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Abstract

It is increasingly understood that the assumption of stationarity is unrealistic for many
spatial processes. In this article, we combine dimension expansion with a spectral method to
model big non-stationary spatial fields in a computationally efficient manner. Specifically, we use
Mej́ıa and Rodŕıguez-Iturbe (1974)’s spectral simulation approach to simulate a spatial process
with a covariogram at locations that have an expanded dimension. We introduce Bayesian
hierarchical modelling to dimension expansion, which originally has only been modeled using
a method of moments approach. We consider a novel scheme to re-weight levels in a Bayesian
spatial hierarchical model that allows one to use non-stationary spectral simulation within a
collapsed Gibbs sampler. Our method is both full rank and non-stationary, and can be applied
to big spatial data because it does not involve storing and inverting large covariance matrices.
We demonstrate the wide applicability of our approach through simulation studies, and an
application using ozone data obtained from the National Aeronautics and Space Administration
(NASA).
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1 Introduction

There is increasing interest in using spatial statistical methods to model environmental processes.

This is partially due to the emergence of remote sensing instruments and the popularity of Geo-

graphic Information Systems (GIS) software (e.g. see, Stein et al., 2006; Kalkhan, 2011, for standard

references). The main goal of these analyses is to make predictions at observed and unobserved

locations and provide uncertainty quantification. Early works make the assumption that the pro-

cess is weakly stationary (e.g., see Cressie, 1993, for a review); that is, the covariance between the

response at two different locations is a function of the spatial lag. However, non-stationary pro-

cesses are much more common in environmental systems observed over large heterogeneous spatial

domains (see Bradley et al., 2016, for a discussion). There are many models for non-stationary

spatial data, and reduced ranks basis function expansions have become a popular choice (Banerjee

et al., 2008; Cressie and Johannesson, 2008). However, there are inferential issues with reduced

rank methods in the spatial setting (Stein, 2014), and consequently, there is renewed interest in

proposing computationally efficient approximately full-rank models (Nychka et al., 2015; Datta

et al., 2016a; Katzfuss, 2017; Bradley et al., 2020; Katzfuss et al., 2020). Thus, in this article our

primary goal is to develop an efficient full rank non-stationary spatial statistical model.

There are numerous methods available to model non-stationary spatial data. For example,

process convolution (Higdon, 1998; Paciorek and Schervish, 2006; Neto et al., 2014) convolves a

known spatially referenced function with a spatial process typically assumed to be Gaussian. There

are several related, but different approaches available. For example, using a finite integral repre-

sentation of a process convolution results in a basis function expansion (Cressie and Wikle, 2011,

page 157). Several parameterizations of basis function expansions are available, including: fixed

rank kriging (Cressie and Johannesson, 2008), lattice kriging (Nychka et al., 2015), the predictive

process (Banerjee et al., 2008), and a stochastic partial differential equation approach (Lindgren

et al., 2011), among others.
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An alternative to modeling non-stationarity with spatial basis functions is to assume a defor-

mation (Sampson and Guttorp, 1992). Here, Euclidean space is “deformed,” or warped, so that

far away locations can be more correlated, and vice versa. The parameter space for this method

is considerably smaller than many parameterizations using spatial basis function expansions (e.g.,

see Cressie and Johannesson, 2008; Kang and Cressie, 2011, for examples), and is full rank. A

similar but different approach to deformation is referred to as “dimension expansion” (Bornn et al.,

2012). This method involves extending the dimension of the locations to a higher dimensional

space. This methodology is based on the surprising result that every non-stationary covariance

function in Rd can be written as a stationary covariogram defined on locations in R2d (Perrin and

Meiring, 2003). Recently, Bornn et al. (2012) proposed a method of moments approach to analyz-

ing spatio-temporal data using dimension expansion. To our knowledge, the dimension expansion

approach has not been implemented using a Bayesian framework.

Thus, our first contribution is to introduce dimension expansion to the Bayesian setting to

analyze big spatial data. To achieve a computationally efficient approach to dimension expansion

in the Bayesian setting we offer three technical results. In our first technical result, we provide

a “non-stationary version” of Bochner’s Theorem (Bochner, 1959). That is, we show that a non-

stationary covariance function can be written as a convolution of the cosine function with a spectral

density. The proof of this result simply involves combining Perrin and Meiring (2003)’s dimension

expansion result with Bochner’s Theorem. This result opens up new opportunities to use spectral

methods to model non-stationary spatial process. Other methods exist (e.g. see, Priestley, 1965;

Martin, 1982) to model non-stationary data using spectral densities. However, these methods

involve difficult to interpret types of “quasi-stationarity” assumptions (see, Sayeed and Jones,

1995, for a discussion), while our approach can be easily interpreted through dimension expansion.

Castruccio and Guinness (2017) have also proposed an approach that uses evolutionary spectrum

and incorporates an axial symmetric structure into their model.

The second technical result developed in this manuscript follows from our non-stationary ver-
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sion of Bochner’s Theorem. Specifically, we extend Mej́ıa and Rodŕıguez-Iturbe (1974)’s method for

spectral simulation of a stationary spatial processes to non-stationary spatial processes. This makes

it straightforward to simulate in the high-dimensional non-stationary setting because spectral sim-

ulation does not require the inverse and storage of a high-dimensional covariance matrix (i.e., is

matrix free). In practice, Gaussian spatial datasets correspond to a likelihood that is difficult to

compute in high dimensions (i.e., when the dimension of the data n is large) because this requires

O(n3) computation and O(n2) dynamic memory. While non-stationary spectral simulation is “ma-

trix free” the implementation of our model will require additional steps that include operations on

low dimensional matrices. Consequently, we describe our method as “large-matrix-free.”

To further aid in computation we develop a new technique to re-weight the data model in a

spatial hierarchical model. Our re-weighting method imposes conditional independence between

the spatially co-varying random effect at observed locations and the data given the covariance

parameters, and conditional independence between variance/covariance parameters and a large

subset of the data. As a result, our re-weighting method allows us to use non-stationary spectral

simulation to update the spatially co-varying random vector within a collapsed Gibbs sampler (Liu,

1994), and update other parameters based on a low-dimensional sub-sample. Furthermore, these

conditional independence assumptions do not change the marginal distribution for the data, and

consequently, the marginal statistical properties of the data are invariant to our added assumptions

of conditional independence. This re-weighting technique is similar to what is done in a recent

paper by Bradley (2019). Overall, our method is computationally feasible, full-rank, does not

require storage of large matrices, and can be implemented on irregularly spaced locations. This

last feature is particularly important as spectral methods based on the discrete Fourier transform

often require regularly spaced locations (Fuentes, 2002; Fuentes et al., 2008).

The remaining sections of this article are organized as follows. Section 2 introduces our proposed

statistical model, our first two theoretical results, and our re-weighting technique. In Section 3,

we describe our implementation using a collapsed Gibbs sampler. In Section 4, we present a
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simulation study and compare our approach to the Nearest Neighbor Gaussian Process (NNGP;

Datta et al., 2016b) and the general Vecchia approximation (Katzfuss and Guinness, 2019) when

data are generated from an additive model with nonlinear fixed effects and stationary spatial

random effects. Additionally, we present a simulation study where we compare to a spatial process

convolution (SPC; Paciorek and Schervish, 2006) approach, and a stochastic partial differential

equation (SPDE; Lindgren et al., 2011) approach in the purely non-stationary setting. In Section 5,

we implement our model using the benchmark ozone dataset analyzed in (Cressie and Johannesson,

2008) and (Zhang et al., 2019). Finally, Section 6 contains a discussion. For ease of exposition, all

proofs are given in the appendices.

2 Methodology

Let Z(·) be a spatial process defined for all s∈D⊂Rd, where D is the spatial domain of interest in

d-dimensional Euclidean space, Rd. We observe the value of Z(·) at a finite set of locations s1, . . .,

sn∈D. The data is decomposed additively with

Z(s) = Y (s) + ε(s),

where s∈D, Y (·) is the Gaussian process of principal interest, and the Gaussian process ε(·) repre-

sents measurement error. The measurement error ε(·) is assumed to be uncorrelated with mean-zero

and variance σ2ε .

The process Y (·) is further decomposed as

Y (s) = x′(s)βββ + ν(s); s ∈ D,

where x(s) is a known p-dimensional vector of covariates and βββ ∈ Rp is unknown. For any col-

lection of locations u1, . . . ,um, the random vector ννν = (ν(u1), . . . , ν(um))′ is assumed to have the

probability density function (pdf),

p(ννν | θθθ, δ2) =

∫
Rm

p(ννν | θθθ, ν̃νν, δ2)p(ν̃νν | θθθ)dν̃νν, (1)
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where p(ννν | θθθ, ν̃νν, δ2) is the multivariate normal distribution density with mean ν̃νν ∈ Rm, covariance

matrix δ2Im, and Im is an m × m identity matrix. The pdf p(ν̃νν | θθθ) will be specified in Section

2.2, but is approximately normal with mean zero, and m ×m covariance matrix C(θθθ), where the

(i, j)-th element of C(θθθ) is

C(si, sj) = σ2ν exp

(
−E(si, sj)

φ

)
,

where

E(si, sj) = ‖
( si
ψψψ′(si)ηηη

)
−
( sj
ψψψ′(sj)ηηη

)
‖,

θθθ = (φ, σ2ν , ηηη
′)′, and ‖ · ‖ is a Euclidean distance. This covariance function uses the aforementioned

dimension expansion approach from Bornn et al. (2012). Here, ψψψ(si) is an r × d matrix consisting

of known basis functions. This use of spatial basis functions is similar to the model in Shand and

Li (2017). It will be useful to organize the n-dimensional vectors Z = {Z(s1) . . . Z(sn)}′ and Y =

{Y (s1) . . . Y (sn)}′, and the n×p matrix X = (x(s1), . . . ,x(sn))′, where {s1, . . . , sn} ⊂ {u1, . . . ,um}.

There is terminology in the spatial statistical models literature that describes separating the

mixed effects model into four components as we do above (for a standard reference, see Cressie

and Wikle, 2011, Section 9.2.1): large-scale variability (i.e., Xβ), small-scale variability (i.e., ν̃),

fine-scale variability (i.e., a term we have marginalized across with variance δ2), and a measurement

error term (i.e., a term we have marginalized across with variance σ2ε ). The variance δ2 is similar to

a “nugget” used in classical spatial statistics (Banerjee et al., 2015). The introduction of δ2 may be

problematic, since the parameters δ2 and σ2ε may be unidentifiable in some settings. However, in

the Bayesian setting, the parameters δ2 and σ2ε can be made identifiable through the specification

of prior distributions. Additionally, inclusion of an additional random effect has been shown to lead

to increased performance in prediction in several settings and removing δ2 as a source of variability

in the latent process Y (·) can lead to over-smoothing (Finley et al., 2009; Bradley et al., 2020).

The introduction of fine-scale variability is often interpreted as a “model correction term.” For

example, Finley et al. (2009) introduced a “modified” predictive process approach, which modifies
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the traditional predictive process (Banerjee et al., 2008) by introducing an additional random effect

(similar to our inclusion of δ2) to account for possible over-smoothing of their reduced rank small-

scale- variability term. Several spatial statistical models include a fine-scale-variability term while

others trust that the small-scale variability term captures all the variability in the latent process

and choose to remove the fine-scale variability term. See Bradley et al. (2016) for a review of several

recent spatial prediction methods based on this large-scale, small-scale, (possibly) fine-scale, and

measurement error variability decomposition.

2.1 The Bayesian Hierarchical Model

In this section, we summarize the statistical model used for inference. The model is organized using

the “data model,” “process model,” and “parameter model” notation used in Cressie and Wikle

(2011), as follows:

Data Model : Z | βββ,νννO, ν̃O,θ,γ ∼ N(Xβββ + νννO, σ
2
ε In)W (θ,γ, ν̃O,Z)

Process Model 1 : ννν | ν̃νν, δ2 ∼ N(ν̃νν, δ2In)

Process Model 2 : ν̃νν | θθθ ∼ p(ν̃νν | θθθ)

Parameter Model 1 : βββ ∼ N(0, σ2βIp)

Parameter Model 2 : ηηη ∼ N(0, σ2ηIr)

Parameter Model 3 : σ2ν ∼ IG(α1, β1)

Parameter Model 4 : σ2β ∼ IG(α2, β2)

Parameter Model 5 : σ2η ∼ IG(α3, β3)

Parameter Model 6 : φ ∼ U(0,U)

Parameter Model 7 : δ2 ∼ IG(α4, β4). (2)

In Equation (2), νννO = Oν, ν̃ννO = Oν̃νν, and O is an n ×m incidence matrix; 0p is a p-dimensional

vector of zeros; “N(µµµ,ΣΣΣ)” is a shorthand for a multivariate normal distribution with mean µµµ and

positive definite covariance matrix ΣΣΣ; ‘‘ν̃νν | θθθ ∼ p(ν̃νν | θθθ)” should be read as ν̃νν given θ is distributed
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according to the density p(ν̃νν | θθθ); “IG(α, κ)” is a shorthand for the inverse gamma distribution

with shape α > 0 and scale κ > 0; and “U(L,U)” is a shorthand for a uniform distribution with

lower bound L and upper bound U . All hyperparameters are chosen so that the corresponding

prior distribution is “flat,” and example specifications are provided in Section 4 and Section 5.

The term W (θ,γ, ν̃O,Z) is a positive-valued function of the (r + 2)-dimensional parameter vector

θ = (σ2ν , φ,η
′)′, the 3-dimensional parameter vector γ = (σ2β , δ

2, σ2ε ), ν̃O, and Z. The explicit

definition of W is given in Section 2.3. We refer to our model as an expanded spectral density

(ESD) approach. We will assume σ2ε is known, which is a common assumption in spatial additive

models (e.g.,see Bradley et al., 2016, among others). However, one can place a prior on σ2ε . We

suggest placing an informative prior on σ2ε to avoid potential issues with weak identifiability.

The n ×m incidence matrix O allows one to identify which of the m locations are observed.

That is, to form O, first set O equal to a m × m identity matrix and then remove the i-th row

if Z(ui) is unobserved. This incidence matrix does not require {u1, . . . ,um} to be defined on a

regular grid, which as discussed in the Introduction, is an important contribution, since spectral

methods based on the discrete Fourier transform often require regularly spaced locations.

The joint distribution used for statistical inference is found by multiplying all the conditional

distributions and marginal distributions implied by (2). To write the joint distribution explicitly,

let the densities of the processes and parameters in Equation (2) be denoted with p, and let

p(θ) = p(σ2ν)p(φ)p(η) and p(γ) = p(σ2β)p(δ2)p(σ2ε ). Also, let h(Z|β,ν, σ2ε ) be the density of a

normal distribution with mean Xβ + Oν and covariance matrix σ2ε In. Then the joint distribution

of Z, νO, ν̃O, β, θ, γ, and σ2η is given by

p(Z,νO, ν̃O,β,θ,γ, σ
2
η) = h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)W (θ,γ, ν̃O,Z).

(3)

The standard way to define the Data Model (e.g., see Cressie and Wikle, 2011) sets W (θ,γ, ν̃O,Z) ≡

1. We write the special case of ESD when W (θ,γ, ν̃O,Z) ≡ 1 as

h(Z,νO, ν̃O,β,θ,γ, σ
2
η) = h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η). (4)
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We call the joint distribution in (4) the “un-weighted model.” The definition of W and the conse-

quences of setting W 6= 1 requires more detail, which we will provide in Section 2.3.

Process Model 1, Parameter Model 1, and Parameter Models 3−5 are fairly standard assump-

tions for Gaussian data, as they lead to easy to sample full-conditional distributions within a Gibbs

sampler (Cressie and Wikle, 2011). Parameter model 6 and 7 are used to avoid identifiability issues

and leads to a conjugate full-conditional distribution (see Banerjee et al., 2015, page 124). It is

common to assume that p(ν̃νν | θθθ) in Process Model 2 is the multivariate normal distribution with

mean zero and covariance matrix C(θθθ) (Banerjee et al., 2015; Cressie and Wikle, 2011). However,

in our model p(ν̃νν | θθθ) is only approximately normal with mean-zero and covariance matrix C(θθθ)

(see Section 2.2 for details).

There are several different ways in which one could decompose a Bayesian hierarchical model

with our parameters and random effects. For example, the Data Model could replace the normal

density with p(Z|Y, θ,γ, σ2ε ). However, it will be important for us to isolate ν̃ and ν to lead to

easy to sample full-conditional distributions in a collapsed Gibbs sampler (see Section 3).

2.2 Non-Stationary Spectral Simulation using Dimension Expansion

A non-stationary extension of Bochner’s Theorem is stated in Theorem 1.

Theorem 1:Let C(si, sj) be a positive definite function on D, which is assumed to be compact.

Then there exists a function f : D → Rd and a measure Gθ(ωωω) such that for any pair of locations

si, sj ∈ D,

C(si, sj) =

∫ ∞
−∞

cos[{f(si)− f(sj)}′ωωω1 + (si − sj)
′ωωω2]Gθ(dωωω), (5)

where the 2d-dimensional vector ωωω = (ωωω′1,ωωω
′
2)
′.

Proof : See Appendix A.

9



The proof of Theorem 1 involves a simple combination of the result in Perrin and Meiring (2003)

and Bochner’s Theorem. We use Theorem 1 to define a non-stationary covariance function C(·, ·).

That is, in our model we choose a specific form for Gθ(dω) and f(·), and we use Equation (5) to

define our non-stationary covariance function.

Additionally, in practice we approximate f(s) by assuming f (s) = ψψψ′(s)ηηη, which is similar to

the strategy used in Bornn et al. (2012) and Shand and Li (2017). This leads naturally to questions

on how to specify spatial basis functions. In general, we use sparse radial basis functions with

equally spaced knot locations as suggested in Nychka (2001) and Cressie and Johannesson (2008).

One might also consider the use of information criteria to adaptively select knot locations (Bradley

et al., 2011; Tzeng and Huang, 2018).

There are several things we can learn from Theorem 1. First, every non-stationary covariance

function can be written as a convolution in 2d -dimensional space according to (5). Second, {f(si)−

f(sj)}′ωωω1 is a deformation, which shows an explicit connection between dimension expansion and

deformation. Furthermore, this deformation induces non-stationarity, since {f(si) − f(sj)}′ωωω1 = 0

leads to the classical version of Bochner’s Theorem, and hence, this model simultaneously allows

for stationarity (i.e., when f(s) ≡ 0d or η = 0r) and non-stationarity (i.e., when f(s) 6= 0d or

η 6= 0r). Third, if we assume a specific form of G(dωωω), we can use Equation (5) to approximate

the covariance function. For example, when C(·, ·) is the exponential covariance function (as is

the case in (2)), then Gθ(dωωω) has a corresponding Cauchy density (Stein, 2012). Denote the

density corresponding to Gθ(dωωω) with gθ(ω)
C(0,0) . Moreover, the ability to simulate from the spectral

density without mathematical operations of covariance matries, allows us to completely circumvent

computing and storing a large covariance matrix (Mej́ıa and Rodŕıguez-Iturbe, 1974).

10



Theorem 2: Let ωωωi = (ωωω′1,i,ωωω
′
2,i)
′, ωωωi

ind∼ Gθ(dωωω), and κi
ind∼ U(−π, π). Then for a given f : Rd → Rd

the random process,

ν̃(s) ≡ σν
(

2

K

) 1
2

K∑
i=1

cos(f (s)′ωωω1,i + s′ωωω2,i + κi), (6)

has E{ν̃(s)} = 0, E{ν̃(si)ν̃(sj)} = C(si, sj), and converges in distribution (as K → ∞) to a

mean-zero Gaussian process with covariance function C(·, ·) in Equation (5) with spectral density∏ gθ(ωjk)
C(0,0) , for s contained within a d-dimensional ball in D ⊂ Rd.

Proof : See Appendix A.

The proof of Theorem 2 involves a simple combination of the result in Perrin and Meiring (2003)

and Mej́ıa and Rodŕıguez-Iturbe (1974) (also see, Cressie, 1993, pg. 204 for more discussion). In

practice, to use Theorem 2, we need to specify the spectral density. In our implementation, we

assume that ωj,i
ind∼ gθ(ω)

C(0,0) , where for each i, ωωωi = (ω1,i, . . . , ω2d,i)
′ and gθ(·) is the Cauchy(0, 1/φ)

density. This choice of the Cauchy density leads to the exponential covariogram (Cressie, 1993).

It is arguably more common to simulate ν̃νν using a Cholesky decomposition. However, this

requires order n3 computation and order n2 memory. Theorem 2 allows us to simulate ννν without

these memory and computational problems. It follows from the transformation theorem (Resnick,

2013) that the pdf of ν̃νν is given, under our specification, by

p(ν̃νν | θθθ)

=

∫
ν̃νν:ν̃(s)=σν( 2

K )
1
2
∑K
i=1 cos(f (s)

′ωωω1,i+s′ωωω2,i+κi)}

∏
jk

gθ(ωj,k)

C(0, 0)

K∏
i=1

1

2π
I(−π < κ < π)dωωω1,idωωω2,idκ1 . . . dκn,

(7)

where I(·) is the indicator function. Again, from Theorem 2 the pdf in (7) is roughly Gaussian

with mean zero and covariance C(θθθ).

11



2.3 Re-Weighting Levels in a Spatial Hierarchical Model

We will impose the following conditional independence assumption: p(ν̃O|θ,Z) = p(ν̃O|θ). We

argue that conditional dependence is not necessarily needed for prediction at observed locations

because spatial extrapolation is not needed at observed locations. Furthermore, this added assump-

tion will have additional computational benefits. That is, Gibbs sampling from the posterior distri-

bution would traditionally require one to simulate from the full conditional distribution p(ν̃O|θ,Z)

and not from p(ν̃O|θ), and conditional independence will allow us to use Theorem 2 to jointly

update ν̃O. However, this conditional independence assumption changes the likelihood, which for

transparency, we now describe explicitly. Define the weight in the Data Model in Equation (2) to

be the following

W (θ,γ, ν̃O,Z) =
h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
, (8)

where we subset the data to define Zw and Z−w. Specifically, let Ow be the w×n subset incidence

matrix that is formed by removing the rows of In that do not belong to a pre-defined subset of

{1, . . . , n} of size w � n. Likewise, let O−w be the (n−w)×n matrix that is formed by removing the

rows of In that belong to the pre-defined subset. Then, the w-dimensional vector Zw = OwZ and the

(n−w)-dimensional vector Z−w = O−wZ. Additionally, let h(Zw|θ,γ) be the normal distribution

density with mean 0w and w ×w covariance matrix σ2βOwXX′O′w + OwC(θθθ)O′w + (δ2 + σ2ε )Iw, so

that h(Zw|θ,γ) is the density for Zw|θ,γ derived from the un-weighted model. Then define,

h(Z−w|Zw) =

∫ ∫ ∫ ∫ ∫ ∫
h(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dβ dν̃O dσ

2
η dθ dγ∫ ∫ ∫

h(Zw|θ,γ)p(θ|σ2η)p(γ)p(σ2η) dθ dγ dσ
2
η

,

where recall h(Z,νO, ν̃O,β,θ,γ, σ
2
η) is defined in (4). We call the joint distribution in (3) with W

specified with (8) the “weighted ESD model.”

There are several important properties of the weighted ESD model. First, the marginal distri-

bution of the data Z is the same for both the weighted ESD model and the un-weighted model.
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That is, we have

p(Z) =

∫
. . .

∫
p(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dβ dν̃O dσ

2
η dθ dγ

=

∫
. . .

∫
h(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dβ dν̃O dσ

2
η dθ dγ = h(Z), (9)

where the algebraic details are provided in Appendix A. Since the weighted ESD model and un-

weighted model have the same marginal distribution of the data, both models imply the same

assumptions on the data (marginally). Furthermore, Equation (9) implies that the weighted ESD

model is proper (i.e., integrates to one), since the un-weighted model is proper.

Another important property of the weighted ESD model is that the following relationships hold,

p(ν̃O|θ,Z) = p(ν̃O|θ) (10)

p(θ|ν̃w,γ, σ2η,Z) ∝ h(Zw|θ,γ)p(ν̃w|θ)p(θ|σ2η) (11)

p(γ|ν̃O,θ, σ2η,Z) ∝ h(Zw|θ,γ)p(γ), (12)

where ν̃w = OwOν̃ so that the conditional distribution in (11) collapses across β, ν, and all ν̃(u)

that are not elements of ν̃w, and where p(ν̃w|θ) is approximately a multivariate normal distribution

with mean zero and w×w covariance matrix OwOC(θ)O′O′w. Similarly, the conditional distribution

in (12) collapses across νO and β.

Equation (10) − (12) show that several types of conditional independence arises in the weighted

ESD model. Specifically, ν̃O is conditionally independent of Z given θ. This is particularly useful

for our purposes, since this allows one to use non-stationary spectral simulation, via Theorem 2,

to update ν̃O in a collapsed Gibbs sampler. Additionally, one can use (11) and (12) to update θ

and γ efficiently in a collapsed Gibbs sampler as well, since the distributions in (11) and (12) can

be computed efficiently using a subset of the data. This is because Zw is a low-dimensional subset

of the high-dimensional dataset. Equation (11) shows that the weighted ESD model assumes that

θ is conditionally independent of Z−w given ν̃w, γ, σ2η, and Zw. Likewise, Equation (12) shows

that the weighted ESD model assumes that γ is conditionally independent of Z−w given ν̃O, γ, σ2η,
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Algorithm 1 Implementation: Collapsed Gibbs sampler

1: Initialize βββ[1], ννν
[1]
O ,ν̃νν

[1]
O ηηη[1],σ

2[1]
ν ,σ

2[1]
β , σ

2[1]
η , φ[1] δ2[1], θ[1] = (σ

2[1]
ν , φ[1],η[1])′, and γ[1] =

(σ
2[1]
β , δ2[1], σ

2[1]
ε ).

2: Set b = 2.
3: Simulate βββ[b] from p(βββ|ννν[b−1]O , ηηη[b−1], σ

2[b−1]
ν , σ

2[b−1]
β , σ

2[b−1]
η , φ[b−1], δ2[b−1],Z).

4: Simulate ν̃νν
[b]
O from p(ν̃ννO | θθθ[b−1]) using Theorem 2 with K “large,” where recall from (10),

p(ν̃ννO | θθθ) = p(ν̃ννO | θθθ,Z).

5: Simulate ννν
[b]
O from p(νννO|βββ[b], ηηη[b−1], σ2[b−1]ν , σ

2[b−1]
β , σ

2[b−1]
η , φ[b−1], δ2[b−1], ν̃νν

[b]
O ,Z).

6: Simulate θ[b] from p(θ|Owν̃
[b]
O ,γ

[b−1], σ
2[b−1]
η ,Z) and set (σ

2[b]
ν , φ[b],η[b]) = θ[b], where recall from

(11), p(θ|Owν̃
[b]
O ,γ

[b−1], σ
2[b−1]
η ,Z) ∝ h(Zw|θ,γ[b−1])p(Owν̃

[b]
O |θ)p(θ|σ2η).

7: Simulate γ[b] from p(γ|ν̃ [b]O ,θ[b], σ
2[b]
η ,Z) and set (σ

2[b]
β , δ2[b], σ

2[b]
ε ) = γ[b], where recall from (12),

p(γ|ν̃ [b]O ,θ[b], σ
2[b]
η ,Z) ∝ h(Zw|θ[b],γ)p(γ [b]).

8: Let b = b+ 1.
9: If b < B (a prespecified value) repeat Steps 3 − 12, otherwise stop.

and Zw. In practice, we specify the subset of our dataset to be w roughly equally spaced over the

observed locations. The value of w can be selected using cross-validation.

These properties aid in the interpretation of W in the weighted ESD model. That is, W in

the weighted ESD model is the quantity that enforces the conditional independence assumptions

implied by (10) − (12), while simultaneously ensuring that our (marginal) assumptions on the data

do not change (i.e., see (9)).

3 Computation and Prediction

3.1 Computation: Collapsed Gibbs Sampling

In this section, we outline the steps needed for collapsed Gibbs sampling. Gibbs sampling re-

quires simulating from full-conditional distributions (Gelfand and Smith, 1990). In a collapsed

Gibbs sampler, some of the events conditioned on in the full-conditional distribution are integrated

out (Liu, 1994). In Algorithm 1, we present the steps needed for our proposed collapsed Gibbs

sampler. The expressions for the full-conditional distributions listed in Algorithm 1 are derived

in Appendix B. This collapsed Gibbs sampler can easily be modified to allow for heterogeneous

variances, component-wise updating, and allow for other choices of proper prior distributions on θ
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and γ.

An important motivation for collapsed Gibbs sampling is that Step 4 of Algorithm 1 is com-

putationally straightforward using non-stationary spectral simulation. Additionally, in Step 5,

the full-conditional distribution has a known, and easy to sample from expression. This is sig-

nificant, as this full-conditional distribution traditionally involves inverses and determinants of

high-dimensional matrices. Specifically, the following relationship holds,

f(νννO|·) ∝ exp

{
−(Z−Xβββ − νννO)′V−1ε (Z−Xβββ − νννO)

2

}
f(νννO|ν̃ννO, δ, θθθ),

where Vε = σ2ε and f(νννO|ν̃ννO, δ, θθθ) ∝ exp
{
− (νννO−ν̃ννO)′(νννO−ν̃ννO)

2δ2

}
. Then,

f(νννO|·) ∝ exp

{
−
ννν ′O(δ−2I + V−1ε )νννO

2
+ ν ′O

(
V−1ε (Z−Xβββ) +

1

δ2
ν̃ννO

)}
.

This gives

f(ννν|·) = N(µµµ∗,ΣΣΣ∗), (13)

where µµµ∗ = ΣΣΣ∗{V−1ε (Z − Xβββ) + 1
δ2
ν̃ννO}, and (ΣΣΣ∗)−1 = δ−2In + V−1ε , where we emphasize that

ΣΣΣ∗ is a computationally advantageous diagonal matrix. We have found that Algorithm 1 leads

to fast mixing, as several of the covariance structures are diagonal (i.e., νO and η have diagonal

covariances), and there is no Metropolis-Hasting steps required to update the random effect ν̃O,

which has a more complex covariance structure.

Algorithm 1 provides a perspective on the relationship between νO, ν̃O, and δ2 under our

conditional independence assumption p(ν̃O|θ,Z) = p(ν̃O|θ). That is, the mean of νO is updated

while the mean of ν̃O is zero, which suggests that the role of ν̃O is purely to induce (possibly)

non-stationary spatial correlations into νO. This also emphasizes our need for δ2 > 0, since its

presence allows for νO 6= ν̃O (almost surely), and hence, have non-zero mean. Algorithm 1 also

provides a perspective on updating θ and γ. In particular, the updates in Steps 6 and 7 are the

same as the updates for θ and γ in a Gibbs sampler for the un-weighted model that (1) does not

use non-stationary spectral simulation and (2) marginalizes β, νO, ν̃O, and Z−w.
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There are parameters in our model that are not explicitly modeled with a prior distribution that

require specification. In particular, the number of basis functions r, the size of the equally spaced

subset w, the number of components to average in spectral simulation K, and the spectral density.

In general, for both simulations and the application, we have found that values of r that are too

small lead to larger prediction errors, and vice versa. Additionally, we have found that the method

is robust to small values of K, but we generally found K = 100 leads to small prediction errors and

is computationally feasible. In practice, we use cross-validation to choose the value of r, w, and K.

One could also consider a more general model not considered in this paper, where prior distributions

are placed on r, w, and K. This choice will possibly lead to computationally prohibitive reversible

jumps in the MCMC. When the latent spatial process is non-stationary, we have found that the

prediction errors are robust to the specification of the spectral density. However, in practice one

might consider other spectral densities besides the Cauchy distribution.

3.2 Spatial Prediction

Spatial prediction at observed locations follows from Algorithm 1, where the b-th posterior replicate

of Y (s) is computed as

Y (s)[b] = x(s)′β[b] + e(s)′ν
[b]
O ,

where s ∈ {s1, . . . , sn} is observed, e(s) = (I(s = s1), . . . , I(s = sn))′, and I(·) is an indicator

function. Then posterior means and variances of Y (s)[b] across b can be used to perform inference

on Y (s).

To predict at missing location u ∈ {u1, . . . ,um}∩{s1, . . . , sn}c we first define an w∗×n incidence

matrix O∗w, where each row indicates the observed location that is a w∗ nearest neighbor of u, where

w∗ is not necessarily the same as w. Set the w∗-dimensional vector ν∗w = O∗wνO, and denote the

(n−w∗)-dimensional vector ν∗−w to consist of all ν(s) such that s is not a w∗ nearest neighbor of u.

Then it follows from standard result for multivariate normal distributions (Ravishanker and Dey,
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2020),

ν(u)|ν∗w,θ ∼ N
{
CO(u|θ)CO(θ)−1ν∗w, var(ν(u)|θ)−CO(u|θ)CO(θ)−1CO(u|θ)′

}
, (14)

where the w-dimensional vector CO(u|θ) = cov(ν(u),ν∗w|θ), the w∗ × w∗ matrix CO(θ) =

cov(ν∗w|θ), and we have implicitly assumed K is large enough so that ν̃ is normally distributed.

To predict at missing locations we use the posterior predictive distribution of a “new” replicate of

ν(u), which we denote with ν(u)new. Here, p(ν(u)new|ν∗w,θ) is assumed to be the same as (14).

Furthermore, we assume the following,

p(ν(u)new|β,γ,θ,Z) =

∫ ∫
p(ν(u)new,νO|β,γ,θ,Z)dν∗−wdν

∗
w

=

∫ ∫
p(ν∗−w, ν(u)new|ν∗w,β,γ,θ,Z)p(ν∗w|β,γ,θ,Z)dν∗−wdν

∗
w

=

∫
p(ν(u)new|ν∗w,θ)p(ν∗w|β,γ,θ,Z)dν∗w. (15)

The posterior predictive replicate ν(u)new is generated under the assumption of conditional in-

dependence of Z (and β and γ) given νw. This distinction is important because ν(u) itself is

conditionally independent of Z (and β and γ) given νO and not ν∗w. When w∗ = n we have O∗w is

equal to the identity matrix and p(ν(u)new|ν∗w,θ) = p(ν(u)new|νO,θ) = p(ν(u)new|νO,θ,Z). When

setting w∗ < n we are implicitly assuming that the dependence between ν(u) and ν(s) is negligible

for s that are not w∗ nearest neighbors of u so that p(ν(u)new|ν∗w,θ) ≈ p(ν(u)new|νO,θ). Conse-

quently, ν(·)new should be interpreted as a different process that approximates ν(·). This added

assumption/simplification is incorporated into our predictions mainly for computational purposes

(see discussion at the end of this section). Similar simplifications have been used before in different

contexts (e.g., local kriging, Pronzato and Rendas, 2017).

Notice that w∗ is possibly different from the w neighbors used in the likelihood re-weighting

technique used in Section 2.3. Ultimately, Equation (15) can be seen as a type of collapsed Gibbs

sampler, where we collapse across ν∗−w. From Equation (13),

ν∗w|β,γ,θ,Z ∼ N

{
O∗wΣΣΣ∗V−1ε (Z−Xβββ),

(
1

δ2

)2

O∗wΣΣΣ∗C(θ)ΣΣΣ∗′O∗′w + O∗wΣΣΣ∗O∗′w

}
. (16)
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From (15), (16), and (14) we have,

ν(u)new|β,γ,θ,Z ∼ N
{
CO(u|θ)CO(θ)−1O∗wΣΣΣ∗V−1ε (Z−Xβββ), σ∗2

}
, (17)

where σ∗2 = CO(u|θ)CO(θ)−1M(γ,θ)CO(θ)−1CO(u|θ)′+var(ν(u)|θ)−CO(u|θ)CO(θ)−1CO(u|θ)′

and M(γ,θ) =
(

1
δ2

)2
O∗wΣΣΣ∗C(θ)ΣΣΣ∗′O∗′w + O∗wΣΣΣ∗O∗′w =

(
1
δ2

)2( 1
1
δ2

+ 1

σ2ε

)2

CO(θ) +

(
1

1
δ2

+ 1

σ2ε

)
Iw∗ . Fi-

nally predictions at missing locations are computed as averages across b (after a burn-in) of,

Y (u)[b] = x(u)′β[b] + ν(u)new[b], (18)

where ν(u)new[b] is the b-th replicate from (17). To sample from (17) posterior replicates of θ, β,

and γ are required, and these are obtained using the collapsed Gibbs sampler.

One could choose w∗ = n so that O∗w is equal to the identity matrix and p(ν(u)new|ν∗w,θ) =

p(ν(u)new|νO,θ) = p(ν(u)new|νO,θ,Z). However, choosing w∗ � n is needed to produce a w∗×w∗

matrix CO(θ)−1 in (17) that is straightforward to compute in practice. We also update ν(u)new

pointwise, which limits our inference to prediction and estimation of prediction variances. Of course

joint updates of ν(·) at missing locations can be done in a similar manner, but this leads to storage

issues of the cross-covariance matrix of {ν(u)} and ν∗w.

4 Simulation Studies

We simulate data in a variety of settings, and compare to several state-of-the-art methods in

spatial statistics including the nearest neighbor Gaussian process (NNGP) model (Datta et al.,

2016b), the general Vecchia approximation (Katzfuss and Guinness, 2019; Katzfuss et al., 2020),

spatial process convolution (SPC; Paciorek and Schervish, 2006), and a stochastic partial differential

equation (SPDE; Lindgren et al., 2011) approach. We refer to the general Vecchia approximation

to a Gaussian model with stationary covariances as an “approximate stationary model” instead

of a “stationary model.” The expression of the covariance function from the general Vecchia

approximation can be found in Proposition 1 in Katzfuss and Guinness (2019). It is immediate
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from this expression that the covariance function is not a function of the spatial lag only, but also

depends on an indexing set, and consequently, is non-stationary by definition. Their use of this

indexing set is extremely important as it leads to sparsity that produces massive computational

gains. See Katzfuss and Guinness (2019) for more details.

We will consider two different simulation setups, where stationarity and non-stationarity arises

in different ways. In Simulation Model 1, we consider spatial data, where the large-scale variability

is nonstationary and the small-scale spatial variability is stationary. In Simulation Model 2, we

consider generating non-stationary data directly from existing non-stationary spatial models (i.e.,

SPC and SPDE). In Sections (4.1) and (4.2), we give the details surrounding Simulation Model

1 and the results of this analysis, respectively. Likewise, in Sections (4.3) and (4.4), we give

the details surrounding Simulation Model 2 and the results of this analysis, respectively. In all

simulation studies we treat the measurement error variance as known.

4.1 Simulation Model 1 Set-Up

We assume Z = Y + εεε, where Y is a fixed and known n-dimensional vector and εεε ∼ N(0n, σ
2
ε In).

We choose σ2ε based on the signal-noise-ratio (SNR); in particular, we choose SNR equal to 3. We

also present results with 5% of the data missing at random.

We simulate Y to be a mixture of a one-dimensional SPC Paciorek and Schervish (2006) with

zero mean. Specifically, let f0(i) be a SPC generated using functions made available by the R-

package convoSPAT (e.g., see Risser and Calder, 2015). We use five mixture components with the

default specifications of the functions “f mc kernels” and “NSconvo sim” to generate f0(i). More

details on SPC are provided in Appendix C. We add a subscript “0” on f to distinguish f0 from f.
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Then we propose five simulation cases,

Case 1: Y (i) = f0(i)

Case 2: Y (i) = 0.85f0(i) + 0.15ζ(i)

Case 3: Y (i) = 0.5f0(i) + 0.5ζ(i)

Case 4: Y (i) = 0.15f0(i) + 0.85ζ(i)

Case 5: Y (i) = ζ(i),

and ζζζ = (ζ(1), . . . , ζ(m))′ ∼ N(0m,R), where the m×m matrix R = {σ2ζ exp (−φζ‖i− j‖)}. Thus,

ζζζ is a stationary term. In Case 1, the data is generated from a highly non-linear process and xi is

a five dimensional vector consisting of independent draws from a uniform distribution. In Case 3,

we weight the process half with a nonlinear term and half with a stationary term. In Case 5, we

only have a stationary term. So the data is rough in Case 1 and gradually becomes smoother as

we consider other cases. We show examples of the data in Figure (1).

In Figure 1, Case 1 shows no spatial structure, yet the SPC model implies spatial cross-

correlations. The smallest spatial cross-correlation is roughly 0.12 (computed empirically from

100 independently generated spatial fields from the SPC model in Case 1). Furthermore, even

when spatial structure is present in a plot of the data, the latent process may or may not be

stationary (e.g., possible functional patterns in the large-scale term, patterns of local stationarity

may be present, etc.). The difficulty in using visualizations of the data to assess non-stationarity

motivates the need to test for non-stationarity. For the ESD model this amounts to testing whether

or not the elements of η are equal to zero.

We generate 1,000 observations over this one-dimensional domain [0, 1] for each case. For

Case 2 to Case 4, σ2ζ is set to be equal to the sample variance of the elements in the vector

(f0(x1), . . . , f0(xn))′. We fixed φζ = 0.3. SNR is defined to be

SNR =

∑n
i=1(Y (i)− 1

n

∑n
j=1 Y (j))2

(n− 1)σ2ε
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Figure 1: Simulation Model 1 data with SNR=3; First row to last row are examples of Case 1 to
Case 5.

so that

σ2ε =

∑n
i=1(Y (i)− 1

n

∑n
j=1 Y (j))2

(n− 1)SNR
.

To implement ESD, we specify a 20-dimensional vector ψψψ(i) to consist of bisquare radial basis

functions over equally spaced knots. That is, ψψψ(i) = (ψ1(i) . . . ψ20(i))
′, where

φk(i) =

{
1− |i− ck|

τ

}2

I(|i− ck| < τ); k = 1, . . . , 20,

I(·) is an indicator function, {c1, . . . , c20} are the equally-spaced knots points over {1, . . . , 1, 000},

and τ is equal to 1.5 times the median of non-zero distances between the points in {1, . . . , 1, 000}.

These basis functions are used to model f in ESD, and are also used as covariates in all three models

under comparison.

When implementing ESD, NNGP, and the Vecchia method we use the same covariates and

20 bisquare basis functions. Thus, ESD, NNGP, and Vecchia model the nonstationary function

ρf0 in the same way (for ρ = 1, 0.85, 0.5, 0.15, and 0 for Cases 1 − 5), and hence, all methods
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are, in a sense, using basis functions/important covariates to model non-stationarity. The process

(1 − ρ)ζ(·), used to generate data, is simulated according to a Gaussian process with mean zero

and an exponential covariogram. Thus, to fairly compare each method we specify the covariance

functions of ESD, Vecchia, and NNGP to best model the stationary process (1 − ρ)ζ(·). That

is, NNGP and the Vecchia approximation are specified with an exponential covariogram, and the

ESD is based on Cauchy(0, 1/φ) (corresponding to the exponential covariogram), where recall ESD

allows for the stationary case when η = 0r.

Each of the models that are compared in this simulation study are mis-specified. As such, there

is no guarantee that any method will perform better than others. This is arguably more realistic, as

the possibility of a mis-specified model is always present in real applications. In Simulation Study

2, we consider the case where there is a gold standard.

To implement NNGP, we use 15 nearest neighbors which is consistent with what is suggested

in Datta et al. (2016a). For the general Vecchia approximation, we use 15 nearest neighbors which

is the same as NNGP. We also use the R-package spNNGP (Finley et al., 2020) and GpGp (Guinness

and Katzfuss, 2018). The weighted ESD is implemented with 1, 000 replicates, with a burn-in of

500. ESD uses the aforementioned covariates to model β and the 20 bisquare functions to model

f. We also set w = w∗ = 50 and K = 100. Convergence was assessed visually with trace plots and

no lack of convergence was detected.

In general, we have found that ESD is robust to the choice of the spectral density sensitivity.

The tuning parameters w (=w∗) and K are also fairly robust to the choice of spectral density

provided that the rank r is chosen to be “large enough.” We compared the posterior mean of C(θ)

when fitting different ESD models each based on different specifications of the spectral density,

and when simulating from an ESD with a Cauchy spherical density. In particular, we considered

fitting ESD with the Cauchy density, triangular density, and the Gaussian density. On average

when r = 20 the elements of these matrices differed on the order of 10−7 and saw no appreciable

difference in the predictions, but note for small values of r (in this case less than 20) we saw very
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Table 1: RMSPE (over both observed and missing locations) for the data in the first row of Figure
(1). We call our method the Expanded Spectral Density (ESD) method.

Method RMSPE

ESD 0.607
NNGP 1.015

Vecchia Approximation 1.013

poor estimates of the covariance matrix.

4.2 Results for Simulation Model 1

In Table (1), we provide the root mean squared prediction error (RMSPE) of each model for the

data in the first row in Figure (1). The RMSPE is defined as√√√√ 1

A

{∑
i∈A
{Y (i)− Ŷ (i)}2

}
, (19)

where Ŷ (i) is the posterior mean from fitting the each model and A = {1, . . . , 1000}. Here we

see that ESD outperforms NNGP and the general Vecchia approximation. There are m = 1, 000

prediction locations, and thus, for 5% missing at random we observe n = 950, and the results in

Table 1 are aggregated across both observed and missing locations.

To assess each method over multiple replicates we record the performance (in terms of RMSPE)

over the SNR and each of the five cases. The results are shown in Figure (2) for Case 1 to Case 5,

and for A defined to be either the set of randomly selected observed locations or the set of missing

locations, respectively. The results were fairly consistent across SNR, and we only show the results

for SNR = 3. The first row contains the RMSPE computed over missing locations and in the

second row the RMSPE is computed over observed locations. The first column to the last column

in Figure (2) displays results for Case 1 to Case 5, respectively. We assume 5% missing data in

Figure (2). We also consider 10% and 20% missing data, however, the conclusions are similar to

the case of 5% and are consequently not shown. The boxplot is computed over 100 independent

replicates of the m(= 1, 000)-dimensional spatial field.
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For Cases 1 − 3, we find that our method outperforms the NNGP and the general Vecchia

approximation at observed locations. In Case 4, ESD performs slightly worse than NNGP and

general Vecchia approximation at observed locations. In Case 5, at observed locations the general

Vecchia approximation slightly outperforms NNGP, which outperforms ESD. At missing locations

the ESD performs similar to NNGP and general Vecchia approximation for Cases 1 − 2, and

slightly worse in Case 3. For missing locations in Cases 2 − 5, ESD performs worse in terms of

RMSPE than NNGP and the general Vecchia approximation at both missing and observed. Based

on the results, we believe our model performs well (comparable to NNGP and the general Vecchia

approximation) at observed locations (missing locations) in the highly non-stationary large-scale

variability and stationary small-scale variability setting.

Case 1 in Figure 1 is meant to represent a difficult to estimate non-stationary spatial data setting.

As such, it is reasonable to ask whether or not it is even possible to predict in this case. Thus, as

a baseline comparison, we also compute predictions based on a model that assumes the data are

independent and identically distributed. That is, we fit a model that assumes Z(s) = Y (s) + ε(s),

where Y (·) is independently and identically distributed N(0, δ2) and ε(·) is independently and

identically distributed N(0, σ2ε ), and conjugate priors are assumed. For Case 1 the RMSPE is

roughly 1.49 at missing locations and 1.48 at observed locations, over 100 independent replicates.

Upon comparison to Figure 2, we see that other methods compared in this simulation study do

consistently better. This is to be expected as the data are generated with spatial correlations

present, and the result shows that models that allow for spatial correlations perform better.

All methods use the same covariates to model the non-stationary large-scale term f0, however,

these covariates may not perfectly model f0. As a result, a model that allows for non-stationarity

(i.e., ESD) may be able to partially model the residual between f0 and the imperfect model Xβ.

This is one reason why we might see that ESD outperforms the other methods in Case 1 − 3, and

is more competitive to less competitive in Cases 4 and 5. Of course one could specify the NNGP

and the general Vecchia approximation based on a non-stationary covariance function, which may

24



1.00

1.05

1.10

1.15

1.20

ESD NNGP Vecchia
Method

R
M

SP
E

0.80

0.85

0.90

0.95

1.00

ESD NNGP Vecchia
Method

R
M

SP
E

0.50

0.55

0.60

0.65

0.70

0.75

ESD NNGP Vecchia
Method

R
M

SP
E

0.0

0.2

0.4

0.6

ESD NNGP Vecchia
Method

R
M

SP
E

0.0

0.2

0.4

0.6

ESD NNGP Vecchia
Method

R
M

SP
E

Missing

0.6

0.8

1.0

ESD NNGP Vecchia
Method

R
M

SP
E

0.4

0.6

0.8

1.0

ESD NNGP Vecchia
Method

R
M

SP
E

0.3

0.4

0.5

0.6

ESD NNGP Vecchia
Method

R
M

SP
E

0.0

0.1

0.2

0.3

0.4

0.5

ESD NNGP Vecchia
Method

R
M

SP
E

0.0

0.1

0.2

0.3

0.4

0.5

ESD NNGP Vecchia
Method

R
M

SP
E

Observed

Figure 2: From first column to last column is Case 1 to Case 5. The SNR is set equal to 3. RMSPE
on the first row is averaged over missing replicates, and the RMPSE on the second row is averaged
over observed replicates. RMSPE is on the y-axis, and the method of prediction is labeled on the
x-axis. Boxplots are made over 100 independent replicates.

perform better for this simulation setup. However, this requires an extra step of model selection

for the non-stationary covariance function in NNGP and the general Vecchia approximation. Ad-

ditionally, one could add basis functions to better model f0 in the NNGP and the general Vecchia

approximation. Ultimately, this highlights ESD’s flexibility, since ESD simultaneously allow for

a weakly stationary processes (i.e., η = 0r) and non-stationary processes (i.e., η 6= 0r) without

the need for additional model selection when the large-scale-variability term is miss-specified. One

could also envision a general Vecchia/NNGP approximation of ESD, however, this is a topic of

future interest as there many ways one could do this.

4.3 Simulation Model 2 Set-Up

In our second simulation, we specify a 12 × 12 grid D = {(i, j)′ : i, j = 0, 1
12 , . . . , 12}, so that

m = 144. Our main goal is to simulate non-stationary spatial processes, and compare the predictive
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performance of our method to the gold standard. This is done for two reasons, the first goal is

to to assess the consequences of our model assumptions and approximations on prediction and

computation. The second goal, is to illustrate the performance of our method in a two-dimensional

non-stationary small-scale-variability setting.

We assume Z = Y + εεε, where Y is generated from a known non-stationary spatial model.

The posterior mean (or approximated/estimated posterior mean) from this known non-stationary

spatial model is considered the “gold standard” that should outperform ESD, since the data is

generated from the gold standard. Thus, if the RMSPE based on our model is similar to that of

the gold standard, this suggests that the effect of our assumptions/approximations have a small

impact on prediction, and vice versa. We choose σ2ε to achieve a moderately large SNR = 5. We

allow for 5% of the locations in D to be missing at random.

We propose two simulation cases,

Case 6: Y (u) is generated from a zero mean SPC model

Case 7: Y (u) is generated from a zero mean SPDE model,

where note that Cases 1 − 5 fall under Simulation Model 1. In Case 6 we generate the data and

fit the SPC model using functions made available by the R-package convoSPAT (e.g., see Risser

and Calder, 2015). Specifically, for Case 6, we use five mixture components with the default

specifications of the functions “f mc kernels” and “NSconvo sim” to generate Y (u). In Case 7, we

generate the data and fit the SPDE model using functions made available by the R-package inla

(e.g., see Lindgren and Rue, 2015). Specifically, three B-splines are specified to model the variance

and spatial range parameter on the log-scale with coefficients 1, 3, and 1 (e.g., see Krainski et al.

(2018) to see the specific functions to call to generate the SPDE model in this manner). For Case

7, observations are re-scaled to be roughly between −0.2 to 0.2. We implement a weighted ESD

using 69 equally spaced bisquare basis functions to model both β and η using the R package FRK

26



2

3

4

5

6

2 4 6
Truth

co
nvo

SP
at 

Pre
dic

tio
ns

Simulation Model: convoSPAT

2

3

4

5

6

2 4 6
Truth

ES
D P

red
icti

on
s

Simulation Model: convoSPAT

−0.2

−0.1

0.0

0.1

−0.2 0.0 0.2
Truth

SP
DE

 Pr
ed

icti
on

s

Simulation Model: SPDE

−0.2

−0.1

0.0

0.1

−0.2 0.0 0.2
Truth

ES
D P

red
icti

on
s

Simulation Model: SPDE

Figure 3: In the top left panel we plot the posterior mean from ESD versus the true Y (·) for Case
6. In the top right panel we plot the gold standard versus the true Y (·) Case 6. In the bottom left
panel we plot the posterior mean from ESD versus the true Y (·) for Case 7. In the bottom right
panel we plot the gold standard versus the true Y (·) Case 7. The gold standard in Case 6 are the
predictions using SPC (SPDE) computed using the R package convoSPAT (inla).

(Zammit-Mangion and Cressie, 2017). We also set w = w∗ = 50 and K = 100. We again use the

exponential covariogram by setting the spectral density equal to a Cauchy(0, 1/φ). We informally

considered a similar proof-of-concept baseline comparison to an i.i.d. model as done in Simulation

Study 1, and found that SPC, SPDE, and ESD outperform an i.i.d. model in terms of RMSPE

under this simulation design.

27



0.5

0.6

0.7

ESD convoSPAT
Method

RM
SP

E

RMSPE at Observed (Truth convSPAT)

0.6

0.8

1.0

1.2

ESD convoSPAT
Method

RM
SP

E

RMSPE at Missing (Truth convSPAT)

0.04

0.05

0.06

0.07

ESD SPDE
Method

RM
SP

E

RMSPE at Observed (Truth SPDE)

0.06

0.08

0.10

0.12

ESD SPDE
Method

RM
SP

E

RMSPE at Missing (Truth SPDE)

Figure 4: Top Row: Data generated from convoSPAT. Bottom Row: Data generated from SPDE.
Left Column: Observed locations. Right Column: Missing Locations. Boxplots computed over 50
independent replicates. Scales are different across panels for visualization purposes.

4.4 Results for Simulation Model 2

For illustration, in Figure (3) we plot the predicted ESD versus the truth and the gold standard

versus the truth for two different replicates generated from Cases 6 and 7, respectively. These

plots suggest that under both cases, we obtain very similar predictions, however, as expected the

gold standard in each case performs better in terms of RMSPE. In Case 7, it appears that ESD

predictions slightly oversmooth the truth compared to the gold standard. We repeat this simulation

study 50 times and compute boxplots of the respective RMSPEs, which are displayed in Figure

(4). The results again suggest that the prediction errors of ESD are similar, albeit larger, than the

respective gold standards, and this difference is larger at missing locations. Consequently, the ESD

appears to perform well when data is generated from current models for non-stationary spatial
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Figure 5: Total memory and average peak memory in MiB for simulations from Case 7 by method
(i.e., SPC, ESD, SPDE). The dimension t is found by changing the dimensions of D from 12× 12
to t× t so that m = t2. We again assume 5% missing for each m.

data.

We also compare the computational performances of these methods in terms of storage, since our

avoidance of large covariance matrices aids with decreasing memory complexity. If the basis function

matrices (used to model f) are dense, and the subset size w (=w∗) is small, then ESD has memory

complexity on the order of mdr. However, bisquare basis functions are sparse. Furthermore, when

using the R function auto basis in the R package FRK to compute the bisquare basis function, we

find that the sparsity of the basis functions often increases with the number of prediction locations

m. For example, when m = 144 roughly 77% of the elements in the basis function matrix are zero,

and when m = 441 the percentage of zero elements in the basis function matrix increases to roughly

81%. This is exciting, as we can actively increase the sparsity of the bisquare basis functions in a

manner that decreases the memory complexity of ESD as m increases. A negative consequence is

that it is not clear how to analytically derive the memory complexity of ESD. Thus, to investigate

this further, we empirically investigate the memory complexity of ESD relative to SPC and SPDE.
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In Figure (5), we plot the total random access memory (RAM) and peak RAM in mebibytes

(MiB) by method (ESD, SPC, and SPDE) and dimension of D (i.e., t, where m = t2), where

peak RAM represents the maximum amount of memory used and total RAM measures the overall

memory used. In general, peak RAM is the more crucial quantity. These quantities are computed

using the R package peakRam (Quinn, 2017). The total RAM for each method generally increases

as t increases. We see that ESD requires slightly less total RAM than SPC, and both ESD and SPC

require less total RAM than SPDE. However, ESD produces higher peak RAM than SPDE, but

generally less peak RAM than SPC. In general, the peak RAM of ESD is roughly constant across

these dimensions. Thus, empirically our methods appears to require less total RAM than SPDE

and SPC, and we suggest using sparse basis functions to control the peak RAM. However, these

results are based on our coding of ESD, the specifications of one computer (i.e., Figure (5) is based

on Windows 10 and Intel(R) CORE(TM) i5-8250U CPU with 1.60Ghz), and the current versions

of convoSPAT and inla. Thus, these results should be seen as subjective aids at understanding the

memory complexity of ESD relative to standard non-stationary prediction models.

5 Real Data Application

5.1 Ozone Data Application: Data Description

As an illustration, we analyze the ozone dataset used in Cressie and Johannesson (2008), which

has become a benchmark dataset in the spatial statistics literature (e.g., see Zhang et al., 2019).

This dataset consists of n = 173, 405 values of total column ozone (TCO) in Dobson units (see

Figure (6) for a plot of the data). The dataset was obtained through a Dobson spectrophotometer

on board the Nimbus-7 polar orbiting satellite on October 1st, 1988. For details on how these data

were collected see Cressie and Johannesson (2008). This dataset is made publically available by

the Centre for Environmental Informatics at the University of Wollongong’s National Institute for

Applied Statistics Research Australia (https://hpc.niasra.uow.edu.au/ckan/).
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Figure 6: Level 2 total column ozone data (in Dobson units) collected on October 1st, 1988, and
analyzed by Cressie and Johannesson (2008).

5.2 Analysis

We present an analysis of the ozone dataset using ESD. We partition the data into a training set and

a prediction set. We randomly generated 5% of the observed values to be included in the validation

dataset for evaluating the prediction performance of all methods. A total of 2,000 MCMC iterations

of the Gibbs sampler in Algorithm 1 were used. The first 1,000 iterations were treated as a burn-in.

We informally check trace plots for convergence, and no lack of convergence was detected. Since

d=2, ψψψ(s) is an r × 2 dimensional matrix, which we denote with ψψψ(s) = {φφφ1(s),φφφ2(s)}, where

φφφi(s) is an r -dimensional vector, i=1,2. Using the R-package FRK, we consider two possible values

for r (i.e., r = 92 and 364) equally-spaced bisquare basis functions on a spherical domain, which

defines either 92 or 364-dimensional vectors ζζζ(s) (Zammit-Mangion and Cressie, 2017). Then, we

set φφφ1(s) = {0′3, ζζζ(s)′}′, and we take φφφ2(s) = (1, s′,0′r)
′. This choice of φφφ2(s) isolates the effect of

the latitude and longitude on the non-stationarity of the process. The covariates are defined to be

x(s) = (1, ζζζ(s)′)′. We use the estimate of σ2ε from Cressie and Johannesson (2008).

Figure (7) displays the prediction and prediction variances using non-stationary spectral simu-

lation. Upon comparison of Figure (6) to Figure (7a), we see that we obtain small in-sample error.

Additionally, (7b) shows that our prediction error is relatively constant over the globe. We com-
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Figure 7: Weighted ESD results for 364 basis functions and w = w∗ = 20. In (a), we plot the
posterior means (in Dobson units) from the model in (2), which was implemented using the Gibbs
sampler outlined in Algorithm 1. The corresponding posterior variances (in Dobson units squared)
are presented in (b).

pute RMSPE over the validation locations. Specifically, we compute the average square distance

between the validation data and its corresponding prediction, and then we take the square root.

RMSPE for our method decreases as r increases (see Figure 8). We also computed the RMSPE for

the fixed rank kriging method as implemented through the R-package FRK (Zammit-Mangion and

Cressie, 2017). The FRK predictor is based on x(s) = 1 and uses ζζζ(s) as its basis set. The RMSPE

for FRK is approximately 7.12, and hence, we outperform the FRK predictor in terms of RMSPE

when r = 364 and w = w∗ = 20. Of course, one could increase the number of basis functions

in FRK, but for comparison purposes we wish to include the same number of basis functions in

both ESD and FRK. In Zhang et al. (2019), they compare the Smoothed Full-Scale Approximation

(SFSA), Full-Scale Approximation using a block modulating function (FSAB) (Sang and Huang,

2012), NNGP, and a local Gaussian process method with adaptive local designs (LaGP) (Gramacy

and Apley, 2015). Their results show that the RMSPE for SFSA, NNGP, and FSAB are all around

5.2, and the RMSPE for LaGP is around 6.2. Thus, our method also outperforms these methods

in terms of RMSPE. The general Vecchia approximation has a similar result with RMSPE equal

to 5.15, where the ESD had RMSPE of 5.05. This small difference may be accounted for by Monte
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Figure 8: Sensitivity Study: RMSPE (over holdout locations) by p, r, w, and w∗.

Carlo error and thus we conclude that similar predictions are produced by both methods. Ulti-

mately, we perform (marginally) the best in this hold-out study, and this a well-known benchmark

dataset used in the nonstationary data setting (Cressie and Johannesson, 2008). Our results for

the ESD, the general Vecchia approximation, and FRK are based on the validation dataset that we

generated. However, SFSA, NNGP, FSAB, and LaGP are based on the validation dataset generated

in Zhang et al. (2019).

We also investigated the sensitivity on the choice of w, w∗, r, and p. The choice of w effectively

subsets the data when updating θ and γ and is also used in the posterior predictive step to produce

our predictions. In general, w is restricted to be small to obtain computational advantages, and

there are no theoretical guarantees that small values of w will lead to precise predictions. However,

several recent papers have suggested that subsetting in the spatial setting often leads to reasonable

predictions (Katzfuss and Guinness, 2019; Bradley, 2019). In general, we have found worse (in

terms of prediction) results as w∗ becomes larger than w, better predictive performance as r and p

increase, and smaller choices for w∗ is preferable. In Figure 8 we give the RMSPEs for p = 93, 365,

r = 95, 367, w = 20, 50, 80, 99, and w∗ = 20, 50, 80, 100, where the different levels of p and r are
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based on the two basis function specifications of ζ(s). The RMSPE tends to be roughly between 5

and 6, and appears to be fairly robust to different specifications. Thus, choosing small values of w

for computational purposes appears to lead to reasonable predictions for this dataset.

We also include the computation times in Table (2). Our method is less competitive. Although

we avoid storing and inverting a high dimensional covariance matrix, we require nested loops, which

can be computationally intensive (i.e., a loop in the Gibbs sampler and a loop over i = 1 . . .K in

Theorem 2).

In terms of inference on parameters, we are particularly interested in ηηη and f. This is because

when ηηη is zero (and f is a constant function at zero) we obtain a stationary process (see Theorem 1).

In Figure (9) we plot the posterior covariance matrix of η. Our main goal with this plot is to show

empirically what happens to the covariance matrix of η under different model specifications. As

r increases, we see the variances and covariances appear to be close to zero. In both cases several

credible intervals for elements of ηηη do not contain zero, which suggests that non-stationarity is

present in this dataset. Furthermore, we emphasize the ability of ESD to do inference on η, which
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acts as a proxy for the presence/absence of non-stationarity (see Theorem 1). The competing

methods can not immediately perform inference on f.

The best predictive performance of ESD occurs when w = w∗ = 20, which is a small subset size.

As the subset size decreases to zero point estimation on η favors the prior mean zero (i.e., station-

arity). This specification is reasonable considering that the most comparable method in terms of

RMSPE, the general Vecchia approximation, approximates a model with stationarity covariances.

This suggests that if non-stationarity is present then locally stationary (Donoho et al., 1996) co-

variances over large regions may be expected, since the global stationary covariance assumption

leads to high performing predictions. When f(s) = f(u) for s 6= u and s,u ∈ A ⊂ D, from Theorem

1, the expression of the covariance is a stationary covariogram defined over the subregion A. As

such, maps with several such subregions suggest non-stationarity, and specifically, local stationary

covariances. In Figure 10, we plot the components of f(·) = (f1(·), f2(·))′. Here, we see large regions

of similar values of f1 and f2 suggesting this type of locally stationary behavior is present. Thus, for

this illustration small w (and w∗) is reasonable, since f does not appear to be (functionally) highly

variable and does not appear to differ wildly from zero, which enforces a type of local stationarity.

When f has large changes functionally then a larger value of w is likely needed and computations

will be extensive in this setting.

We reiterate that we do not recommend generating a just single subsample without some sort

of cross-validation procedure, as this could possibly produce poor predictions and estimates. That

is, we generate multiple subsamples under multiple model specifications and choose w and the

placement of w the locations by minimizing a hold-out error. In this manner the entire dataset

is used to select the subsample w (i.e., the training data is used to predict, and the holdout data

ia used to validate). If the hold-out error suggests that w = 0 is preferable, our algorithm will

produce covariances that are close to the prior mean of f, which is zero and the stationary case (see

Theorem 1 where f identically equal to zero produces Bochner’s theorem). In this example, the

estimated w is greater zero, and the function f is significantly different from zero using pointwise
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Table 2: Computation Time by r and method.
Method r Time (seconds)

ESD 92 2345
364 13394

Vecchia Approximation - 200

credible intervals. This suggests non-stationarity. Furthermore, the maps in Figure 10 suggest

patterns consistent with local stationarity.

6 Discussion

Bayesian analysis of big Gaussian spatial data is a challenging and important problem. We propose

a Bayesian approach using non-stationary spectral simulation. To develop non-stationary spectral

simulation we combine Bochner’s theorem with dimension expansion (Perrin and Meiring, 2003),

and apply Mej́ıa and Rodŕıguez-Iturbe (1974)’s spectral simulation method. The advantage is that

no large matrix inversion or storage is needed to approximately simulate a non-stationary full-rank

Gaussian process. Additionally, the proposed method is extremely broad, since every positive def-

inite non-stationary covariance function can be written according to (5). A novel strategy that

involves weighting the data model is introduced so that (1) the data is conditionally independent

of the spatially covarying random effects at observed locations given the covariance parameters

to allow one to use non-stationary spectral simulation within a collapsed Gibbs sampler, and (2)

the covariance parameters are conditionally independent of a large subset of the data. Further-

more, these computational compromises (i.e., adding conditional independence assumptions) do

not impose any additional assumptions on our (marginal) model for the data (i.e., see (9)).

In Section 4, Simulation Study 1 is used to illustrate the high-performance of our method

when the large-scale-variability term is nonlinear and the small-scale-variability is stationary. We

compare to current methods to analyze non-stationary large-scale-variability and stationary small-

scale-variability; namely, the nearest neighbor Gaussian process (NNGP; Datta et al., 2016a) model

36



f1

-0.3

-0.2

-0.1

0

0.1

0.2

f2

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 10: Let f(·) = (f1(·), f2(·))′. In the left and right panels we plot the posterior means of f1
and f2, respectively.

and Vecchia approximation (Katzfuss and Guinness, 2019). In this setup, the ESD is consistently

preferable in terms of root mean squared prediction error (RMPSE) at observed locations, and

has comparable RMSPE to NNGP at missing locations in several cases. We generate data that is

different from our model, and we find our method has better results in different scenarios based

on how nonlinear the process is. In Simulation Study 2, we generate data from standard non-

stationary spatial models, whose predictions are treated as a gold standard; namely SPC (Paciorek

and Schervish, 2006) and SPDE (Lindgren et al., 2011). Here, we see that the RMSPE of ESD

is comparable to the gold standard method in terms of RMSPE. Moreover, our approach appears

to require less total RAM than SPC and SPDE, and peak RAM larger than SPDE. In Section

5, we analyze the total column ozone dataset from Cressie and Johannesson (2008). We obtain

predictions that have small in-sample error, and that appears to outperform fixed rank kriging

(FRK), SFSA, FSAB, NNGP, and LaGP in terms of out-of-sample error. The hold-out error was

similar in value to the general Vecchia approximation. Additionally, our framework allows one to

perform inference on the presence of generic non-stationarity, which is not immediately possible

using the competing methods.

Environmental studies are often based on high-dimensional spatial Gaussian datasets with com-
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plex patterns of non-stationarity. Several studies focus on simplifying matrix valued operations and

storage (Higdon et al., 1999; Paciorek and Schervish, 2006; Cressie and Johannesson, 2008; Banerjee

et al., 2008; Lindgren et al., 2011; Nychka et al., 2015). Thus, our “large-matrix-free” approach

offers a unique solution to this important problem. Despite these advantageous there are limita-

tions that offer opportunities for future research. The ESD is fairly competitive when it comes

to memory complexity through its use of spectral simulation. However, computation time is no-

ticeably less competitive, since we have nested loops within our algorithm; namely the iterative

non-stationary spectral simulation is nested within a collapsed Gibbs sampler. Additionally, there

are several parameters that are fixed and chosen using cross-validation in practice, including the

number of iterations in the non-stationary spectral simulator, the selection of the subset of the

dataset used to update covariance parameters, and the rank of the basis function expansion.

The assumption of conditional independence between the spatially varying random effects at

observed locations and the data is a limitation of ESD, since this type of conditional dependence may

be present at the observed locations. However, in general, we do not need to spatially interpolate the

process at observed locations, and as a result, this particular conditional independence assumption

at observed locations still allows one to incorporate large-scale and small-scale variability into the

predictions. We have found that this assumption leads to competitive RMSPEs and computational

speed-ups through the use of nonstationary spectral simulation.
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Appendix A: Proofs

Proof of Theorem 1:

It follows from Perrin and Meiring (2003) that for every non-stationary positive definite function C

and every pair of locations s1 and s2 there exists a w1 and w2 such that C(s1, s2) = ρ
{(

s1
w1

)
,
(

s2
w2

)}
,

where ρ is a stationary covariogram. Let f be the function that maps generic locations s1, s2 ∈ D

to its corresponding expanded dimension w ∈ Rd so that C(s1, s2) = ρ
{(

s1
w1

)
,
(

s2
w2

)}
.

It follows from Bochner’s theorem (Bochner, 1959) that ρ
{( si

f (si)

)
,
( sj
f (sj)

)}
is positive definite

(and equivalently so is C(si, sj)) if and only if

C(si, sj) = ρ
{( si

f (si)

)
,
( sj
f (sj)

)}
=

∫ ∞
−∞

cos
{
{f (si)− f (sj)}′ωωω1 + (si − sj)

′ωωω2

}
Gθ(dωωω).

This completes the result.

Proof of Theorem 2:

We have that,

E{ν̃(s)} =
(2K)

1
2

2πσν

∫ ∞
−∞

∫ π

−π
cos(f (s)′ωωω1,i + s′ω2,i + κi)gθ(ωωω)dκdωωω = 0,

since
∫ π
−π cos(κ)dκ =

∫ π
−π sin(κ)dκ = 0. Also,

E{ν̃(si)ν̃(sj)}

=
2σ2ν
K

K∑
i=1

K∑
i=1

E[cos(f (si)
′ωωω1,i + s′iωωω2,i + κi) cos(f (sj)

′ωωω1,i + s′jωωω2,i + κi)]

=

∫
cos{(f (si)

′ − f (sj)
′)ωωω1,i + (si − sj)ωωω2,i}gθ(ωωω1)gθ(ωωω2)dωωω1dωωω2

= ρ
{( si

f (si)

)
−
( sj
f (sj)

)}
= C(si, sj).

As K →∞, {ν̃(u) : u ∈ B} converges to a Gaussian process, where B is a ball in D ⊂ Rd (e.g., see

Cressie, 1993, pg. 204).

Proof of Equation (9):
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From (3) we have

p(Z) =

∫
. . .

∫
p(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dβ dν̃O dσ

2
η dθ dγ

=

∫
. . .

∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)W (θ,γ, ν̃O,Z) dνO dβ dν̃O dσ

2
η dθ dγ

=

∫
. . .

∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dνO dβ dν̃O dσ

2
η dθ dγ

=∫
. . .

∫ [∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β) dνO dβ

]
p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dν̃O dσ

2
η dθ dγ

=

∫ ∫ ∫ [∫
p(ν̃O|θ) dν̃O

]
p(σ2η) dσ

2
ηp(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ) dσ2η dθ dγ

= h(Z−w|Zw)

∫ ∫ ∫
p(θ|σ2η)p(γ)p(σ2η)h(Zw|θ,γ) dσ2η dθ dγ

=

∫
. . .
∫
h(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dν̃O dβ dθ dγ dσ

2
η∫ ∫ ∫

p(θ|σ2η)p(γ)p(σ2η)h(Zw|θ,γ) dσ2η dθ dγ

∫ ∫ ∫
p(θ|σ2η)p(γ)p(σ2η)h(Zw|θ,γ) dσ2η dθ dγ

=

∫
. . .

∫
h(Z,νO, ν̃O,β,θ,γ, σ

2
η) dνO dβ dν̃O dσ

2
η dθ dγ

= h(Z),

which completes the result.

Proof of Equation (10):

We have that,

p(ν̃O,θ,Z) =

∫ ∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dνO dβ dσ

2
η dγ

=

∫ ∫ [∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ

]
p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dσ2η dγ

= p(ν̃O|θ)h(Z−w|Zw)

∫ ∫
p(θ|σ2η)p(σ2η)h(Zw|θ,γ)p(γ) dσ2η dγ.

It follows that

p(θ,Z) =

∫
p(ν̃O|θ)h(Z−w|Zw)

∫ ∫
p(θ|σ2η)p(σ2η)h(Zw|θ,γ)p(γ) dσ2η dγ dν̃O

= h(Z−w|Zw)

∫ ∫
p(θ|σ2η)p(σ2η)h(Zw|θ,γ)p(γ) dσ2η dγ,
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so that p(ν̃O|θ,Z) = p(ν̃O|θ), which completes the result.

Proof of Equation (11):

Let the (m−w)-dimensional vector ν̃−w = (ν̃(ui) : i ∈ {1, . . . ,m} and ν̃(ui) is not an element of ν̃w)′.

Then,

p(θ, ν̃w,γ, σ
2
η,Z)

=

∫ ∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dνO dβ dν̃−w

=

∫ [∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ

]
p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dν̃−w

= p(θ|σ2η)h(Z−w|Zw)h(Zw|θ,γ)p(γ)p(ν̃w|θ)p(σ2η),

so that p(θ|ν̃w,γ, σ2η,Z) ∝ p(θ, ν̃w,γ, σ
2
η,Z) ∝ p(θ|σ2η)h(Zw|θ,γ)p(ν̃w|θ), which completes the re-

sult.

Proof of Equation (12):

We have that

p(γ, ν̃O,θ, σ
2
η,Z)

=

∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ
dνO dβ

=

[∫ ∫
h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ

]
p(ν̃O|θ)p(θ|σ2η)p(γ)p(σ2η)h(Z−w|Zw)h(Zw|θ,γ)∫ ∫

h(Z|β,νO, σ2ε )p(νO|ν̃O, δ2)p(β|σ2β)dνOdβ

= p(θ|σ2η)h(Z−w|Zw)h(Zw|θ,γ)p(γ)p(ν̃O|θ)p(σ2η),

so that p(γ|ν̃O,θ, σ2η,Z) ∝ p(γ, ν̃O,θ, σ2η,Z) ∝ p(γ)h(Zw|θ,γ), which completes the result.

Appendix B: Full Conditional Distributions

In this section, we outline the collapsed Gibbs sampler.
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1. The full conditional distribution for βββ is

f(βββ|·) ∝ exp

{
−(Z−Xβββ − νννO)′V−1ε (Z−Xβββ − νννO)

2

}
exp

{
−β
ββ′βββ

2σ2β

}

∝ exp

{
−
βββ′(X′V−1ε X + σ−2β Ip)βββ

2
+ βββ′X′V−1ε (Z− νννO)

}

∝ exp

{
−β
ββ′ΣΣΣ−1∗ βββ

2
+ βββ′ΣΣΣ−1∗ µµµ∗

}
∝ exp

{
−1

2
(βββ −µµµ∗)′ΣΣΣ−1∗ (βββ −µµµ∗)

}
.

Thus, βββ ∼ N(µµµ∗,ΣΣΣ∗), where µµµ∗ = ΣΣΣ−1∗ XXX
′V−1ε (Z − νννO) and ΣΣΣ−1∗ = XXX ′V−1ε X + σ−2β Ip, X =

(x(s1) . . .x(sn))′.

2. From (10), we sample ν̃νν from f(ν̃|θ) using the non-stationary spectral simulation method

from Theorem 2. For example, when using the exponential covariogram, we simulate the

elements of ωi from a Cauchy(0, 1/φ) and κi from a U(−π, π) for i = 1, . . . ,K. Then for

j = 1, . . . , N we compute f (uj) = ψψψ′(uj)ηηη, substitute into the expression of ν̃(uj) according

in (6), and stack over j to create ν̃.

3. The full-conditional distribution is

f(νννO|·) ∝ exp

{
−(Z−Xβββ − νννO)′V−1ε (Z−Xβββ − νννO)

2

}
f(νννO|ν̃ννO, δ, θθθ),

where Vε = σ2ε and f(νννO|ν̃ννO, δ, θθθ) ∝ exp
{
− (νννO−ν̃ννO)′(νννO−ν̃ννO)

2δ2

}
. Then,

f(νννO|·) ∝ exp

{
−
ννν ′O(δ−2I + V−1ε )νννO

2
+ ν ′O

(
V−1ε (Z−Xβββ) +

1

δ2
ν̃ννO

)}
.

This gives

f(ννν|·) = N(µµµ∗,ΣΣΣ∗),

where µµµ∗ = ΣΣΣ∗{V−1ε (Z−Xβββ) + 1
δ2
ν̃ννO}, and (ΣΣΣ∗)−1 = δ−2I + V−1ε .
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4. It follows from (11) that the full conditional distribution for ηηη, which collapses across ν̃−w, β

and ν, is given by

p(η|σ2ν , φ, ν̃w,γ, σ2η,Z) ∝ h(Zw|θ,γ)p(ν̃w|θ)p(η|σ2η).

We use Metropolis-Hasting to sample ηηη and we use a multivariate normal distribution for the

proposal distribution.

5. It follows from (11) that the full conditional distribution for σ2ν , which collapses across ν̃−w,

β and ν, is given by

p(σ2ν |η, φ, ν̃w,γ, σ2η,Z) ∝ p(σ2ν)h(Zw|θ,γ)p(ν̃w|θ),

where α1 = β1 = 1. We use Metropolis-Hasting to sample σ2ν and we use an inverse gamma

distribution for the proposal distribution. There are three contributions to the full-conditional

distribution for σ2ν . The first multiplicative term is the prior distribution, the second term

represents the likelihood after one collapses across ν and β, and the third term arises from

collapsing across ν̃−w. Notice in our expression that the vectors Zw and ν̃w are w-dimensional,

where w is small in value.

6. It follows from (12) that the full conditional distribution for σ2β , which collapses across β and

ν, is given by

p(σ2β |θ, δ2, σ2ε , σ2η,Z) ∝ p(σ2β)h(Zw|θ,γ).

We use Metropolis-Hasting to sample σ2β and we use an inverse gamma distribution for the

proposal distribution.

7. The full conditional distribution of σ2η is easily obtained and given by,

f(σ2η|·) ∝ (σ2η)
−(α3+

r
2
)−1 exp

{
− η
ηη′ηηη

2σ2η
+ σ−2η β3

}
,

which is an inverse gamma distribution with shape parameter α3 + r
2 and scale parameter

ηηη′ηηη
2 + β3.
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8. The prior for φ is Uniform Distribution(0, U ). Then, it follows from (11) that the full condi-

tional distribution for σ2ν , which collapses across ν̃−w, β and ν, is given by

p(φ|σ2ν ,η, ν̃w,γ, σ2η,Z) ∝ I(0 ≤ φ ≤ U)h(Zw|θ,γ)p(ν̃w|θ),

where I(·) is the indicator function. We use Metropolis-Hasting to sample φ and we use a

uniform distribution for the proposal distribution.

9. It follows from (12) that the full conditional distribution for δ2, which collapses across β and

ν, is given by

p(δ2|θ, σ2β , σ2ε , σ2η,Z) ∝ h(Zw|θ,γ)p(δ2).

We use Metropolis-Hasting to sample δ2 and we use an inverse gamma distribution for the

proposal distribution.

10. We assume σ2ε is known, but provide details on updating this parameter if an informative IG

prior is preferred. In particular, it follows from (12) that the full conditional distribution for

σ2ε , which collapses across β and ν, is given by

p(σ2ε |θ, σ2β , δ2, σ2η,Z) ∝ h(Zw|θ,γ)p(σ2ε ).

We can use a Metropolis-Hasting step to sample σ2ε and we use an inverse gamma distribution

for the proposal distribution.

Appendix C: Review of Spatial Process Convolution

The SPC model for a spatial random process Y (·) is defined via a kernel convolution:

Y (s) =

∫
D
g(s, s− u)dw(u) (20)

where w(·) is a spatial random process defined on D ⊂ Rd and g is referred to as a “kernel function.”

These kernel functions require the first and second moments to be finite, or
∫
Rd g(s,u)du <∞ and∫

Rd g(s,u)du <∞ for every s ∈ D.
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Higdon (1998) develops a nonstationary process specification of Y (·) in this framework by

specifying w(·) to be a white-noise process. Paciorek and Schervish (2006) specify the SPC model

with g(s, ·) set equal to to be a multivariate normal density with mean s. They show that the

nonstationary covariance function has the form

cov(Y (si), Y (sj)) =

σ2det

(
Σ(si) + Σ(sj)

2

)−1/2
det (Σ(si))

1/4 det (Σ(sj))
1/4 exp

{
−1

2
(si − sj)

′
(

Σ(si) + Σ(sj)

2

)−1
(si − sj)

}
.

where σ2 > 0 and si, sj ∈ D. Risser and Calder (2015) extends this approach by introducing

“mixture components.” Specifically, let {bk : k = 1, . . . , L} ∈ D with mixture covariance matrices

Σk. Then, Risser and Calder (2015) let

Σ(s) =

L∑
k=1

hk(s)Σk (21)

where

hk(s) = exp

{
−‖s− bk‖2

2λw

}
. (22)

where
∑L

k=1wk(s) = 1, and λw is a tuning parameter and it is considered fixed. We used an

R-package convoSPAT to simulate data from SPC model. The covariance matrices Σk are defined

through a spectral decomposition

Σk =

[
cos(ηk) −sin(ηk)
sin(ηk) cos(ηk)

] [
λ1k 0
0 λ2k

] [
cos(ηk) sin(ηk)
−sin(ηk) cos(ηk)

]
(23)

where λ1k > 0 and λ2k > 0 are log-linear regression coefficents, and ηk is real-valued. We use

the R-code function f mc kernels to calculate these mixture component matrices. Next, the set-

ting for mixture component kernel matrices are the following. We define the number of mix-

ture components points equal L = 5. We define (λ11, . . . , λ15)
′ = (−1.3, 0.5,−0.6, 0.2,−0.1),

(λ21, . . . , λ25)
′ = (−1.4,−0.1, 0.2, 1,−1), and (η1, . . . , η5) = (0,−0.15, 0.15, 0.1, 0.12). The true

value for a constant mean, nugget effect and process variance σ2 are 4, 0.1, and 1, respectively.

The function NSconvo sim is used to generate data from this model. This specification is used

when d = 1 in Simulation Study 1 and d = 2 in Simulation Study 2.
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