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While Al and imaging technologies are dramatically transforming the process and machine condition moni-
toring, product inspection remains confined to probing the geometry and surface morphology. Subsurface
and bulk inspection remain prohibitively slow and imprecise. This paper presents an explainable Al (XAI)-
infused ultrasound imaging approach for rapid detection of artifacts including product defects. The approach
led to the discovery of correlated spatial patterns in the images located away from the artifacts. This discovery
enabled accurate (> 80%) detection of artifacts that are not discernible with the current image segmentation
methods, and it could profoundly impact product quality and (cyber)security assurance technologies.
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1. Introduction

Although the manufacturing community has been at the forefront
of adopting the sensor and Al technologies for industrial quality
assurance [1-3], inspection of bulk products to detect internal mor-
phological defects remains slow, expensive, and imprecise, even with
the latest non-destructive evaluation (NDE) techniques [4,5]. For
example, X-ray computed tomography typically takes 5-15 hours to
scan products as small as 100 mm? in volume [4]. Other NDE techni-
ques, such as conventional eddy current, thermography, ferromag-
netic, and chemical profiling suffer from limited (a few mm) depth of
penetration and poor detection-sensitivity for various materials [4,6].
Consequently, even the quality-critical microelectronics industry
bypasses bulk product inspection, and instead it mostly tests the
functional performance.

The limitations of the current bulk inspection technologies also
impede the assurance of authenticity of products against counterfeit-
ing and cyber-attacks [7]. Reflecting the emergence of a manufactur-
ing-as-a-service (MaaS) paradigm, industrial product authentication
technologies are growing at an annual rate of over 10% to exceed
$250B by 2026 [8]. The prominent technologies, employing QR codes,
radiofrequency identification, etc., merely mark the product packag-
ing or at best, a product surface [7]. These surface markers are vulner-
able to tamper and wear. Attempts have been made to embed
alternative geometric (e.g., 3D QR codes [9]) and intrinsic markers (e.
g., morphological or microstructure features [10]). As with quality
assurance, the limitations of the current bulk product inspection cur-
tail the viability of these innovative authentication methods.

Interestingly, the rapidly increasing resolutions and cost reduc-
tions make imaging technologies attractive for bulk inspection to
assure both the quality and authenticity of products [11,12]. While
the manufactured parts are opaque to optical imaging, reverberation
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and attenuation effects severely degrade the signals from various
electromagnetic imaging methods, leading to poor quality and
authenticity assurance. Ultrasound methods are considered the most
promising for bulk inspection of manufactured products [4].

Ultrasound imaging instruments use piezoelectric elements to
release ultrasound pressure waves into a product at frequencies of up
to 100 MHz [13]. The boundaries of various internal artifacts (e.g.,
defects and authentication markers) of the product generate echoes
of incident ultrasound. Images of the internal structure of the product
are reconstructed based on the intensity of echo received from vary-
ing depths of the product. Ultrasound imaging is quick and can be
performed in real time with 25-100 fps rate, in contrast to other
inspection techniques [13].

Although fast and cost-effective, the sensitivity of ultrasound sen-
sors tends to be poor, especially to discern the artifacts (e.g., defects
and embedded codes) in many polymeric and composite materials
[14]. Infusing the physics-based image reconstruction with recent Al
methods can enhance the detection of the product artifacts one leap
forward. Among the Al methods, several supervised machine learning
methods have been applied to enhance the sensitivity and the predic-
tion power of NDE and ultrasound methods (e.g. [15]). They predomi-
nantly used experimental data to learn purely “black box” models to
segment or classify the artifacts in ultrasound images. The models are
neither based on nor contribute to the understanding of the underly-
ing physical phenomena. Hence, they cannot be generalized beyond
the training scenarios.

In contrast, the new class of explainable Al (XAl) approaches would
not just complement the predictions from powerful machine learning
methods, but would help discover the underlying physical processes
[16]. Also, different from prior applications, this work aims to employ
machine learning methods to enhance the discrimination power of
the ultrasound images beyond what purely physics-driven image
renderings would achieve.

Recent results in an XAl method called local interpretable model-
agnostic explanations (LIME) [16] are adapted to discover the
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physical relationships captured in these machine learning models.
This novel approach is applied to discern, using ultrasound imaging,
the markers (artifacts) distributed in polymeric blocks to mimic pores
and authentication codes. Even the state-of-the-art ultrasound image
segmentation methods [12] could not detect these markers. The
results suggest that the present approach can detect these markers to
accuracies exceeding 80%. More importantly, this approach provides
a robust, fast, and cost-effective solution to the quality and cyberse-
curity challenges in the emerging MaaS paradigm. The rest of this
paper is organized as follows: The details of the explainable
Al-infused ultrasound inspection principles are presented in Sec-
tion 2, an experimental study and results are detailed in Section 3,
and the conclusions are presented in Section 4.

2. XAl-infused ultrasound inspection
2.1. Principles of ultrasound inspection

Fig. 1 illustrates operating schematics of ultrasound imaging. It
employs multiple piezoelectric elements within a transducer that gen-
erate and receive pressure waves. Pressure waves generated from an
element travel downward into the product. Their propagation velocity
c(y) atdepth y is determined by acoustic impedance Z(y) and density p
(y) of the material at location y of the product as c(y) = Z(y)/p(y).
Whenever the pressure waves encounter an artifact, causing a major
inhomogeneity in media (Fig. 1a), the waves are scattered at bound-
aries B within the product. A portion of the incident wave is reflected
back to the piezoelectric element. Intensity of the reflected wave I, in
relation to incident wave I; depends on the acoustic impendences Z;
and Z, of the media on both sides of the boundary B as

W/ = (2 - 2 (2 + 1) M

The piezoelectric elements generate a voltage signal v,(t) at time ¢
by aggregating the reflected wave(echo) it receives as

Vr(6) = Vpe(t) * (fn (V) * Mpe(y, 1)) @)

where ‘«’ denotes a convolution sum (aggregation), fin (y) = (p(y) - po)
/oo —2 (c(y) - co) /co is the quantity of interest to capture in the ultra-
sound image and’it captures inhomogeneity within the object [13], pg
and cg are the nominal values of the density and velocity, respectively,
vpe(t) is the excitation impulse response that aggregates fy(y) in time,
hpe(y,t) is the spatial impulse response of the pulse echo relating the
transducer geometry to the acoustic field that aggregates f,,(y) in space.

The ultrasound image is in effect obtained by inverting Eq. (2) to
retrieve a surrogate of fi,(y), and this results in a single image line
from the crystal element (Fig. 1(b)). The line reconstructions from v, (t
) obtained from multiple piezoelectric elements are juxtaposed to
obtain the signal s. The final rendering of the ultrasound image is
given by ¢ = W{G[V{Rq(s)}]} [17], where Ry is a reconstruction oper-
ator (that performs the inversion operation outlined earlier), V{-} is
a nonlinear operator that determines the intensities, G is used to
achieve the correct image dimension and ¥{ - } is an optional opera-
tor for image enhancement and noise filtering.

In reality, the quality of the image ¢ depends largely on the acoustic
mismatch Z; — Z, at boundary B. A small acoustic mismatch results in
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Fig. 1. Operating principle of ultrasound imaging (a) Acoustic mismatch (Z; — Z;) at a
boundary B (b) Signal received at piezoelectric element 1 and (c) A representative
ultrasound image.

poor contrast due to a very small echo generated at this depth. If the
impendence of the material is high (as with polymers), the propagating
waves, and hence the signals are further attenuated. Also, large acoustic
mismatches degrade the resolution of the images below this depth.
Additionally, side lobes are produced in the ultrasound beam causing
the signals to travel in alternate directions and positioning errors. These
phenomena and their manifestation in the ultrasound images for vari-
ous material systems are not well understood [17]. Recent advances in
XAl can help gain a deeper understanding of how these complex phe-
nomena ultrasound manifest in the ultrasound images.

2.2. XAl and local interpretable model-agnostic explanation (LIME)

Despite decades of application of the ultrasound techniques, their
physical understandings are not mature yet to correctly predict the vari-
ous spatial patterns in the reconstructed ultrasound images, even for
simple realistic products. The growing suite of sophisticated machine
learning methods, such as deep convolution neural networks (CNNs)
trained with labelled experimental ultrasound images can detect the
internal defects and markers in manufactured products at orders of
magnitude higher resolutions than what is possible with the current
ultrasound reconstruction methods [15]. However, the high predictive
power of these advanced machine learning methods comes at the
expense of poor interpretability. While these methods can accurately
detect the presence of artifacts, it is not straightforward to locate them.
Explainable Al (XAI) and local Interpretation model-agnostic explana-
tion (LIME) approaches [18] are garnering significant interest to explain
the complex “black box” machine learning models. They can be adapted
to further analyse black box models to locate the internal artifacts of a
product from an ultrasound image, as well as to discover the dominant
physical mechanisms that cause certain unusual ultrasound features to
appear whenever a specific internal artifact is present.

Instead of considering the complex functional relationship that
CNN and other black box models capture, LIME aims to explain the
relationship local to the various neighbourhoods of the input space
(here, a neighbourhood consists of ultrasound images that are similar
to each other). This is achieved by generating synthetic perturbed
image samples y; (see Fig. 2) within the neighbourhood of an input ¢
and constructing a highly interpretable linear model using these sam-
ples that will hold only for that neighbourhood.
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Fig. 2. An illustration of the LIME scheme.

The coefficients g of the resulting linear model can suggest the
importance of the various components (here, a group of pixels) of an
input (i.e., an image ¢). To explain the prediction of an already trained
CNN classifier g around ¢&, LIME first partitions ¢ into M segments.
Then, a binary vector & € {1}" is used to alternatively represent the
original image ¢, where each element of ¢ indicates the presence of a
segment of ¢&. By randomly setting some elements in ¢’ to 0, LIME fur-
ther generates n different binary vectors, ] € {0, 1WMi=1,2,... n
Each of these generated vectors represents a perturbed image u; (i =
1, 2,..., n) of & Each perturbed image n; is weighted by a similarity
index m:(u;) as

me(ui) = exp(~D(&'up)/82), 3)

where § is the kernel width. The distance D(¢’, u}) is the cosine of the
angle between ¢ and pj. Next, using uj as inputs and the
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corresponding outputs from g as the ground truth, LIME trains a lin-
ear model, defined by its coefficient vector g*as:
n
§ = argmin > (i) [8(wi) — (Bui) P+ 208, BY, (4)
i=0

where pg = ¢, ug =&, g(w;) is the output of the CNN model, and 4 is
the ridge regularization term. The sign and magnitude of each element
of g* indicate positive/negative importance of the presence of the cor-
responding segment in ¢. Thus, a segment with a positive element
implies that without the segment the image is less likely to be classi-
fied to have markers, and a negative coefficient implies the opposite.

Additionally, a total of 2¥ — 1 of possible perturbations exist to
estimate g*about every image ¢. The number of segments M is typi-
cally of the order of 102, and employing all possible permutations is
computationally intractable. Therefore, a much smaller perturbation
sample size n is usually chosen [18]. This sampling introduces uncer-
tainty in the resulting feature importance g*. The following theoreti-
cal result was used to guide the selection of n.

Theorem 1. (Perturbed sample size) [18]: The number of perturbed
samples n required to achieve an uncertainty interval width w of feature
importance at a user-specified confidence level o can be calculated as

n= 48]2/{@ X [W/qu(o,)]z}7 (5)

where 7; = i n:(uq)/] is the average weight for the perturbations esti-
mated from ‘@A initial | samples, 6]2 is the empirical sum of squared errors
between the LIME linear model and g, weighted by m:(w;) fori=1,...,],
and & !(a) is the two-tailed inverse normal cumulative distribution
function at confidence level .

It can be observed that, to keep the uncertainty interval w small, n
needs to be large. On the other hand, when the error gf is large, ie.,
when the LIME model cannot accurately approximate g locally and thus
cannot provide high-quality explanations, we also need a proportionally
larger number of perturbed sample size. Therefore, it is recommended
to only consider the explanations obtained from the LIME models that
have a sufficient accuracy. Here, criteria such as R? (coefficient of deter-
mination) can be used to evaluate the performance of the LIME model.

3. Case study and results

To assess the performance of the XAl-infused ultrasound inspec-
tion, we considered 2cm cubic test products made of a transparent
polymer (Veroclear). The products are embedded with spherical
markers of diameter 0.48mm (see Fig 3(a)). The markers are dis-
persed at both shallow (1-3 mm depth) and deeper (9-12 mm depth)
locations, emulating the occurrence of defects (e.g., internal pores
and voids) and embedded authentication codes in a product. The
products were printed using a Stratasys J750 Polyjet printer and
inspected using an ultrasound imaging system from Aixplorer Ulti-
mate with an SL 15-4 transducer. Although the difference in the
acoustic impedance between Veroclear (~ 3 x 10° Pa s m~!) and air
(415 Pa s m™') assures sufficient contrast to identify the markers in
the ultrasound images, the large acoustic attenuation coefficient of
Veroclear (~170 dB m~! compared to < 10 dB m~! for metallic mate-
rials at 2MHz) severely impedes the discernibility of markers located
more than 5 mm below a surface [14].

(a)

Fig. 3. (a) Isometric, front, and right-side views of the 2cm cubic test product embed-
ded with a distribution of spherical markers. (b) Photograph of a 3D printed cube
made of Veroclear material.

The experiments consisted of moving the components at a speed of
~1mm/sec relative to the ultrasound instrument to collect image-

frames at 18 different settings of frequency (5, 7.5, and 12 MHz), input
power (0dB, -5dB and —10dB) and focal position (Top and bottom)

(Fig. 4a). Each image frame, shown as a light blue cross-section plane
Fig 4(b), captures the markers located underneath the instrument at a
specified time during a scan. The numbers indicated in red at the bot-
tom of Fig. 4(b) represents the time (in seconds) at which the instru-
ment traverses the cross section. Also, the higher the frequency setting,
the higher are the resolution of the scan and signal attenuation. The
higher the power, the greater is the scan illuminance (and scattering
effects). The focal position indicates the depth that requires the best res-
olution. Also, based on the maker patterns, the ultrasound image-frames
can be generally labelled into three classes, namely, those that capture
the shallow markers (Region A), deeper markers (Region C) and no
markers (Region B). The markers are distributed over the depths of 0.5
— 3mm from the top section for Region A, and 9-12 mm for Region C.

(b)JA|B|C|B|A]
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Fig. 4. (a) A schematic of the ultrasound scanning experimental setup. (b) A represen-
tation of the product scanning showing image frames and different regions of marker
distribution, and the marker coordinates.

To apply the novel XAl-infused ultrasound method, CNN models
are employed to classify these ultrasound image frames depending
on whether a frame contains embedded markers. A CNN model
extracts a compact set of features from an image via convolution.
Then, it associates these features with the prespecified class of the
image. In this way, it learns the feature pattern of each class and can
classify a new image into the most likely class. A good classification
accuracy may indicate that the CNN has learned to distinguish the
ultrasound image frames that contain the markers.

One of the challenges encountered here is that the presence of
markers is visible, even partially, only up to a depth of 3mm from the
top of the cube. The markers embedded at depths greater than 3mm
from the top of the cube such as those present in Region C and bot-
tom sections of Region A, are not observable even with advanced
image segmentation methods [12]. However, the presence of markers
can modify the ultrasound image intensity patterns at locations far
away from where the markers are placed. These correlated patterns
across the image, caused by the presence of the marker, serve as a
signature that can be learned by a CNN model.

In this study, two different CNN models are considered: CNN1 to
detect the shallow markers, and CNN2 to detect the markers at
greater depths. The models take an image-frame as input and outputs
0 or 1 indicating the absence or presence of markers. The architecture
of both CNNs comprises of three convolution layers having 32, 64 and
128 filters, respectively, followed by a max pooling layer, and finally a
fully connected dense layer with 128 neurons. A stochastic gradient-
descent optimizer is used to minimize loss and a binary cross entropy
quantifier is used to measure the accuracy.

CNNT1 used the dataset from Regions A and B. For this analysis, a
total of 123 frames were collected, of which 69 frames were sampled
from region A, and 54 frames (that are devoid of any markers) were
sampled from Region B of the cube (refer Fig 4(b)). This data was
then split into training and testing sets in the ratio of 0.8, and the
model was trained for 50 epochs. A 10-fold cross validation on the
training set was performed to mitigate bias in data splitting, and to
better evaluate the model’s performance over the testing dataset. The
CNN1 model consistently achieved an accuracy of 94.9% on the test
dataset as illustrated by the box plot in Fig 5(a).

CNN2 was used to detect the presence of markers at greater depths
(i.e., in Region C). It used 62 frames from Region B and 50 frames from
Region C. This data was split into training and testing sets in the ratio
0.8 and a 10-fold cross validation was performed as before. The model
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Fig. 5. Box plot summary of the prediction accuracies for training, validation, and test-
ing datasets over the 10-fold cross validation models corresponding to (a) CNN1 for
the detection of markers at shallow depths (b) CNN2 for the detection of markers at
greater depths

can achieve a prediction accuracy of 90% on the validation set and 78%
with the testing set (Fig. 5(b)). Given the sparsity of data there is a
chance that the models might have been overtrained. However, they
possess considerable explanatory power as conveyed by the LIME
Analysis. The sensitivity and specificity of detecting the markers can
be improved further by fusing inspections made along different direc-
tions and combining multiple redundant marker measurements
recorded in the vicinity of the marker region [7].

Fig. 6 summarizes a representative result from LIME analysis of
CNN1. The markers present along a section (Fig. 6(a)) are hardly
noticeable in the raw ultrasound images (Fig. 6(b)). The two bright
spots near the top right corner of the image are the only possible
indicators for the presence of markers. In contrast, the red segments
from the LIME analysis (Fig. 6(c)) strongly indicate the presence of
markers in the image-frame at these locations. Similarly, Fig 6(e)
depicts the ultrasound scan pertaining to a frame without any
markers. The green segments from LIME analysis (Fig 6(f)) contribute
to strongly indicating the absence of embedded markers in the
frame.

Fig. 6. (a) Representative view of the cube’s actual design on its top section in Region
A. (b) Ultrasound image of a frame captured in Region A. (c) The corresponding LIME
explanation highlighting (in red) the important segments that determine the presence
of artifacts. (d) Side view of the cube’s design in Region B. (e) Ultrasound image of a
frame captured in Region B. (f) The corresponding LIME interpretation highlighting (in
green) the important segments that determine the absence of artifacts.

Similarly, for the more challenging case of CNN2 for detecting
markers in Region C, the red segments near the middle as depicted in
Fig 7(b) indicate the presence of embedded markers in the image-
frame. The important segments near the top corners of the frame
and, interestingly, far away from marker locations, are likely formed
due to the scattering and reverberations of sound waves in the pres-
ence of the deeper markers. This is somewhat like a “butterfly effect”,
where one needs to look for intensity variations elsewhere to locate a
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Fig. 7. (a) Ultrasound image of a correctly classified frame captured in Region C of the
scan containing markers at a depth of 9-12 mm near the centre of the cube. (b) The cor-
responding LIME explanation highlighting (in red) the important segments that indi-
cate that the frame is from Region C.

defect at a particular location. Pertinently, the XAl-infused approach
helps in determining where to look for these crucial patterns, and

these discovered patterns—largely ignored in the ultrasound litera-
ture—help with detecting artifacts located 3-4 times deeper com-
pared to conventional ultrasonic inspections.

4. Conclusions

A novel explainable Al (XAI) - infused ultrasound imaging princi-
ple that enables a fast, holistic inspection of products manufactured
from diverse materials, and detection of internal artifacts such as
voids, pores and other defects is presented. Based on LIME analysis, it
was discovered that distinct correlated spatial patterns are formed in
the ultrasound images at locations that are far away from the artifact
in the polymer cubic component with embedded markers. The results
suggest that CNN models can detect internal artifacts that could not
be discerned using any existing image segmentation method to accu-
racies exceeding 80% by effectively capturing the discovered spatial
patterns. This result can profoundly impact the assurance of not just
product quality, but also authentication and cybersecurity in the
emerging manufacturing paradigm.
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