOS. These are depicted in Figure 7. For both
systems, the core operations include interrupt handling, thread
context switching, and inter-thread communication or IPC. For
Composite, both intra- and inter- component values are
shown. As FreeRTOS does not provide protection domains,
only intra values are shown.

Both systems divide interrupt handling into “top half” ISR
execution, and “bottom half” handler thread context execution.
We define bare-metal interrupt latency as the time measured
between the interrupt firing and the start of the ISR execution,
and define thread interrupt latency as the time measured
between the end of the ISR execution and the start of the
handler thread context execution. For both systems, we activate
an asynchronous send mechanism at the end of the ISR and
make the handler thread block in the receiving end of that
mechanism. For Composite, this is done by using the asnd
and rcv pair, while for FreeRTOS this is accomplished with
the xQueueSendFromISR() and xQueueReceive().
Discussion. In the context switch and message passing case,
FreeRTOS is the winning system that gives definitive lower
bounds on the overheads of these operations. However, this
comes at a price of no isolation. For Composite, many kernel
operations are bypassed when possible thanks to the user-level
scheduling mechanism, especially in cases where no protection
domain switches are necessary (intra). When protection do-
main switches are included in the overhead (inter), the user-
level scheduling mechanism no longer bypasses the kernel and
extra overheads of kernel component switches are imposed.
Despite this, the Composite intra overheads are generally
on par with the FreeRTOS despite providing protection, and
this refutes the performance argument to go without protection
domains.

When comparing the bare-metal interrupt latencies, we
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observe that the Composite’s is almost identical to the FreeR-
TOS’s, meaning that they are all fit for applications that require
tight interrupt latencies. Despite this, the Composite provides
protection domains for SBIs, whereas the FreeRTOS does
not provide any protection domains; this refutes the interrupt
latency argument to go without protection domains.

Interestingly, Composite’s synchronous communication
mechanism (synchronous invocation, sinv) is much faster
than FreeRTOS’s queue mechanism despite extra protection
domain switching overheads. This is because Composite is
heavily optimized for inter-component synchronous commu-
nications, leveraging the thread migration mechanism.

To better understand the impact of these metrics for real
systems, we discuss a few applications and their interrupt
latency requirements listed in Table I. These applications are
representatives from multiple domains e.g. consumer electron-
ics, automotive electronics, precision instruments and general
industry control. The maximum latencies are typical require-
ments for these applications and are intended to provide a
general impression of what interrupt latencies they expect.
Discussion. From the Table I we can see that the ap-
plications are divided into two categories. There are (1)
threaded-class applications e.g. SPI emulation that only re-
quire responsiveness at or above a millisecond level, and
there are (2) baremetal-class applications e.g. motor control
that require tight interrupt latencies that are typically in
the 0.5-10 microsecond range. The bare-metal OSes (e.g.
FreeRTOS) fulfills the (1) threaded-class by invoking han-
dler threads from the ISRs using the queue communica-
tion (xQueueSendFromISR() and xQueueReceive()) mech-
anism. As they are designed without security considerations
altogether, the (2) baremetal-class is fulfilled by placing the
application code directly into the ISRs. However, vanilla
Composite may only invoke handler threads from the ISRs,
because placing the application code into the kernel-level
ISRs gives them system privileges so that they may break
the isolation between protection domains. This means that
the vanilla Composite will be unable to run applications
with tight latency requirements, or will be forced to run
them without protection domains, which cancels the most
important benefit of Composite. With the addition of SBI to
Composite, protection domains are now in place around these
ISRs as well, which isolates them from the rest of the system
while still providing bare-metal responsiveness. This enables
the Composite to support the (2) baremetal-class applications
as well.

This is important as the system designer may now run
multiple protection domains (e.g. applications and VMs) while
still enjoying bare-metal interrupt latencies without additional
kernel indirection.

Other comparable technologies that aim to provide multi-
tenancy either lacks the ability to link against third-
party binaries(language-based OS [14] and compiler-checked
OS [8]), or are unable to support more than two protection
domains altogether (direct TrustZone-M OS [12]), and some
of their isolation properties depend on the detailed system im-
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Fig. 7: Overheads of primary system operations, in Composite and FreeRTOS. context switch is the round-trip context switch time,
baremetal interrupt is the bare-metal interrupt latency for FreeRTOS and SBI latency for Composite, thread interrupt is the interrupt
latency to notify threads, mutex contended is the contended mutex latency, mutex uncontended is the uncontended mutex acquire/release
overhead, message passing is the message-passing time. For FreeRTOS, mutex operation is through semaphore APIs (xSemaphoreTake ()
and xSemaphoreGive ()), message-passing is through queue APIs (xQueueSend () and xQueueReceive ()); for Composite, mutex operation
is through crt _lock take() and crt lock release(), message-passing is through crt chan send() and crt chan rcv(). For
Composite, we list both inter- and intra- component values, and the overhead of the synchronous communication mechanisms (synchronous

invocation).

plementation. For example, [8] is unable to provide temporal
isolation, and [12] is unable to prevent the Secure VM from
accessing the Normal VM.

B. Virtualization Acceleration Evaluation

SBI performance. To demonstrate the effectiveness of SBI
in functionality consolidation, we evaluate the VM operation
overheads and interrupt latencies with and without SBI. We
measure in particular the latency of each step in delivering
the interrupt, for both the SBI-enabled VM and the normal
VM, to better understand the detailed implications of the SBI
mechanism.

As shown in Figure 9, in terms of top-half interrupt latency,

the SBI-enabled VM far outperforms the normal VM by orders
of magnitude and is approaching bare-metal measurements,
and this validates our design goal to accelerate the interrupts
to hardware speeds. When considering the bottom-half perfor-
mance, the SBI-enabled VM is slightly more sluggish than the
normal VM due to its use of an extra trampoline to notify the
kernel.
Discussion. Firstly, as shown in Figure 8, the context switch
(context switch), mutex (mutex contended) and queue
(message passing) operations generally exhibit overheads
of more than 1500 cycles, which will have to be avoided when
the applications require tight latencies under one microsecond.
The mutex uncontended is an exception, because it does
not involve substantial scheduler operations. Compared to
FreeRTOS measurements in Figure 7, these operations are
more expensive, as is expected from the paravirtualization
approach which provides the additional benefit of increased
isolation for legacy code-bases.

Secondly, the results on interrupt latencies confirm that
the critical interrupt vectors should be hardware-delivered to
minimize the latency (G1). As shown in Figure 9, compared
to the normal VM, the SBI mechanism dramatically decreases
the top-half latency for those SBI-enabled VMs. This is due
to the normal VM’s need to propagate the interrupt signal
between too many agents: from the interrupt source hardware
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Fig. 8: Overheads of primary system operations in paravirtualized
FreeRTOS with and without SBI. context switch is the round-
trip context switch time for both VMs, mutex contended is the
contended mutex latency for both VMs, mutex uncontended is
the uncontended mutex acquire/release overhead for both VMs, and
message passing is the FreeRTOS queue send/receive time for
both VMs. hardware-sbi is the time from interrupt firing to SBI
for the SBI-enabled VM, sbi-kernel is the time from SBI to the
kernel trampoline for the SBI-enabled VM, hardware-kernel is
the time from interrupt firing to the kernel ISR for the normal VM.
kernel-vm is the time from Composite ISR to FreeRTOS interrupt
vector inside the VM for both VMs, vm»>thread is the time from
FreeRTOS interrupt vector to the FreeRTOS receiving thread for both
VMs. See Figure 5 for circled number meanings.

to the kernel (hardware-kernel), and then to the VM
handler thread (kernel-vm). This involves the kernel code
that does asynchronous communication, scheduling primitive
maintenance, and context switches, and here we’re assuming
that the I/O manager is bypassed thanks to the Composite’s
TCaps mechanism. If the I/O manager is not bypassed, more
indirections will occur and hence more overhead will be
imposed. As shown in Table III, the SBI-enabled VM is
capable of accommodating all the applications listed, as long
as the hardware still catches up.
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Fig. 9: Interrupt latency comparisons between paravirtualized FreeR-
TOS with and without SBI. sbi-handler and normal-handler
represent the respective total latency from interrupt firing to the top-
half isolated vector handler, while sbi~>thread and normal->thread
represent the total latency from interrupt firing to the bottom-half
application thread.

However, for bottom-half latency, that is, the time to deliver
the interrupt to a FreeRTOS-aware thread, the SBI-enabled
VM (sbi»thread) takes slightly longer than the normal
VM (normal-thread). This is due to its use of trampolines
(sbi-skernel) to notify the kernel. While this may sound
like a trade-off between top-half and bottom-half latencies, we
argue that the top-half computation is only performed when
we have very tight jitter/latency requirements. Bottom half
computation, on the other hand, is much more common for
processing pipelines that have less strict latency bounds, where
the normal thread activation overhead is acceptable and SBI
mechanism will not be used. It is only in cases where both
the top-half and bottom-half are run and the latency of both
is critical will this matter. Even so, the additional trampoline
overhead is around 300 cycles, which is not prohibitive in
many application cases.

C. Discussion of Additional SBI-TZ Properties

SBI and system security. Despite the fact that Secure is
trusted to access its own resources and that of Normal, we
have been able to maintain both spatial and temporal isolation
between different protection domains. The spatial isolation of
SBIs is achieved by placing them in Kernel Normal, where
they can access neither the kernel nor other protection domains
in Secure (enforced by the SAU). The spatial isolation between
protection domains and the kernel in Secure is achieved by
programming the Secure-side MPU. Strong memory isolation
properties between VMs, services and applications, are pro-
vided and orchestrated by the capability-based access control
mechanisms of the Composite microkernel [49]. The tempo-
ral isolation of SBIs is achieved by using broadly deployed
debugging facilities that have a budget consumption-triggered
interrupt that is integrated into the temporal capability abstrac-
tion of the Composite microkernel [48]. This guarantees that
the SBI execution cannot cause unbounded interference on
lower priority threads and SBIs.
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SBI implementation complexity. Paravirtualization relies on
modifications to the lowest levels of the virtualized OS which
we wish to modify as little as possible to maximize compatibil-
ity with legacy codebases. The paravirtualization infrastructure
itself requires 363 Source Lines of Code (SLOC) modifications
to FreeRTOS to virtualize it. Compared to this already small
effort, the SBI complexity is negligible as it only requires the
programmer to configure the hardware at boot-time to set the
correct vectors to target Kernel Normal. No modifications of
the interrupt vectors themselves are necessary except that they
must be linked to the Normal code memory.

SBI memory footprint. In the experiment, we focus on
a single VM as we devote a large amount of memory to
measurement logging for evaluation. Nevertheless, the multi-
VM support from the system in [49] is maintained. Figure 9 in
[49] demonstrates the overheads for switching between VMs,
and performing IPC between them. The memory footprint
overhead for SBIs is shown in the Table IV, and they are
not prohibitive for many cases.

Class Kernel VM Native
ROM RAM ROM RAM ROM RAM
SBI-enabled 94397 33044 14260 13508 12494 12424
SBI-disabled | 93137 33044 13852 12484 12094 11400

TABLE IV: Memory footprints for each software module in the
system. The numbers are in bytes.

The memory overhead of SBIs is small compared to the
rest of the system. A native Composite application that isn’t
memory-optimized increases by only 400 bytes SRAM, and
1024 bytes ROM.

SBI and multi-core. As discussed in §I, §III and §IV,
the current SBI-TZ implementation only supports one SBI-
enabled VM per TrustZone-M-enabled CPU core. If future
microcontrollers feature more than one TrustZone-M-enabled
CPU core, the TrustZone-M facility of each core may be
independently programmed. This will allow multiple SBI-
enabled VMs (up to the number of CPU cores), where the
SBIs of each VM are handled by a different core. Note that
even on single-core microcontrollers that only allow a single
SBI-enabled VM, the SBI-enabled VM may have more than
one SBI vector. Also, there’s no limitation beyond memory
for running SBI-disabled VMs for consolidation [49]. When
the VMs can tolerate 20us interrupt latency, running them as
SBI-disabled VMs is sufficient, as in [49].

VI. CONCLUSIONS

This paper introduces SBI, an infrastructure to provide bare-
metal interrupt latencies for protection domains while still
maintaining strong isolation along all of the CPU, memory,
and /O dimensions. Furthermore, SBI-TZ, a microcontroller
virtualization infrastructure with tight interrupt latencies is
built upon it.

It is shown that, by leveraging hardware mechanisms to
deliver interrupts, a low-performance microcontroller will be
able to afford the protection domain overheads while providing
interrupt latencies only rivaled by bare-metal systems.
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