
*����+�����,�(���
�
�����-��%%������������%���"��-�������
�����	

��������-���
���%��
�%�
��
&������.�-�����
��/&������(���0�

���

������	
��

�����

��������	�����������������	�
�������
������������   !�
�"#������!
�����������$%

�"����#&����������#����
���#���	#

����'��	�
 
(�#�	������
���	���#��������"���	#

���������
�
�'��
��
)���*��
��	�

�

+��
��,����-�*.
����� 
	�-�/������+
�
��
��-�*.������0
.��
.�
�1��
����
�!�!�2�..
�
��
�

���
���������
	��
��������	�
�	��
�������������
����	������������
������������������
������������������� ������!"#""$%�&'����()����������(�������	(����(������*�������+�(	���
	���	�	���	(� 	�����'����(���������������* �����,����&��  �	���
�&&�-����������	��
�./&%
0#�0#1#2"34"5153�"#""�"0###5#

������.���������
	��
����������	

��
����
�������
���������������������

�
��������������� ������
���

!�"�
��������
��	����#��������

$�"�
�� �������
%��������
��&�������

#��
%���'
���	����

�
��������������
%����

�
���(�������)�����

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2022.2100050
https://doi.org/10.1080/24725854.2022.2100050
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2022.2100050
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2022.2100050
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2022.2100050
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2022.2100050
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2100050&domain=pdf&date_stamp=2022-08-15
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2100050&domain=pdf&date_stamp=2022-08-15


Identifying the influence of surface texture waveforms on colors of polished
surfaces using an explainable AI approach

Yuhao Zhonga , Akash Tiwaria, Hitomi Yamaguchib, Akhlesh Lakhtakiac, and Satish T.S. Bukkapatnama

aIndustrial and Systems Engineering, Texas A&M University, College Station, TX, USA; bMechanical and Aerospace Engineering, University of
Florida, Gainesville, FL, USA; cEngineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA

ABSTRACT
An explainable artificial intelligence approach based on consolidating the Local Interpretable and
Model-agnostic Explanation (LIME) model outputs was devised to discern the influence of the sur-
face morphology on the colors exhibited by stainless-steel 304 parts polished with a Magnetic
Abrasive Finishing (MAF) process. The MAF polishing process was used to create two regions,
each appearing either blue or red to the naked eye. The color distribution was microscopically
heterogeneous, i.e., some red microscale patches were dispersed in blue regions, and vice versa.
The surface morphology was represented in the frequency domain (using a 2D Fourier transform)
to capture the harmonic surface patterns, such as the feed and lay marks from the polishing pro-
cess. A Convolutional Neural Network (CNN) was employed to identify the color of the region
from the frequency characteristics of the surface morphology. The CNN was able to predict the
observed colors with test accuracies exceeding 99%, suggesting that the frequency characteristics
of the surface morphology of the red regions are distinctly different from those of the blue
regions. A LIME model was constructed around each small segment within each region of the sur-
face to identify the frequency features that are influential for differentiating between the colors.
To deal with the effect of heterogeneity, an algorithm based on the query by experts was used to
reconcile the local influences and gather the global explanations of the frequency characteristics
that inform the blue versus red regions. We found that the dominant morphological features in
the red regions are those that capture the polishing lay patterns underlying surface structure,
whereas those in the blue regions capture the non-uniform and high-frequency waveform pat-
terns, such as those result when oxide films form due to the intense polishing conditions.
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1. Introduction

Structural colors and pigments on polished metallic surfaces
have fascinated humankind for millennia, starting from the col-
ors on wootz steel, Damascus swords, and ornaments
(Srinivasan and Ranganathan 2004). In recent times, researchers
have shown renewed interest in metal surface coloration, as it
has a wide range of applications from simple aesthetic-decora-
tions up to advanced information-encoding for authentication
and traceability of products in supply chains (Veiko et al., 2017;
He et al., 2019; Wang et al., 2020). Due to the increasing focus
on cybersecurity assurance in manufacturing supply chains,
embedding watermarks in products has garnered increased
interest (Mahesh et al., 2020; Tiwari, Villasenor, Gupta, Reddy,
Karri and Bukkapatnam, 2021). Surface colors are attractive as
potential watermarks on products, as they have minimal effect
on the product functionality. However, current technologies for
imparting durable surface colors by controlling the surface
morphology remain slow and expensive (Liu et al., 2019).
Hence, they are limited to embedding colors over small areas
of a product. A cost-effective technology to controllably impart
surface colors over large areas does not exist.

Recently, it has been reported that Magnetic Abrasive
Finishing (MAF) (Yamaguchi et al., 2007; Ganguly et al., 2013)
can produce colors on stainless-steel surfaces during the polish-
ing process (Tiwari, Xu, Lakhtakia, Yamaguchi and
Bukkapatnam, 2021). The MAF process utilizes a magnetic field
to force ferromagnetic particles and abrasives against the target
surface with a relative motion to finish a variety of metallic sur-
faces (Yamaguchi et al., 2007; Ganguly et al. 2013). The MAF
process offers the potential to impart a variety of colors over a
large area, including curved and freeform surfaces.

Figure 1 shows two sample surfaces from the MAF pro-
cess. Under natural daylight, three colored regions on the
curved surface are visible to the naked eye. For the purpose
of discussion, they are named: (i) yellow, unpolished, (ii)
red, mildly polished, and (iii) blue, intensely MAF-polished
regions. However, it was noted that these regions are not
monochromatic, but in fact are highly heterogeneous (see
Figure 2). Each region is composed of different, multi-col-
ored patterns at the microscale, and these microscale pat-
terns are dispersed across the blue and the red regions,
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albeit at different intensities (Tiwari, Xu, Lakhtakia,
Yamaguchi and Bukkapatnam, 2021).

In order to create specific surface colors using the MAF
polishing process, it is necessary to first gain insight into the
causes of color formation and the characteristics of the col-
ors formed. Several studies have been conducted to investi-
gate the effect of morphology imparted by various
manufacturing and surface modification processes on surface
colors. For example, Veiko et al. (2017) showed that the
period, height, and orientation angle of laser-induced peri-
odic structures on AISI 304 stainless steel inform surface
coloration. Zheng et al. (2002) found that the laser-induced
colors also vary with the thickness of a layer of oxides
formed on the surface. The thickness of the Anodic
Aluminum Oxide (AAO) films have been found to affect the
color of metal-AAO-Al nanostructures (Manzano et al.,
2018). Tiwari, Xu, Lakhtakia, Yamaguchi and Bukkapatnam
(2021) have suggested that the oxide films form preferen-
tially along the MAF abrasion feed marks on the surface
and that the observed colors result from the oxide pigments
and thin-film interference. This earlier study, however, did
not delineate the effect of structural morphology on
the colors.

In the present work, we focus on understanding the sur-
face morphological characteristics (i.e., the surface height
distribution) that inform the major colors in the red and
blue regions. It is noted that the surface height distribution
may be attributed to the thickness and distribution of the
oxide films, as well as the intrinsic surface structure (e.g.,
abrasion lay patterns). We frame the present work as an
attempt to offer statistically consistent inferences for the fol-
lowing two questions:

Q1: To what extent can the surface morphology inform the
major surface colors?

Q2: Which morphological features influence these colors
and why?

Machine learning methods can address both questions by
producing models that connect output variables to input
variables. For example, Baxter et al. (2019) employed neural
networks to predict colors from laser parameters, as well as
from geometric parameters such as nanoparticle spacing and
radius, in a laser-machining process. In their work, the col-
ors were represented by RGB (red, green, and blue) values
converted from simulated reflectance spectra. Machine
learning methods have also been applied to decode the
information encrypted under patterned structural colors by
classifying the optical microscope images (He et al., 2019).
However, the mechanism of how the complicated machine
learning models, also called “black box” models, generate
“good” predictions usually remains unexplained. This can
raise questions as the models could have merely captured
noise or artifacts in the data. Meanwhile, we might lose
opportunities to discover some previously unknown patterns
that the model may have learned.

Efforts during at least the past four decades on interpret-
ing the outcomes of machine learning models (Scott et al.,
1977), coupled with their growing complexity, have led to
the emergence of explainable AI (XAI) as an active research
area. XAI techniques aim to produce details that make the
functioning of “black box” models clearer or easier to
understand for certain audiences (Gunning, 2017; Arrieta
et al., 2020).

Generally, XAI techniques can be classified into ante-hoc
and post-hoc approaches (Murdoch et al., 2019). Ante-hoc
approaches aim to construct transparent models, such as lin-
ear regression, decision trees, and modified neural networks
that are inherently easier for humans to understand and
retrace the decision processes (Li et al., 2018). For instance,
Letham et al. (2015) built interpretable Bayesian decision
lists based on carefully selected features extracted from
health records to predict stroke risks. Post-hoc approaches
use simpler surrogates of pre-trained complex models to
generate intuitive explanations and reasoning that the com-
plex “black box” models could not provide in the first place
(Ribeiro et al., 2016; Lundberg and Lee, 2017; Zhang et al.,
2018). In practice, the ante-hoc approaches are preferred
whenever the underlying relationships are simple, and/or

Figure 2. Micrographs of (left) red and (right) blue regions, and their zoomed local areas showing a random, anisotropic dispersion of various colors within each
region (obtained using Olympus BX51 microscope under 10x magnification).

Figure 1. Stainless-steel 304 curved parts cut off from MAF-polished tubes (left:
Sample 1, right: Sample 2) showing three distinctly colored regions: yellow, red
and blue (images taken with a smartphone camera).
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adequate domain expertise exists to determine the useful
features beforehand to build accurate models. The post-hoc
approaches are typically used for uncovering hidden know-
ledge underlying “black box” models (Murdoch et al., 2019;
Rudin, 2019). In our case, post-hoc approaches are more
suitable because our goal is to discern and explain the com-
plex relationship between surface morphology and
the colors.

Local Interpretable Model-agnostic Explanation (LIME) is
a state-of-the-art post-hoc XAI method to provide local
explanations for many “black box” classification and regres-
sion models (Ribeiro et al., 2016). It uses surrogate models
that are inherently interpretable to derive local approxima-
tions of a “black box” model at various neighborhoods of
the input predictor space. Consequently, the complicated
functional relationships captured by an accurate “black box’’
model is dissected into a set of local explanations, such that
each explanation holds for a particular neighborhood of the
inputs space. One of the first applications of LIME in the
manufacturing domain was to draw physical insights on
material microstructures buried in the acoustic emission
gathered from a nano-scratching process (Iquebal
et al., 2020).

Although LIME provides a local explanation for the pre-
diction made by the “black box” model at each input, deriv-
ing a global explanation from consolidating the local
explanations remains a standing issue. Such a consolidation
becomes essential, albeit challenging, in the present case.
This is because the surface heterogeneities, resulting from
the dispersion of red microscale patterns in the blue region
and vice versa, can yield conflicting local interpretations.
Prior research on generating LIME-based global explana-
tions (Ribeiro et al., 2016; Chettri et al., 2018; ElShawi et al.,
2019; Ibrahim et al., 2019; Sangroya et al., 2020) mostly
focused on maximizing the diversity of explanations. None
of the methods have considered the goodness of the local
explanations, e.g., the coefficient of determination (R2) of
the linear models that are used in LIME to locally approxi-
mate the “black box” model. However, since the local
explanations are directly inferred from the coefficients of the
linear models, they can eventually lead to false global
explanations if these models fail to capture the local behav-
ior of the “black box” model. This usually happens when
heterogeneity is present in the data, making the local deci-
sion boundary highly nonlinear (Ribeiro et al., 2016).

The main methodological contribution of this article lies
in the approach to reconcile the conflicting local interpreta-
tions from LIME to derive consistent global explanations,
and thereby identify how the important morphological (fre-
quency) features inform the red or blue regions. This
method is based on a query-by-experts construct, and it uses
recent theoretical results to guide the selection of some
hyperparameters. The results from our experimental study
and analysis establish a consistent set of frequency bands
and their variations that inform the red and the blue
regions. The method can be applied to analyze surfaces pro-
duced in processes other than MAF and be extended to

explore the relationships between other morphological fea-
tures and process attributes in addition to colors.

The remainder of this article is organized as follows: We
present an overview of the experimental studies in Section 2.
Sections 3 and 4 elucidate the technical approach. Section 5
presents the implementation results and discussions.
Conclusions are given in Section 6.

2. Surface texture measurements

The samples used in this study are SS304 curved workpieces
cut from a 1-mm-thick tube (with 18mm inside diameter)
and polished using the MAF process at the University of
Florida (see Figure 1). As mentioned earlier, we define three
types of regions on the surface based on the major colors
visible to the naked eye: yellow, red, and blue. For this
study, we focused on the red and the blue regions. The sam-
ples were also examined using an Olympus BX51 micro-
scope with 10! magnification. As noted earlier, the
micrographs shown in Figure 2 reveal that the color distri-
bution is highly heterogeneous at the microscale. The
defined red and blue regions are not monochromatic but
contain multiple colors at the microscale, some of which
even appear in both regions. This complicates the decision
boundary of distinguishing the two regions.

To quantitatively analyze the surface characteristics, sur-
face heightmaps from 18 different locations of the red and
blue regions of the two samples were measured using two
optical profilers with different magnifications. The purpose
of using different samples and instruments is to evaluate the
generalizability of our findings by studying the heightmaps
from different sources separately and comparing the consist-
ency of the results. Overall, the specifications of all the
measurements are listed in Table 1. Six 1024!1024 maps
each from Sample 1 and Sample 2 were obtained via Zygo
Zegage at 10! magnification (at Texas A&M University).
Another six 1000! 1000 maps from Sample 1 were obtained
via Zygo Zegage Pro HR at 50! magnification (at Zygo
Corporation). All the heightmaps were labeled as “red” or
“blue” based on the region from which they occur. The
heightmaps were measured along the centerline of each
curved surface to minimize errors that might have occurred
in the curve-form removal process in the Zygo software.

Figure 3 exhibits representative surface geometries
obtained from the red and blue regions under 50! magnifi-
cation and after curve-form removal. The heightmap appears
to show fewer non-uniformly distributed local spikes in the
red region than in the blue region; this increases the surface
height of local areas in the blue region where the oxide-film
formation is prominent (Tiwari, Xu, Lakhtakia, Yamaguchi,
and Bukkapatnam, 2021). Also, since the optical profilers
are based on interferometry, the measurements may be
affected by the semi-transparent/transparent oxide films on
the surface, especially in the blue regions. We employed
suitable data preprocessing and verification procedures to
mitigate this issue, as outlined in the next section.
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3. Technical approach overview

Figure 4 summarizes our approach to employ experimental
data for addressing the two core questions stated in Section
1. To address Q1, the noisy heightmaps gathered from the
“red” and “blue” regions are preprocessed and transformed
into amplitude spectra via two-dimensional Fast Fourier
Transform (2D FFT). Then, a Convolutional Neural
Network (CNN) model is trained to learn to classify these
labeled spectra. The classification accuracy is an indicator of
the extent to which the surface morphology informs the
major surface colors, and thus answers Q1. For Q2, we
implemented a LIME model (Section 4) to explain predic-
tions made by the “black box” CNN model. In this way, we
can identify which frequency bands and the corresponding
surface morphological patterns (extracted via inverse FFT)
are influential and how they inform the surface color.

As noted from the experimental observations, each col-
ored region consists of a heterogeneous dispersion of mul-
tiple colors at the microscale. We divided each measured
heightmap into smaller tiles within which the spectral con-
tent (i.e., the underlying covariance structure) remains con-
sistent. This can not only increase the data volume, but also
reduce the color variance in each smaller tile. A nonlinear
classifier such as a CNN can establish complex class boun-
daries to capture the effects of heterogeneity. Furthermore,
the heightmap measurements are prone to significant uncer-
tainties and often betray unusual large spikes (see Figure
3(b)). To mitigate this measurement limitation, we discarded
the tiles that contain the outliers (i.e., the height values out-
side the interquartile range). Subsequently, a surface rough-
ness tester (Model SJ-210 from Mitutoyo) was used to verify
the consistency between Ra values extracted from the tiles
and the surface-measurements.

Among the morphological characteristics of the surface,
we focused on how the harmonic waveform patterns influ-
ence the colors. Accordingly, we treated every tile as a 2D
spatial signal and employed its frequency-domain represen-
tation to capture the waveform patterns (these patterns are
difficult to discern in the spatial domain). We employed a
2D FFT routine to decompose a heightmap into signal com-
ponents that contain the amplitude and phase information
for different frequency pairs in each dimension. One can
recover a specific waveform pattern or the whole heightmap
in the spatial domain by applying an Inverse FFT (IFFT) to
the FFT coefficients of a specific set of frequency bands.
After extracting the FFT coefficient matrix of the heightmap,
we took the amplitude of every element to generate an amp-
litude spectrum. Additionally, because of the property of
conjugate symmetry of FFT (Gonzalez and Woods, 2018),
we kept only the upper two quadrants of each spectrum
(including the DC (direct current) component).

Note that 2D FFT amplitudes are shift-invariant, i.e., the
frequency features can be compared across the spectra
extracted from the heightmaps. Comparatively, morpho-
logical features are hard to compare across heightmaps. This
uniform feature format enabled us to study the global
importance using LIME, which will be elaborated in the fol-
lowing discussions. Besides, the frequency features can be
converted back into morphological features in the spa-
tial domain.

Furthermore, the heterogeneous microscale color distri-
bution in the red and blue regions leads to significant diver-
gence among the amplitude spectrum values with in every
class (region). The CNN uses the diverse 2D spectra as
inputs to create nonlinear classification (O’Shea and Nash,
2015). The classification accuracy of the CNN model devel-
oped thus suggested the extent to which the surface

Table 1. Specifications of the heightmap measurements.

Sample Number of heightmaps Heightmap data size Heightmap actual size (lm) Spatial resolution (nm) Magnification Instrument

1 6 1024! 1024 835! 835 815 10! Zegage
2 6 1024! 1024 835! 835 815 10! Zegage
1 6 1000! 1000 174! 174 174 50! Zegage Pro HR

Figure 3. Examples of 1000! 1000 (174lm!174lm) surface heightmaps (after curve-form removal) from (left) a red region and (right) a blue region, under 50!
magnification via Zygo Zegage Pro HR, where more high-frequency content and nonuniform spikes are observed in the blue heightmap.

Figure 4. Summary of the research approach.
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morphology informs the major surface colors, which
answered Q1. The specific aspects of the surface morphology
that inform the color (Q2) were determined by leveraging
the LIME procedure, as detailed in the next section.

4. LIME and global explanations

4.1. LIME modeling to explain how the spectra of each
local image region inform the colors

Towards understanding our application of LIME, let us con-
sider a simple case of surface defect detection using micro-
graph images as illustrated in Figure 5. Here, the defect
detection reduces to a binary classification of images into
two classes, namely “normal” and “defect”. In this context,
an “explanation” refers to the delineation of the image seg-
ments that are important for the CNN prediction of each
input image: Let f denote a CNN binary classifier model
that partitions the space of the inputs constituting various
“normal” and “defect” images into two regions (see Figure
5(a)). To get a local explanation about an image x in the
input space, LIME first segments x into d parts. Then x0 2
1f gd is a mask, i.e., a binary vector where each element cor-
responds to a segment and all the d elements are one, is
used to represent this image. Then, LIME creates N different
perturbation masks z

0

i 2 0, 1f gd, i ¼ 1, :::,Nð Þ by randomly
setting some of the elements in x0 to zero according to a
Bernoulli distribution, i.e., Bernoulli(0.5). Each of these
masks (see Figure 5(b)) corresponds to a perturbed image
zi ði ¼ 1, :::,NÞ in the input space.

Next, the CNN model f is used to make predictions on
all these images (Figure 5(b)). Here, for the binary classifica-
tion, if a softmax function was used in the CNN output
layer, then each prediction is a probability vector containing
probabilities towards each class; if a sigmoid function was
used in the CNN output layer, each prediction is a single
probability towards the class that is encoded as one
(Goodfellow et al., 2016).

Afterwards, for each class (if softmax was used) or the
class that was encoded as one (if sigmoid was used), LIME
trains a linear model g : Rd ! R, defined by its coefficient
vector w% 2 Rd (ignoring the intercept). This linear model is
trained to locally approximate the prediction outputs from f
regarding the specified class, where the inputs to the linear
model are the binary masks (see Figure 5(c)). Here, “locally”
implies that the linear model only captures how the CNN
model behaves in the vicinity of the original image x (as a
simple linear model cannot mimic the nonlinear CNN
model in the whole feature space). To define such locality,
each perturbed image zi is assigned with a weight px zið Þ
based on how similar zi is to x: Based on this construct, a
local linear model about x can be formulated as follows:

w% ¼ argmin
w

L f ,w, pxð Þ þ XðwÞ, (1)

where L f ,w, pxð Þ is a loss function that measures the fidelity
of the linear model to the CNN model f in the vicinity of
x, and XðwÞ penalizes the complexity of w: The sign and
magnitude of each coefficient in w% indicate positive/nega-
tive importance of the presence of the corresponding seg-
ment towards the class (see Figure 5(d)).

In our case, an input 2D spectrum is segmented into d
equal-sized rectangles, each representing the energy of a fre-
quency range along the two axes. Consequently, LIME can
outline which frequency bands are more dominant in deter-
mining its color classification result (see Figure 6). During
the training of w%, ridge regression is employed to regular-
ize the model complexity. So, to sum up, LIME explains a
spectrum regarding the prediction towards the qth class by
solving

w% ¼ argmin
w

XN

i¼0

px zið Þ fq zið Þ '
!

w, z
0

i

D E
þ q

"" #2

þ k w,wh i, (2)

where z0 ¼ x, z
0

0 ¼ x0, fq zið Þ is the output of the CNN
model regarding the qth class (with the use of softmax). q is

Figure 5. An illustration of LIME. LIME uses a linear interpretable model to approximate the CNN model at a local area in the feature space. The linear model coeffi-
cients indicate the importance of every image segment—a positive and larger coefficient indicates the presence of the corresponding segment would make the
CNN model more likely to classify the image into the class of interest.

IISE TRANSACTIONS 5



the intercept and k is the ridge regularization term. The
function px zið Þ is calculated using a radial basis function
kernel as

px zið Þ ¼ exp '
D x, zið Þ2

d2

! "
, (3)

where d is the kernel width. The similarity Dðx, ziÞ between
x and zi is calculated as the cosine of the angle between
their vector masks x0 and z

0

i:
Among the hyperparameters of LIME, k affects the sparsity

and the fidelity of the linear model relative to the CNN
model. A large k can lead to underfitting, and hence, it should
be chosen carefully employing guidance from van Wieringen
(2015). Although a small d would make the linear model
highly sensitive to the local inaccuracies of the CNN model,
the linear models constructed with a large d may not capture
the local trend accurately. The number of segments (frequency
bands) d, and hence the spectral band widths, should be
adjusted to ensure sufficient frequency resolution while avoid-
ing the effects of spectral leakage (Harris, 1978). An improper
choice of d can cause multicollinearity effects where different
combinations of (mostly adjacent) segments spuriously emerge
together as important. Additionally, the number of perturba-
tions N should be chosen carefully towards achieving consist-
ency of the linear model w%: Generally, one can have a
maximum of 2d ' 1 possible local perturbations for an image
x: However, considering typical pixelized image sizes, d is usu-
ally greater than 100. Therefore, much smaller N is commonly
used to reduce computation costs. This, however, induces
uncertainty and inconsistency in the resulting local explana-
tions. The following result (Slack et al., 2021) provides guid-
ance to select N:

Theorem 1. (Perturbed instance size) (Slack et al., 2021):
The number of perturbed instances N required to achieve an
uncertainty interval width n of feature importance at a user-
specified confidence level a can be estimated as

N ¼ 4e2 p ! n
U'1 að Þ

" #2
8
<

:

9
=

; ,

,

(4)

where p is the average weight estimated from an initial set of
J perturbed instances as pJ ¼

PJ
i¼0 px zið Þ=J, e2 is the

empirical sum of squared errors between a LIME model and
f , weighted by px zið Þ for i ¼ 1, :::, J, and U'1 að Þ is the two-
tailed inverse normal cumulative distribution function at con-
fidence level a: w

It can be observed that N needs to be sufficiently large to
keep the uncertainty interval n small. Also, the required N
increases linearly with the weighted residual sum of squares
e2 to maintain a specific n: Equation (2) aims to force the
local response of the model g to approximate the CNN out-
put fq zið Þ, i.e., the outputs lie in the (0,1) interval. However,
it does not guarantee the response to lie within, or even
close to the (0,1) interval, i.e., some local models can have a
large error. Therefore, it is necessary to evaluate the accur-
acy of a local model before using its local explanations.

4.2. Consolidating the local explanations to derive a
global explanation

As noted, LIME trains a linear model w% for each spectrum
(input x) and employs the values of w% to explain how the
features (i.e., the elements of x) inform the color (i.e., the
class label). However, due to surface heterogeneity, local
areas may contain multiple color patterns. Consequently, the
locally important frequency bands can differ drastically
among the spectra taken even within the same region (i.e.,
the same label). In addition, as noted earlier, the local
explanations themselves from a linear model can vary sig-
nificantly depending on the random perturbations used to
build the model. As noted earlier, the perturbations are a
much smaller random sample of all possible perturbations
(i.e., N ( 2d ' 1) (Zhang et al., 2019; Slack et al., 2021).

Several efforts have been made on generating LIME-based
global explanations. For example, SP-LIME (Ribeiro et al.,
2016; Sangroya et al., 2020) aggregates the coefficients in the
local explanations based on selected inputs, i.e., inputs that
lead to diverse local explanations. In addition, SP-LIME also
uses the absolute values of the coefficients to determine the
importance of the features, and consequently, the import-
ance values and at times the relative importance of a feature
(i.e., a frequency band) can vary depending on the realiza-
tion of the random perturbation sample. This can affect the
consistency of the explanations. Apart from this, ILIME

Figure 6. An illustration of the LIME model for a (2D FFT) spectrum input x: The spectrum is segmented into d rectangles (frequency bands), based on which a set
of perturbed instances are generated. The local importance is ranked based on the fitted linear model w%: The result highlights the top T fraction of local import-
ant bands. Here, the presence of the positively important bands would make the CNN model more likely to classify this spectrum (input x) as “blue”.
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(ElShawi et al., 2019) and GAM (Ibrahim et al., 2019) meth-
ods utilize clustering algorithms to group similar local
explanations as well as their corresponding inputs, and
hence, provide global explanations for different clusters of
the inputs. These earlier methods focused on including the
highest-possible diversity within the local explanations to
derive the global explanations. However, they neglected the
goodness of the local explanations, i.e., whether the linear
model is faithful enough to the “black box” model locally. In
our case where heterogeneity is present in the data, the deci-
sion boundary in certain local input neighborhoods can still
be highly nonlinear for a linear model to capture, or out-
right different from those of other local models in the
region, all these resulting in models with poor accuracies.
Using the local explanations from such models may eventu-
ally lead to false global explanations.

Moreover, there is a challenge of getting LIME-based global
explanations for image-like data such as heightmaps, mainly
because the features from different heightmaps are not com-
parable. Fortunately, in our case, with the use of FFT spectra
and the uniform segmentation across all spectra, we can easily
create a measure of global importance by aggregating the local
explanations from a group of representative spectra.

Algorithm 1: LIME-based global explanations for the
class “red”

Input All the n “red” spectra, CNN model f
Output Global positive importance of all frequency

bands for the class “red”
Initialization d : number of frequency bands

Ik ¼ 0 ¼ global positive importance of
the kth frequency band (k ¼ 1, 2, :::, d)

Start Iterate for each spectrum xr , r 2 f1, 2,
:::, ng:

1 Apply LIME towards the class “red”:
optimize w%

r ¼ argmin
w

L f ,w, pxrð Þ þ XðwÞ
2 Aggregate local importance:

If (R2 of the model w%
r ) > h:

Pr
T ¼ {positively important bands

among the top T of xr}
Else:

Pr
T ¼ ;

3 Iterate k ¼ 1 to d:

Ik ¼
Xn

r

1 k2Pr
Tf g

Algorithm 1 exhibits the details of deriving LIME-based
global explanations for the class “red” (similarly for the class
“blue”). The algorithm consists of three major steps: (i)
Identify the “expert” input spectra, (ii) Identify the local posi-
tively important frequency bands, and (iii) Poll the global
positively important frequency bands. The first two steps are
iterated for each input “red” spectrum xr ðr 2 f1, 2, :::, ngÞ
from all the n “red” spectra to gather their local explana-
tions. After the iterations are over, the third step calculates
the global positive importance of each frequency band
towards the class “red”.

Identify the “expert” input spectra:
We want to only aggregate the correct local explanations as
there are cases where the linear LIME models fail to locally
approximate the CNN model and thus provide incorrect
explanations. To do so, we first apply LIME to train a linear
model w%

r based on the given “red” spectrum xr and its per-
turbed spectra. The model is trained to approximate the
CNN’s predictions towards the class “red”, since we are only
interested in the frequency bands that are important to the
class “red”. Then, the model identifies if the given spectrum
xr is an “expert” – one whose linear explanation model w%

r
has fairly high performance, e.g., its coefficient of determin-
ation R2 > h: Here, R2 measures how well the linear model
captures the behavior of the CNN model locally around xr:

Identify the local positively important frequency bands:
To acquire the frequency signature for each class, we investi-
gate the positively important frequency bands for “red” and
“blue” separately. Therefore, once the given “red” spectrum
xr is qualified as “expert”, we get its local explanation
towards the class “red” (towards “blue” if the given input is
a “blue” spectrum), i.e., rank the d frequency bands corres-
pondingly by the absolute magnitude of the d coefficients in
w%
r (excluding the intercept coefficient). Within the top T

fraction of bands, only the positive bands (corresponding to
positive coefficients) are recorded as a set Pr

T (Pr
T ¼ ; if xr

is not an “expert”). Note that the size of Pr
T can vary given

different spectra xr ðr 2 f1, 2, :::, ngÞ, as in some cases there
are fewer positive bands in the top T bands. This works bet-
ter than recording a fixed number of positive bands because
the latter may include the positive bands that are not really
important, i.e., their corresponding coefficients are in the
rear rank regarding the absolute magnitude.

Poll the global positively important frequency bands:
After iterating the previous two steps for all the n “red”
spectra and getting n sets Pr

T ðr 2 f1, 2, :::, ngÞ, for each fre-
quency band k 2 f1, 2, :::, dg (uniformly segmented for all
spectra), its global positive importance towards the class
“red” Ik can be calculated by

Ik ¼
Xn

r

1 k2Pr
Tf g: (5)

The threshold h for the R2 in Algorithm 1 can be decided
based on the distribution of the R2 statistic. Specifically, the
R2 statistic of a linear regression model follows a
BetaðK=2, ðS 'K' 1Þ=2Þ) distribution under the null
hypothesis that all coefficients are zero (Helland, 1987).
Here, K is the degrees of freedom of the model g and S is
the rank of the inputs (generally, K ¼ d and S ¼ N). In
other words, h can be chosen as the critical value (to reject
the null hypothesis) at a certain significance level.
Conventional choices also exist for the selection of h
(Henseler et al., 2009; Moore et al., 2021).

The hyperparameter T is chosen based on the distribu-
tion of the local importance values. The local importance
values jw%j follow a Pareto-type distribution, and the elbow
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point of the distribution guides the choice of T (Satopaa
et al., 2011). A proper choice of T would guarantee suffi-
cient, yet not very redundant top local frequency bands in
order to capture the consistent global bands. Additional dis-
cussion and procedural details can be found in Section F of
the supplementary material. While the global importance
values Ik also follow a similar highly right-skewed distribu-
tion, the important global bands stand out clearly and allow
a clear identification.

In addition, for a certain, reasonably broad range of val-
ues of N, k and d (discussed in Section 5.5), the proposed
algorithm was observed to provide consistent global explan-
ations to identify the top global frequency bands. However,
under some unusual settings, such as when the regulariza-
tion term k is excessively large, there may not be enough
“expert” spectra for the polling, e.g., most of the linear mod-
els are underfitting and have R2 < h: Also, as noted earlier,
a judicious choice of d is desirable to reduce the effect of
the spectral leakage induced by 2D FFT.

5. Implementation and results

5.1. Data preprocessing and 2D FFT

As noted in Section 3, to ensure that each instance (e.g.,
training sample for machine learning) is reasonably homo-
geneous and enough number of instances are available for
later study, the original heightmaps were divided into
30! 30 heightmap tiles. The maps containing outliers (as
detected in the original heightmaps) were discarded. The
boxplot in Figure 7 suggests that the Ra values calculated
from the 30x30 heightmaps after outlier removal are consist-
ent with the Ra measured by the Mitutoyo surface rough-
ness tester (regarded as the ground-truth).

After data preprocessing, the 30! 30 heightmaps were
transformed into 2D FFT spectra. Note that the dimension
of the output spectrum is the same as the input heightmap.
To get a finer and consistent frequency bin resolution, each
heightmap was zero-padded to 100!100 (for the maps at
10! magnification) or 500! 500 (for the maps at 50! mag-
nification) before 2D FFT. After 2D FFT, we only kept the
upper two quadrants of each spectrum (including the DC
component) considering the conjugate symmetry property.
Overall, 2000 30x30 heightmaps (600 for Sample 1 under
10! and 50!, 800 for Sample 2 at 10!) were transformed
into 1400 51! 100 and 600 251! 500 amplitude spectra. An
example is given in Figure 8. Here, a negative frequency

indicates an opposite spatial direction to the same frequency
with a positive sign.

5.2. CNN results

While understanding to what extent the data can be discri-
minated, we also tried to develop the most predictive mod-
els. Two CNN models were built, respectively, based on the
600 51! 100 spectra and 600 251! 500 spectra from
Sample 1. The details of the model architecture are summar-
ized in Figure B1 in the supplementary material. The CNN
model based on 600 51! 100 spectra was constructed with
two hidden layers, including a convolutional layer and a
max pooling layer, to extract the features. Then, a fully con-
nected layer was used to flatten the feature maps (of dimen-
sion 4! 6!8) into a vector and classify it into the two
classes via a softmax function. This model was trained for
90 epochs.

The CNN model based on 600 251! 500 spectra was
constructed with three hidden layers and a fully connected
layer, and this model was trained for 60 epochs. Rectified
Linear Unit (ReLU) (Glorot et al. 2011) was employed as
the nonlinear activation function in every convolu-
tional layer.

Moreover, the data set was split into 90% for training
and 10% for testing. Both CNN models were trained under
the same learning rate of 0.0002 with an Adam optimizer
(Kingma and Ba, 2014). Note that the architecture and
learning rate are determined through hyperparameter-tuning
trials using a validation dataset within the training data
(Yamashita et al., 2018).

According to Figure 9, the CNN first model has training
and testing accuracies of 99.6% and 98.3%, respectively. The
second CNN model also has high accuracies (99.1% for
training and 98.3% for testing). Hence, the results suggest
that both CNN models have learned the pattern in the spec-
tra for discriminating the surface colors. This answer to Q1
therefore is that surface morphology can inform the major
surface colors to a large extent.

5.3. Global important frequency bands

As introduced earlier, LIME can identify which segments in
a spectrum, i.e., frequency bands, as each segment is rect-
angular, contribute significantly to the color-classification
result of the spectrum. Nevertheless, the heterogeneous color

Figure 7. Boxplot of the Ra values of profile slices from 30! 30 outlier-free heightmaps (under 10! and 50!) and the contact-type Ra values measured by the sur-
face roughness tester (considered as ground-truth) shows a large degree of consistency.
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distribution complicates the decision boundary in the feature
space, and thus, the neighborhoods defined by very diverse
spectra can lead to inconsistent local explanations.
Therefore, to find the general patterns corresponding to the
two major colors, consistent global explanations obtained by
aggregating the local explanations would be a better option.

During the implementation, each 51! 100 spectrum was
segmented into 200 frequency bands of size 5! 5 (bands at
the bottom of the spectrum are of size 6! 5), based on
which 300 perturbed spectra were generated for each spec-
trum, whereas each 251! 500 spectrum was segmented into
5000 bands of size 5! 5 (bands at the bottom of the spec-
trum are of size 6! 5) and the number of perturbed spectra
was set to 300. In both cases, the kernel width d was set as
0.25 and the ridge penalty term k was set as one based on
the guidance in Section 4.2. Moreover, Algorithm 1 was
used to identify the global positively important frequency
bands for “red” and “blue”, respectively. The algorithm con-
siders only the spectra that were locally well explained (their
interpretable linear models have high R2Þ: This avoids the
consolidation of the local explanations that are highly diver-
gent with the CNN classifier. As mentioned in Section 4.2,
the R2 threshold h was set as 0.75, and T was set to be
7.5%. Here, for d and N set as 200 and 300, respectively and
at a significance level of 0.01, Betaðd=2, ðN ' d ' 1Þ=2Þ )
0:75: Here, to be more conservative, d and N were set as
200 and 300, respectively, based on the case of
51! 100 spectra.

Figure 10 visualizes the results of the global positive
importance of all the frequency bands towards the two col-
ors for 51! 100 spectra and 251! 500 spectra, in the form
of heat maps. Each rectangular segment represents a fre-
quency range along the vertical and horizontal directions.

The results for 51! 100 spectra (corresponding to height-
maps at 10! magnification) indicate that the global positive
important bands (used with “global bands” interchangeably in
the rest of this article) for “red” tend to be along the centerline
of a spectrum, discontinuously covering the spatial frequency
range from '0:72! 10'4 to 0:48! 10'4 nm'1 on the hori-
zontal direction and from 0 to 4:93! 10'4 nm'1 vertically. In
contrast, global positive important bands for “blue” are mostly
off-centerline, where the top ones are mainly at two different
horizontal ranges: '2:52! 10'4 to '1:92! 10'4 nm'1 and
1:68! 10'4 to 2:28! 10'4 nm'1, and vertically range from
0 to 2:52! 10'4 nm'1: This pattern can also be observed in
the results of the 251! 500 spectra (corresponding to 50!
heightmaps), even though the global bands may not cover the
same range. Specifically, for 251! 500 spectra, the top “red”
global bands approximately span from '1:83! 10'4 to 1:6!
10'4 nm'1 horizontally and 0 to 3:54! 10'4 nm'1 vertically,
whereas the top “blue” global bands can approximately reach
as high as '6:97! 10'4 and 5:03! 10'4 nm'1 horizontally
and 12:69! 10'4 nm'1 vertically.

Additionally, the results from the 251! 500 spectra fur-
ther suggest that the presence of a lower-frequency pattern
in a “red” spectrum increases the probability of this spec-
trum being classified as “red”, whereas the presence of a
higher-frequency pattern in a “blue” spectrum increases the
probability that the spectrum is classified as “blue”. Under
the two different magnifications, there is a considerable
overlap between the results of “red” global bands, especially
those near the DC component. Nevertheless, the “blue” glo-
bal bands of 251! 500 spectra cover much higher frequency
than those of 51! 100 spectra do, but it is hard to conduct
further comparison due to different Nyquist frequencies
under these two magnifications.

Figure. 8. A 30! 30 heightmap from a blue region (left) and its 51! 100 FFT amplitude spectrum (right).

Figure 9. Training and testing accuracies of the CNN models based on (left) 51! 100 and (right) 251! 500 spectra. The model with the best testing accuracy is
considered as the final model.
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Next, we evaluate the generated explanations in terms of
their descriptive accuracy, relevancy and consistency (Horel,
2020). For descriptive accuracy, we verify the discriminative
power of the identified global frequency bands (see Section
5.4). Next, we study the consistency of Algorithm 1 regard-
ing two aspects: different randomization settings and differ-
ent hyperparameter values (see Section 5.5). For relevancy,
we assess the extent to which the surface waveform patterns
recovered from applying IFFT to the global bands can make
connections to prior physical understandings (see
Section 5.6).

5.4. Descriptive accuracy verification

5.4.1. Validity of the global bands
Two separate attempts were made to verify whether the fre-
quency bands with high global importance are truly domin-
ant in discriminating “red” and “blue”. In the first attempt,
the same data was classified using only the top global bands,
in the sense that the presence of only the global bands
should have enough predictive power to classify most of the
spectra. In the second attempt, the actual values, i.e., FFT
magnitudes, of the top global bands were compared for the
“red” and “blue” spectra. The latter is a further exploration
beyond the LIME-based explanation since LIME only delin-
eates the effect of the presence of a band instead of the spe-
cific values of the band that were actually used by the
CNN model.

In the first attempt, we identified the top 2.5% global
bands for each class based on the results in Section 5.3.
Next, we masked all the other bands, (i.e., set the values of
them to zero) in all the previously correctly classified spectra
and input the masked spectra to the same CNN models. As
a result, the classification accuracy was 88.6% and 88% for
51! 100 spectra and 251! 500 spectra, respectively. This
implies that the global importance calculated according to

Algorithm 1 can indeed identify the truly discrimina-
tive bands.

In the second attempt, since each frequency band is of
size 5! 5 or 6! 5 containing multiple FFT magnitudes, we
took the average of all the values. Figures 11(a) and (b)
show the average FFT magnitudes of the top 1 “red” global
band ('0:72! 10'4 to '0:12! 10'4 nm'1 horizontally, 0
to 0:72! 10'4 nm'1 vertically) and the top 1 “blue” global
band (1:68! 10'4 to 2:28! 10'4 nm'1 horizontally, 1:32!
10'4 to 1:92! 10'4 nm'1 vertically), respectively, for all the
“red” and the “blue” 51! 100 spectra that were qualified as
“experts”. Similarly, Figures 11(c) and (d) show the average
FFT magnitudes of the top 1 “red” global band (0:5! 10'4

to 1! 10'4 nm'1 horizontally, 0:1! 10'4 to 0:7!
10'4 nm'1 vertically) and the top 1 “blue” global band
('3:5! 10'4 to '3! 10'4 nm'1 horizontally, 5:8! 10'4

to 6:4! 10'4 nm'1 vertically), respectively, for all the “red”
and the “blue” 251! 500 “expert” spectra. Clearly, the aver-
age FFT magnitudes for the “blue” spectra in all plots cover
almost the same value range as that of the “red” spectra do,
but with a slightly higher median. Furthermore, based on
the p-values from a paired-sample t-test (shown in Figure.
11 below each boxplot), the difference between the means of
the average FFT magnitudes for the “red” and the “blue”
spectra is statistically significant at the 0.05 level in all four
cases. Overall, it implies that the selected global bands are
indeed globally discriminative regarding the two classes.
However, it does not imply that the bands without statistical
difference between the means are not globally important.
This is because the classification is not simply a “black and
white” problem, i.e., it involves a highly nonlinear decision
boundary and possible interaction effects of multiple fre-
quency bands, especially when heterogeneity is present.

5.4.2. Generalization on a new sample
In addition to evaluating the generalizability of the results at
different magnifications, we also evaluated the generalizability

Figure 10. Global positive importance of all the frequency bands towards the class (a) “red” and (b) “blue” from the 51! 100 spectra. Global positive importance
of all the frequency bands towards the class (c) “red” and (d) “blue” from the 251! 500 spectra.
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of our findings on another sample, with the use of the 800
51! 100 spectra (400 “red” ones and 400 “blue” ones) from
Sample 2. Sample 2 was cut off from the same polished tube
as Sample 1. The idea was to test if the trained CNN model
and the global frequency bands identified using Sample 1
could be applied to classify a different surface (Sample 2)
which was polished through the same process and measured
by the same instrument. Therefore, in these 800 spectra, all
the frequency bands were masked except the top 2.5% globally
important ones for “red” and “blue”. As a result, the classifica-
tion accuracy of the previously trained CNN model on
Sample 2 was found to be 83.88%, which implies that our
findings can be generalized to different samples from the
same process.

5.5. Consistency verification

For consistency, we conduct the implementation stated in
Section 5.3, albeit with different randomization settings and
different hyperparameter values. This is to check the extent
to which randomization and hyperparameter values affect
the global bands and their importance. In particular, the val-
ues for k include 0, 0.1, 1 (default), 10 and 50. The values of
d include 0.25 (default) and 10, and the values of N include
200, 300 (default), 600 and 1000. It turned out that the
results were highly consistent, and in fact, the global bands
did not vary, under different randomizations (for examples,
see Section C in the supplementary material). The top global
bands identified using Algorithm 1 were also fairly robust to
changes in the hyperparameter values over the ranges (des-
pite the inevitable variations in importance values).

We compared the performance of Algorithm 1 relative to
an extant approach, SP-LIME (see Section E in the supple-
mentary material). SP-LIME aggregates the local explana-
tions of inputs regardless of the accuracy of their LIME
(local) models to derive global explanations. Besides, it uses
the square root of the absolute value of w% as opposed to
the use of the ranks in Algorithm 1 to derive the global
importance of the bands. As a net result of using the values
of the local model coefficients w% themselves, and not being
selective with local models, 14 times more bands can emerge
as globally important with SP-LIME compared to those with

Algorithm 1. The same factors can also cause SP-LIME to
identify different global bands and assign different import-
ance values under different realizations of the perturbations.
In contrast, Algorithm 1 uses the ranking of coefficients
without the exact values and considers the positive and
negative values separately. Therefore, as noted earlier, the
identified global bands remain fairly consistent and their
importance has a smaller variance, relative to the actual real-
izations of the perturbations.

5.6. Relevance verification

To completely answer Q2, the global frequency bands were
transformed back into the spatial domain via inverse 2D
FFT while masking other uninterested frequency bands.
Specifically, first, one “red” and one “blue” spectrum at each
level of magnification were selected, where the LIME models
for these spectra had the highest R2: Then, based on each of
these four spectra, the results of inverse 2D FFT of the top
2.5% “red” and “blue” global frequency bands, and the ori-
ginal heightmap were plotted, respectively, in both 2D (the
upper row) and 3D views (the lower row) (see Figure 12).
For simplicity, we will call the waveform patterns corre-
sponding to the top global frequency bands “red” or “blue”
waveform patterns. Here, to distinctly show the waveform
patterns, the color scales within each case are set differently.

Based on Figure 12, we made the following four
observations:

1. Within each of the four instances, the “blue” waveform
patterns tend to have smaller height values than the
waveform patterns corresponding to “red” top glo-
bal bands.

2. At both 10! and 50! magnification, the “red” wave-
form patterns have a clearer directionality than the
“blue” ones, but both align with the lay pattern gener-
ated by the abrasive action during the MAF process.

3. The globally important morphological features are con-
sistent across all the magnifications and instruments
considered in this study. The “red” features capture the
general form of the mountain ridges, i.e., hills and val-
leys that result from polishing. The “blue” features

Figure 11. Comparison between “red” and “blue” spectra regarding the average FFT magnitudes of the four top 1 global frequency bands. (a) and (b) correspond
to the result of 51! 100 spectra. (c) and (d) correspond to the result of 251! 500 spectra. In all cases, the value ranges of the two classes are similar, but “blue”
spectra always have a slightly higher median in these bands. The p-values from a paired-sample t-test also suggest that the means of the two groups are statistic-
ally different. These reinforce the result that the bands are globally discriminative regarding the two classes.
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Figure 12. Waveform patterns corresponding to the top 2.5% “red” global bands (left) and the top 2.5% “blue” global bands (middle) (obtained via inverse 2D FFT)
and the original heightmap (right), based on four representative spectra (with high-R2 LIME models): (a) a “red” 10! spectrum, (b) a “blue” 10! spectrum, (c) a
“red” 50! spectrum, (d) a “blue” 50! spectrum. In each case, the upper row shows the waveform patterns in a 2D view, while the lower row provides the corre-
sponding 3D view. Plots of the “red” and the “blue” bands employ different color scales to facilitate an adequate visualization of the waveform patterns.
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capture the peaky high-frequency hills that seemingly
formed above the “red” ones.

4. Both the “red” and the “blue” waveform patterns can be
observed in each of the four original heightmaps,
regardless of the region from which the heightmap was
sampled. This indicates that the waveform patterns also
have a heterogeneous distribution. However, the “red”
waveform patterns seem to be more dominant in the
heightmaps sampled from the “red” region, and vice
versa. This can be used as a guidance to visually classify
the heightmaps.

These observations also offer some insight into the phys-
ical sources responsible for the way these morphological fea-
tures influence the colors. Generally, the colors on metal
surfaces can be caused due to interference, pigments or dif-
fraction (Liu et al., 2019). Pertinently, the frequency of the
red light (700 nm) was among the top 2.5% most important
global frequency bands (along the vertical direction) of the
surface morphology, as identified in this study. This suggests
that at least a part the observed red color is informed by the
waveforms on the surface. However, the wavelength of the
most important global band (the brightest band in Figure
10(c)) lies above 2.825 lm, and it is within the spatial wave-
lengths of the horizontal lay patterns which are between 1.5
and 15lm (measured using ZEISS EVO MA-10 Scanning
Electron Microscope). This indicates that the “red” colors
are strongly influenced by the lay patterns.

An earlier study (Tiwari, Xu, Lakhtakia, Yamaguchi and
Bukkapatnam, 2021) suggested that different colors arising
over the polished surface is due to the combined effects of
the phenomenon of interference of transparent oxide films
and other pigmented chemical species. The resulting colors
are affected by the polishing intensity during the MAF pro-
cess, i.e., the down force exerted by the magnetic abrasive
material onto the surface during polishing. Specifically, they
argue that the occurrence of flash temperatures – propor-
tional to the polishing intensity – induces chemical reactions
leading to growth of transparent oxide films and heteroge-
neously distributed pigmented chemical species. The flash
temperatures occurring during polishing is a local phenom-
enon. This causes a heterogenous distribution of the oxide
film thickness and pigmented oxides over the polished sur-
face. Thinner oxide film growth results in the red color
when the surface undergoes milder polishing intensity. The
thicker oxide films resulting in blue color are observed in
regions with heavier polishing intensity. The pigmented col-
ors arise due to iron oxides (visually red) and chromium
oxides (visually blue). Additionally, they also reported that
the colors appear along the circumferential lay pattern which
is aligned along the direction of the abrasive action of the
MAF process. These conclusions support our observations:
in the red region the global morphological features appear
to be mostly the underlying surface structure, e.g., the lay
patterns, or the thin layer of oxide films formed along the
lay patterns. In contrast, in the blue region, the global mor-
phological features are representative of the heterogeneously
distributed thicker oxide films over the surface, and the

heterogenous distribution of chromium oxides. The hetero-
geneity captured by the morphological features agrees with
the observation 4 and the micrographs in Figure 2.

6. Conclusion

In this study, we identified the influence of morphology on
colors on polished stainless-steel surfaces using frequency
domain analysis and XAI methods. First, we confirmed that
the surface morphology can be used to accurately classify
between the major surface colors. Next, by using a query-
by-experts algorithm, we identified the globally important
frequency bands and their corresponding morphological fea-
tures, i.e., waveform patterns that are more influential on
determining the major colors.

The study also indicates that the patterns of the identified
global morphological features from the heightmaps meas-
ured under different magnifications are consistent. But, the
globally important frequency bands at 50! magnification
cover a broader and higher frequency range, possibly
because higher magnification brings higher spatial resolution
and thus more high-frequency information. Additionally,
the findings (at the same magnifications) are consistent for
different samples from the same process.

Subsequently, we explored the connections of the global
explanations to the underlying physics by comparing our
results with the findings in a prior study (Tiwari, Xu,
Lakhtakia, Yamaguchi and Bukkapatnam, 2021). Both investi-
gations suggest that the polishing intensity affects the surface
colors. Over the intensely polished regions, the non-uniform
and high-frequency global waveform patterns are consistent
indicators of an oxide film formation and a consequent blue
coloration. The global waveform patterns in the mildly pol-
ished red region appear to be merely related to the lay pattern.
Understanding such a relationship between the surface
morphology and colors through XAI can open the possibility
to gainfully employ surface colors for product authentication
and encryption, thereby saving expensive and time-consuming
inspections for authentication and security.

Nonetheless, this study also has a few limitations. Since
each of the waveform patterns corresponds to multiple fre-
quency bands. The causal relationship between a specific fre-
quency band and the colors needs a further study and
confirmations.

From a methodological standpoint, this study has
tackled various challenges such as the color heterogeneity
shown in Figure 2, the measurement accuracy, as well as
addressed the consistency and relevancy of global explana-
tions in the context of the present application. This is also
one of the few efforts aimed to provide global explanations
for image inputs. Additional theoretical studies are needed
to gather a deeper understanding of the effects of the vari-
ous hyperparameters and randomizations in LIME (Zhang
et al., 2019).

In essence, our work can be deemed as an inchoate effort
towards the application of MAF to impart controlled large-
area structural colors on manufactured surfaces, thus offer-
ing a product authentication method that can be robust to
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falsification. More importantly, this work can spur future
applications of XAI to address various issues related to
knowledge discovery, model diagnostics, and localization
and causal inferences in the manufacturing domain. For
instance, in knowledge discovery, the explanations generated
by XAI can be regarded as hypotheses. The plausibility of
such hypotheses being true can then be evaluated using the
domain knowledge or subsequent confirmatory experiments.
In model diagnostics, the goal is to identify the potential
bias and errors in the model to ensure that the prediction
mechanism aligns well with the expectation. In terms of
localization and causal inferences, the surface defect detec-
tion illustrated in Figure 5 can serve as an example, where
XAI is used for an automated identification of the image
segments that contain a “defect” or such a product feature
(Karthikeyan et al., 2022).
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