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Abstract—The continued increase in Cyber-Physical System
(CPS) complexity and tightening of Size, Weight and Power
(SWaP) constraints are driving the need for consolidation of
software tasks onto fewer microcontrollers. Many embedded
systems, prominently including those in the Internet-of-Things
(IoT), use software packages from multiple untrusted sources,
while their network interfaces expose new attack surfaces that are
not present in traditional off-line devices. Increased consolidation
with untrusted code of various assurance levels complicates
system design, and requires increased spatial and temporal
isolation between the applications. Current microcontroller pro-
tection domain designs are limited by their long interrupt
latencies to isolated applications, forcing the system designers to
place timing-sensitive application code into the kernel interrupt
handlers, trading spatial isolation for tightly-bounded temporal
predictability.

SBI (Secure Baremetal Interrupt) enables zero-software-cost
delivery of interrupts to protection domains in a secure manner
that maintains isolation. We demonstrate an implementation
of SBI using the new hardware-accelerated interrupt delivery
features on TrustZone-M-enabled microcontrollers. This imple-
mentation reduces interrupt latencies by up to 95%, while
maintaining strong spatial and temporal isolation. We believe SBI
could significantly enable future real-time systems that require
both isolation and high responsiveness.

I. INTRODUCTION

The design of traditional cyber-physical systems employs

multiple microcontrollers, e.g. vehicle electronics, avionics,

and programmable logic controllers. Each microcontroller is

responsible for a specific type of real-time or best-effort task,

and a shared bus interconnect (e.g. controller area network)

is responsible for mediating communication between them.

Currently, this traditional design paradigm is facing challenges

from both system complexity and tight Size, Weight and Power

constraints. These challenges are further exacerbated with

the difficulties in orchestrating development between different

microcontroller systems.

The difficulties faced by the traditional multi-

microcontroller designs, e.g. autonomous vehicles, call

for microcontroller consolidation, which replaces multiple

microcontrollers with a single consolidated instance. However,

traditional standalone microcontroller software commonly

runs on the bare-metal, or uses a lightweight Real-Time

Operating System (RTOS) without isolation facilities. A

∗This material is based upon work supported by the NSF under Grants
No. CNS 1815690 and CPS 1837382, and by SRC under grants GRC
task 2911.001 and SRC JUMP task 2779.030. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation nor the Semiconductor Research Corporation.

rewrite of the software to consolidate multiple of these

traditionally stand-alone systems into one may invalidate

potential safety certifications and lead to new rounds of

engineering effort. Moreover, the timing of different real-time

applications may interfere with each other due to the sharing

of CPU, potentially threatening schedulability.

With the advent of Internet-of-Things (IoT), software pack-

ages from multiple potentially untrusted sources are also

required to run on the same piece of hardware. Addition-

ally, the network interfaces expose new attack surfaces that

are not present in traditional off-line devices. Contrary to

the traditional multi-microcontroller designs, the consolidated

design faces various new challenges. An error in one of the

software components may corrupt other software components,

and one compromised software component may in turn com-

promise the whole system; the real-time applications may also

compete for CPU execution time, which potentially leads to

deadline misses. Thus, isolation is required between software

components. This includes spatial isolation in which memory

is segregated between protection domains to ensure integrity,

and temporal isolation in which all execution is properly

prioritized, and the impact of even high-priority malicious or

errant execution is bounded.

Fig. 1: SBI-TZ design overview. Kernel-mode is grey-colored while
user-mode is white-colored. Dotted lines indicate Interrupt Service
Routines (ISRs), and solid curves indicate application threads. Rect-
angles indicate protection domains. Lightning bolts indicate ISR
activation, and arrows indicate the message passing from the ISRs to
applications. The bare-metal OS architecture shown on the left has
low interrupt latency but no isolation; the protected OS architecture
shown in the middle has full isolation but high latency; the proposed
SBI-TZ architecture with SBI shown on the right has low interrupt
latency and full isolation.

Outside of the microcontroller field, virtualization has long
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Class Application Latency Explanation

Baremetal USB I/O emulation 0.5µs Emulation must be cycle-accurate or communication will fail [1]

Baremetal 1-Wire interface emulation 0.5µs 1-Wire bus requires accurate management of its time slots [2]

Baremetal Stepping motor control 1µs Stepping motor with a fine step angle needs rapid pulses [3]

Baremetal Rotary encoders 1µs Servo motor reports positions with encoders that toggle rapidly

Baremetal BLDC motor control 1µs BLDC servo motor needs accurate control over the transistors

Baremetal External ADC data logging 1µs Low-jitter external ADC driving produces high-quality data [4]

Baremetal Machine vision strobed LEDs 10µs Use high-speed blinkers for good imaging quality

Baremetal Communication protocols 10µs TDMA and FH protocols require accurate data transfer timing

Baremetal IR remote control decoding 10µs IR codewords need to be captured with external interrupts

Baremetal Engine control units 10µs Engine ignition timing needs to be considerably accurate

Threaded Quadcopter control loops 100µs The typical high-criticality quadcopter task period is 1ms [5]

Threaded SPI interface emulation 1ms Higher I/O toggling rate means a higher data rate

Threaded USB packet processing 5ms The typical timeout for a USB request is 50ms

TABLE I: Application latency requirements (left) and comparison between latencies (right). Baremetal-class applications require tight
interrupt latencies whereas threaded-class applications do not. Latency means the maximum allowed interrupt latency. sbi is the confined
SBI latency, kernel is the privileged kernel interrupt latency, and thread is the thread unblock latency upon receiving an interrupt.

been adopted for microprocessor architectures (e.g. x86, ARM,

MIPS and PowerPC) as a mechanism for providing isolation.

A virtualization infrastructure simulates a number of mutually

isolated virtual hardware platforms given a single piece of real

hardware. This makes it ideal for accommodating applications

or systems that used to run on multiple pieces of hardware

without significantly modifying the codebase.

Significant research has been performed on microcontroller

protection domains [6], [7], [8], [9], and the paravirtualiza-

tion platform built on them. However, in these designs, the

hardware interrupts are serviced by the kernel-level software

first before they are passed to any user-level protection do-

main. These indirections impose high overheads including

kernel context switches between protection domains. Such

overhead, though acceptable in many cases, is prohibitive

for certain applications that directly interact with the timing-

sensitive actuators or I/O pins, e.g. high-speed servo motor

controllers. These applications require tight interrupt latencies

only achievable by installing their handlers in the kernel, thus

must be isolated from code of lesser timing assurance on the

system. Additionally, a faulty or malicious handler should have

its negative impact on the rest of the system’s software be

bounded, despite having low-level access to interrupt-based

execution.

This paper introduces SBI (Secure Bare-metal Interrupt), a

mechanism that (1) enables interrupt service routine activation

to be vectored directly to a user-level protection domain,

thus bypassing the system kernel and providing bare-metal

latencies, (2) interrupts are properly prioritized with respect

to the thread scheduler [10], [11], and (3) application ISR ex-

ecution is constrained to have only a bounded and predictable

overhead on other applications and Virtual Machines (VMs).

Thus, SBI enables bare-metal interrupt handling overheads,

while enabling the spatial and temporal isolation requirements

for predictable and secure real-time systems.

A practical implementation of SBIs is enabled by recent

advances in microcontroller designs such as those provided

by ARM TrustZone-M for interrupt delivery to a “Normal

World”. Upon this foundation, we provide a virtualization

infrastructure “SBI-TZ” (Figure 1) to enable consolidation of

VMs with varying assurances, and fast ISR execution. Due to

TrustZone-M hardware restrictions, the current implementation

only supports one SBI-enabled VM per TrustZone-M-enabled

CPU core. The value of this implementation is an existence

proof of the SBI concept even on hardware that isn’t well

suited for it, and motivates a more directed implementation

on other hardware in the future. To this end, this paper also

discusses some hardware design suggestions that synergize

with the proposed SBI mechanism, which help to overcome the

restrictions that come with the current TrustZone-M hardware.

Contributions. The contributions of this paper include:

• an introduction of the SBI design (§III) and its adaptation

of the hardware-accelerated interrupt delivery features to

enable tight interrupt latencies while maintaining strong

temporal isolation between protection domains;

• a prototype implementation of SBI in the Composite

microkernel as a foundation for the SBI-TZ accelerated

microcontroller virtualization prototype (§IV);

• an evaluation of the SBI-TZ prototype compared to an

existing bare-metal OS without SBI to understand the

fundamental predictability and efficiency properties of the

system’s operations (§V); and

• an evaluation of a VM with SBI-TZ compared to the same

VM without SBI-TZ to demonstrate the applicability of SBI

in real-world virtualization applications (§V).

II. BACKGROUND AND RELATED WORK

Application interrupt latency requirements. The maximum

interrupt latencies allowed for typical applications are shown

in Table I, alongside different latencies found on a typical

microcontroller. It may be observed that the applications

are divided into two categories - the threaded-class whose

maximum latencies allow execution in OS threads, and the

baremetal-class whose maximum latency is tight so that exe-

cution in hardware ISRs is required.

However, current microcontroller isolation facilities are

limited by their long interrupt latencies to isolated OS

threads (thread), forcing the system designer to place timing-

sensitive application code into the privileged kernel-level ISRs

(kernel), trading spatial isolation for temporal predictabil-

ity. Note that microcontroller manufacturers may have their

own names for the kernel and user modes; for Cortex-M
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devices leveraged in this paper, we refer to “privileged

handler mode” as kernel, and refer to “unprivileged

thread mode” as user to simplify terminology. Note also

that microcontrollers are often clocked in the 10s to 100s of

MHz, thus achieving these latencies doesn’t allow for much

overhead. Though efficient handling of events is often required

to minimize the time in a higher-power mode, in this paper

we focus on the real-time behavior. In this work, we propose

SBI which enables bare-metal interrupt latencies (sbi) while

enforcing both spatial and temporal isolation.

To

From Current processor mode

K Secure K Normal U Secure U Normal

Target

K Secure ✓ ✗ ✗ ✗

K Normal ✓ ✓ ✗ ✗

U Secure ✓ ✗ ✓ ✗

U Normal ✓ ✓ ✓ ✓

TABLE II: Access permission matrix for TrustZone-M in ARMv8-
M processors. K denotes kernel mode, while U denotes user mode.

Direct TrustZone-M applications. ARM TrustZone-M exten-

sions to microcontroller hardware enable two domains that

segregate system software: Normal and Secure. As shown in

Table II, Normal runs conventional software and has access

only to the subset of resources provided to it by Secure. Secure

has access to all system resources, and can map a subset of

interrupt vectors to Normal. It provides an asymmetric model

in which Secure has access to all resources in Normal.

Some researchers have leveraged the TrustZone-M to pro-

vide protection domain isolation. For example, virtualization

of two operating systems has been attempted on TrustZone-

M-enabled ARM Cortex-M microcontrollers [12], [13]. One

of the guest VMs runs in the Secure domain while another

one runs in the Normal domain. These implementations al-

low hardware-level predictable interrupt latencies. However,

(1) only two VMs are allowed, which is inflexible in the case

of microcontroller consolidation that requires multiple VMs

be orchestrated together, (2) the Secure VM have full access

permissions to the memory held by the Normal VM, breaking

the mutual, strong isolation between the two VMs, and (3) the

Secure VM’s execution may indefinitely preempt or interfere

with the Normal VM’s execution, causing the Normal VM to

miss its deadlines. On contrary, the SBI-TZ infrastructure may

host multiple VMs with full spatial and temporal isolation

between them.

Language- and software-based isolation. Many microcon-

troller systems provide isolation via language safety [14],

[15]. These have the benefit that software bugs are confined

by software checks based on type-safety which leads to

low overheads for many common operations. However, these

approaches (1) restrict the programming languages used, and

make virtualization of separate code bases difficult, (2) pro-

hibit linking against third-party precompiled libraries, which

is required in functionality consolidation, and (3) isolates the

applications spatially but not temporally.

Other projects use safe languages on microcontrollers, but

focus on programmability instead at the cost of performance

and predictability [16], [17], [18], [19]. These software VMs

allow setting up protection domains regardless of the un-

derlying processor architecture and hardware features given

the application bytecode. However, these approaches incur

execution efficiency and I/O interaction overheads due to their

interpreted execution, and are unpredictable due to potential

freeze-the-world garbage collections. The memory footprints

of the language VM themselves also put extra pressure on

the scarce microcontroller internal memories. The application

must be written in the language that the VM supports, which

in the automotive domain may require rewriting legacy C/C++

applications. Aside from these downsides, security vulnerabil-

ities also hamper these solutions due to the large code base of

language VMs themselves.

Some software systems use verifiers [20] to statically bound

the execution of their code. However, these approaches (1) re-

quire statically bounded implementations that might not match

application execution patterns, (2) require a verifier and a code

generator that have been repetitive sources of security issues,

(3) complicate dynamic application updates, and (4) still have

a performance impact.

Recently, the WebASseMbly (WASM) [21] has been ported

to the microcontroller platform [7]. It is an intermediate

bytecode assembly language that decouples the language from

the VM, and it allows precompilation from bytecode to native

code. The shortcomings of software VMs mentioned above are

somewhat mitigated with WASM but still not eliminated.

Interrupts as operating system dispatch. Some researchers

(e.g. [22]) have leveraged ISRs as operating system thread dis-

patch, and [8] combines this approach with isolation between

the applications. These designs reach low interrupt latencies

due to their use of hardware ISRs as thread dispatch, and

spatial isolation between tasks is enforced by leveraging Mem-

ory Protection Units (MPUs). Though [8] has multiple modes,

the one that provides security properties runs applications at

the user-level, thus we focus on its comparison to this work.

In this mode, a MPU reprogramming and a kernel- to user-

level transition are required for each interrupt to run it at

the user-level, which leads to significant latencies. Addition-

ally, [8] requires protection domain annotations throughout the

application source code, and all isolation boundaries must be

known at compile-time. In contrast, this work combines bare-

metal interrupt latencies with security, and allows dynamic

protection domain boundaries, which is more flexible.

Hardware multitasking support. Some processors feature

hardware task switching facilities e.g. task gates in 32-bit

x86. A specific instruction or an interrupt may activate one

of the task gates, and the hardware will automatically context

switch to the target task and its protection domain, saving

and restoring all the necessary registers. However, though this

mechanism in x86 performs hardware task switches, (1) it

is only supported on legacy 32-bit x86 that is generally not

receiving feature updates, (2) it has been noted to have even

more overhead than software approaches, and (3) it provides

neither execution budget accounting nor temporal isolation.

This makes them unsuitable for SBI implementation. On the
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contrary, the TrustZone-M hardware leveraged in this work

switches task context and protection domain with far less over-

head than software, and we use prevalent debugging facilities

to provide budget accounting. In addition, Intel’s forthcoming

“Sapphire Rapids” processor (not publicly available yet) also

has a user-level interrupt feature. However, to the best of our

knowledge, it does not switch protection domains, thus cannot

be used to preempt lower-priority execution to service event-

triggered execution.

Hardware virtualization extensions. Some recent high-

performance microcontrollers [23] feature hardware virtual-

ization extensions. When an interrupt to the currently active

VM occurs, it will be directly delivered to the VM’s kernel

mode, eliminating hypervisor-incurred latency [23]. When the

target VM is not currently active, the hypervisor still needs

to be invoked to switch to it so that the interrupt can be

delivered, hampering predictability. By comparison, this work

enables bare-metal interrupt latencies no matter the target VM

is currently active or not, and may be implemented in low-

power or low-cost microcontrollers.

Multi-core systems and resource partitioning. Significant

work is performed on memory scheduling [24], task par-

titioning [25] and cache partitioning [26], [27], [28], [29],

[30] for microprocessor-based embedded systems, and it is

not uncommon for current microprocessors to have multiple

cores that share a last-level cache [31], [32], [33], [34], [35],

[36]. Microcontrollers, on the contrary, are simpler and usually

don’t have multiple cores. In cases where they do, these cores

usually don’t share a last-level cache. However, the complexity

of microcontroller systems is also increasing, and some micro-

processor designs may translate to them e.g.future Cortex-R-

based multi-core automotive microcontrollers. Multi-core ca-

pabilities are orthogonal to the SBI mechanism. For example,

when the memory allocations are cache-colored, the memory

accessed by the SBIs may be on dedicated cache sets so that

they will not be interfered with by other system components;

memory accesses of SBIs may also be treated specially by the

memory access scheduler so that they preempt other requests;

SBIs on different CPU cores may be assigned different cache

sets as well so that they do not interfere with each other.

Additionally, SBIs of different protection domains may be

partitioned among the cores so that they do not compete for

CPU.

Embedded virtualization. Embedded virtualization have been

proposed on MMU-based microprocessor systems such as

MIPS-VZ and ARM Cortex-A9 [37], [38], and commercial-

ized off-the-shelf products have appeared [39], [40], [41].

These virtualization use-cases allow hosting heterogeneous

operating systems on the same microprocessor, or port the

same software infrastructure over different core counts [42].

A specific use-case is to run feature-rich operating systems that

provide commodity high-level API functions alongside a real-

time operating system (RTOS). Provided that the hypervisor

delivers interrupts to the RTOS with minimal latency, real-

time responsiveness of the legacy functionality is delivered.

Some research also leverages virtualization to provide isolation

between protection domains [42], [37], [43], and enable

function integration from multiple firmware binary sources.

However, this research only addresses high-functionality

feature-rich embedded systems that are microprocessor-

powered, and doesn’t discuss the possibility of microcontroller

virtualization. In contrast, the virtualization infrastructure pro-

posed in this work provides bare-metal interrupt latencies

without sacrificing CPU and memory efficiency, making vir-

tualization possible for MPU-based microcontrollers that are

prevalent in resource-constrained embedded systems.

Task model. The system consists of a set of threads, each

assigned a fixed priority. Each thread might execute within an

application, a VM, and can execute in the user-level or, via

system calls, in the kernel. The scheduler implements preemp-

tive fixed-priority scheduling, always choosing the highest-

priority thread for execution. The scheduler programs and

receives timer notifications for time-triggered activation and

preemption. SBIs are also assigned fixed priorities. A SBI is

activated when the hardware interrupt triggers, and the SBI

has a higher priority than the currently active execution. Ad-

ditionally, each SBI is associated with a deferrable server [44].

A SBI’s budget is expended upon its execution, and the SBI

is suspended should the budget fall to zero. The budget is

periodically replenished to a fixed initial value. The deferrable

servers enable the system to limit the interference of SBIs

on lower-priority computations. We’ll focus on a single-core

model, but this could be extended to multi-core systems with

partitioned scheduling. This research assumes a task model

that is intentionally simple, and focuses on ensuring that SBIs

properly implement the model.

Summary. Comparisons to the discussed systems are shown

in Table III. It may be observed that the SBI-TZ is capable

of accommodating all the applications or requirements listed,

while other methods have their respective shortcomings.

III. SYSTEM DESIGN

A. Fundamental Hardware Requirements for SBIs

The critical hardware features to implement SBIs are:

• each ISR is assigned to one of the protection domains,

• the interrupt hardware understands how to switch between

the protection domains without software intervention,

• such hardware task switches have far less latency than

software equivalents, and

• the interrupt hardware provides means to limit the ex-

ecution for ISRs, e.g. dedicated count-down timers and

interrupts on timer expiration.

These features allow the processor hardware to preempt the

current protection domain and switch automatically to a pro-

tection domain where a higher-priority interrupt is targeting.

After executing the interrupt handler, the processor automat-

ically switches back to the former protection domain and re-

sumes execution there. Note that such switches are performed

entirely by the hardware, and no extra software overheads

are involved. This allows the ISRs to be untrusted and even
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Application Baremetal OS
Language-based OS [14]

Compiler-checked OS [8]

Direct

TrustZone-M OS [12]
Composite

Composite
with SBI

Multiple applications ✓ ✓ ✗ ✓ ✓

Third-party binaries ✓ ✗ ✓ ✓ ✓

Temporal isolation ✗ ✓
∗

✓
∗

✓ ✓

Spatial isolation ✗ ✓ ✓
∗

✓ ✓

Baremetal-class ✓ ✓ ✓ ✗ ✓

Threaded-class ✓ ✓ ✓ ✓ ✓

TABLE III: Application latency requirements met. Direct TrustZone-M OS means directly leveraging the TrustZone-M mechanism and
running two VMs; Composite means interrupt notification to user-level threads; Composite/SBI means leveraging the SBI mechanism and
directly placing the critical code into the SBI. ∗ means partial support depending on the implementation.

potentially malicious while still experiencing hardware-level

latencies, hence the name Secure Bare-metal Interrupts (SBI).

Given the minimal underlying hardware support, the guar-

antees of SBI are as follows.

G1: Bare-metal latency. All SBIs are directly routed via

hardware, thus avoiding all software overheads, exhibit-

ing bare-metal latency.

G2: Spatial isolation. All SBI execution is spatially isolated

from the OS kernel and all protection domains that they

do not have access to, so that the SBIs cannot read from

or write to memory beyond their applications or VM’s

protection domain.

G3: Temporal isolation. The SBI execution is bounded,

which means that no SBI may execute for longer than

system-defined limits and thus hamper system respon-

siveness. Each protection domain has a SBI time budget,

and when this budget is expended, the execution of all

SBIs in that protection domain has to stop until that

budget is replenished again.

B. Spatial Isolation

The SBIs are untrusted and hence must be spatially isolated

from the rest of the system, except for the protection domain

they target. As each protection domain corresponds to a

dedicated hardware access control register set for restricting its

memory and I/O access at the kernel-level, we program these

registers much like how we program the MPU to restrict the

accesses of these SBIs. When a SBI-enabled protection domain

has its memory map changed, we program both the MPU

and the corresponding kernel-level access control registers.

When the protection domain executes at the user level, the

MPU is responsible for restricting the accesses of its threads;

when the protection domain executes at the kernel level, the

dedicated access control registers are responsible for restricting

the access of its SBIs. In this way, we spatially isolate both

the user- and kernel-level execution of the protection domain

from the rest of the system.

C. Temporal Isolation

Even if the SBIs are spatially isolated, they may enter

infinite loops either due to software faults or malicious intents

and hamper the responsiveness of the system. To prevent this,

each SBI-enabled protection domain has a budget assigned to

all its SBIs, and when the SBIs execute, the budget expends.

As the hardware provides dedicated per-domain timers only

programmable by the kernel, we preprogram these timers with

the execution budgets of each respective protection domain. As

the SBIs in the protection domain execute, the corresponding

timer counts down and an interrupt targeting the kernel will fire

when the budget expends. This allows the kernel to preempt

the execution of the SBIs and disable further interrupts to the

protection domain when the budget is overrun. When more

budget is allocated to this protection domain by the scheduler,

the kernel will reprogram the timer with this budget and

reenable the SBIs targeting this domain.

D. SBI-enabled Virtualization Infrastructure

Microcontroller virtualization has been used to run multiple

legacy code-base on the same microcontroller, facilitating

functionality consolidation. Each VM is provided with the

ability to call hypervisor services e.g. memory management,

I/O management and scheduling. In public designs, the inter-

rupt signals need to pass through the hypervisor before they

are sent to the VM, which introduces extra latencies that render

many real-time applications difficult to implement.

In this paper, we leverage the SBI mechanism to implement

SBI-TZ, a hardware-accelerated virtualization infrastructure

whose VM interrupts are delivered with bare-metal latencies

(Figure 2). To achieve this, all timing-critical VM interrupt

handlers are implemented with SBIs. When the interrupt is

triggered, the hardware automatically switches to the acceler-

ated VM and executes its interrupt handlers. Thus, the use of

SBI makes bare-metal latencies possible for the legacy appli-

cations without sacrificing mutual isolation between them.

IV. IMPLEMENTATION

A. SBI-enabled Composite µ-Kernel

The SBI-TZ is implemented with the Composite µ-

kernel [45] that has a strong security model based on

capability-based access control. In Composite, all kernel ob-

jects such as threads, communication endpoints and protection

domains are only accessed through unforgeable tokens called

capabilities. These capabilities are shared between protection

domains via delegation. Each protection domain has a capabil-

ity table that tracks its access to kernel objects. A component

is synonymous with a protection domain, and includes both a

page-table to constrain memory access, and a capability table

to constrain kernel object access.

At boot time, a single constructor component with access to

all system resources (aside from the kernel) is tasked with cre-

ating the rest of the components including VMs and real-time

applications, and separates resources between them. In SBI-TZ
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that support both native composite applications and FreeRTOS

VMs, the management components include the scheduler, the

memory manager and the I/O manager that manages device

and interrupt access. Applications such as VMs use highly

optimized synchronous invocations and asynchronous signals

to request and handle I/O communication. In Composite,

privileged components such as the I/O manager use a hardware

capability to connect an interrupt vector to a user-level thread

that will handle that interrupt. SBI-TZ expands the kernel logic

for this to enable connecting SBIs directly to the corresponding

thread, thus enabling direct hardware dispatch to the protection

domain. In SBI-TZ, the I/O manager is extended to be aware of

the SBIs, and is responsible for redirecting them to the correct

VM. SBI-TZ may also be implemented in other systems that

provide protection domains on microcontrollers.

Fig. 2: Virtualization infrastructure. Memory isolation is denoted
by the dark solid lines, logical separation is denoted by the dashed
lines, and VM monitor is denoted by the dotted lines. Specifically,
memory separation by the security extension is denoted by the dark
dash-dotted lines, and is in white background.

Fig. 3: Comparison between conventional TrustZone-M systems (a)
and SBI-TZ (b). Contrary to the conventional design, the SBIs are
in Kernel Normal, while other software components are in Secure.
Protection domains are denoted by rectangles. In (b), the Composite
kernel is also the Trusted Computing Base (TCB).

B. TrustZone-M Hardware.

TrustZone-M was marketed as a virtualization extension;

however, it is in fact a security extension that separates the

system resources, including CPU registers, memory and I/O

into Secure and Normal worlds. It is important to note that

the Secure and Normal are orthogonal to the kernel (“privi-

leged handler”) and user (“unprivileged thread”) modes, for

a combination of four CPU states: Kernel Secure, Kernel

Normal, User Secure and User Normal. As shown in Table II,

CPU running in Secure mode may access both Secure and

Fig. 4: TrustZone-M design by ARM. Its original intention is to
isolate the key secure software components from the other software
components.

Normal resources, while in Normal mode only accesses to

Normal resources are allowed. The resources include CPU,

memory and I/O. Switching from Secure to Normal needs only

a specialized branch instruction (BXNS)1, however switching

from Normal to Secure requires executing a specific secure

gate (SG)2 instruction residing in the Secure but Normal-

callable code memory. As shown in Figure 4, the TrustZone-M

design optimizes for these cases, thus supporting fast switches

between Secure and Normal worlds, and enabling the vectoring

of interrupts directly from one state to another.

That said, TrustZone-M has notably asymmetric access to

resources: the Secure is trusted to access its own resources

and that of Normal. This makes it challenging to provide

strong isolation of code executing in Normal from Secure.

The TrustZone-M enables direct transitions from User Secure

directly into User Normal using BXNS, thus enabling whatever

is running in Secure to cause arbitrary control flow in Normal.

SBI prevents this by disabling computation in User Normal,

and instead enabling isolated VM execution in User Secure,

and coordination with SBIs in Kernel Normal. To sum up, we

carefully design SBI-TZ to take the naturally asymmetric trust

of TrustZone-M, and create a symmetric protection domain

model that isolates the applications.

C. TrustZone-M as an Interrupt Accelerator

In this particular work, we implement SBI-TZ in

a TrustZone-M-enabled microcontroller. In conventional

TrustZone-M-based designs, we run the critical small code-

bases in Secure while the bulk of the operating system and

all of its applications execute in Normal, which is shown in

Figure 3 (a). However, interrupts to be handled by ISRs in the

Normal RTOS cannot be handled by a Secure handler. Doing

so would enable the ISR to access not only the Normal RTOS,

but also the Secure code, which violates isolation guarantees.

Previous work has multiplexed TrustZone [46] to share it

between multiple VMs; in contrast, to enable selected isolated

VMs to reach bare-metal interrupt latencies while isolating all

applications from each other, we choose to leverage TrustZone-

M in an unconventional way as shown in Figure 3 (b). The

SBIs are placed in the Kernel Normal while the Composite

1Once BXNS is executed, the processor will switch to Normal and begin
execution at the location designated by the BXNS’s register operand.

2Once SG is executed, the processor will switch to Secure, and then the
instructions immediately following it will be executed.
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kernel is placed in Kernel Secure; all applications run in the

User Secure while the User Normal is empty. As shown in

Figure 3 (b), the Normal is only used for SBI execution. The

protection domain for the VM/application that uses SBIs spans

the Normal and Secure, but is identical in both. The TrustZone-

M MPU is banked between Secure and Normal and may only

restrict memory accesses at the user level. Due to the fact

that the Secure MPU only isolates application execution in

the User Secure but not SBI execution in the Kernel Normal,

the TrustZone-M Security Attribution Unit (SAU) must be

programmed to confine the SBI execution. Also, should any

User Secure application attempt to maliciously switch to the

SBIs, SBI-TZ guarantees that an exception is delivered to

the Composite kernel. This is ensured as the Normal MPU

is locked into enabling access to no memory at the user-

level. As the Normal MPU is locked, all MPU references

follow refer to the Secure MPU unless otherwise noted. To

sum up, we’ll be able to support SBIs and multiple mutually

mistrusting protection domains simultaneously, enabling both

tight latencies and true multi-tenancy.

Timing-sensitive SBIs run at high priorities in the system,

and this is necessary because they need to meet tight deadlines.

To ensure that SBIs cannot monopolize the CPU or prevent

other tasks from meeting their deadlines, we rely on hardware

facilities to track the cycles executed in Normal. Should the

SBIs execute enough to expend their budget, the Normal

execution cycle tracking hardware will generate an interrupt.

The kernel uses this interrupt to suspend the SBIs until

a budget replenishment. Unfortunately, TrustZone-M alone

does not provide such facilities. However, broadly deployed

debugging facilities [47] do, thus SBI-TZ uses these to ensure

temporal isolation.

To summarize how these mechanisms approach the guar-

antees laid out in §III, we have the following findings:

G1: SBI-TZ SBIs are executed in Normal using TrustZone-

M’s support for nested interrupt handers. This support

enables the preemption of even non-preemptible kernel

code in Secure, and performs hardware context switches

to guarantee bare-metal overheads for interrupt dispatch.

G2: TrustZone-M implements a set of SAU access control

registers for Normal that allow the kernel to preprogram

and restrict the access of the SBIs, enforcing spatial

isolation. The access control registers for TrustZone-

M provide ample flexibility when it comes to memory

range programming, so we may always program it to

reflect the same protection domain that the MPU is

enforcing, placing no restrictions on memory allocations.

However, they do not allow setting independent read,

write and execute permissions for the memory segments.

Additionally, the TrustZone-M only supports two worlds

on each CPU core. Thus, a single SBI-enabled protection

domain can execute on each core.

G3: Composite provides a TCaps abstraction3[48] that al-

lows programming execution budgets, and this mech-

anism is adapted for SBIs to place a bound on their

execution time, enforcing temporal isolation. Note that

the TrustZone-M itself does not provide cycle-accurate

execution accounting of the SBIs. However, we adapt

a common debugging facility to enable this tracking.

A privileged, programmable counter decreases as the

Normal world is executing, and when the value reaches

zero, an interrupt is activated so that the kernel may stop

the execution of the SBIs. We use this facility to interrupt

SBI execution only if it overruns its budget.

To this end, all three guarantees are met in SBI-TZ by carefully

leveraging the asymmetric TrustZone-M to provide hardware-

level interrupt latencies, yet strong symmetrical spatial and

temporal isolation.

D. SBI Integration Overview

We integrate SBIs into the Composite system with the

guarantees in mind.

Spatial isolation. To enforce spatial isolation (G2), both the

MPU and SAU hardware must be administered. The MPU is

responsible for isolating the applications in User Secure. The

SBIs execute in Kernel Normal thus the MPU is incapable

of restricting its memory accesses alone, and we leverage the

SAU to restrict their memory accesses.

Each address range programmed in the SAU are labeled

with one of the two security attributes: Normal or Secure

but Normal-callable which may contain Security Gate (SG)

instructions that are callable from Normal code. The (SG)

instruction, when executed, switches the CPU from Normal to

Secure. As such, the SAU registers are used to control Normal-

accessible memory.

In this implementation, we program the SAU so that all

RAM of the SBI-enabled component is marked as Normal. The

MPU and the SAU are programmed to cover identical address

ranges so that the component is executable from both Normal

(SBIs) and Secure (application code). The SAU may only be

programmed in Secure, so that malicious SBIs never expand

their set of accessible memory, thus enforcing strong spatial

isolation between the SBI code and the rest of the system.

For SBIs, TrustZone-M’s Nested Vectored Interrupt Con-

troller (NVIC) is enabled to directly deliver interrupts to han-

dlers in Normal. In particular, the NVIC’s Interrupt Target Non-

Secure (ITNS) registers are configured so that all the SBIs now

target Normal by hardware. When the Normal interrupts fire,

all Secure CPU registers are saved onto the Secure stack then

set to zero by hardware, and the CPU switches to the Kernel

Normal state to execute the SBIs. This prevents accidental

leakage of Secure register information to untrusted SBIs.

3TCaps are time budgets that fit into the capability-based access model.
They integrate CPU management into a capability-based access-control system
and distribute authority for scheduling. They enable controlled delegation of
time between different schedulers, and track budgets associated with execu-
tion. SBI budgets and accounting are integrated into the TCaps abstraction,
thus integrating SBIs into the timing and access control mechanisms of the
system. Please see [48] for details.
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Temporal isolation. To enforce temporal isolation (G3), we

need to guarantee that the SBIs cannot execute for longer

than system-defined limits, though they may preempt the

Composite kernel. To this end, the ARM standard debugging

facility registers and its special features are leveraged so that

we may (1) track time spent in different worlds – most notably,

in Normal, thus SBI execution, and (2) preempt the SBI’s

execution with a high-priority interrupt when that time reaches

a threshold, even Composite is a non-preemptible kernel.

The SBIs are executed at a higher priority than the Com-

posite kernel without any intervention so the kernel may not

know when they started execution and how long they executed

for. To complicate things further, the SBIs may preempt even

the Composite kernel, and this makes the original TCaps

support of Composite unfit for enforcing execution budgets

of SBIs. Thus, a hardware mechanism is needed so that the

Kernel Normal execution time is accounted for whenever the

handlers execute, and the kernel needs to be notified of when

the budget depletes so that it can preempt the SBI.

In particular, we use the Data Watchpoint and Trace

(DWT) facility which is broadly deployed in Cortex-M mi-

crocontrollers. The DWT built into the processor has a 32-

bit DWT CYCCNT counter that (1) may be programmed to

only account for the number of CPU cycles spent in the

Kernel Normal state, where the SBIs execute.This is done by

programming the CYCDISS (bit [23]) and CYCCNTENA (bit [0])

of the DWT CTRL register. If the DEMCR and DWT FUNCTIONn

registers are also configured, (2) the Debug Monitor Exception

(DebugMon) may be fired when the DWT CYCCNT value equals

a predefined value in the corresponding DWT COMPn. This

gives us an opportunity to fire a Kernel Secure interrupt when

the SBIs overrun their budget, effectively implementing a finite

budget server for them.

Composite activates threads in response to interrupts, and

executes them using budgets defined by TCaps. TCaps enable

access control for time [48] and are the mechanisms by which

time is accounted to, and limit interrupt thread execution.

User-level management components (e.g. the scheduler) de-

fine policies for replenishing these budgets, and we use a

deferrable server policy [44] in this work. To interface the

software abstractions with SBIs, we introduce a new TCaps

type called hardware TCaps. Different from other TCaps, it

is associated not with any thread but with the Normal world.

When transferred time to, the SBIs will be enabled and the

DWT COMPn will be programmed with the budget allotted for

their execution. When the budget is expended, the processor

will be taken to the DebugMon Handler executing in Kernel

Secure, where we (1) disable the SBIs and (2) modify the

preempted SBI’s stack so that an immediate return from it will

be performed. In this way, the currently executing SBI will be

suspended and the interrupt stacks will be unwinded correctly,

and we’re back in the execution context on the Secure side.

The SBIs will be re-enabled by the hypervisor only when

more budget is allocated to the Kernel Normal vectors, and

the DWT COMPn register will be programmed accordingly so

that the next budget overrun interrupt will fire when this

budget is exhausted. The system scheduler is responsible for

replenishing the hardware TCaps on a regular basis so that the

time allocated manages to service the SBIs.

DMA engines. It is necessary to administer the DMA engines

securely so that they are not exploited to bypass memory

access control. The MPU and SAU settings only apply to

the CPU but not to the DMA engines, and manufacturer-

specific extensions are required to confine DMA accesses

so that the SBIs may directly initiate them. When such

manufacturer-specific extensions are not present, the system

requires a trusted intermediary that programs the DMA en-

gines securely. Our hardware platform does provide such

manufacturer-specific extensions, however we do not enable

them for simplicity of the implementation. Instead, we lever-

age the I/O manager as the trusted intermediary to perform

DMA transfers.

E. SBI-TZ Virtualization Overview

SBI-TZ builds upon a public work [49] on microcontroller

paravirtualization in MPU-enabled Composite. Here we pro-

vide an overview of this public work, and detail the changes

for SBI-TZ.

CPU virtualization. Composite system scheduling facilities

that supports user-level scheduling policies are leveraged so

that each FreeRTOS VM uses its own scheduler. Between

different FreeRTOS VMs, hierarchical scheduling is applied,

and strict temporal isolation is enforced by Composite’s

TCaps support so that the VMs don’t interfere with each

other [49]. In this particular implementation, the root scheduler

uses a fixed-priority round-robin scheduling strategy, as does

FreeRTOS.

Memory virtualization. In MPU-enabled Composite, each

VM is associated with a Path-Compressed radix Trie (PCTrie)

at creation time. The PCTrie is responsible for holding all the

descriptors of memory regions that it has access to [49]. The

memory manager is responsible for translating VM memory

allocation and deallocation requests into PCTrie operations,

which finally updates the MPU register4 content and enforces

spatial isolation.

I/O virtualization. To enforce strong isolation, all I/O op-

erations, as well as interrupts, are virtualized so each VM

is provided with a restricted set of hardware that it may

interface. In Composite microkernel, I/O virtualization on

TrustZone-M devices is much like memory management due

to the fact that all devices are memory-mapped. The devices

monopolized by one VM only are directly mapped to their

address space, enabling zero-overhead access to device data.

Nevertheless, some devices may be shared between different

VMs. In that case, each VM makes requests via protected

component invocation to the I/O manager to operate the

device.

Accelerated interrupt handling and passing. We’ve dis-

cussed how the TrustZone-M is leveraged to enable SBI

4Region Number Register (RNR), Region Base Address Register (RBAR) and
Region Attribute and Size Register (RASR).
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Fig. 5: Accelerated interrupt delivery. Memory isolation is denoted
by the dark solid lines, execution resulting from interrupts is denoted
with arrows. Numbers denote the step sequence. Rounded rectangles
denote User and rectangles denote Kernel. Accelerated SBIs start
from step 1, while non-accelerated interrupts start from step 0.

execution. However, it is common in RTOSes for ISRs to

activate threads that further process the device’s data. In this

case, SBI-TZ must provide means to activate the application’s

threads (in Secure) from the SBI. First, we use the TrustZone-

M facilities for efficiently communicating from Normal to

Secure to invoke the Composite kernel, which then routes

the notification using Composite activates to the application

threads in Secure.

As shown in Figure 5, when the SBI gets activated 1 , it

will begin execution via direct activation from hardware. After

handling the activation, the SBI may need to notify a thread in

a VM of this event. A small veneer function beginning with SG

is linked into a Normal-callable Kernel Secure address, and is

responsible for triggering a dedicated interrupt routine in the

Composite kernel.

When the SBI wants to notify the underlying accelerated

VM, it executes the veneer 2 where an interrupt in the

Kernel Secure-side Composite kernel is triggered after 3 .

The SBI then finishes its execution, and the Secure side

resumes its execution. If the Secure side was not executing

in the kernel, the Kernel Secure interrupt now activates and

notify (asnd) 4 the I/O manager which will notify the VM

as well 5 . After the VM internal handler is notified, the

thread running in the VM will be notified subsequently by a

xQueueSendFromISR() 6 . The kernel may also notify the

VM internal handler directly where only one VM needs to

be notified 7 , bypassing the I/O manager. If the Secure side

was executing in kernel vector, upon exiting of the kernel, the

Kernel Secure interrupt vector will be activated, performing

the notification.

V. EVALUATION

Hardware configurations. For the evaluation, we use

an ARM Cortex-M33 microcontroller running at 150MHz

(LPC55S69JBD100). Since this processor has a low clock

frequency, no cache is implemented in the CPU.

Fig. 6: Hardware overheads. user secure→kernel secure is
the interrupt latency from User Secure to Kernel Secure, user
secure→kernel normal is the interrupt the latency from User
Secure to Kernel Normal, kernel secure→kernel normal is the
interrupt latency from Kernel Secure to Kernel Normal, system
call is system call overhead including the system call stub register
pushes and pops, and sg/bxns is the total time to perform security
gate transition from Kernel Normal to Kernel Secure and returning
from Kernel Secure to Kernel Normal.

Software configurations. We run the Composite system with

the supporting components including the I/O manager and

system scheduler. Due to memory footprint constraints, we

only evaluate the overheads of a single VM as the rest of

the memory is required to store measurement results. We use

FreeRTOS version 9.0.0, and the gcc compiler version 9.2.1,

with the -O3 optimization flag in all cases.

Measurement criteria. For interrupt latency measurements,

the time between the triggering of the interrupt and the

activation of the corresponding ISR or handler thread is

measured. For round-trip context switching measurements,

the time between switching to another thread and switching

back to the original thread is measured. For communication

measurements, the time between the sending of the sender and

receiving of the receiver is measured.

All measurements are repeated 10000 times; the average and

maximum values are calculated. All bar graphs in this section

depict the average (the bottom darker bar) and maximum (the

lighter top bar) measurements.

A. Microbenchmarks

Hardware overheads. Many system operations require inter-

action with the hardware features such as privilege modes,

security gates, and interrupts. Three types of interrupts are

leveraged in SBI-TZ: User Secure-to-Kernel Secure (for regu-

lar interrupts), User Secure-to-Kernel Normal (for SBIs when

the system was executing the components), and Kernel Secure-

to-Kernel Normal (for SBIs when the system was executing

the kernel). To understand the operating system, virtualization

and SBI overheads, we first investigate the hardware overheads

for the relevant operations. These provide upper bounds on

the performance of the software abstractions that use them.

Figure 6 includes the hardware overheads for privilege mode

transitions, security state transitions, and interrupts.

We measure the bare-metal latency for an interrupt. Such

latency is defined as the time that the interrupt gets triggered

to the time that the first instruction in the ISR gets executed. In
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contrast, system call overhead is measured using the handler

in Composite which is modified to return immediately, and

accounts for both system call vector entering & returning,

system call routing logic, and the saving & restoring of

additional registers.

The costs of security transitions involve hardware operations

on the register sets and redirection of the control flow.

Discussion. These results show that the performance of the

hardware is not prohibitive for real-time applications, espe-

cially the bare-metal interrupt overheads. When comparing the

different int latencies, we observe that they are all within

70 cycles. When we compare the SG and BXNS overheads

with interrupt latencies, we see that these overheads are

significantly smaller because they don’t trigger exceptions.

Also, notice that all system overheads are fairly deterministic,

and the maximum value deviates little, if any, from the average

value.

Operating system operation overheads. To investigate the

cost of various primitive system abstractions in Compos-

ite and FreeRTOS, we compare: (1) Composite component

execution with the user-level scheduling and kernel bypass-

ing library [9], and (2) FreeRTOS which has no protection

facilities thus represents the overhead of a state-of-the-art

lightweight RTOS. These are depicted in Figure 7. For both

systems, the core operations include interrupt handling, thread

context switching, and inter-thread communication or IPC. For

Composite, both intra- and inter- component values are

shown. As FreeRTOS does not provide protection domains,

only intra values are shown.

Both systems divide interrupt handling into “top half” ISR

execution, and “bottom half” handler thread context execution.

We define bare-metal interrupt latency as the time measured

between the interrupt firing and the start of the ISR execution,

and define thread interrupt latency as the time measured

between the end of the ISR execution and the start of the

handler thread context execution. For both systems, we activate

an asynchronous send mechanism at the end of the ISR and

make the handler thread block in the receiving end of that

mechanism. For Composite, this is done by using the asnd

and rcv pair, while for FreeRTOS this is accomplished with

the xQueueSendFromISR() and xQueueReceive().

Discussion. In the context switch and message passing case,

FreeRTOS is the winning system that gives definitive lower

bounds on the overheads of these operations. However, this

comes at a price of no isolation. For Composite, many kernel

operations are bypassed when possible thanks to the user-level

scheduling mechanism, especially in cases where no protection

domain switches are necessary (intra). When protection do-

main switches are included in the overhead (inter), the user-

level scheduling mechanism no longer bypasses the kernel and

extra overheads of kernel component switches are imposed.

Despite this, the Composite intra overheads are generally

on par with the FreeRTOS despite providing protection, and

this refutes the performance argument to go without protection

domains.

When comparing the bare-metal interrupt latencies, we

observe that the Composite’s is almost identical to the FreeR-

TOS’s, meaning that they are all fit for applications that require

tight interrupt latencies. Despite this, the Composite provides

protection domains for SBIs, whereas the FreeRTOS does

not provide any protection domains; this refutes the interrupt

latency argument to go without protection domains.

Interestingly, Composite’s synchronous communication

mechanism (synchronous invocation, sinv) is much faster

than FreeRTOS’s queue mechanism despite extra protection

domain switching overheads. This is because Composite is

heavily optimized for inter-component synchronous commu-

nications, leveraging the thread migration mechanism.

To better understand the impact of these metrics for real

systems, we discuss a few applications and their interrupt

latency requirements listed in Table I. These applications are

representatives from multiple domains e.g. consumer electron-

ics, automotive electronics, precision instruments and general

industry control. The maximum latencies are typical require-

ments for these applications and are intended to provide a

general impression of what interrupt latencies they expect.

Discussion. From the Table I we can see that the ap-

plications are divided into two categories. There are (1)

threaded-class applications e.g. SPI emulation that only re-

quire responsiveness at or above a millisecond level, and

there are (2) baremetal-class applications e.g. motor control

that require tight interrupt latencies that are typically in

the 0.5-10 microsecond range. The bare-metal OSes (e.g.

FreeRTOS) fulfills the (1) threaded-class by invoking han-

dler threads from the ISRs using the queue communica-

tion (xQueueSendFromISR() and xQueueReceive()) mech-

anism. As they are designed without security considerations

altogether, the (2) baremetal-class is fulfilled by placing the

application code directly into the ISRs. However, vanilla

Composite may only invoke handler threads from the ISRs,

because placing the application code into the kernel-level

ISRs gives them system privileges so that they may break

the isolation between protection domains. This means that

the vanilla Composite will be unable to run applications

with tight latency requirements, or will be forced to run

them without protection domains, which cancels the most

important benefit of Composite. With the addition of SBI to

Composite, protection domains are now in place around these

ISRs as well, which isolates them from the rest of the system

while still providing bare-metal responsiveness. This enables

the Composite to support the (2) baremetal-class applications

as well.

This is important as the system designer may now run

multiple protection domains (e.g. applications and VMs) while

still enjoying bare-metal interrupt latencies without additional

kernel indirection.

Other comparable technologies that aim to provide multi-

tenancy either lacks the ability to link against third-

party binaries(language-based OS [14] and compiler-checked

OS [8]), or are unable to support more than two protection

domains altogether (direct TrustZone-M OS [12]), and some

of their isolation properties depend on the detailed system im-
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Fig. 7: Overheads of primary system operations, in Composite and FreeRTOS. context switch is the round-trip context switch time,
baremetal interrupt is the bare-metal interrupt latency for FreeRTOS and SBI latency for Composite, thread interrupt is the interrupt
latency to notify threads, mutex contended is the contended mutex latency, mutex uncontended is the uncontended mutex acquire/release
overhead, message passing is the message-passing time. For FreeRTOS, mutex operation is through semaphore APIs (xSemaphoreTake()
and xSemaphoreGive()), message-passing is through queue APIs (xQueueSend() and xQueueReceive()); for Composite, mutex operation
is through crt lock take() and crt lock release(), message-passing is through crt chan send() and crt chan rcv(). For
Composite, we list both inter- and intra- component values, and the overhead of the synchronous communication mechanisms (synchronous
invocation).

plementation. For example, [8] is unable to provide temporal

isolation, and [12] is unable to prevent the Secure VM from

accessing the Normal VM.

B. Virtualization Acceleration Evaluation

SBI performance. To demonstrate the effectiveness of SBI

in functionality consolidation, we evaluate the VM operation

overheads and interrupt latencies with and without SBI. We

measure in particular the latency of each step in delivering

the interrupt, for both the SBI-enabled VM and the normal

VM, to better understand the detailed implications of the SBI

mechanism.

As shown in Figure 9, in terms of top-half interrupt latency,

the SBI-enabled VM far outperforms the normal VM by orders

of magnitude and is approaching bare-metal measurements,

and this validates our design goal to accelerate the interrupts

to hardware speeds. When considering the bottom-half perfor-

mance, the SBI-enabled VM is slightly more sluggish than the

normal VM due to its use of an extra trampoline to notify the

kernel.

Discussion. Firstly, as shown in Figure 8, the context switch

(context switch), mutex (mutex contended) and queue

(message passing) operations generally exhibit overheads

of more than 1500 cycles, which will have to be avoided when

the applications require tight latencies under one microsecond.

The mutex uncontended is an exception, because it does

not involve substantial scheduler operations. Compared to

FreeRTOS measurements in Figure 7, these operations are

more expensive, as is expected from the paravirtualization

approach which provides the additional benefit of increased

isolation for legacy code-bases.

Secondly, the results on interrupt latencies confirm that

the critical interrupt vectors should be hardware-delivered to

minimize the latency (G1). As shown in Figure 9, compared

to the normal VM, the SBI mechanism dramatically decreases

the top-half latency for those SBI-enabled VMs. This is due

to the normal VM’s need to propagate the interrupt signal

between too many agents: from the interrupt source hardware

Fig. 8: Overheads of primary system operations in paravirtualized
FreeRTOS with and without SBI. context switch is the round-
trip context switch time for both VMs, mutex contended is the
contended mutex latency for both VMs, mutex uncontended is
the uncontended mutex acquire/release overhead for both VMs, and
message passing is the FreeRTOS queue send/receive time for
both VMs. hardware→sbi is the time from interrupt firing to SBI
for the SBI-enabled VM, sbi→kernel is the time from SBI to the
kernel trampoline for the SBI-enabled VM, hardware→kernel is
the time from interrupt firing to the kernel ISR for the normal VM.
kernel→vm is the time from Composite ISR to FreeRTOS interrupt
vector inside the VM for both VMs, vm→thread is the time from
FreeRTOS interrupt vector to the FreeRTOS receiving thread for both
VMs. See Figure 5 for circled number meanings.

to the kernel (hardware→kernel), and then to the VM

handler thread (kernel→vm). This involves the kernel code

that does asynchronous communication, scheduling primitive

maintenance, and context switches, and here we’re assuming

that the I/O manager is bypassed thanks to the Composite’s

TCaps mechanism. If the I/O manager is not bypassed, more

indirections will occur and hence more overhead will be

imposed. As shown in Table III, the SBI-enabled VM is

capable of accommodating all the applications listed, as long

as the hardware still catches up.
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Fig. 9: Interrupt latency comparisons between paravirtualized FreeR-
TOS with and without SBI. sbi→handler and normal→handler
represent the respective total latency from interrupt firing to the top-
half isolated vector handler, while sbi→thread and normal→thread
represent the total latency from interrupt firing to the bottom-half
application thread.

However, for bottom-half latency, that is, the time to deliver

the interrupt to a FreeRTOS-aware thread, the SBI-enabled

VM (sbi→thread) takes slightly longer than the normal

VM (normal→thread). This is due to its use of trampolines

(sbi→kernel) to notify the kernel. While this may sound

like a trade-off between top-half and bottom-half latencies, we

argue that the top-half computation is only performed when

we have very tight jitter/latency requirements. Bottom half

computation, on the other hand, is much more common for

processing pipelines that have less strict latency bounds, where

the normal thread activation overhead is acceptable and SBI

mechanism will not be used. It is only in cases where both

the top-half and bottom-half are run and the latency of both

is critical will this matter. Even so, the additional trampoline

overhead is around 300 cycles, which is not prohibitive in

many application cases.

C. Discussion of Additional SBI-TZ Properties

SBI and system security. Despite the fact that Secure is

trusted to access its own resources and that of Normal, we

have been able to maintain both spatial and temporal isolation

between different protection domains. The spatial isolation of

SBIs is achieved by placing them in Kernel Normal, where

they can access neither the kernel nor other protection domains

in Secure (enforced by the SAU). The spatial isolation between

protection domains and the kernel in Secure is achieved by

programming the Secure-side MPU. Strong memory isolation

properties between VMs, services and applications, are pro-

vided and orchestrated by the capability-based access control

mechanisms of the Composite microkernel [49]. The tempo-

ral isolation of SBIs is achieved by using broadly deployed

debugging facilities that have a budget consumption-triggered

interrupt that is integrated into the temporal capability abstrac-

tion of the Composite microkernel [48]. This guarantees that

the SBI execution cannot cause unbounded interference on

lower priority threads and SBIs.

SBI implementation complexity. Paravirtualization relies on

modifications to the lowest levels of the virtualized OS which

we wish to modify as little as possible to maximize compatibil-

ity with legacy codebases. The paravirtualization infrastructure

itself requires 363 Source Lines of Code (SLOC) modifications

to FreeRTOS to virtualize it. Compared to this already small

effort, the SBI complexity is negligible as it only requires the

programmer to configure the hardware at boot-time to set the

correct vectors to target Kernel Normal. No modifications of

the interrupt vectors themselves are necessary except that they

must be linked to the Normal code memory.

SBI memory footprint. In the experiment, we focus on

a single VM as we devote a large amount of memory to

measurement logging for evaluation. Nevertheless, the multi-

VM support from the system in [49] is maintained. Figure 9 in

[49] demonstrates the overheads for switching between VMs,

and performing IPC between them. The memory footprint

overhead for SBIs is shown in the Table IV, and they are

not prohibitive for many cases.

Class
Kernel VM Native

ROM RAM ROM RAM ROM RAM

SBI-enabled 94397 33044 14260 13508 12494 12424

SBI-disabled 93137 33044 13852 12484 12094 11400

TABLE IV: Memory footprints for each software module in the
system. The numbers are in bytes.

The memory overhead of SBIs is small compared to the

rest of the system. A native Composite application that isn’t

memory-optimized increases by only 400 bytes SRAM, and

1024 bytes ROM.

SBI and multi-core. As discussed in §I, §III and §IV,

the current SBI-TZ implementation only supports one SBI-

enabled VM per TrustZone-M-enabled CPU core. If future

microcontrollers feature more than one TrustZone-M-enabled

CPU core, the TrustZone-M facility of each core may be

independently programmed. This will allow multiple SBI-

enabled VMs (up to the number of CPU cores), where the

SBIs of each VM are handled by a different core. Note that

even on single-core microcontrollers that only allow a single

SBI-enabled VM, the SBI-enabled VM may have more than

one SBI vector. Also, there’s no limitation beyond memory

for running SBI-disabled VMs for consolidation [49]. When

the VMs can tolerate 20us interrupt latency, running them as

SBI-disabled VMs is sufficient, as in [49].

VI. CONCLUSIONS

This paper introduces SBI, an infrastructure to provide bare-

metal interrupt latencies for protection domains while still

maintaining strong isolation along all of the CPU, memory,

and I/O dimensions. Furthermore, SBI-TZ, a microcontroller

virtualization infrastructure with tight interrupt latencies is

built upon it.

It is shown that, by leveraging hardware mechanisms to

deliver interrupts, a low-performance microcontroller will be

able to afford the protection domain overheads while providing

interrupt latencies only rivaled by bare-metal systems.
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