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ABSTRACT

Generative Adversarial Networks (GANs) are commonly used for modeling com-
plex distributions of data. Both the generators and discriminators of GANs are
often modeled by neural networks, posing a non-transparent optimization prob-
lem which is non-convex and non-concave over the generator and discrimina-
tor, respectively. Such networks are often heuristically optimized with gradi-
ent descent-ascent (GDA), but it is unclear whether the optimization problem
contains any saddle points, or whether heuristic methods can find them in prac-
tice. In this work, we analyze the training of Wasserstein GANs with two-layer
neural network discriminators through the lens of convex duality, and for a va-
riety of generators expose the conditions under which Wasserstein GANs can
be solved exactly with convex optimization approaches, or can be represented
as convex-concave games. Using this convex duality interpretation, we further
demonstrate the impact of different activation functions of the discriminator. Our
observations are verified with numerical results demonstrating the power of the
convex interpretation, with applications in progressive training of convex archi-
tectures corresponding to linear generators and quadratic-activation discrimina-
tors for CelebA image generation. The code for our experiments is available at
https://github.com/ardasahiner/ProCoGAN.

1 INTRODUCTION

Generative Adversarial Networks (GANs) have delivered tremendous success in learning to generate
samples from high-dimensional distributions (Goodfellow et al., 2014; Cao et al., 2018; Jabbar et al.,
2021). In the GAN framework, two models are trained simultaneously: a generator G which attempts
to generate data from the desired distribution, and a discriminator D which learns to distinguish
between real data samples and the fake samples generated by generator. This problem is typically
posed as a zero-sum game for which the generator and discriminator compete to optimize objective f

p∗ = min
G

max
D

f(G,D).

The ultimate goal of the GAN training problem is thus to find a saddle point (also called a Nash
equilibrium) of the above optimization problem over various classes of (G,D). By allowing the
generator and discriminator to be represented by neural networks, great advances have been made in
generative modeling and signal/image reconstruction (Isola et al., 2017; Karras et al., 2019; Radford
et al., 2015; Wang et al., 2018; Yang et al., 2017). However, GANs are notoriously difficult to train,
for which a variety of solutions have been proposed; see e.g., (Nowozin et al., 2016; Mescheder et al.,
2018; Metz et al., 2016; Gulrajani et al., 2017).

One such approach pertains to leveraging Wasserstein GANs (WGANs) (Arjovsky et al., 2017),
which utilize the Wasserstein distance with the `1 metric to motivate a particular objective f . In
particular, assuming that true data is drawn from distribution px, and the input to the generator is
∗Equal Contribution
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Table 1: Convex landscape and interpretation of WGAN with two-layer discriminator under different dis-
criminator activation functions and generator architectures. Note that adding a linear skip connection to the
discriminator imposes an additional mean matching constraint when using quadratic activation.

Generator
Discriminator Linear Activation Quadratic Activation ReLU Activation

Linear convex convex, closed form convex-concave
2-layer (polynomial) convex convex, closed form convex-concave

2-layer (ReLU) convex convex convex-concave
Interpretation mean matching covariance matching piecewise mean matching

drawn from distribution pz , we represent the generator and discriminator with parameters θg and θd
respectively, to obtain the WGAN objective

p∗ = min
θg

max
θd

Ex∼px [Dθd(x)]− Ez∼pz [Dθd(Gθg (z))]. (1)

When G and D are neural networks, neither the inner max, nor, the outer min problems are convex,
which implies that min and max are not necessarily interchangeable. As a result, first, there is no
guarantees if the saddle points exists. Second, it is unclear to what extent heuristic methods such
as Gradient Descent-Ascent (GDA) for solving WGANs can approach saddle points. This lack of
transparency about the loss landscape of WGANs and their convergence is of paramount importance
for their utility in sensitive domains such as medical imaging. For instance, WGANs are commonly
used for magnetic resonance image (MRI) reconstruction (Mardani et al., 2018; Han et al., 2018),
where they can potentially hallucinate pixels and alter diagnostic decisions. Despite their prevalent
utilization, GANs are not well understood.

To shed light on explaining WGANs, in this work, we analyze WGANs with two-layer neural network
discriminators through the lens of convex duality and affirm that many such WGANs provably have
optimal solutions which can be found with convex optimization, or can be equivalently expressed as
convex-concave games, which are well studied in the literature (Žaković & Rustem, 2003; Žaković
et al., 2000; Tsoukalas et al., 2009; Tsaknakis et al., 2021). We further provide interpretation into the
effect of various activation functions of the discriminator on the conditions imposed on generated
data, and provide convex formulations for a variety of generator-discriminator combinations (see
Table 1). We further note that such shallow neural network architectures can be trained in a greedy
fashion to build deeper GANs which achieve state-of-the art for image generation tasks (Karras et al.,
2017). Thus, our analysis can be extended deep GANs as they are used in practice, and motivates
further work into new convex optimization-based algorithms for more stable training.

Contributions. All in all, the main contributions of this paper are summarized as follows:

• For the first time, we show that WGAN can provably be expressed as a convex problem (or a
convex-concave game) with polynomial-time complexity for two-layer discriminators and two-layer
generators under various activation functions (see Table 1).

• We uncover the effects of discriminator activation on data generation through moment matching,
where quadratic activation matches the covariance, while ReLU activation amounts to piecewise
mean matching.

• For linear generators and quadratic discriminators, we find closed-form solutions for WGAN
training as singular value thresholding, which provides interpretability.

• Our experiments demonstrate the interpretability and effectiveness of progressive convex GAN
training for generation of CelebA faces.

1.1 RELATED WORK

The last few years have witnessed ample research in GAN optimization. While several divergence
measures (Nowozin et al., 2016; Mao et al., 2017) and optimization algorithms (Miyato et al., 2018;
Gulrajani et al., 2017) have been devised, GANs have not been well interpreted and the existence of
saddle points is still under question. In one of the early attempts to interpret GANs, (Feizi et al., 2020)
shows that for linear generators with Gaussian latent code and the 2nd order Wasserstein distance
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objective, GANs coincide with PCA. Others have modified the GAN objective to implicitly enforce
matching infinite-order of moments of the ground truth distribution (Li et al., 2017; Genevay et al.,
2018). Further explorations have yielded specialized generators with layer-wise subspaces, which
automatically discover latent “eigen-dimensions" of the data (He et al., 2021). Others have proposed
explicit mean and covariance matching GAN objectives for stable training (Mroueh et al., 2017).

Regarding convergence of Wasserstein GANs, under the fairly simplistic scenario of linear discrimi-
nator and a two-layer ReLU-activation generator with sufficiently large width, saddle points exist
and are achieved by GDA (Balaji et al., 2021). Indeed, linear discriminators are not realistic as
then simply match the mean of distributions. Moreover, the over-parameterization is of high-order
polynomial compared with the ambient dimension. For more realistic discriminators, (Farnia &
Ozdaglar, 2020) identifies that GANs may not converge to saddle points, and for linear generators
with Gaussian latent code, and continuous discriminators, certain GANs provably lack saddle points
(e.g., WGANs with scalar data and Lipschitz discriminators). The findings of (Farnia & Ozdaglar,
2020) raises serious doubt about the existence of optimal solutions for GANs, though finite parameter
discriminators as of neural networks are not directly addressed.

Convexity has been seldomly exploited for GANs aside from (Farnia & Tse, 2018), which studies
convex duality of divergence measures, where the insights motivate regularizing the discriminator’s
Lipschitz constant for improved GAN performance. For supervised two-layer networks, a recent
of line of work has established zero-duality gap and thus equivalent convex networks with ReLU
activation that can be solved in polynomial time for global optimality (Pilanci & Ergen, 2020; Sahiner
et al., 2020a; Ergen & Pilanci, 2021d; Sahiner et al., 2020b; Bartan & Pilanci, 2021; Ergen et al.,
2022). These works focus on single-player networks for supervised learning. However, extending
those works to the two-player GAN scenario for unsupervised learning is a significantly harder
problem, and demands a unique treatment, which is the subject of this paper.

1.2 PRELIMINARIES

Throughout the paper, we denote matrices and vectors as uppercase and lowercase bold letters,
respectively. We use 0 (or 1) to denote a vector and matrix of zeros (or ones), where the sizes are
appropriately chosen depending on the context. We also use In to denote the identity matrix of size n.
For matrices, we represent the spectral, Frobenius, and nuclear norms as ‖ · ‖2, ‖ · ‖F , and ‖ · ‖∗,
respectively. Lastly, we denote the element-wise 0-1 valued indicator function and ReLU activation
as 1[x ≥ 0] and (x)+ = max{x, 0}, respectively.

In this paper, we consider the WGAN training problem as expressed in equation 1. We consider
the case of a finite real training dataset X ∈ Rnr×dr which represents the ground truth data from
the distribution we would like to generate data. We also consider using finite noise Z ∈ Rnf×df
as the input to the generator as fake training inputs. The generator is given as some function
Gθg : Rdf → Rdr which maps noise from the latent space to attempt to generate realistic samples
using parameters θg, while the discriminator is given by Dθd : Rdr → R which assigns values
depending on how realistically a particular input models the desired distribution, using parameters θd.
Then, the primary objective of the WGAN training procedure is given as

p∗ = min
θg

max
θd

1>Dθd(X)− 1>Dθd(Gθg (Z)) +Rg(θg)−Rd(θd), (2)

where Rg and Rd are regularizers for generator and discriminator, respectively. We will analyze
realizations of discriminators and generators for the saddle point problem via convex duality. One
such architecture is that of the two-layer network with md neurons and activation σ, given by

Dθd(X) =

md∑
j=1

σ(Xuj)vj
1.

Two activation functions that we will analyze in this work include polynomial activation σ(t) =
at2 + bt+ c (of which quadratic and linear activations are special cases where (a, b, c) = (1, 0, 0)
and (a, b, c) = (0, 1, 0) respectively), and ReLU activation σ(t) = (t)+. As a crucial part of our
convex analysis, we first need to obtain a convex representation for the ReLU activation. Therefore,
we introduce the notion of hyperplane arrangements similar to (Pilanci & Ergen, 2020).

1In the case of networks with bias, one can write Dθd(X) =
∑m
j=1 σ(Xuj + 1bj)vj .
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Hyperplane arrangements. We define the set of hyperplane arrangements asHx := {diag(1[Xu ≥
0]) : u ∈ Rdr}, where each diagonal matrix Hx ∈ Hx encodes whether the ReLU activation is
active for each data point for a particular hidden layer weight u. Therefore, for a neuron u, the output
of the ReLU activation can be expressed as (Xu)+ = HxXu, with the additional constraint that
(2Hx − Inr ) Xu ≥ 0. Further, the set of hyperplane arrangements is finite, i.e. |Hx| ≤ O(r(nr/r)

r),
where r := rank(X) ≤ min(nr, dr) (Stanley et al., 2004; Ojha, 2000). Thus, we can enumerate all
possible hyperplane arrangements and denote them asHx = {H(i)

x }|Hx|i=1 . Similarly, one can consider
the set of hyperplane arrangements from the generated data as {H(i)

g }|Hg|i=1 , or of the noise inputs to
the generator: {H(i)

z }|Hz|i=1 . With these notions established, we now present the main results2.

2 OVERVIEW OF MAIN RESULTS

As a discriminator, we consider a two-layer neural network with appropriate regularization, md

neurons, and arbitrary activation function σ. We begin with the regularized problem

p∗ = min
θg

max
vj ,‖uj‖2≤1

md∑
j=1

[
1>σ(Xuj)− 1>σ(Gθg (Z)uj)

]
vj +Rg(θg)− βd

md∑
j=1

|vj | (3)

with regularization parameter βd > 0. This problem represents choice ofRd corresponding to weight-
decay regularization in the case of linear or ReLU activation, and cubic regularization in the case of
quadratic activation (see Appendix) (Neyshabur et al., 2014; Pilanci & Ergen, 2020; Bartan & Pilanci,
2021). Under this model, our main result is to show that with two-layer ReLU-activation generators,
the solution to the WGAN problem can be reduced to convex optimization or a convex-concave game.
Theorem 2.1. Consider a two-layer ReLU-activation generator of the form Gθg (Z) = (ZW1)+W2

with mg ≥ nfdr + 1 neurons, where W1 ∈ Rdf×mg and W2 ∈ Rmg×dr . Then, for appropriate
choice of regularizer Rg = ‖Gθg (Z)‖2F , for any two-layer discriminator with linear or quadratic
activations, the WGAN problem equation 3 is equivalent to the solution of two successive convex
optimization problems, which can be solved in polynomial time in all dimensions for noise inputs
Z of a fixed rank. Further, for a two-layer ReLU-activation discriminator, the WGAN problem is
equivalent to a convex-concave game with coupled constraints.

In practice, GANs are often solved with low-dimensional noise inputs Z, limiting rank(Z) and
enabling polynomial-time trainability. A particular example of the convex formulation of the WGAN
problem in the case of a quadratic-activation discriminator can be written as

G∗ = arg min
G

‖G‖2F s.t. ‖X>X−G>G‖2 ≤ βd (4)

W∗
1,W

∗
2 = arg min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2, (5)

where the solution G∗ to equation 4 can be found in polynomial-time via singular value thresholding,
formulated exactly as G∗ = L(Σ2 − βdI)

1/2
+ V> for any orthogonal matrix L, where X = UΣV>

is the SVD of X. While equation 5 does not appear convex, it has been shown that its solution is
equivalent to a convex program (Ergen & Pilanci, 2021a; Sahiner et al., 2020a), which for the norm
‖S‖Ki,∗ := mint≥0 t s.t. S ∈ tconv{Z = hgT : (2H

(i)
z − Inf )Zu ≥ 0, ‖Z‖∗ ≤ 1} is expressed as

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi, (6)

The optimal solution to equation 6 can be found in polynomial-time in all problem dimensions when
Z is fixed-rank, and can construct the optimal generator weights W∗

1,W
∗
2 (see Appendix C.1). This

WGAN problem can thus be solved in two steps: first, it solves for the optimal generator output; and
second, it parameterizes the generator with ReLU weights to achieve the desired generator output.
In the case of ReLU generators and ReLU discriminators, we find equivalence to a convex-concave
game with coupled constraints, which we discuss further in the Appendix (Žaković & Rustem, 2003).
For certain simple cases, this setting still reduces to convex optimization.

2All the proofs and some extensions are presented in Appendix.
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Theorem 2.2. In the case of 1-dimensional (dr = 1) data {xi}ni=1 where nr = nf = n, a two-layer
ReLU-activation generator, and a two-layer ReLU-activation discriminator with bias, with arbitrary
choice of convex regularizerRg(w), the WGAN problem can be solved by first solving the following
convex optimization problem

w∗ = arg min
w∈Rn

Rg(w) s.t.

∣∣∣∣∣∣
2n∑
i=j

si(x̃i − x̃j)

∣∣∣∣∣∣ ≤ βd,
∣∣∣∣∣
j∑
i=1

si(x̃j − x̃i)

∣∣∣∣∣ ≤ βd, ∀j ∈ [2n] (7)

and then the parameters of the two-layer ReLU-activation generator can be found via

{(u∗i ,v∗i )}
|Hz|
i=1 = arg min

ui,vi∈Ci

|Hz|∑
i=1

‖ui‖2 + ‖vi‖2 s.t. w∗ =

|Hz|∑
i=1

H(i)
z Z(ui − vi),

where

x̃i =

{
xb i+1

2 c
, if i is odd

w i
2
, if i is even

, si =

{
+1, if i is odd
−1, if i is even

, ∀i ∈ [2n]

for convex sets Ci, given that the generator hasmg ≥ n+1 neurons and βd ≤ mini,j∈[n]:i6=j |xi−xj |.

This demonstrates that even the highly non-convex and non-concave WGAN problem with ReLU-
activation networks can be solved using convex optimization in polynomial time when Z is fixed-rank.

In the sequel, we provide further intuition about the forms of the convex optimization problems found
above, and extend the results to various combinations of discriminators and generators. In the cases
that the WGAN problem is equivalent to a convex problem, if the constraints of the convex problem
are strictly feasible, the Slater’s condition implies Lagrangian of the convex problem provably has a
saddle point. We thus confirm the existence of equivalent saddle point problems for many WGANs.

3 TWO-LAYER DISCRIMINATOR DUALITY

Below, we provide novel interpretations into two-layer discriminator networks through convex duality.
Lemma 3.1. The two-layer WGAN problem equation 3 is equivalent to the following optimization
problem

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
|1>σ(Xu)− 1>σ(Gθg (Z)u)| ≤ βd. (8)

One can enumerate the implications of this result for different discriminator activation functions.

3.1 LINEAR-ACTIVATION DISCRIMINATORS MATCH MEANS

In the case of linear-activation discriminators, the expression in equation 8 can be greatly simplified.
Corollary 3.1. The two-layer WGAN problem equation 3 with linear activation function σ(t) = t is
equivalent to the following optimization problem

p∗ = min
θg
Rg(θg) s.t. ‖1>X− 1>Gθg (Z)‖2 ≤ βd. (9)

Linear-activation discriminators seek to merely match the means of the generated data Gθg (Z) and
the true data X, where parameter βd controls how strictly the two must match. However, the exact
form of the generated data depends on the parameterization of the generator and the regularization.

3.2 QUADRATIC-ACTIVATION DISCRIMINATORS MATCH COVARIANCES

For a quadratic-activation network, we have the following simplification.
Corollary 3.2. The two-layer WGAN problem equation 3 with quadratic activation function σ(t) =
t2 is equivalent to the following optimization problem

p∗ = min
θg
Rg(θg) s.t. ‖X>X−Gθg (Z)>Gθg (Z)‖2 ≤ βd. (10)

5



Published as a conference paper at ICLR 2022

In this case, rather than an Euclidean norm constraint, the quadratic-activation network enforces
fidelity to the ground truth distribution with a spectral norm constraint, which effectively matches
the empirical covariance matrices of the generated data and the ground truth data. To combine
the effect of the mean-matching of linear-activation discriminators and covariance-matching of
quadratic-activation discriminators, one can consider a combination of the two.
Corollary 3.3. The two-layer WGAN problem equation 3 with quadratic activation function σ(t) =
t2 with an additional unregularized linear skip connection is equivalent to the following problem

p∗ = min
θg
Rg(θg) s.t.

‖X>X−Gθg (Z)>Gθg (Z)‖2 ≤ βd
1>X = 1>Gθg (Z)

. (11)

This network thus forces the empirical means of the generated and true distribution to match exactly,
while keeping the empirical covariance matrices sufficiently close. Skip connections therefore provide
additional utility in WGANs, even in the two-layer discriminator setting.

3.3 RELU-ACTIVATION DISCRIMINATORS MATCH PIECEWISE MEANS

In the case of the ReLU activation function, we have the following scenario.
Corollary 3.4. The two-layer WGAN problem equation 3 with ReLU activation function σ(t) = (t)+
is equivalent to the following optimization problem

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
(2H(j1)

x −Inr )Xu≥0
(2H(j2)

g −Inf )Gθg (Z)u≥0

∣∣∣(1>H(j1)
x X− 1>H(j2)

g Gθg (Z)
)
u
∣∣∣ ≤ βd, ∀j1, j2.

(12)

The interpretation of the ReLU-activation discriminator relies on the concept of hyperplane arrange-
ments. In particular, for each possible way of separating the generated and ground truth data with a
hyperplane u (which is encoded in the patterns specified byHx andHg), the discriminator ensures
that the means of the selected ground truth data and selected generated data are sufficiently close
as determined by βd. Thus, we can characterize the impact of the ReLU-activation discriminator
as piecewise mean matching. Thus, unlike linear- or quadratic-activation discriminators, two-layer
ReLU-activation discriminators can enforce matching of multi-modal distributions.

4 GENERATOR PARAMETERIZATION AND CONVEXITY

Beyond understanding the effect of various discriminators on the generated data distribution, we can
also precisely characterize the WGAN objective for multiple generator architectures aside from the
two-layer ReLU generators discussed in Theorem 2.1, such as for linear generators.
Theorem 4.1. Consider a linear generator of the form Gθg (Z) = ZW. Then, for arbitrary choice
of convex regularizerRg(W), the WGAN problem for two-layer discriminators can be expressed as
a convex optimization problem in the case of linear activation, as well as in the case of quadratic
activation provided rank(Z) is sufficiently large andRg =

βg
2 ‖Gθg (Z)‖2F . In the case of a two-layer

discriminator with ReLU activation, the WGAN problem with arbitrary choice of convex regularizer
Rg(W) is equivalent to a convex-concave game with coupled constraints.

We can then discuss specific instances of the specific problem at hand. In particular, in the case of a
linear-activation discriminator, the WGAN problem with weight decay on both discriminator and
generator is equivalent to the following convex program

p∗ = min
W

βg
2
‖W‖2F s.t. ‖1>X− 1>ZW‖2 ≤ βd. (13)

In contrast, for a quadratic-activation discriminator with regularized generator outputs,

p∗ ≥ d∗ = min
G

βg
2
‖G‖2F s.t. ‖X>X−G>G‖2 ≤ βd, (14)

6
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where G = ZW, with p∗ = d∗ under the condition that rank(Z) is sufficiently large. In particular,
allowing the SVD of X = UΣV>, we define k = maxk:σ2

k≥βd k, and note that if rank(Z) ≥ k,
equality holds in (14) and a closed-form solution for the optimal generator weights exists, given by

W∗ = (Z>Z)−
1
2 (Σ2 − βdI)

1
2
+V>. (15)

Lastly, for arbitrary convex regularizer Rg, the linear generator, ReLU-activation discriminator
problem can be written as the following convex-concave game

p∗ =min
W

max
rj1,j2 ,r

′
j1j2

Rg(W)− βd
∑
j1,j2

(‖rj1j2‖2 + ‖r
′
j1j2‖2) (16)

+
∑
j1,j2

(
1>H(j1)

x X− 1>H(j2)
g ZW

)
(rj1j2 − r′j1j2)

s.t.
(2H(j1)

x − In)Xrj1j2 ≥ 0, (2H(j2)
g − In)ZWrj1j2 ≥ 0

(2H(j1)
x − In)Xr′j1j2 ≥ 0, (2H(j2)

g − In)ZWr′j1j2 ≥ 0
, ∀j1 ∈ [|Hx|], ∀j2 ∈ [|Hg|],

where we see there are bi-linear constraints which depend on both the inner maximization and the
outer minimization decision variables. We now move to a more complex form of generator, which is
modeled by a two-layer neural network with general polynomial activation function.

Theorem 4.2. Consider a two-layer polynomial-activation generator of the form Gθg (Z) =

σ(ZW1)W2 for activation function σ(t) = at2 + bt + c with fixed a, b, c ∈ R. Define
z̃i =

[
vec(ziz

>
i )> bz>i c

]>
as the lifted noise data points, in which case Gθg (Z) = Z̃W.

Then, for arbitrary choice of convex regularizerRg(W), the WGAN problem for two-layer discrimi-
nators can be expressed as a convex optimization problem in the case of linear activation, as well as
in the case of quadratic activation provided rank(Z̃) is sufficiently large andRg = ‖Gθg (Z)‖2F . In
the case of a two-layer discriminator with ReLU activation, the WGAN problem with arbitrary choice
of convex regularizerRg(W) is equivalent to a convex-concave game with coupled constraints.

Under the parameterization of lifted noise features, a two-layer polynomial-activation generator
behaves entirely the same as a linear generator. The effect of a polynomial-activation generator is thus
to provide more heavy-tailed noise as input to the generator, which provides a higher dimensional
input and thus more degrees of freedom to the generator for modeling more complex data distributions.

5 NUMERICAL EXAMPLES

5.1 RELU-ACTIVATION DISCRIMINATORS

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

(a) βd = 0.1 (b) Generator space

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

(c) βd = 1 (d) Generator space

Figure 1: Numerical illustration of Theorem 2.2 for ReLU generator/discriminator with 1D data
x = [−1, 1]T and Rg(w) = ‖w‖22. For βd = 0.1, we observe that the constraint set of the convex
program in equation 17 is a convex polyhedron shown in (b) and the optimal generator output is the
vertex w1 = (−1 + βd) and w2 = 1 − βd. In contrast, for βd = 1, the constraint set in (d) is the
larger scaled polyhedra and includes the origin. Therefore, the optimal generator output becomes
w1 = w2 = 0, which corresponds to the overlapping points in (c) and demonstrates mode collapse.

We first verify Theorem 2.2 to elucidate the power of the convex formulation of two-layer ReLU
discriminators and two-layer ReLU generators in a simple setting. Let us consider a toy dataset with

7



Published as a conference paper at ICLR 2022

Figure 2: A modified architecture for progressive training of convex GANs (ProCoGAN). At each stage i, a
linear generator Wi is used to model images at a given resolution Xi, attempting to fool quadratic-activation
discriminator Di, for which the optimal solution can be found in closed-form via equation 15. Once stage i is
trained, the input to stage i+ 1 is given as the output of the previous stage with learned weights W∗

i , which is
then used to model higher-resolution images Xi+1. The procedure continues until high-resolution images can
be generated from successive application of linear generators.

the data samples x = [−1, 1]T 3. Then, the convex program can be written as

min
w∈R2

Rg(w) s.t.

∣∣∣∣∣∣
4∑
i=j

si(x̃i − x̃j)

∣∣∣∣∣∣ ≤ βd,
∣∣∣∣∣
j∑
i=1

si(x̃j − x̃i)

∣∣∣∣∣ ≤ βd, ∀j ∈ [4].

Substituting the data samples, the simplified convex problem becomes

min
w∈R2

Rg(w) s.t. |w1 + w2| ≤ βd, |w2 − 1| ≤ βd, |w1 + 1| ≤ βd. (17)

As long asRg(w) is convex in w, this is a convex optimization problem. We can numerically solve
this problem with various convex regularization functions, such asRg(w) = ‖w‖pp for p ≥ 1.

We visualize the results in Figure 1. Here, we observe that when βd = 0.1, the constraint set is
a convex polyhedron and the optimal generator outputs are at the boundary of the constraint set,
i.e., w1 = (−1 + βd) and w2 = 1− βd. However, selecting βd = 1 enlarges the constraint set such
that the origin becomes a feasible point. Thus, due to havingRg(w) = ‖w‖22 in the objective, both
outputs get the same value w1 = w2 = 0, which demonstrates the mode collapse issue.

5.2 PROGRESSIVE TRAINING OF LINEAR GENERATORS AND QUADRATIC DISCRIMINATORS

Here, we demonstrate a proof-of-concept example for the simple covariance-matching performed by a
quadratic-activation discriminator for modeling complex data distributions. In particular, we consider
the task of generating images from the CelebFaces Attributes Dataset (CelebA) (Liu et al., 2015),
using only a linear generator and quadratic-activation discriminator. We compare the generated
faces from our convex closed-form solution in equation 15 with the ones generated using the original
non-convex and non-concave formulation. GDA is used for solving the non-convex problem.

We proceed by progressively training the generators layers. This is typically used for training
GANs for high-resolution image generation (Karras et al., 2017). The training operates in stages
of successively increasing the resolution. In the first stage, we start with the Gaussian latent code
Z ∈ Rnf×df and locally match the generator weight W1 to produce samples from downsampled
distribution of images X1. The second stage then starts with latent code Z2, which is the upsampled
version of the network output from the previous stage ZW∗

1 . The generator weight W2 is then trained
to match higher resolution X2. The procedure repeats until full-resolution images are obtained. Our
approach is illustrated in Figure 2. The optimal solution for each stage can be found in closed-form
using equation 15; we compare using this closed-form solution, which we call Progressive Convex
GAN (ProCoGAN), to training the non-convex counterpart with Progressive GDA.

3See Appendix for derivation, where we also provide an example with the data samples x = [−1, 0, 1]T .
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(a) ProCoGAN (Ours). Top: (β(4)
d , β

(5)
d )=(7.2×103, 1.0×104)

Bottom: (β(4)
d , β

(5)
d )=(1.9×104, 3.3×104)

(b) Progressive GDA (Baseline)

Figure 3: Representative generated faces from ProCoGAN and Progressive GDA with stagewise training of
linear generators and quadratic-activation discriminators on CelebA (Figure 2). ProCoGAN only employs the
closed-form expression equation 15, where βd controls the variation and smoothness in the generated images.

In practice, the first stage begins with 4×4 resolution RGB images, i.e. X1 ∈ Rnr×48, and at each
successive stage we increase the resolution by a factor of two, until obtaining the final stage of
64× 64 resolution. For ProCoGAN, at each stage i, we use a fixed penalty β(i)

d for the discriminator,
while GDA is trained with a standard Gradient Penalty (Gulrajani et al., 2017). At each stage, GDA
is trained with a sufficiently wide network with m(i)

d =(192, 192, 768, 3092, 3092) neurons at each
stage, with fixed minibatches of size 16 for 15000 iterations per stage. As a final post-processing
step to visualize images, because the linear generator does not explicitly enforce pixel values to be
feasible, for both ProCoGAN and the baseline, we apply histogram matching between the generated
images and the ground truth dataset (Shen, 2007). For both ProCoGAN and the baseline trained on
GPU, we evaluate the wall-clock time for three runs. While ProCoGAN trains for only 153 ± 3
seconds, the baseline using Progressive GDA takes 11696 ± 81 seconds to train. ProCoGAN is
much faster than the baseline, which demonstrates the power of the equivalent convex formulation.

We also visualize representative freshly generated samples from the generators learned by both
approaches in Figure 3. We keep (β

(1)
d , β

(2)
d , β

(3)
d ) fixed, and visualize the result of training two

different sets of values of (β
(4)
d , β

(5)
d ) for ProCoGAN. We observe that ProCoGAN can generate

reasonably realistic looking and diverse images. The trade off between diversity and image quality can
be tweaked with the regularization parameter βd. Larger βd generate images with higher fidelity but
with less degree of diversity, and vice versa (see more examples in Appendix B.2). Note that we are
using a simple linear generator, which by no means compete with state-of-the-art deep face generation
models. The interpretation of singular value thresholding per generator layer however is insightful to
control the features playing role in face generation. Further evidence and more quantitative evaluation
is provided in Appendix B.2. We note that the progressive closed-form approach of ProCoGAN may
also provide benefits in initializing deep non-convex GAN architectures for improved convergence
speed, which has precedence in the greedy layerwise learning literature (Bengio et al., 2007).

6 CONCLUSIONS

We studied WGAN training problem under the setting of a two-layer neural network discriminator,
and found that for a variety of activation functions and generator parameterizations, the solution can
be found via either a convex program or as the solution to a convex-concave game. Our findings
indicate that the discriminator activation directly impacts the generator objective, whether it be
mean matching, covariance matching, or piecewise mean matching. Furthermore, for the more
complicated setting of ReLU activation in both two-layer generators and discriminators, we establish
convex equivalents for one-dimensional data. To the best of our knowledge, this is the first work
providing theoretically solid convex interpretations for non-trivial WGAN training problems, and
even achieving closed-form solutions in certain relevant cases. In the light of our results and existing
convex duality analysis for deeper networks, e.g., Ergen & Pilanci (2021b;c); Wang et al. (2021), we
conjecture that a similar analysis can also be applied to deeper networks and other GANs.

9
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A NOTATION SUMMARY

Here, we provide a table summarizing the notation used in this paper for clarity.

Table 2: Notation used throughout the paper.

Symbol Meaning
θg Generator parameters
θd Discriminator parameters
Gθg Generator function
Dθd Discriminator function
X Ground truth data
Z Noise inputs to generator
Rg Generator regularization function
Rd Discriminator regularization function
βg Generator regularization parameter
βd Discriminator regularization parameter
nr Number of samples from X
dr Dimension of samples from X
nf Number of samples from Z
df Dimension of samples from Z
Hx Hyperplane arrangements of X
Hz Hyperplane arrangements of Z
r rank(X)
rz rank(Z)
mg Generator hidden layer neurons
md Discriminator hidden layer neurons
uj First-layer weight of discriminator neuron j
vj Second-layer weight of discriminator neuron j

W1 First-layer generator weight matrix
W2 Second-layer generator weight matrix

B EXPERIMENTAL DETAILS AND ADDITIONAL NUMERICAL EXAMPLES

B.1 RELU-ACTIVATION DISCRIMINATORS

We first provide some non-convex experimental results to support our claims in Theorem 2.2. For this
case, we use a WGAN with two-layer ReLU network generator and discriminator with the parameters
(mg,md, βd, µ) = (150, 150, 10−3, 4e− 6). We then train this architecture on the same dataset in
Figure 1. As illustrated in Figure 4, depending on the initialization seed, the training performance for
the non-convex architecture might significantly change. However, whenever the non-convex approach
achieves a stable training performance its results match with our theoretical predictions in Theorem
2.2.

In order to illustrate how the constraints in Theorem 2.2 change depending on the number of data
samples, below, we analyze a case with three data samples.

Let us consider a toy dataset with the data samples x = [−1, 0, 1]T . Then, the convex program can
be written as

min
w∈R3

Rg(w) s.t.

∣∣∣∣∣∣
6∑
i=j

si(x̃i − x̃j)

∣∣∣∣∣∣ ≤ βd,
∣∣∣∣∣
j∑
i=1

si(x̃j − x̃i)

∣∣∣∣∣ ≤ βd, ∀j ∈ [6]. (18)

Substituting the data samples, the simplified convex problem admits

min
w∈R3

Rg(w) s.t.
|w1 + w2 + w3| ≤ βd,
|1− (w2 + w3)| ≤ βd, |w1 + w2 + 1| ≤ βd
|w3 − 1| ≤ βd, |w1 + 1| ≤ βd

, (19)
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(a) Trial#1 - 1D illustration (b) Trial#1 - Loss curves

(c) Trial#2 - 1D illustration (d) Trial#2 - Loss curves

Figure 4: Non-convex architecture trained on the dataset in Figure 1 using the Adam optimizer with
(mg,md, βd, µ) = (150, 150, 10−3, 4e − 6). Unlike our stable convex approach, the non-convex
training is unstable and leads to undamped oscillations depending on the initialization. In particular,
for Trial#1 ((a) and (b)), we obtain unstable training so that the generator is unable to capture the
trend in the real data. However, in Trial#2 ((c) and (d)), the non-convex architecture is able to match
the real data as predicted our theory in Theorem 2.2.

which exhibits similar trends (compared to the case with two samples in Figure 1) as illustrated in
Figure 5.

Proof. To derive the convex form, we begin with equation 18 and simplify to:
j = 1 | − (w1 + 1) + 1− (w2 + 1) + 2− (w3 + 1)| ≤ βd 0 ≤ βd
j = 2 | − w1 − (w2 − w1) + (1− w1)− (w3 − w1)| ≤ βd |w1 + 1| ≤ βd
j = 3 | − w2 + 1− w3| ≤ βd |1 + w1| ≤ βd
j = 4 |(1− w2)− (w3 − w2)| ≤ βd |w2 − (w2 − w1) + (w2 + 1)| ≤ βd
j = 5 |w3 − 1| ≤ βd |2− (1− w1) + 1− (1− w2)| ≤ βd
j = 6 0 ≤ βd |(w3 + 1)− (w3 − w1) + w3

− (w3 − w2) + (w3 − 1)| ≤ βd.
Simplifying the constraints above yield

j = 1 |w1 + w2 + w3| ≤ βd 0 ≤ βd
j = 2 |1− (w2 + w3)| ≤ βd |w1 + 1| ≤ βd
j = 3 |1− (w2 + w3)| ≤ βd |w1 + 1| ≤ βd
j = 4 |w3 − 1| ≤ βd |w1 + w2 + 1| ≤ βd
j = 5 |w3 − 1| ≤ βd |w1 + w2 + 1| ≤ βd
j = 6 0 ≤ βd |w1 + w2 + w3| ≤ βd.

which can further be simplified to the expression in equation 19.
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Figure 5: Numerical illustration of Theorem 2.2 for ReLU generator/discriminator with 1D data
x = [−1, 0, 1]T andRg(w) = ‖w‖22.

B.2 PROGRESSIVE TRAINING OF LINEAR GENERATORS AND QUADRATIC DISCRIMINATORS

The CelebA dataset is large-scale face attributes dataset with 202599 RGB images of resolution
218 × 178, which is allowed for non-commercial research purposes only. For this work, we take
the first 50000 images from this dataset, and re-scale images to be square at size 64 × 64 as the
high-resolution baseline X5 ∈ R50000×12288. All images are represented in the range [0, 1]. In order
to generate more realistic looking images, we subtract the mean from the ground truth samples prior
to training and re-add it in visualization. The inputs to the generator network Z ∈ R50000×48 are
sampled from i.i.d. standard Gaussian distribution.

For the Progressive GDA baseline, we train the networks using Adam (Kingma & Ba, 2014),
with α = 1e − 3, β1 = 0, β2 = 0.99 and ε = 10−8, as is done in (Karras et al., 2017).
Also following (Karras et al., 2017), we use WGAN-GP loss with parameter λ = 10 and an
additional penalty εdriftEx∼px [D(x)2], where εdrift = 10−3. Also following (Karras et al., 2017),
for visualizing the generator output, we use an exponential running average for the weights of the
generator with decay 0.999. For progressive GDA, similar to the ProCoGAN formulation, we
penalize the outputs of the generator G with penalty βg‖G‖2F for some regularization parameter
βg. For the results in the main paper, we let β(i)

g = 100/d
(i)
r where d

(i)
r is the dimension

of the real data at each stage i. At each stage of the progressive process, the weights of the
previous stages are held constant and not fine-tuned, so as to match the architecture of ProCo-
GAN. We plot the loss curves of the final stage of the baseline in Figure 6 to demonstrate convergence.

We emphasize that the results of Progressive GDA as shown in this paper are not identical
to the original progressive training formulation of (Karras et al., 2017), with many key differences
which prevent our particular architecture from generating state-of-the-art images on par with
(Karras et al., 2017). Many key aspects of (Karras et al., 2017) are not captured by the architecture
studied in this work, including: using higher-resolution ground truth images (up to 1024 × 1024),
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Figure 6: Loss curves of the final 64 × 64 stage of training of the non-convex generator and non-
concave discriminator as trained with the baseline Progressive GDA method as used in the main
paper, for images shown in Figure 3. Discriminator fake loss corresponds to the total network output
over the fake images, while real loss corresponds to the negative of the total network output over the
real images, output penalty corresponds to the εdriftEx∼px [D(x)2] penalty, gradient penalty refers
to the GP loss with λ = 10, discriminator loss is the sum over all of the discriminator losses, and
generator loss corresponds to the negative of the discriminator fake loss.
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Table 3: FID results of progressive training of linear generators and two-layer quadratic-activation
discriminators using both the convex approach and the non-convex baseline. Results are reported

over three runs.

Method FID
Progressive GDA (Baseline) 194.1 ± 4.5

ProCoGAN (Ours): (β
(4)
d , β

(5)
d )=(7.2×103, 1.0×104) 128.4 ± 0.4

ProCoGAN (Ours): (β
(4)
d , β

(5)
d )=(1.9×104, 3.3×104) 147.1 ± 2.4

(a) ProCoGAN (Ours)

(b) Progressive GDA (Baseline)

Figure 7: Representative generated faces at 4 × 4 resolution from ProCoGAN and Progressive GDA with
stagewise training of linear generators and quadratic-activation discriminators on CelebA (Figure 2).

progressively growing the discriminator as well as the generator, using convolutional layers rather
than fully-connected layers, using leaky-ReLU activation rather than linear or quadratic-activation,
fusing the outputs of different resolutions, and fine-tuning the weights of previous stages when a new
stage is being trained. The objective of this experiment is not to replicate (Karras et al., 2017) exactly
with a convex algorithm, but rather to simply demonstrate a proof-of-concept for the effectiveness
of our equivalent convex program as an alternative to standard GDA applied to the non-concave
and non-convex original optimization problem, when both approaches are applied to the same
architecture of a linear generator and quadratic-activation two-layer discriminator.

For ProCoGAN, for both of the sets of faces visualized in the main paper, we arbitrarily choose
(β

(1)
d , β

(2)
d , β

(3)
d ) = (206, 1.6 × 103, 5.9 × 103). β(i)

d are in general chosen to truncate ki singular
values of Xi = UiΣiVi, where ki can be varied.

Both methods are trained with Pytorch (Paszke et al., 2019), where ProCoGAN is trained
with a single 12 GB NVIDIA Titan Xp GPU, while progressive GDA is trained with two of them.
For numerical results, we use Fréchet Inception Distance (FID) as a metric (Heusel et al., 2017),
generated from 1000 generated images from each model compared to the 50000 ground-truth images
used for training, reported over three runs. We display our results in Table 3. We find that low values
of βd seem to improve the FID metric for ProCoGAN, and these greatly outperform the baseline
in terms of FID in both cases. In addition, to show further the progression of the greedy training,
for both ProCoGAN and Progressive GDA in the settings described in the main paper, we show
representative outputs of each trained generator at each stage of training in Figures 7, 8, 9, and 10.

Further, we ablate the values of β(i)
d for ProCoGAN to show in an even more extreme case the tradeoff

between smoothness and diversity, and ablate β(i)
g in the case of ProgressiveGDA, which provides a

similar tradeoff, as we show in Figure 11.
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(a) ProCoGAN (Ours)

(b) Progressive GDA (Baseline)

Figure 8: Representative generated faces at 8 × 8 resolution from ProCoGAN and Progressive GDA with
stagewise training of linear generators and quadratic-activation discriminators on CelebA (Figure 2).

(a) ProCoGAN (Ours)

(b) Progressive GDA (Baseline)

Figure 9: Representative generated faces at 16× 16 resolution from ProCoGAN and Progressive GDA with
stagewise training of linear generators and quadratic-activation discriminators on CelebA (Figure 2).

(a) ProCoGAN (Ours). Top: β(4)
d =7.2×103

Bottom: β(4)
d =1.9×104

(b) Progressive GDA (Baseline)

Figure 10: Representative generated faces at 32× 32 resolution from ProCoGAN and Progressive GDA with
stagewise training of linear generators and quadratic-activation discriminators on CelebA (Figure 2). ProCoGAN
only employs the closed-form expression equation 15, where βd controls the variation and smoothness in the
generated images.
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(a) ProCoGAN (Ours). Top: β(i)
d =(1.3× 103, 2.7× 103, 9.0× 103, 2.6× 104, 6.4× 104)

Bottom: β(i)
d =(51, 557, 2.9× 103, 5.3× 103, 6.2× 103)

(b) Progressive GDA (Baseline). Top: β(i)
g =10/d

(i)
r

Bottom: β(i)
g =1000/d

(i)
r

Figure 11: Effect of β(i)
d on generated faces from ProCoGAN and effect of β(i)

g on generated faces from
Progressive GDA with stagewise training of linear generators and quadratic-activation discriminators on CelebA
(Figure 2). ProCoGAN only employs the closed-form expression equation 15, where βd controls the variation
and smoothness in the generated images, which can clearly be seen in the extreme example here. We also see
that βg has a similar effect for Progressive GDA, where high values of βg make output images less noisy but
also less diverse.

C ADDITIONAL THEORETICAL RESULTS

C.1 CONVEXITY AND POLYNOMIAL-TIME TRAINABILITY OF TWO-LAYER RELU
GENERATORS

In this section, we re-iterate the results of (Sahiner et al., 2020a) for demonstrating an equivalent
convex formulation to the generator problem equation 5:

W∗
1,W

∗
2 = arg min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2.

In the case of ReLU-activation generators, this form appears in many of our results and proofs. Thus,
we establish the following Lemma.
Lemma C.1. The non-convex problem equation 5 is equivalent to the following convex optimization
problem

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for ‖Vi‖Ki,∗ := mint≥0 t s.t. Vi ∈ tconv{Z = hgT : (2H
(i)
z −Inf )Zu ≥ 0, ‖Z‖∗ ≤ 1}, provided

that the number of neurons mg ≥ nfdr + 1. Further, this problem has complexity O(nrf (
nf
df

)3rf ),
where rf := rank(Z).

Proof. We begin by re-writing equation 5 in terms of individual neurons:

min
uj ,vj

mg∑
j=1

‖uj‖22 + ‖vj‖22 s.t.G∗ =

mg∑
j=1

(Zuj)+v>j . (20)

Then, we can restate the problem equivalently as (see D.1):

min
‖uj‖2≤1,vj

mg∑
j=1

‖vj‖2 s.t.G∗ =

mg∑
j=1

(Zuj)+v>j . (21)
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Then, we take the dual of this problem as in (Ergen & Pilanci, 2021a; 2020; Sahiner et al., 2020a).
First, form the Lagrangian

min
‖uj‖2≤1,vj

max
R

mg∑
j=1

‖vj‖2 + tr(R>G∗)−
mg∑
j=1

tr(R>(Zuj)+v>j ). (22)

Then, by Sion’s minimax theorem, we can exchange the minimum over v and maximum over R, to
obtain

min
‖uj‖2≤1

max
R

min
vj

mg∑
j=1

‖vj‖2 + tr(R>G∗)−
mg∑
j=1

tr(R>(Zuj)+v>j ). (23)

Minimizing this over v, we obtain the equivalent problem

min
‖uj‖2≤1

max
R

tr(R>G∗) s.t.‖R>(Zuj)+‖2 ≤ 1 ∀j ∈ [mg]. (24)

Under the condition mg ≥ nfdr + 1, we obtain the equivalent semi-infinite strong dual problem

max
R

tr(R>G∗) s.t.‖R>(Zu)+‖2 ≤ 1 ∀‖u‖2 ≤ 1. (25)

This over-parameterization requirement arises from the argument that this semi-infinite dual constraint
can be supported by at most m∗g ≤ nfdr + 1 neurons u, and thus if mg ≥ m∗g , strong duality holds
(see Lemma 5 of (Sahiner et al., 2020a), Section 3 of (Shapiro, 2009)). This problem can further be
re-written as

max
R

tr(R>G∗) s.t. max
‖u‖2≤1

‖R>(Zu)+‖2 ≤ 1. (26)

Using the concept of dual norm, we introduce the variable w to obtain the equivalent problem

max
R

tr(R>G∗) s.t. max
‖u‖2≤1
‖w‖2≤1

w>R>(Zu)+ ≤ 1. (27)

Then, we enumerate over all potential sign patterns to obtain

max
R

tr(R>G∗) s.t. max
‖u‖2≤1
‖w‖2≤1
i∈[|H(i)

z |]
(2H(i)

z −Inf )Zu≥0

w>R>H(i)
z Zu ≤ 1, (28)

which we can equivalently write as

max
R

tr(R>G∗) s.t. max
‖u‖2≤1
‖w‖2≤1
i∈[|H(i)

z |]
(2H(i)

z −Inf )Zu≥0

〈R,H(i)
z Zuw>〉 ≤ 1, (29)

which can further be simplified as

max
R

tr(R>G∗) s.t. max
‖Vi‖Ki,∗≤1

〈R,H(i)
z ZVi〉 ≤ 1 ∀i ∈ [|Hz|]. (30)

We note that unlike the set of rank-one matrices satisfying the affine constraint when parameterized by
uw>, the matrices Vi ∈ Ki are not necessarily rank-one, and can in fact be full-rank. In particular,
Ki is the convex hull of rank-one matrices for which the left factors satisfy the ith affine ReLU
constraint. We then take the Lagrangian problem

max
R

min
λ≥0

tr(R>G∗) +

|Hz|∑
i=1

λi(1− max
‖Vi‖Ki,∗≤1

〈R,H(i)
z ZVi〉), (31)

or equivalently

max
R

min
λ≥0

min
‖Vi‖Ki,∗≤1

tr(R>G∗) +

|Hz|∑
i=1

λi − λi〈R,H(i)
z ZVi〉. (32)
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By Sion’s minimax theorem, we can change the order of the maximum and minimum. Then,
maximizing over R leads to

min
λ≥0

min
‖Vi‖Ki,∗≤1

|Hz|∑
i=1

λi s.t. G∗ =

|Hz|∑
i=1

λiH
(i)
z ZVi. (33)

Lastly, we note that this is equivalent to

arg min
Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi (34)

as desired. The computational complexity of this problem is given as O(nrf (
nf
df

)3rf ), where
rf := rank(Z) (see Table 1 of (Sahiner et al., 2020a)). The general intuition behind this complexity
is that this problem can be solved with a Frank-Wolfe algorithm, each step of which requires
the solution to |Hz| ≤ O(rf (nrf /df )rf ) subproblems, each of which has complexity O(nrf ).
To obtain the weights to the original problem equation 5, we factor V∗i =

∑dr
j=1 h∗ijg

∗
ij where

(2H
(i)
z − Inf )Zh∗ij ≥ 0 and ‖g∗ij‖2 = 1, and then form

(w∗1ij ,w
∗
2ij) =

 h∗ij√
‖h∗ij‖2

,g∗ij

√
‖h∗ij‖2

 , i ∈ [|Hz|], j ∈ [dr]

as the ijth row of W∗
1 and ijth column of W∗

2 , respectively. Re-substituting these into equation 5
obtains a feasible point with the same objective as the equivalent convex program equation 6.

C.2 NORM-CONSTRAINED DISCRIMINATOR DUALITY

In this section, we consider the discriminator duality results in light of weight norm constraints, rather
than regularization, and find that many of the same conclusions hold. In order to model a 1-Lipschitz
constraint, we can use the constraint {

∑
j |vj | ≤ 1, ‖uj‖2 ≤ 1}. Then, for a linear-activation

discriminator, for any data samples a, b, we have

|
m∑
j=1

a>ujvj −
m∑
j=1

b>ujvj | = |
m∑
j=1

[
a>uj − b>uj

]
vj |

≤ max
‖uj‖2≤1

[
a>uj − b>uj

]
= ‖a− b‖2.

Thus, {
∑
j |vj | ≤ 1, ‖uj‖2 ≤ 1} implies 1-Lipschitz for linear-activation discriminators. For

discriminators with other activation functions, we use the same set of constraints as well.
Lemma C.2. A WGAN problem with norm-constrained two-layer discriminator, of the form

p∗ = min
θg

max∑
j |vj |≤1,‖uj‖2≤1

m∑
j=1

[
1>σ(Xuj)− 1>σ(Gθg (Z)uj)

]
vj +Rg(θg)

with arbitrary non-linearity σ, can be expressed as the following:

p∗ = min
θg

max
‖u‖2≤1

∣∣∣1>σ(Xu)− 1>σ(Gθg (Zu))
∣∣∣+Rg(θg)

Proof. We first note that by the definition of the dual norm, we have

max∑
j |vj |≤1

m∑
j=1

cjvj = max
‖v‖1≤1

cTv = ‖c‖∞ = max
j∈[m]

|cj |.

Using this observation, we can simply maximize with respect to vj to obtain

p∗ = min
θg

max
j∈[m],‖uj‖2≤1

∣∣∣1>σ(Xuj)− 1>σ(Gθg (Z)uj)
∣∣∣+Rg(θg)
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which we can then re-write as

p∗ = min
θg

max
‖u‖2≤1

∣∣∣1>σ(Xu)− 1>σ(Gθg (Z)u)
∣∣∣+Rg(θg)

as desired.

Corollary C.1. A WGAN problem with norm-constrained two-layer discriminator with linear activa-
tions σ(t) = t can be expressed as the following:

p∗ = min
θg
‖1>X− 1>Gθg (Z)‖2 +Rg(θg).

Proof. Start with the following

p∗ = min
θg

max
‖u‖2≤1

∣∣∣1>Xu− 1>Gθg (Z)u
∣∣∣+Rg(θg).

Solving over the maximization with respect to u obtains the desired result:

p∗ = min
θg
‖1>X− 1>Gθg (Z)‖2 +Rg(θg).

Corollary C.2. A WGAN problem with norm-constrained two-layer discriminator with quadratic
activations σ(t) = t2 can be expressed as the following:

p∗ = min
θg
‖X>X−Gθg (Z)>Gθg (Z)‖2 +Rg(θg).

Proof. Start with the following

p∗ = min
θg

max
‖u‖2≤1

∣∣∣1>(Xu)2 − 1>(Gθg (Z)u)2
∣∣∣+Rg(θg),

which we can re-write as

p∗ = min
θg

max
‖u‖2≤1

∣∣∣u>[X>X−Gθg (Z)>Gθg (Z)
]
u
∣∣∣+Rg(θg).

Solving the maximization over u obtains the desired result

p∗ = min
θg
‖X>X−Gθg (Z)>Gθg (Z)‖2 +Rg(θg).

Corollary C.3. A WGAN problem with norm-constrained two-layer discriminator with ReLU activa-
tions σ(t) = (t)+ can be expressed as the following:

p∗ = min
θg

max
j1∈[|Hx|]
jw∈[|Hg|]
‖u‖2≤1

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )Gθg (Z)u≥0

∣∣∣1>H(j1)
x Xu− 1>H(j2)

g Gθg (Z)u
∣∣∣+Rg(θg).

Proof. We start with

p∗ = min
θg

max
‖u‖2≤1

∣∣∣1>(Xu)+ − 1>(Gθg (Z)u)+

∣∣∣+Rg(θg).

Now, introducing sign patterns of the real data and generated data, we have

p∗ = min
θg

max
j1∈[|Hx|]
j2∈[|Hg|]
‖u‖2≤1

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )Gθg (Z)u≥0

∣∣∣1>H(j1)
x Xu− 1>H(j2)

g Gθg (Z)u
∣∣∣+Rg(θg)

as desired.
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C.3 GENERATOR PARAMETERIZATION FOR NORM-CONSTRAINED DISCRIMINATORS

Throughout this section, we utilize the norm constrained discriminators detailed in Section C.2.

C.3.1 LINEAR GENERATOR (σ(t) = t)

Linear-activation discriminator. For a linear generator and linear-activation norm-constrained
discriminator (see Corollary C.1 for details), we have

p∗ = min
W

max
‖u‖2≤1

(
1>X− 1>ZW

)
u +Rg(W)

= min
W
‖1>X− 1>ZW‖2 +Rg(W).

For arbitrary choice of convex regularizerRg(W), this problem is convex.

Quadratic-activation discriminator (σ(t) = t2). For a linear generator and quadratic-activation
norm-constrained discriminator (see Corollary C.2 for details), we have

p∗ = min
W
‖X>X− (ZW)>ZW‖2 +Rg(W). (35)

If rank(Z) ≥ rank(X), with appropriate choice ofRg(W) = βg‖ZW‖2F , we can write this as

p∗ = min
G
‖X>X−G‖2 + βg‖G‖∗, (36)

which is convex. With a symmetric solution G∗ to the above, we can factor it into G∗ = H>H,
and solve the system H = ZW∗ to find the optimal original generator weight W∗, which when
substituted into the original objective in equation 35 will obtain the same objective value. We
note that if rank(X) > rank(Z), a valid solution W∗ is not guaranteed because the linear system
H = ZW∗ has no solutions if rank(H) > rank(Z). However, since rank(H) ≤ rank(X), as long
as rank(Z) ≥ rank(X), we will be able to exactly find original weights W∗ from G∗, and the two
problems are equivalent.

ReLU-activation discriminator (σ(t) = (t)+).For a linear generator and ReLU-activation norm-
constrained discriminator (see Corollary C.3 for details), we have

p∗ = min
W

max
j1∈[|Hx|]
jw∈[|Hg|]
‖u‖2≤1

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )ZWu≥0

∣∣∣1>H(j1)
x Xu− 1>H(j2)

g ZWu +Rg(W)|

For arbitrary choice of convex regularizerRg(W), this is a convex-concave problem with coupled
constraints, as in the weight-decay penalized case.

C.3.2 POLYNOMIAL-ACTIVATION GENERATOR

All of the results of the linear generator section hold, with lifted features (see proof of Theorem 4.2).

C.3.3 RELU-ACTIVATION GENERATOR

Linear-activation discriminator (σ(t) = t). With standard weight decay, we have

p∗ = min
W1,W2

‖1>X− 1>(ZW1)+W2‖2 +
βg
2

(
‖W1‖2F + ‖W2‖2F

)
.

We can write this as a convex program as follows. For the output of the network (ZW1)+W2, the
fitting term is a convex loss function. From (Sahiner et al., 2020a), we know that this is equivalent to
the following convex optimization problem

p∗ = min
Vi

‖1>X− 1>
|Hz|∑
i=1

H(i)
z ZVi‖2 + βg

|Hz|∑
i=1

‖Vi‖Ki,∗,
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where Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1} and ‖Vi‖Ki,∗ := mint≥0 t s.t. Vi ∈

tKi.
Quadratic-activation discriminator (σ(t) = t2). We have

p∗ = min
W1,W2

‖X>X− ((ZW1)+W2)>(ZW1)+W2‖2 +Rg(W1,W2).

For appropriate choice of regularizer Rg(W1,W2) =
βg
2 ‖(ZW1)+W2‖2F and mg ≥ nfdr + 1,

we can write this as
G∗ = arg min

W1,W2

‖X>X−G>G‖2 +
βg
2
‖G‖2F

W∗
1,W

∗
2 = arg min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2.

The latter of which we can re-write in convex form as shown in Lemma C.1:

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for convex sets Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1}, and ‖Vi‖Ki,∗ :=

mint≥0 t s.t. Vi ∈ tKi. Thus, the quadratic-activation discriminator, ReLU-activation generator
problem in the case of a norm-constrained discriminator can be written as two convex optimization
problems, with polynomial time trainability for Z of a fixed rank.

ReLU-activation discriminator (σ(t) = (t)+). In this case, we have

arg min
W1,W2

max
j1∈[|Hx|]
jw∈[|Hg|]
‖u‖2≤1

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )(ZW1)+W2u≥0

∣∣∣1>H(j1)
x Xu− 1>H(j2)

g (ZW1)+W2u
∣∣∣+Rg(W1,W2).

Then, for appropriate choice of Rg(W1,W2) =
βg
2 ‖(ZW1)+W2‖2F , assuming mg ≥ nfdr + 1,

this is equivalent to

G∗ = arg min
G

max
j1∈[|Hx|]
jw∈[|Hg|]
‖u‖2≤1

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )Gu≥0

∣∣∣1>H(j1)
x Xu− 1>H(j2)

g Gu
∣∣∣+

βg
2
‖G‖2F

W∗
1,W

∗
2 = arg min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2.

The latter of which we can re-write in convex form as shown in Lemma C.1:

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for convex sets Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1} and norm ‖Vi‖Ki,∗ :=

mint≥0 t s.t. Vi ∈ tKi. Thus, the ReLU-activation discriminator, ReLU-activation generator prob-
lem in the case of a norm-constrained discriminator can be written as a convex-concave game in
sequence with a convex optimization problem.

D OVERVIEW OF MAIN RESULTS

D.1 DERIVATION OF THE FORM IN EQUATION 3

Let us consider a positively homogeneous activation function of degree one, i.e., σ (tx) =
tσ (x) , ∀t ∈ R+. Note that commonly used activation functions such as linear and ReLU sat-
isfy this assumption. Then, weight decay regularized training problem can be written as

p∗ = min
θg

max
θd

m∑
j=1

(
1>σ(Xuj)− 1>σ(Gθg (Z)uj)

)
vj +Rg(θg)− βd

m∑
j=1

(‖uj‖22 + v2j ).
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Then, we first note scaling the discriminator parameters as ūj = αjuj and v̄j = vj/αj does not
change the output of the networks as shown below

m∑
j=1

σ(Xūj)v̄j =
m∑
j=1

σ(Xαjuj)
vj
αj

=
m∑
j=1

σ(Xuj)vj

m∑
j=1

σ(Gθg (Z)ūj)v̄j =
m∑
j=1

σ(Gθg (Z)αjuj)
vj
αj

=
m∑
j=1

σ(Gθg (Z)uj)vj .

Moreover, we have the following AM-GM inequality for the weight decay regularization
m∑
j=1

(‖uj‖22 + v2j ) ≥ 2
m∑
j=1

(‖uj‖2|vj |),

where the equality is achieved when the scaling factor is chosen as αj =
(
|vj |
‖uj‖2

)1/2
. Since the

scaling operation does not change the right-hand side of the inequality, we can set ‖uj‖2 = 1, ∀j.
Thus, the right-hand side becomes ‖v‖1 =

∑m
j=1 |vj |.

We also note that this result was previously derived for linear (Ergen & Pilanci, 2021e) and ReLU
(Pilanci & Ergen, 2020; Ergen & Pilanci, 2021d). Similarly, the extensions to polynomial and
quadratic activations were presented in (Bartan & Pilanci, 2021).

D.2 PROOF OF THEOREM 2.1

Linear-activation discriminator (σ(t) = t). The regularized training problem for two-layer ReLU
networks for the generator can be formulated as follows

p∗ = min
W1,W2

Rg(W1,W2) s.t. max
‖u‖2≤1

|1>σ(Xu)− 1>σ((ZW1)+W2)u)| ≤ βd

σ(t)=t
=⇒ p∗ = min

W1,W2

Rg(W1,W2) s.t. ‖1>X− 1>(ZW1)+W2)‖2 ≤ βd.

Assume that the network is sufficiently over-parameterized (which we will precisely define below).
Then, we can write the problem

p∗ = min
G
‖G‖2F s.t. ‖1>X− 1>G‖2 ≤ βd,

where the solution G∗ is given by a convex program. Then, to find the optimal generator weights,
one can solve

min
W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2, (37)

which can be solved as a convex optimization problem in polynomial time for Z of a fixed rank, as
shown in Lemma C.1, given by

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for convex sets Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1} and norm

‖Vi‖Ki,∗ := mint≥0 t s.t. Vi ∈ tKi, provided that the generator has mg ≥ nfdr + 1 neu-
rons, and we can further find the original optimal generator weights W∗

1,W
∗
2 from this problem.

Quadratic-activation discriminator (σ(t) = t2). Based on the derivations in Section E.3, we start
with the problem

p∗ = min
W1,W2

Rg(W1,W2) s.t. ‖X>X− ((ZW1)+W2)>(ZW1)+W2)‖2 ≤ βd.

Assume that the network is sufficiently over-parameterized (which we will precisely define below).
Then, we can write the problem

p∗ = min
G
‖G‖2F s.t. ‖X>X−G>G‖2 ≤ βd,
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where the solution G∗ is given by G = L(Σ2 − βdI)
1/2
+ V> for any orthogonal matrix L. Then, to

find the optimal generator weights, one can solve
min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2, (38)

which can be solved as a convex optimization problem in polynomial time for Z of a fixed rank, as
shown in Lemma C.1, given by

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for convex sets Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1} and norm

‖Vi‖Ki,∗ := mint≥0 t s.t. Vi ∈ tKi, provided that the generator has mg ≥ nfdr + 1 neu-
rons, and we can further find the original optimal generator weights W∗

1,W
∗
2 from this problem.

ReLU-activation discriminator (σ(t) = (t)+). We start with the following problem, where the
ReLU activations are replaced by their equivalent representations based on hyperplane arrangements
(see Section E.5),

p∗ = min
W1,W2

Rg(W1,W2)

s.t. max
‖u‖2≤1
j1∈[|Hx|]
j2∈[|Hg|]

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )(ZW1)+W2u≥0

∣∣∣(1>H(j1)
x X− 1>H(j2)

g (ZW1)+W2

)
u
∣∣∣ ≤ βd

.

Assume that the generator network is sufficiently over-parameterized, with mg ≥ nfdr + 1 neurons.
Then, we can write the problem as

G∗ = arg min
G

‖G‖2F

s.t. max
‖u‖2≤1
j1∈[|Hx|]
j2∈[|Hg|]

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )Gu≥0

∣∣∣(1>H(j1)
x X− 1>H(j2)

g G
)
u
∣∣∣ ≤ βd

and
min

W1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2

the latter of which can be solved as a convex optimization problem in polynomial time for Z of a
fixed rank, as shown in Lemma C.1, given by

{V∗i }
|Hz|
i=1 = arg min

Vi

|Hz|∑
i=1

‖Vi‖Ki,∗ s.t. G∗ =

|Hz|∑
i=1

H(i)
z ZVi

for convex sets Ki := conv{ug> : (2H
(i)
z − Inf )Zu ≥ 0, ‖g‖2 ≤ 1} and norm

‖Vi‖Ki,∗ := mint≥0 t s.t. Vi ∈ tKi, provided that the generator has mg ≥ nfdr + 1 neu-
rons, and we can further find the original optimal the generator weights W∗

1,W
∗
2 from this problem.

The former problem is a convex-concave problem. We begin with by forming the Lagrangian of the
constraints:
p∗ = min

G
‖G‖2F

s.t. min
αj1≥0
γj2≥0

∀j1∈[|Hx|], j2∈[|Hg|]

∥∥∥(1>H(j1)
x X− 1>H(j2)

g G
)

+ α>j1

(
2H(j1)

x − Inr

)
X + γ>j2

(
2H(j2)

g − Inf

)
G
∥∥∥
2
≤ βd

min
α′j1
≥0

γ′j2≥0
∀j1∈[|Hx|], j2∈[|Hg|]

∥∥∥−(1>H(j1)
x X− 1>H(j2)

g G
)

+ α′j1
>
(

2H(j1)
x − Inr

)
X + γ′j2

>
(

2H(j2)
g − Inf

)
G
∥∥∥
2
≤ βd
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Then, forming the Lagrangian, we have
p∗ = min

G
max
λ,λ′≥0

αj1≥0, α
′
j1
≥0,

γj2≥0, γ
′
j2
≥0,

∀j1∈[|Hx|], j2∈[|Hg|]

‖G‖2F

−
∑
j1j2

λj1j2

(
βd −

∥∥∥(1>H(j1)
x X− 1>H(j2)

g G
)

+ α>j1

(
2H(j1)

x − Inr

)
X + γ>j2

(
2H(j2)

g − Inf

)
G
∥∥∥
2

)
−
∑
j1j2

λ′j1j2

(
βd −

∥∥∥−(1>H(j1)
x X− 1>H(j2)

g G
)

+ α′j1
>
(

2H(j1)
x − Inr

)
X + γ′j2

>
(

2H(j2)
g − Inf

)
G
∥∥∥
2

)
We can then re-write this as
p∗ = min

G
max

‖rj1j2‖2≤1, ‖r
′
j1j2
‖2≤1

λ,λ′≥0
αj1≥0, α

′
j1
≥0,

γj2≥0, γ
′
j2
≥0,

∀j1∈[|Hx|], j2∈[|Hg|]

‖G‖2F

−
∑
j1j2

λj1j2

(
βd −

((
1>H(j1)

x X− 1>H(j2)
g G

)
+ α>j1

(
2H(j1)

x − Inr

)
X + γ>j2

(
2H(j2)

g − Inf

)
G
)
rj1j2

)

−
∑
j1j2

λ′j1j2

(
βd −

(
−
(
1>H(j1)

x X− 1>H(j2)
g G

)
+ α′j1

>
(

2H(j1)
x − Inr

)
X + γ′j2

>
(

2H(j2)
g − Inf

)
G
)
r′j1j2

)
maximizing over α, α′,γ, γ′, we have

p∗ = min
G

max
‖rj1j2‖2≤1, ‖r

′
j1j2
‖2≤1

λ,λ′≥0

‖G‖2F − βd
∑
j1j2

(λj1j2 + λ′j1j2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g G

)
(λj1j2rj1j2 − λ′j1j2r

′
j1j2)

s.t.(2H(j1)
x − In)Xrj1j2 ≥ 0, (2H(j2)

g − In)Grj1j2 ≥ 0, (2H(j1)
x − In)Xr′j1j2 ≥ 0, (2H(j2)

g − In)Gr′j1j2 ≥ 0

We can then re-parameterize this problem by letting rj1j2 = λj1j2rj1j2 and r′j1j2 = λ′j1j2r
′
j1j2

to
obtain the final form:
p∗ = min

G
max

rj1j2 ,r
′
j1j2

‖G‖2F − βd
∑
j1j2

(‖rj1j2‖2 + ‖r′j1j2‖2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g G

)
(rj1j2 − r′j1j2)

s.t.(2H(j1)
x − In)Xrj1j2 ≥ 0, (2H(j2)

g − In)Grj1j2 ≥ 0, (2H(j1)
x − In)Xr′j1j2 ≥ 0, (2H(j2)

g − In)Gr′j1j2 ≥ 0

which is a convex-concave game with coupled constraints, as desired.

D.3 NOTE ON CONVEX-CONCAVE GAMES WITH COUPLED CONSTRAINTS

We consider the following convex-concave game with coupled constraints:

p∗ = min
G

max
rj1j2 ,r

′
j1j2

‖G‖2F − βd
∑
j1j2

(‖rj1j2‖2 + ‖r′j1j2‖2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g G

)
(rj1j2 − r′j1j2)

s.t.(2H(j1)
x − In)Xrj1j2 ≥ 0, (2H(j2)

g − In)Grj1j2 ≥ 0, (2H(j1)
x − In)Xr′j1j2 ≥ 0, (2H(j2)

g − In)Gr′j1j2 ≥ 0

Here, we say the problem has “coupled constraints" because some of the constraints jointly depend
on G and rj1j2 , r

′
j1j2

. The existence of saddle points for this problem, since the constraint set is not
jointly convex in all problem variables, is not known (Žaković & Rustem, 2003).

However, if all the constraints are strictly feasible, then by Slater’s condition, we know the
Lagrangian of the inner maximum has a saddle point. Therefore, in the case of strict feasibility, we
can write the problem as

p∗ = min
G

max
rj1j2 ,r

′
j1j2

min
λj1j2 , λ

′
j1j2
≥0
‖G‖2F − βd

∑
j1j2

(‖rj1j2‖2 + ‖r′j1j2‖2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g G

)
(rj1j2 − r′j1j2)

+
∑
j1j2

λ>j1j2(2H(j2)
g − In)Grj1j2 +

∑
j1j2

λ′j1j2
>

(2H(j2)
g − In)Gr′j1j2

s.t.(2H(j1)
x − In)Xrj1j2 ≥ 0, (2H(j1)

x − In)Xr′j1j2 ≥ 0
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which by Slater’s condition is further identical to

p∗ = min
λj1j2 , λ

′
j1j2
≥0

[
min
G

max
rj1j2 ,r

′
j1j2

‖G‖2F − βd
∑
j1j2

(‖rj1j2‖2 + ‖r′j1j2‖2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g G

)
(rj1j2 − r′j1j2)

+
∑
j1j2

λ>j1j2(2H(j2)
g − In)Grj1j2 +

∑
j1j2

λ′j1j2
>

(2H(j2)
g − In)Gr′j1j2

]
s.t.(2H(j1)

x − In)Xrj1j2 ≥ 0, (2H(j1)
x − In)Xr′j1j2 ≥ 0

For a fixed outer values of λj1j2 , λ
′
j1j2

, the inner min-max problem no longer has coupled constraints,
and has a convex-concave objective with convex constraints on the inner maximization problem.
A solution for the inner min-max problem can provably be found with a primal-dual algorithm
(Chambolle & Pock, 2011), and we can tune λj1j2 , λ

′
j1j2

as hyper-parameters to minimize the
solution of the primal-dual algorithm, to find the global objective p∗.

D.4 PROOF OF THEOREM 2.2

Let us first write the training problem explicitly as

min
θg∈Cg

max
uj ,bj ,vj∈R

1T
md∑
j=1

(
(xuj + bj)+ −

(
Gθg (z)uj + bj

)
+

)
vj + βd

md∑
j=1

(u2j + v2j ) +Rg(θg).

After scaling, the problem above can be equivalently written as

min
θg∈Cg

Rg(θg) s.t. max
|u|≤1,b

∣∣∣1T (xu+ b)+ − 1T
(
Gθg (z)u+ b

)
+

∣∣∣ ≤ βd.
By the overparameterization assumption, we have

(
Gθg (z)u+ b

)
+

= (wu+ b)+. Hence, the
problem reduces to

min
w∈Rn

Rg(w) s.t. max
|u|≤1,b

∣∣1T (xu+ b)+ − 1T (wu+ b)+
∣∣ ≤ βd. (39)

Now, let us focus on the dual constraint and particularly consider the following case

max
b

∣∣∣∣∣∣
∑
i∈S1

(xi + b)−
∑
j∈S2

(wj + b)

∣∣∣∣∣∣ ≤ βd, s.t.
(xi + b) ≥ 0, ∀i ∈ S1, (xl + b) ≤ 0, ∀l ∈ Sc1
(wj + b) ≥ 0, ∀j ∈ S2, (wk + b) ≤ 0, ∀k ∈ Sc2

,

(40)

where we assume u = 1 and S1 and S2 are a particular set of indices of the data samples with active
ReLUs for the data and noise samples, respectively. Also note that Sc1 and Sc2 are the corresponding
complementary sets, i.e., Sc1 = [n]\S1 and Sc2 = [n]\S2. Thus, the problem reduces to finding the
optimal bias value b. We first note that the constraint can be compactly written as

min

{
min
l∈Sc1
−xl, min

k∈Sc2
−wk

}
≥ b ≥ max

{
max
i∈S1
−xi,max

j∈S2
−wj

}
.

Since the objective is linear with respect to b, the maximum value is achieved when bias takes the
value of either the upper-bound or lower-bound of the constraint above. Therefore, depending on the
selected indices in the sets S1 and S2, the bias parameter will be either −xk or − wk for a certain
index k. Since the similar analysis also holds for u = −1 and the other set of indices, a set of optimal
solution in general can be defined as

(u∗, b∗) = (±1, ±xk/wk).

Now, due to the assumption βd ≤ mini,j∈[n]:i6=j |xi − xj |, we can assume that x1 ≤ w1 ≤ x2 ≤
. . . ≤ xn ≤ wn without loss of generality. Note that equation 39 will be infeasible otherwise. Then,
based on this observation above, the problem in equation 39 can be equivalently written as

w∗ = arg min
w∈Rn

Rg(w) s.t.

∣∣∣∣∣∣
2n∑
i=j

si(x̃i − x̃j)

∣∣∣∣∣∣ ≤ βd,
∣∣∣∣∣
j∑
i=1

si(x̃j − x̃i)

∣∣∣∣∣ ≤ βd, ∀j ∈ [2n] (41)
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where

x̃i =

{
xb i+1

2 c
, if i is odd

w i
2
, if i is even

, si =

{
+1, if i is odd
−1, if i is even

, ∀i ∈ [2n].

After solving the convex optimization problem above for w, we need to find a two-layer ReLU
network generator to model the optimal solution w∗ as its output. Therefore, we can directly use the
equivalent convex formulations for two-layer ReLU networks introduced in (Pilanci & Ergen, 2020).
In particular, to obtain the network parameters, we solve the following convex optimization problem

{(u∗i ,v∗i )}
|Hz|
i=1 = arg min

ui,vi∈Ci

|Hz|∑
i=1

‖ui‖2 + ‖vi‖2 s.t. w∗ =

|Hz|∑
i=1

H(i)
z Z(ui − vi),

where Ci = {u ∈ Rdf : (2H
(i)
z − In)Zu ≥ 0} and we assume that mg ≥ n+ 1.

E TWO-LAYER DISCRIMINATOR DUALITY

E.1 PROOF OF LEMMA 3.1

We start with the expression from equation 3

p∗ = min
θg

max
vj ,‖uj‖2≤1

m∑
j=1

[
1>σ(Xuj)− 1>σ(Gθg (Z)uj)

]
vj +Rg(θg)− βd

m∑
j=1

|vj |.

We now solve the inner maximization problem with respect to vj , which is equivalent to the mini-
mization of an affine objective with `1 penalty:

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
|1>σ(Xu)− 1>σ(Gθg (Z)u)| ≤ βd.

E.2 PROOF OF COROLLARY 3.1

We simply plug in σ(t) = t into the expression of equation 8:

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
|
(
1>X− 1>Gθg (Z)

)
u| ≤ βd.

Then, one can solve the maximization problem in the constraint, to obtain

p∗ = min
θg
Rg(θg) s.t. ‖1>X− 1>Gθg (Z)‖2 ≤ βd

as desired.

E.3 PROOF OF COROLLARY 3.2

We note that for rows of X given by {xi}nri=1,

1>(Xu)2 =

nr∑
i=1

(x>i u)2 =

nr∑
i=1

u>xix
>
i u = u>X>Xu

Then, substituting into equation 8, we have:

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
|u>

(
X>X−Gθg (Z)>Gθg (Z)

)
u| ≤ βd.

Then, solving the inner maximization problem over u, we obtain

p∗ = min
θg
Rg(θg) s.t. ‖X>X−Gθg (Z)>Gθg (Z)‖2 ≤ βd

as desired.
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E.4 PROOF OF COROLLARY 3.3

When there is a linear skip connection, we can write the problem as

p∗ = min
θg

max
vj ,w,‖uj‖2≤1

m∑
j=1

[
1>σ(Xuj)−1>σ(Gθg (Z)uj)

]
vj+

(
1>X−1>Gθg (Z)

)
w+Rg(θg)−βd

m∑
j=1

|vj |,

where σ(t) = t2. Solving over w yields the constraint that 1>X = 1>Gθg (Z). Then, following
through the minimization over vj as in Lemma 3.1 and substitution of the non-linearity as in 3.3, we
obtain the desired result.

E.5 PROOF OF COROLLARY 3.4

We start with the problem equation 8, and substitute the ReLU non-linearity

p∗ = min
θg
Rg(θg) s.t. max

‖u‖2≤1
|1>(Xu)+ − 1>(Gθg (Z)u)+| ≤ βd.

Then, we can introduce hyper-plane arrangements as described in Section 1.2 over both X and
Gθg (Z) to obtain the desired result.

p∗ = min
θg
Rg(θg)

s.t. max
‖u‖2≤1
j1∈[|Hx|]
j2∈[|Hg|]

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )Gθg (Z)u≥0

∣∣∣(1>H(j1)
x X− 1>H(j2)

g Gθg (Z)
)
u
∣∣∣ ≤ βd

.

F GENERATOR PARAMETERIZATION AND CONVEXITY

F.1 PROOF OF THEOREM 4.1

We will analyze individual cases of various discriminators in the case of a linear generator.

Linear-activation discriminator (σ(t) = t). We start from the dual problem (see Section E.2 for
details):

p∗ = min
W
Rg(W) s.t. max

‖u‖2≤1
1>σ(Xu)− 1>σ(ZWu) ≤ βd

= min
W
Rg(W) s.t. max

‖u‖2≤1
(1>X− 1>ZW)u ≤ βd

= min
W
Rg(W) s.t. ‖1>X− 1>ZW)‖2 ≤ βd.

Clearly, the objective and constraints are convex, so the solution can be found via convex optimization.
Slater’s condition states that a saddle point of the Lagrangian exists, and only under the condition
that the constraint is strictly feasible. Given βd > 0, as long as 1>Z 6= 0, we can choose a W such
that 1>X = 1>ZW, and a saddle point exists. The Lagrangian is given by

p∗ = min
W

max
λ≥0
Rg(W) + λ(‖1>X− 1>ZW‖2 − βd).

Introducing additional variable r, we have also

p∗ = min
W

max
λ≥0
‖r‖2≤1

Rg(W) + λ
(

(1>X− 1>ZW)r− βd
)
.

Now, v = λr, where λ = ‖v‖2

p∗ = min
W

max
v
Rg(W) + (1>X− 1>ZW)v − βd‖v‖2.
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From Slater’s condition, we can change the order of min and max without changing the objective,
which proves there is a saddle point:

p∗ = max
v

min
W
Rg(W) + (1>X− 1>ZW)v − βd‖v‖2.

The inner problem is convex and depending on choice ofRg(W) can be solved for W∗ in closed
form, and subsequently the outer maximization is convex as well. Thus, for a linear generator
and linear-activation discriminator, a saddle point provably exists and can be found via convex
optimization.

Quadratic-activation discriminator (σ(t) = t2). We start from the following dual problem (see
Section E.3 for details)

p∗ = min
W
Rg(W) s.t. ‖X>X− (ZW)>(ZW)‖2 ≤ βd.

This can be lower bounded as follows:

p∗ ≥ d∗ = min
G

βg
2
‖G‖2F s.t. ‖X>X−G>G‖2 ≤ βd. (42)

Which can further be written as:

d∗ = min
G̃

βg
2
‖G̃‖∗ s.t. ‖X>X− G̃‖2 ≤ βd.

This is a convex optimization problem, with a closed-form solution. In particular, if we let X>X =
VΣ2V> be the eigenvalue decomposition of the covariance matrix, then the solution to equation 42
is found via singular value thresholding:

G∗ = V(Σ2 − βdI)+V>.

This lower bound is achievable if ∃W : (ZW)>(ZW) = G∗. A solution is achieved by allowing
W = (Z>Z)−1/2(Σ2 − βdI)

1/2
+ V>, where computing (Z>Z)−1/2 requires inverting only the first

k eigenvalue directions4, where k := maxk:σ2
k≥βd k. Thus given that rank(Z) ≥ k, the solution of

the linear generator, quadratic-activation discriminator can be achieved in closed-form.

In the case that rank(Z) ≥ k + 1, strict feasibility is obtained, and by Slater’s condition a saddle
point of the Lagrangian exists. One can form the Lagrangian as follows:

p∗ = min
G

max
R�0

βg
2
‖G‖∗ + tr(RX>X)− tr(RG)− βdtr(R).

This is a convex-concave game, and from Slater’s condition we can exchange the order of the
minimum and maximum without changing the objective:

p∗ = max
R�0

min
G

βg
2
‖G‖∗ + tr(RX>X)− tr(RG)− βdtr(R).

ReLU-activation discriminator (σ(t) = (t)+). We again start from the dual problem (see Section
E.5 for details)

p∗ = min
W
Rg(W)

s.t. max
‖u‖2≤1
j1∈[|Hx|]
j2∈[|Hg|]

(2H(j1)
x −Inr )Xu≥0

(2H(j2)
g −Inf )ZWu≥0

∣∣∣(1>H(j1)
x X− 1>H(j2)

g ZW
)
u
∣∣∣ ≤ βd

.

We can follow identical steps of the proof of Theorem 2.1 (see Section D.2), with ZW instead of G,
obtain

p∗ = min
W

max
rj1j2 ,r

′
j1j2

Rg(W)− βd
∑
j1j2

(‖rj1j2‖2 + ‖r′j1j2‖2) +
∑
j1j2

(
1>H(j1)

x X− 1>H(j2)
g ZW

)
(rj1j2 − r′j1j2)

s.t.(2H(j1)
x − In)Xrj1j2 ≥ 0, (2H(j2)

g − In)ZWrj1j2 ≥ 0, (2H(j1)
x − In)Xr′j1j2 ≥ 0, (2H(j2)

g − In)ZWr′j1j2 ≥ 0

as desired. Thus, as long as Rg is convex in W, we have a convex-concave game with coupled
constraints.

4For instance, letting Z = QΛQ>, we can use (Z>Z)−1/2 = Q[:k]Λ
−1
[:k], where ·[:k] indicates taking the

first k columns/diagonal entries respectively.
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F.2 PROOF OF THEOREM 4.2

We note that for a polynomial-activation generator with m neurons and corresponding weights w
(1)
j ,

w
(2)
j , for samples {zi}

nf
i=1:

Gθg (zi) =
m∑
j=1

σ(z>i w
(1)
j )w

(2)
j

>

=
m∑
j=1

(
a(z>i w

(1)
j )2 + b(z>i w

(1)
j ) + c)w

(2)
j

>

=
m∑
j=1

(
a〈ziz>i ,w

(1)
j w

(1)
j

>
〉+ b(z>i w

(1)
j ) + c)w

(2)
j

>

=
m∑
j=1

avec(ziz
>
i )

bzi
c

>


vec(w
(1)
j w

(1)
j

>
)w

(2)
j

>

w
(1)
j w

(2)
j

>

w
(2)
j

>


=

m∑
j=1

z̃>i wj

=


z̃>1
z̃>2
· · ·
z̃>nf

W

= Z̃W

for z̃i :=

avec(ziz
>
i )

bzi
c

 as the lifted features of the inputs, and a re-parameterized weight ma-

trix wj :=


vec(w

(1)
j w

(1)
j

>
)w

(2)
j

>

w
(1)
j w

(2)
j

>

w
(2)
j

>

 (Bartan & Pilanci, 2021). Thus, any two-layer polynomial-

activation generator can be re-parameterized as a linear generator, and thus after substituting Z̃ as Z
for Theorem 4.1, we can obtain the desired results.
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