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ABSTRACT

We study non-convex subgradient flows for training two-layer ReLU neural net-
works from a convex geometry and duality perspective. We characterize the implicit
bias of unregularized non-convex gradient flow as convex regularization of an equiv-
alent convex model. We then show that the limit points of non-convex subgradient
flows can be identified via primal-dual correspondence in this convex optimization
problem. Moreover, we derive a sufficient condition on the dual variables which
ensures that the stationary points of the non-convex objective are the KKT points
of the convex objective, thus proving convergence of non-convex gradient flows
to the global optimum. For a class of regular training data distributions such as
orthogonal separable data, we show that this sufficient condition holds. Therefore,
non-convex gradient flows converge to optimal solutions of a convex optimization
problem. We present numerical results verifying the predictions of our theory for
non-convex subgradient descent.

1 INTRODUCTION

Neural networks (NNs) exhibit remarkable empirical performance in various machine learning tasks.
However, a full characterization of the optimization and generalization properties of NN is far from
complete. Non-linear operations inherent to the structure of NNs, over-parameterization and the
associated highly nonconvex training problem makes their theoretical analysis quite challenging.

In over-parameterized models such as NNs, one natural question arises: Which particular solution does
gradient descent/gradient flow find in unregularized NN training problems? Suppose that X € R4
is the training data matrix and y € {1, —1}% is the label vector. For linear classification problems
such as logistic regression, it is known that gradient descent (GD) exhibits implicit regularization
properties, see, e.g., (Soudry et al., 2018; Gunasekar et al., 2018). To be precise, under certain
assumptions, GD converges to the following solution which maximizes the margin:

1
argmin ~||wl|3, s.t. yow'x, > 1,n € [N]. (1)
weRd 2
Here we denote [N] = {1, ..., N}. Recently, there are several results on the implicit regularization

of the (stochastic) gradient descent method for NNs. In (Lyu & Li, 2019), for the multi-layer
homogeneous network with exponential or cross-entropy loss, with separable training data, it is
shown that the gradient flow (GF) and GD finds a stationary point of the following non-convex
max-margin problem:

1
arg min o [|6]13, st yn f(85x,) > 1, € [N], )
]

where f(0;x) represents the output of the neural network with parameter @ given input x. In (Phuong
& Lampert, 2021), by further assuming the orthogonal separability of the training data, it is shown
that all neurons converge to one of the two max-margin classifiers. One corresponds to the data with
positive labels, while the other corresponds to the data with negative labels.
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However, as the max-margin problem of the neural network (2) is a non-convex optimization problem,
the existing results only guarantee that it is a stationary point of (2), which can be a local minimizer
or even a saddle point. In other words, the global optimality is not guaranteed.

In a different line of work (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020; 2021b), exact convex
optimization formulations of two and three-layer ReLU NNs are developed, which have global
optimality guarantees in polynomial-time when the data has a polynomial number of hyperplane
arrangements, e.g., in any fixed dimension or with convolutional networks of fixed filter size. The
convex optimization framework was extended to vector output networks (Sahiner et al., 2021b),
quantized networks (Bartan & Pilanci, 2021b), autoencoders (Sahiner et al., 2021c; Gupta et al.,
2021), networks with polynomial activation functions (Bartan & Pilanci, 2021a), networks with batch
normalization (Ergen et al., 2021), univariate deep ReLLU networks, deep linear networks (Ergen &
Pilanci, 2021c) and Generative Adversarial Networks (Sahiner et al., 2021a).

In this work, we first derive an equivalent convex program corresponding to the maximal margin
problem (2). We then consider non-convex subgradient flow for unregularized logistic loss. We show
that the limit points of non-convex subgradient flow can be identified via primal-dual correspondence
in the convex optimization problem. We then present a sufficient condition on the dual variable to
ensure that all stationary points of the non-convex max-margin problem are KKT points of the convex
max-margin problem. For certain regular datasets including orthogonal separable data, we show that
this sufficient condition on the dual variable holds, thus implies the convergence of gradient flow
on the unregularized problem to the global optimum of the non-convex maximalo margin problem
(2). Consequently, this enables us to fully characterize the implicit regularization of unregularized
gradient flow or gradient descent as convex regularization applied to a convex model.

1.1 RELATED WORK

There are several works studying the property of two-layer ReLU networks trained by gradient
descent/gradient flow dynamics. The following papers study the gradient descent like dynamics in
training two-layer ReL.U networks for regression problems. Ma et al. (2020) show that for two-layer
ReLU networks, only a group of a few activated neurons dominate the dynamics of gradient descent.
In (Mei et al., 2018), the limiting dynamics of stochastic gradient descent (SGD) is captured by
the distributional dynamics from a mean-field perspective and they utlize this to prove a general
convergence result for noisy SGD. Li et al. (2020) focus on the case where the weights of the second
layer are non-negative and they show that the over-parameterized neural network can learn the
ground-truth network in polynomial time with polynomial samples. In (Zhou et al., 2021), it is shown
that mildly over-parameterized student network can learn the teacher network and all student neurons
converge to one of the teacher neurons.

Beyond (Lyu & Li, 2019) and (Phuong & Lampert, 2021), the following papers study the classification
problems. In (Chizat & Bach, 2018), under certain assumptions on the training problem, with over-
parameterized model, the gradient flow can converge to the global optimum of the training problem.
For linear separable data, utilizing the hinge loss for classification, Wang et al. (2019) introduce a
perturbed stochastic gradient method and show that it can attain the global optimum of the training
problem. Similarly, for linear separable data, Yang et al. (2021) introduce a modified loss based on
the hinge loss to enable (stochastic) gradient descent find the global minimum of the training problem,
which is also globally optimal for the training problem with the hinge loss.

1.2 PROBLEM SETTING

We focus on two-layer neural networks with ReLU activation, i.e., f(6,X) = (XW}); w5, where
W, € R™>*™ wy € R™ and @ = (W, wo) represents the parameter. Due to the ReLU activation,
this neural network is homogeneous, i.e., for any scalar ¢ > 0, we have f(c8;X) = c?f(0;X). The
training problem is given by

N
mein;aynfw;xm 3)

where £(q) : R — Ry is the loss function. We focus on the logistic, i.e, cross-entropy loss, i.e.,
t(q) = log(1 + exp(—g)).
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Then, we briefly review gradient descent and gradient flow. The gradient descent takes the update rule
6(t+1) =6(t) —n(t)s(t),
where g(t) € 0°L(6(t)) and 0° represents the Clarke’s subdifferential.

The gradient flow can be viewed as the gradient descent with infinitesimal step size. The trajectory
of the parameter 6 during training is an arc € : [0, +00) — ©, where © = {6 = (W1, w3)|W; €
RIX™ W, € R™}. More precisely, the gradient flow is given by the differential inclusion

%B(t) € —9°L(0(t)), fort > 0, almost everywhere.

2 MAIN RESULTS

In this section, we present our main results and defer the detailed analysis to the following sections.
Consider the more general multi-class version of the problem with K classes. Suppose that y € [K]V
is the label vector. Let Y = (Y 1 )ne(n],ke(x] € R™ ¥ be the encoded label matrix such that

L if g, =k,
Ynk =1 = 1, otherwise.
Similarly, we consider the following two-layer vector-output neural networks with ReL U activation:
f1(01,X) (XWY) wit
F(©,X) = : = : 5
K K
frOx,X)] [(xwif)) wi®
where we write ® = (01,...,0k). For k = 1,..., K, we have 8 = (ng),wgk)) where

ng) € RV*™ and wék) € R™. One can view each of the K outputs of F'(®, X) as the output of a
two-layer scalar-output neural network. Consider the following training problem:

K N
i . 4
Hgn;z_:le(yn,kfk(gkaxn)) ( )
According to (Lyu & Li, 2019), the gradient flow and the gradient descent finds a stationary point of
the following non-convex max-margin problem:
K

argénml; %Hekng, St Y f(Ok;xn) > 1,n € [N],k € [K]. (5)

Denote the set of all possible hyperplane arrangement as
P = {diag(I(Xw > 0))|w € R%}, (6)
and let p = |P|. We can also write P = {D1,...,D,}. From (Cover, 1965), we have an upper

bound p < 2r (M) where r = rank(X'). We first reformulate (5) as convex optimization.

Proposition 1 The non-convex problem (5) is equivalent to the following convex program

K p
min Y Y ([[ugllz + [

‘Q)a
k=1 j=1
. - , (7)
s.t. diag(yg) ZDjX(uM - uj7k) >1,
j=1
(2D; — I)Xu,; > 0,(2D; — I)Xu;-’k > 0,5 €[p),k € [K].
where yy, is the k-th column of Y. The dual problem of (7) is given by
max tr(ATY),
s.t. diag(yr) A, = 0, max |AL(XTw) | <1,k € [K]. ®)

lwll2<1

where Xy, is the k-th column of A.
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We present the detailed derivation of the convex formulation (7) and its dual problem (8) in the
appendix. Given u € R?, we define D(u) = diag(I(Xu > 0)). For two vectors u,v € R%, we
define the cosine angle between u and v by cos Z(u, v) = m

2.1 OUR CONTRIBUTIONS

The following theorem illustrate that for neurons satisfying sign(yg(Xwa}) L) = sign(wé’?) at

initialization, wgki) align to the direction of :I:XTD(wgki))yk at a certain time 7', depending on

(k)

2.4k +) at initialization. In Section 2.3, we show that these are dual extreme points of (7).

sign(w
Theorem 1 Consider the K-class classification training problem (4) for any dataset. Suppose that
the neural network is scaled at initialization such that ||w§k1) |l = |w§{?|f0ri € [m] and k € [K].

Assume that at initialization, for k € [K], there exists neurons (ngfi)k , wgfi)k )such that

sign(y? (Xwi*) );) = sign(wl?) ) = s, ©)

where s € {1,—1}. Consider the subgradient flow applied to the non-convex problem (4). Let
0 € (0,1). Suppose that the initialization is sufficiently close to the origin. Then, for k € [K], there
exist T = T(6, k) such that

cos £ (wglfi)k (1), SXTD(WEI;-)’C (T))yk> >1-04.

Next, we impose conditions on the dataset to prove a stronger global convergence results on the flow.
We say that the dataset (X, ¥) is orthogonal separable among multiple classes if for all n,n’ € [N],

T o — _
X, Xp > 0, if Y, = Y,

X)X <0, if Gy # G-

For orthogonal separable dataset among multiple classes, the subgradient flow for the non-convex
problem (4) can find the global optimum of (5) up to a scaling constant.

Theorem 2 Suppose that (X,y) € RVN*? x [K]N is orthogonal separable among multiple classes.
Consider the non-convex subgradient flow applied to the non-convex problem (4). Suppose that the
initialization is sufficiently close to the origin and scaled as in Theorem 1. Then, the non-convex
subgradient flow converges to the global optimum of the convex program (7) and hence the non-convex
objective (5) up to scaling.

Therefore, the above result characterizes the implicit regularization of unregularized gradient flow as
convex regularization, i.e., group £1 norm, in the convex formulation (7). It is remarkable that group
sparsity is enforced by small initialization magnitude with no explicit form of regularization.

2.2 CONVEX GEOMETRY OF NEURAL GRADIENT FLOW

Suppose that A € R . Here we provide an interesting geometric interpretation behind the formula
cos Z(u, XTD(u)A) > 1 — 4.

which describes a dual extreme point to which hidden neurons approach to as predicted by
Theorem 1. We now explain the geometric intuition behind this result. Consider an ellipsoid
{Xu : |ju]l2 < 1}. A positive extreme point of this ellipsoid along the direction A is defined by
arg Maxy; |uljs<1 AT'Xu, which is given by the formula ﬁ Next, we consider the rectified
ellipsoid set @ := {(Xu); : ||ul]|]z2 < 1} introduced in (Ergen & Pilanci, 2021a) and shown in
Figure 1. The constraint maxy;|ju|j,<1 IAT(Xu) | < 1on Xisequivalent to A € Q*. Here Q* is

the absolute polar set of Q, which appears as a constraint in the convex program (8) and is defined as
the following convex set

9" ={x: I'zneaé(P\TZ‘ <1}. (10)

4
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An extreme point of this non-convex body along the direction A is given by the solution of the
problem

max AT(Xu); = ma max ATD;Xu. (11

u:|ul]2<1 D; G’P u: [jul[2<1,(2D; —I)Xu>0

Here, (A, u) are primal-dual pairs as they appear in the convex dual program (8). First, note that a

stationary point of gradient flow on the objective in (11) is given by the identity cu € 83)\T (Xu)4

where c is a constant. In particular, by picking the zero as the subgradient of (x2u), when xZu = 0,

XTD(u)A SN AxI(uTx, > 0)

n=1

IXTD(u)Al2 | SN Aaxal(uTx, > 0)||s

Note that the formula cos Z(u, X' D(u)\) > 1 — § appearing in Theorem 1 shows that gradient flow
reaches the extreme points of projected ellipsoids {D;Xu : ||ul|z < 1} in the direction of A = yy,
where D; € P corresponds to a valid hyperplane arrangement. This interesting phenomenon is
depicted in Figures 3 and 4. The one-dimensional spikes in Figures 1 and 3 are projected ellipsoids.
Detailed setup for Figure 1 to 4 and additional experiments can be found in Appendix F.

u= (12)

2.0 - 20 -
---- optimal A \\ \.\ ——y
—— yu=0 '\.\ E {A:, Max AT(Xu). | < 1)
. 1.5 R =1
15 . ’"?’f'"‘al' RN E {A:diag(y)A = 0}
-1 ¢ minima SN * optimal A
* optimal (Xw; )+ 1.0 S
1.01
0.5
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Figure 1: Rectified Ellipsoid Q := {(Xu) : Figure 2: Convex absolute polar set Q* of
|lul]2 < 1} and its extreme points (spikes). the Rectified Ellipsoid (purple) and other dual
constraints (grey).
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0251,
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Figure 3: Trajectories of (Xw1 ;)4 along the  Figure 4: Trajectories of Wy ; ﬁ
. . . Ji
training dynamics of gradient descent. along the training dynamics of gradient de-

scent.

Flgure 5: Two layer ReLU network gradient descent dynamics on an orthogonal separable dataset.

Wi, = W is the normalized vector of the ¢-th hidden neuron in the first layer.
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3 CONVEX MAX-MARGIN PROBLEM

In this section, we consider the equivalent convex model of the max-margin problem and its optimality
conditions. We primarily focus on the binary classification problem for simplicity, which are later
extended to the multi-class case. We can reformulate the nonconvex max-margin problem (2) as

1
min o ([W1 |7 + [wa]l3), st Y(XWi)yws > 1, (13)

where Y = diag(y). This is a nonconvex optimization problem due to the ReLU activation and
the two-layer structure of neural network. Analogous to the convex formulation introduced in
(Pilanci & Ergen, 2020) for regularized training problem of neural network, we can provide a convex
optimization formulation of (13) and derive the dual problem.

Proposition 2 The problem (13) is equivalent to

b
Pl =min Yy (|luyllz + [[ufll2),

j=1
& (14
st Y Y D;X(u)—uj) > 1,
j=1
(2D; — I)Xu; > 0, (2D; — I)Xuj > 0,V € [p].

The dual problem of (14) is given by

D* =maxyAst YA =0, max |AT(XTu),|<1. (15)
A u:fjul|2<1

The following proposition gives a characterization of the KKT point of the non-convex max-margin
problem (2). The definition of B-subdifferential can be found in Appendix A.

Proposition 3 Let (W1, wa, A) be a KKT point of the non-convex max-margin problem (2) (in terms
of B-subdifferential). Suppose that w ; # 0 for certain i € [m]. Then, there exists a diagonal matrix

D; € RVN*N satisfying

(Di)n = 1, forxfwi; >0,
(]ji)n € {07 1}7 for Xz;wl,i = O,
(]52)" =0, for XZWLZ' < 0.

such that Wi
L = XTDA, | XTD A, = 1.
w2 i

Based on the characterization of the KKT point of the non-convex max-margin problem (2), we
provide an equivalent condition to ensure that it is also the KKT point of the convex max-margin
problem (14).

Theorem 3 The KKT point of the non-convex max-margin problem (13) (in terms of B-subdifferential)
corresponds to a KKT point of the convex max-margin problem (14) if X is dual feasible, i.e.,

max  |[AT(Xu),| < 1. (16)

u:flull2<1
This condition is equivalent to for all D; € ‘P, the dual variable X satisfies that

max |)\TDqu| <1 (17
[lu]l2<1,(2D; —I)Xu>0

3.1 DUAL FEASIBILITY OF THE DUAL VARIABLE

A natural question arises: is it possible to examine whether A is feasible in the dual problem? We say
the dataset (X, y) is orthogonal separable if for all n,n’ € [N],

XZXTL’ > 0, if Yn = Yn',

T .
XpXn! S Oa if Yn 7é Yn' -
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For orthogonal separable data, as long as the induced diagonal matrices in Proposition 3 cover the
positive part and the negative part of the labels, the KKT point of the non-convex max-margin problem
(2) is the KKT point of the convex max-margin problem (14).

Proposition 4 Suppose that (X,y) is orthogonal separable. Suppose that the KKT point of the non-
convex problem include two neurons (W1 ;, , w2, ) and (W1 ;_,ws;_) such that the corresponding

diagonal matrices D, , and D, defined in Proposition 3 satisfy that
D,, > diag(Il(y = 1)), D, > diag(I(y = —1)).
Then, the dual variable X is dual feasible, i.e., satisfying (16).

The spike-free matrices discussed in (Ergen & Pilanci, 2021a) also makes examining the dual
feasibility of A easier. The definition of spike-free matrices can be found in Appendix A

Proposition 5 Suppose that X is spike-free. Suppose that the KKT point of the non-convex problem
include two neurons (W1 ;, ,wo,;, ) and (W1 ;_,ws ;_) such that the corresponding diagonal matrices

D, L and D, defined in Proposition 3 satisfy that
D;, > diag(I(y = 1)), D, > diag(I(y = —1)).
Then, the dual variable X is dual feasible, i.e., satisfying (16).

Remark 1 For the spike-free data, the constraint on the dual problem is equivalent to

max  |ATXu| <1, orequivalently
Xu>0,|uf><1

max )\TY+Xu <1, min MY _Xu > —1.
Xu>0,[lul[2<1 Xuz0

4 SUB-GRADIENT FLOW DYNAMICS OF LOGISTIC LOSS

In this section, we consider the following sub-gradient flow of the logistic loss (3)

9 _
Ewu(t) =ws ;(t) Z An(B)xn () |
n:(wi,i(t))Tx,>0 (18)

0 N
Frw2it) = D A (wri(t)  xn (1)) 4

where the n-th entry of A(t) € RY is defined

x’rL = _yngl(Qn)v dn = yn(X£W1)+W2- (19)
For simplicity, we omit the term (¢). For instance, we write w1, = w1 ;(t). To be specific,
when w{ixn = 0, we select 0 as the subgradient of w27i(w1T7ixn)+ with respect to wy ;. Denote
o; = sign(Xuw;). Foro € {1,—1,0}", we define

g(075‘): Z AnXn. (20)

n:o, >0
For simplicity, we also write
g(u, A) := g(sign(Xu),A) = Z AnXon. 21
n:w{qyxn >0
Then, we can rewrite sub-gradient flow of the logistic loss (3) as follows:
0

&Wm = w2,ig(ua ;\), %wm = W;‘Clg(ua ;\) (22)

Assume that the neural network is scaled at initialization, i.e., ||[w1;(0)||3 = w3 ,(0) fori € [m).
Then, the neural network is scaled for ¢ > 0.
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Lemma 1 Suppose that ||w1 ;(0)||l2 = |w2,(0)] > 0 fori € [m]. Then, for any t > 0, we have
[w1,i(@)ll2 = w2, (t)] > 0

According to Lemma 1, for all ¢ > 0, sign(w2;(t)) = sign(w2;(0)). Therefore, we can simply
write s; = s;(t) = sign(ws,;(t)). As the neural network is scaled for ¢ > 0, it is interesting to study
the dynamics of w ; in the polar coordinate. We write wy ;(t) = ”(Y,(t), where ||u;(t)]2 = 1.
The gradient flow in terms of polar coordinate writes

%ri = s;u) g(u;, ;\), %ui =5 (g(ui, A)— (u?g(ui, )\)) ui) . (23)

Let Zrax = MaX;e[y) ||Xi||2. Define guin to be

Gmin = mig lg(o,y/4)|2, st. g(o,y/4) #0, where we denote (24)
oc

Q= {o€{1,0,-1}"|o = sign(Xw), w € R%}. (25)

As the set Q C {1,—1,0}" is finite, we note that g,;, > 0. We note that when max,e(n] |qn| = 0,

we have A ~ %. The following lemma shows that with initializations sufficiently close to 0,

Ig(u(t), A(t)) — g(u(t),y/4)||2 and \

Lemma 2 Suppose that T > 0 and § > 0. Suppose that (u(t), r(t)) follows the gradient flow (23)
with s = 1 and the initialization u(0) = ug and r(0) = ro. Suppose that rq is sufficiently small.
Then, the following two statements hold.

Lg(u(t), (1)) H2 can be very small.

e Forallt < T, we have ||g(u(t), X(t)) — g(u(t),y/4)|]2 < 9“‘5%6.

o For t < T such that sign(Xu(s)) is constant in a small neighbor of t, we have
‘ s

~ 2
Fe(u(), A0)| < Sl
Based on the above lemma on the property of g(u(t), )\(t)), we introduce the following lemma

to upper-bound the time such that cos Z(u(t), g(u(t), A(t))) approaches 1 — & or sign(Xu(t))
changes.

Lemma 3 Let 6 € (0,1).Suppose that wy satisfies that ||[ug||s = 1 and X(0)T (Xug)4 > 0. Suppose
that (u(t), r(t)) follows the gradient flow (23) with s = 1 and the initialization u(0) = ug and
r(0) = ro. Let v(t) = BBy \prite vo = v(0), 09 = o(0) and go = ||g(0,y/4)|2.

llg(u(t),A(t)ll2
Denote

N 1 V1I-6/84+1-46 \/1— /8 +viug
2go+/1—6/8 V1 5/871+§ 1—6/8 —viug
Forc € (0,1 — 0], define

ehife (o) — 1 \/ 8+c \/1 —0/8+viup 27
290\/ \/17 8—c \/17 7V0u0

Suppose that r is sufficiently small such that the statements in Lemma 2 holds for T' = T*. Then, at
least one of the following event happens

* There exists a time T such that we have sign(Xu(t)) = sign(Xug) fort € [0,T) and
sign(Xu(t)) # sign(Xug). Let uy = u(T) and vi = limy_7_ov(t). Ifulv, <
1 — 6, then the time T satisfies that T < T (vIw,). Otherwise, there exists a time T"
satisfying T' < T*, such that we have sign(Xu(t)) = sign(Xug) fort € [0,T'] and
u(T)Tv(T") > 1-4.

* There exists a time T < T*, such that we have sign(Xu(t)) = sign(Xuy) for t € [0,T]
and W(T)Tv(T) > 1 6.
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Corollary 1 Suppose that there exists a time T such that we have sign_&Xujgt)) =
sign(Xug) for t € [0,7) and sign(Xu(t)) # sign(Xug). If T > TH~Tw) =
o \/1-8/8+vIu, —1lo \/1-58/8+vTug

1
g04/1-6/8 \/1-6/8—vTuy V1-6/8—vTug

Proposition 6 Consider the sub-gradient flow (23) with s = 1 and the initialization u(0) = ug and

7(0) = ro. Here at initilization the neuron g satisfies that |[uol|2 = 1 and vy (Xug)y > 0. Let

v(t) = %. For any 6 > 0, for sufficiently small g, there exists a time T = O(log(61))
) 2

such that w(T)Tv(T) > 1 — 6 and cos Z(u(T),g(u(T),y)) > 1—6.

Remark 2 The statement of proposition is similar to Lemma 4 in (Maennel et al., 2018). However,
their proof contains a problem because they did not consider the change of sign(Xw) along the
gradient flow. Our proof in Appendix D.4 corrects this error.

, then, we have ulTvl >1-0.

We next study the properties of orthogonal separable datasets. Denote B = {w € R? : ||w|s < 1}.
The following lemma give a sufficient condition on w to satisfy the condition in Proposition 4.

Lemma 4 Assume that (X,y) is orthogonal separable. Suppose that w € B is a local maximizer of
yT(Xw), in B and (Xw); # 0. Then, (w,x,) > 0 forn € [N] such that y,, = 1. Suppose that
w € Bis a local minimizer of y* (Xw) in B and (Xw)4 # 0. Then, (w,x,) > 0 forn € [N]
such that y,, = —1.

We show an equivalent condition of u € B being the local maximizer/minimizer of y'(Xu), in B.

Proposition 7 Assume that (X,y) is orthogonal separable. Then, u € B is a local maximizer of
yT(Xu)y in B is equivalent to cos Z(u,g(u,y)) = 1. Similarly, u € B is a local minimizer of
yT(Xu) in Bis equivalent to cos Z(u, g(u,y)) = —1.

Based on Proposition 4 and 7, we present the main theorem.

Theorem 4 Suppose that the dataset is orthogonal separable and 0(t) follows the gradient flow.
Suppose that the neural network is scaled at initialization, i.e., ||w1 ;(0)||2 = |w2,:(0)| for all i € [m)].
o) .. 6*
e * T’

For almost all initializations which are sufficiently close to zero, the limiting point of

where 0 is a global minimizer of the max-margin problem (2).

We present a sketch of the proof. According to Proposition 6, for initialization sufficiently close to zero,
there exist two neurons and time 7", T > 0 such that cos Z(w1,, (T4 ), g(w1i (T}),y)) > 1—-0
and cos Z(w1,;_ (T-),g(w1,i_(T-),y)) < —(1 — 0). This implies that w1 ;, (T') and w1 ;_(Ty)
are sufficiently close to certain stationary points of gradient flow maximizing/minimizing y (Xu )
over BB, i.e., {u € B|cos(u, g(u,y)) = +1}. As the dataset is orthogonal separable, from Proposition
7 and Lemma 4, the induced masking matrices D;_ (T ) and D;_(T_) by w1 ;, (T4 )/w1,_(T-)
in Proposition 3 satisfy that f)” (Ty) > diag(I(y = 1)) and D; (T_) > diag(I(y = —1)).
According to Lemma 3 in (Phuong & Lampert, 2021), for ¢ > max{Ty,T_}, we also have D; () >
diag(I(y = 1)) and D; (t) > diag(I(y = —1)). According to Theorem 3 and Proposition 4, the
KKT point of the non-convex problem (2) that gradient flow converges to corresponds to the KKT
point of the convex problem (14).

5 CONCLUSION

We provide a convex formulation of the non-convex max-margin problem for two-layer ReLU neural
networks and uncover a primal-dual extreme point relation between non-convex subgradient flow.
Under the assumptions on the training data, we show that flows converge to KKT points of the convex
max-margin problem, hence a global optimum of the non-convex objective.
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A DEFINITIONS AND NOTIONS

We introduce several useful definitions and notions which will be utilized in the proof.

A.1 DEFINITIONS

Definition 1 Let O C R"™ be an open set and let ' : O — R be locally Lipschitz continuous at
x € O. Let Dr be the differentiable points of ' in O. The B-subdifferential of F’ at x is defined by

OPF(z) := {klim F'(z*)|z* € Dp,2), — x} (28)
—00

The set 9°F(x) = co(Op F(x)) is called Clarke’s subdifferential, where co denotes the convex hull.

Definition 2 A matrix A is spike-free if and only if the following conditions hold: for all ||u||s < 1,
there exists ||z||2 < 1 such that
(Au); = Az. (29)

This is equivalent to say that

max X (Xu <1. 30
u:fu2<1,(I-XXT)(Xu)4+=0 1% (Xu) 2 < G0

A.2 NOTIONS
We use the following letters for indexing.

* The index n is for the n-th data sample x,,.
» We use the index 7 to represent the i-th neuron-pair (Wi ;, ws ;).

* The index j is for the j-th masking matrix D; € P.

B PROOFS IN SECTION 3

B.l PROOF FOR PROPOSITION 2
Consider the following loss function I : RN x RN — R U {+oc}

. {07 Ynzn > 1,Vn € [N],

_ 1
U(z,y) + 00, otherwise. ey

For a giveny € {1,—1}", {(z,y) is a convex loss function of z. The non-convex max-margin is
equivalent to

N 1
min T((XW1) w2, y) + 5 ([Wi 3+ [wal). (32)
According to Appendix A.13 in (Pilanci & Ergen, 2020), the problem (32) is equivalent to
- 1
min [ <Z DX (u; — ui)d’) + = (W47 + [[wal3) ,

2
i=1
s.t. (QDZ - I)Xul 2 0, (2D1 - )

(33)
Xu, > 0,Vi € [p].

This is equivalent to (14). For fixed y € {1, —1}%, the Fenchel conjugate function of l (z,y) with
respect to z can be computed by

I*(A,y) = max z"x — {(z,y)

zeERN
:52%513 zT A, st diag(y)z > 1, (34)
_ yTj\, diag(y)5\ <0
+ o0, otherwise.

12
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According to Theorem 6 in (Pilanci & Ergen, 2020), the dual problem of (14) writes

max —I*(A,y), s.t. ‘rln‘ax AT (Xu),| <1,

which is equivalent to

max —y~ X, s.t. diag(y)\ <0, ﬁnﬁx< AT (Xu),| < 1.
u:|[ul|2<1

By taking A = — X, we derive (15). This completes the proof.

B.2 PROOF FOR PROPOSITION 3

For the non-convex max-margin problem (13), consider the Lagrange function

1
L(W1, w2, A) = S ([Wal[f + [wall3) = (YN (Y (XW1)pwy — 1)

(35)

(36)

where YA = 0. The KKT point of the non-convex max-margin problem (13) (in terms of B-

subdifferential) satisfies
0 € 0%, L(W1, w2, A),

w2 — (XW1)TA =0,
An(yn(x£W1)+wQ -1 =0.

The KKT condition on the i-th column of W7 is equivalent to

N
Wi, = E w2,i)\nxngn,i>
n=1

where g, ; € BB(,Z)JF|Z:,(ZV‘,1 .- In other words, we have

= H(szl,i 2 0), if XEWLZ' # 0,
g € {0,1}, if x!wy; = 0.

LetD, = diag([g1,,---,9n.]). Then, we can write that
N

Wi, = E )\ngn,ixnwz,i

n=1
—wy,; XTD;A.
From the definition of g, ;, we have
GniXiwy;=0.
Therefore, we can compute that
i =(Xwy, i)T)\

Wl K > O)X W1 1>\n

an i Mz

an w11 n

:wLZ-XTDiA.
In summary, we have
wi; = we;, X DA, wa; = wi X TDA
Suppose that wy ; # 0. This implies that
PLi —XTDA, | XTDA|2 = 1.
w2 i

This completes the proof.

13
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B.3 PROOF FOR THEOREM 3

PROOF We can write the Lagrange function for the convex max-margin problem (14) as
L({u o, {ito Az {720

p

P
(Ilujll2 + [0} ]l2) + A" diag(y) | 1 — diag(y) > D,;X(u; — u))
1 j=1

<

(4] (2D, ~ D)X, + ()" (2D, ~ DX (45)

P
j=

P P
=Ny + > (lwylle + [0 ll2) + Y ()" (X"DyA - XT(2D; - 1)z))
Jj=1 Jj=1
p
+) ()" (-XTD;A — XT(2D; - I)z)).
j=1

where z;, 7, € RY satisfies that z; > 0,2/, > 0for j € [p] and A € R¥ satisfies that diag(y)A > 0.
The KKT point shall satisfy the following KKT conditions:

—XTDj)\ + XT(2DJ — I)Z_,7 S 8,13 ||u;»||2,
XTDjA + X"(2D; — I)z; € Ou, [[u;]l2,

Ao | Do Dj)nxt(uj — ) =y | =0, (46)
j=1
2jn(2(Dj)nm — 1)xpu; =0,
25 0 (2(Dj)nn — 1)x£u; =0.

Let (W1, ws, A) be the KKT point of the non-convex problem (2) and A satisfies (17). Let ]f)z be
the diagonal matrix defined in Proposition 3 with respect to w1y ; and denote P = {D;li € [m]}.

Without the loss of generality, we may assume that { D, }!™ ; are different. (Otherwise, we can merge
two neurons wy ;, and wy ;, with D;, = D, together.)

Suppose that D; € P, ie., D; = D, for certain i € [m]. By letting u;- = Wi ,Wa;, z;- =0,
u; = —wy ;wa; and z; = 0, the following identities hold.
. !
XTD;A+ XT(2D, — 1)z, = XTDA = i = T (47)
wa;  [[ug
~XTD;A +XT(2D; — I)z; = ~XTD;A = 2ki = M 48)
wa; ||
Therefore, for index j satisfying D; € P, the first two KKT conditions in (46) hold.
For D; ¢ 75, we can letu; = u;» = 0. As X satisfies (17), we have
IATD;Xu| < 1. (49)

max
[lull2<1,(2D; —I)Xu>0
According to Lemma 4 in (Pilanci & Ergen, 2020), this implies that there exist z;, z;. > 0 such that
| = X"D;A+ 27 (2D; — I)z}|| < 1,||X"D;X + Z7(2D; — I)z;| < 1. (50)

Therefore, the first two KKT conditions in (46) hold.

From our choice of uy, z;, u;», z;, the last two KKT conditions in (46) hold. We also note that

'4 m
ZDJX(U.Q — llj) = Z(XWl’i)erQﬂ’. (51)
j=1 i=1

As (W1, ws, A) is the KKT point of the non-convex problem, the third KKT condition in (46) holds.
This completes the proof.
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C PROOFS IN SECTION 3.1

In this section, we present several proofs for propositions in Section 3.1.

C.1 PROOF FOR PROPOSITION 4

We start with two lemmas.
Lemma 5 Suppose that ug = XT Do and ||uo||2 < 1. For any masking matrix D; € P such that
(D; — Dg)I(A > 0) = 0, we have

max )\TDqu <1. 52)
(2D; —I)Xu>0,[lul2<1

PROOF According to Lemma 4 in (Pilanci & Ergen, 2020), the constraint (52) is equivalent to that
there exist z; € RY such that z; > 0 and

|XTD;A 4+ XT(2D; — Iz, < 1. (53)
Consider the index n € [N] such that (Dj — D), # 0. As (D; — Dg)I(A > 0) = 0, we have
An < 0. Welet (z;), = —A,. If (f)o),m = 0, then we have (D;),, = 1 and

(D — Do)nndnXn = AnXn = —X% (2(D)nn — 1)(25)n- (54)
If (]f)o),m = 1, then we have (D;),,, = 0 and
(Dj — Do)nnAnXn = —AnXp = %2 (2(D;)nn — 1)(2)n- (55)
For other index n € [N], we simply let (z;),, = 0. Then, we have
(D; — Do)nnAnxn = 0= =% (2(D;)nn — 1)(2)n- (56)
Based on our choice of z;, we have z; > 0 and for n € [N]
(D, - Do)nnAnXy, = ~%;, (2(D)nn — 1)(2)n- (57
This implies that
XT(D; —Do)A = X" (2D, — I)z;. (58)
Hence, we have .
XD + X7 (2D, — I)z; = XT Do = uy. (59)

Therefore, | XD + X7 (2D; — I)z;]]> < 1.

Lemma 6 Suppose that the data is orthogonal separable aizd YA > 0. Suppose that ug = XTDoA
and ||ug|2 < 1. For any masking matrix D; such that Dy — D; > 0, we have || XTD |2 <
[luo|l2 < 1. Therefore, (52) holds.

PROOF We note that ug = X7 (D — D;)A + XD,\. Denote a = X7 (Dy — D;)A and b =

XTD ;A We note that
T

aTb = Z AnXn Z AnrXpr | . (60)
n:(Do)nn=1,(D;)n,n=0 n/:(D0) /s =0,(D;) s =0
As diag(y)A > 0, A, has the same signature with y,,. Therefore, from the orthogonal separability
of the data, we have

A xTxT > 0. (61)
This immediately implies that alb > 0. Therefore,
1> fuoll3 = [la+bl3 = [[a]l3 + [b]3 +2a"b > [Ja].. (62)
This completes the proof.
Based on Lemma 5 and Lemma 6, we present the proof for Proposition 3. Let u = le . From the

wa,i,
proof of Proposition 3, we note that [[u||2 = 1. For any masking matrix D; € P,let D = D;, D;.

As lji L= ]5, according to Lemma 6, we have
IXTDAl2 < XD, All2 = [luy[l2 < 1. (63)

AsYX > 0and D;, > diag(I(y = 1)), we have (D; —D)I(A > 0) = D;(I—-D;, )I(A > 0) = 0.
From Lemma 5, we note that A satisfies (52). Similarly, we can show that —\ also satisfies (52).
This completes the proof.
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C.2 PROOF FOR PROPOSITION 5

PROOF Note that YA > 0. Let Y4 = diag(I(y = 1)) and Y_ = diag(I(y = —1)). We claim
that

HIll;IHaS)(l A(Xu), = H111;1”a§x1 MY (Xu),. (64)
Firstly, we note that
N N
A (Xu)p =) Aalxiw)y <D (Aa)s(xpu)y = ATY 4 (Xu),. (65)
n=1 n=1

This implies that max <1 A (Xu), < max||y|<1 MY (Xu),.

On the other hand, suppose that u € arg max <, ATY, (Xu),. As X is spike-free, there exists z
such that ||z||2 < 1 and Xz = (Xu).. Therefore, we have

MY (Xu), = ATY Xz = ATXz = \T(Xz),. (66)
This implies that max |y <; A" (Xu); > maxjuj<; AT Y (Xu),.
For any D; € P with D; > Y. We note that
AT (Xu)y < ATD;(Xu); < ATY, (Xu),. (67)

Combining with (65), this implies that max|u<; AT (Xu); = maxju <1 A" D(Xu),.

w1

Let us go back to the original problem. Let u; =
D, . XXTD,; . A. Therefore, we have

+ We note that (Xw,) = D,
*+

wo

AT (Xw) = ATD;, XXTD; A = [[XTDi, Alf = [lu |3 = 1. (68)

Thus, for any ||uf|2 < 1, suppose that (Xu) = Xz, where ||z||2 < 1. Then, we have
A'D;, (Xu); = A"D;, Xz < ||z]]s < 1. (69)

Therefore, maxy|<; A" (Xu); = maxu|<; A’ D4 (Xu), < 1. Similarly, we have

min AT(Xu). = min ATD_(Xu),. > —1.
fufi<1 (Xu)+ fufi<1 (Xu)s 2

This completes the proof.

D PROOFS IN SECTION 4

D.1 PROOF FOR LEMMA 1

PROOF According to the sub-gradient flow (22), we can compute that

9 - ~
o (lwiall3 = wd ;) = 2wl (wa,g(u, X)) — 2un,w] ig(a, X) = 0. (70)
Let Ty = sup{T|||lw1(t)||2 = |w2,(t)] > 0,¥i € [n],t € [0,T)}. Fort € [0,Tp), as the neural
network is scaled, it is sufficient study the dynamics of w; ; in the polar coordinate. Let us write
wi i(t) = e"i(Du(t), where ||u;(t)||2 = 1. Then, in terms of polar coordinate, the projected gradient
flow follows

—-ri =sign(wa;)u] g(u,, X)v
ot ’
P (1)
s =sign(wai) (gui, X) - (ulglu, X)) w) .

Without the loss of generality, we may assume that ws ;(0) # 0 for ¢ € [m]. Denote

Tmax = Max ||X;||2. (72)
i1€[n]
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From the definition of X, we have || A||oc < 1/4. Therefore, we have

g N nx
<lglw, Nz < || Y0 Axy|| < ==

T B

0
i 3
Jixju>0 2
Therefore, for finite t > 0, we have

NTmaxt
Ty
which implies that [ws ; ()| > 0. This implies that Ty = co.

ri(t) > 1;(0)

D.2 PROOF OF LEMMA 2
PROOF As we have ||wy ;||2 = |wa |, for n € [N], we can compute that

|4n| =[(x W1) 4 wa

m

<Dl W) 4 wail
=1

= wrillal(xhwii) 4]
m

< Iwaill2 b wi il
=1

m

<llxalle Y llwill3-
i=1

Note that \,, = —,¢'(¢,) and Yo — —y,0'(0). As ¢’ is L-Lipschitz continuous, we have

8 1 I%nll2 <~
Ao = /4| < {laal < 55 2wl

Forany 6 € Q, as A, € [0,1/4] for n € [N], we have

Ig(5,X) — g(6,y/4)]l2

IA

Z (;\’ﬂ - yn/4)xn

n:(6)n>0 9

< ) e = el lxklly

k:(6)k>0

"l
k
<37 P S w3
j=1

k=1
m
=1y |wl
i=1

where ¢; = 1||X||% > 0 is a constant. Therefore, we can bound ||g (&, ()| by

2
2

m m

g, A2 < llg(@,y/4)ll2 +cr D [Wii() < dimax +e1 Y e,

i=1 i=1

where we let
Jmax — Max ||g(0, Y/4)H2
ocQ
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Let (t) = max;c[,, 7:(t). We note that
0
&’I‘( ) < dmax + C1ne r(t) < 02(]_ + 62T(t)) (80)

where ¢y = max{nci, dmax} > 0 is a constant. If we start with 7(0) < 0, then, r(¢) cannot grow
much faster than cot. Let 7(¢) satisfy the following ODE:

9 7
57 =1+ ¥ 1), (81)
The solution is given by
1
Falt) = ca(t — a) — 5 log(1 - e2e2(t=a)y, (82)

where a > 0 is a parameter depending on the initialization. For any initial r(0), we have a unique a
satisfying 7,(0) = r(0). Therefore, we have r(t) < 7, (t) and

lg(0. A1) = g(o,y /4|2 < crne®™ . (83)
According to the bound (83), by choosing a sufficiently small r, (which leads to a sufficiently small
a), such that
= dmind  d?;.6
274 (T) < mi min min ) 84
N - mm{ 16¢1 4n2xf’nax} 84)
Therefore, for t < T, we have
N T i dmind
g6, A1) — g(6,y /1) ||z < cne®™® < ¢ine?™(T) < 3 (85)
Hence, we have
~ dm1n6
Ig(@(0): A1)~ g(0(1),y /D2 < cne™™ < e < 2= (36)
We can compute that
d ~ d
N = 1(2) 87
a ()= pTAL (87)
As 1) (q) € (0,1/4], we can compute that
Z |wa, 5|2 W1 N
+ Z Wi ll2llx:ll2 wzj
(88)
n n
SZ Z ||W1,j||gx?nax + Z Z w%,j‘rrznax
=1 j=1
2
<nxmax €2T(t).
- 2
Therefore, we have
d -~ d 1|d na?
= 0" Lol < 2| 2g | <« DZhmax 2r(h) 89
’dt | (Qz)wdt(h > 4‘dt% > 3 € (89)
Suppose that sign(Xu(s)) = o(t) holds for s in a small neighbor of ¢. Then, we have
d ~ d ~
t), A — t), At
GO0 [ PECIORYON
d nad .,
“ max 27 (t)
<Z Iillz | 2| < =—ghe (90)
<n2x‘fnax 627:’1 (T) < d12nin5.
- 8 - 16

This completes the proof.
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D.3 PROOF OF LEMMA 3
PROOF Let Ty = sup{T|sign(Xu(t)) = sign(Xuy),Vt € [0,7)}. We analyze the dynamics of

u(t) in the interval [0, min{Tp, T*}]. For ¢ < min{7y,T*}, as the statements in Lemma 2 hold, we
can compute that

d
%V(t)Tu(t)

4 _gleeA®) Tut>
dt(ng(ao,A(t»uQ ©

(oo \ s
<|g<0M<t>>llz> " e ayp a= )

_aimT 0”)“\ g(oo,;\(t))T%g(oo,X(t)) o1
R S YOI
g(o0. M) e~ = | Tl M) |

>lg(00, A1) ]2 (1— (v(t) u(t)?) — 9m81n5

min5
>0 (1 8/8) (1 - (v()T()?) - e
>g0 (1= 0/4— (v(t)"u(t))?).
Here we utilize that gg > guin, where g is defined in (24). Let z(t) satisfies the ODE

dz(t
0 (o 200 ©2)
with initialization 2(0) = v ug. Then, we note that
24/1 =6
2(t) = T 5/5 - /8 | ©3)

1+ cgexp(2got/(1/1 —0/8))

-1
where c3 = < Vi o/8 _ 1> . We can compute that

Vg Uo
2(T3) =1-46. 94)
According to the comparison theorem, for ¢ < min{Tp, T3}, we have
v(t) u(t) > 2(t). 95)

We first consider the case where Ty = 0o. As Ty = oo, we have
v(THTa(T*) > 2(T*) =1 - 6. (96)
Therefore, the second event holds for T" < T™*.

Otherwise, we have Ty < oco. Recall that uy = u(7p) and vi = limyp, v(¢). Let Ty =
sup{T|v(t)Tu(t) < vIuy, vt € [0,7)} and Ty, = sup{T|v(t)Tu(t) < 1 —4,vt € [0,T)}.
If Ty < Ty, fort € [0, T3], we have

Zv(®) u(t) > (1 A (1— 5)2) 9o > 0. 97)
Therefore, v(¢)Tu(t) monotonically increases in [0, T3]. As v(t)Tu(t) > 2(t) for t € [0, Tp], we

have that 2(T%) < v(T)Tu(T) = 1 — 6 = 2(T3). Hence, we have T» < T*. Therefore, the second
condition of the first event holds at T" = T5.

Then, we consider the case where Ty > Ty. For t < Ty, we have v(t)Tu(t) < 1—4. This implies that
vlTul <1 — 4. Apparently, we have T} < Ty. If T1 < Tp, as Ty < Tb, for ¢ € [0, Tp], the inequality
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(97) holds. This implies that lim;_,7, o v(t)Tu(Tp) > v(Th)Tu(T1) = limy_7,—o v(t)Tu(T0),
which leads to a contradiction. Therefore, we have T, = 7. We note that

2T (uTv))) = ulv,. (98)
Asu(t tq) t) for t € [0, Tp], we have that z(T1) < uf'v; < 2(Ty). Hence, we have
Ty = < Tghlft (ufvy). ThlS completes the proof.

D.4 PROOF OF PROPOSITION 6

We first introduce a lemma.
Lemma 7 Leta,b € R? and 0 < & < c. Suppose that ||a —b||2 < 6 and ||a||s > c. Then, we have

a b 26
a2 < (99)
‘ lallz [[bll2fl, ~ ¢
PROOF As ¢ < ¢, we have ||b||2 > |lall2 — |ja — bl|]2 > ¢ — § > 0. We first note that
_ _1y _ lllafl2 — [[bll2] g
lallz* = Iblz| = < : (100)
[l 2| al|2[b[2 c|[bll2
Therefore, we can compute that
‘ a b
lall bl |,
b 1 1
< - i (ion
lall flallzfly  [llallz bl
6 6 20
<-4 -=—.
c ¢ ¢

This completes the proof.

Then we present the proof of Proposition 6.

PROOF As yT(Xug); > 0, with sufficiently small initialization and sufficiently small § > 0, we
also have A(0)7(Xup)+ > y7' (Xug)+ /4 — || X||2]|A(0) — y/4]|2 > 0. We prove that there exists a
time 7" such that u(T)*v(T') > 1 — $4 by contradiction. Denote vo = v(0). For all possible values
of ||g(u,y/4)||2, we can arrange them from the smallest to the largest by g1y < g(2) < -+ < gp)-

o 1 VIZ8/8+1-8/2 L /1= 5/8+g(’1)1vguo <P
LetT; = T (og Ji55-174/2 log e e and T = >, _, T;. Suppose
that 7 is sufficiently small such that statements in Lemma 2 holds for T". According to Lemma 3,
we can find 0 = tg < ¢; < ... such that fori = 1,..., sign(Xu(t)) is constant on [t;_1,¢;) and
sign(Xu(t;—1)) # sign(Xu(t;)). We write u; = u(t;), g; = ||lg(u(t;),y/4)]2,
g = limg(u(t), A1), & =glu(t). A0), (102)
. = Hg{il\z and v; = Hggj\lz' We note that g;” = g;r_l. According to Lemma 3, we have
ti—tio1 < log —0/8+4 (vi)Tui 1-0/8+ v iy
2 6/891'_1 1 —6/8— (V;)Tui 1 —5/8—VT71112'_1
— R EETE 1—6 i
o1 g VIZOB+ (v T8 v
24/1 = 6/8Gmin 1-6/8—(v;)Tu 1-6/8—vl u
(103)

Here we utilize that g;_1 > gmin, Where gmin 1s defined in (24). This implies that

1-— 6/8 + (V;)Tul > 62 /1_6/8gxnin(t7'_ti—1) 1-— 6/8 + V 1 Wi—1

V1=6/8=(v;i)Tu — 1-6/8 vl jui,

(104)
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We can show that for ¢ satisfying ¢ >

L log V/170/841-6/2 loglJrg'E‘li“v"TuO and
24/1=6/8Gumin \V/1-6/8—=1+8/2 1=9min Vo Wo
t < T, wehave ||g(u(t), A)||2 > gmin- According to Lemma 3, as g; > gmin, We have

T=5/8 7, -1
1 - 8+ gmln g" > 2y 1-0/8gmin (ti—ti—1) 1 - 6/8 + grnilng;r—luifl ) (105)
V 1- gmm gz Tul \% 1- 6/8 - gr:lingzllui—l

This implies that

1- 5/8 + gr:uln(gz_)T 1—6/8gmints 1- 8+ gmmVO uo
v min '8 ) T 2y v (106)
V 1- 5/8 - gmin(gi )Tul V 1- gmmVO uo

or equivalently, for any ¢ > 0, we have

v1—0/8+ g;nln (g(u )) ’N\(t))Tu( ) e2V/1=6/8gmint V1 8+ gmmvo UO. (107)
\% 1- gmmg A(t))Tll(t) B \% 1- gmlnvO Uo

Here we utilize that g(u(t),)\(t))Tu(t) is continuous w.rt. t.  Therefore, for ¢ >

1 2-6 100 1T %minVo Yo
2gmin <log 5~ log 2—0— ), we have

1=9minVo U0

L+ g (8(u(8), X)) Tu(t) _ /T —0/8+1-5/2 (108)
I g g, M) ) VI 05— 1432
This implies that B
Frmin (B(u(1), A(£))) T 0(t) > 1 = 6/2. (109)
If ||g(u(t), A)||2 = gmin, as the statements in Lemma 2 hold, we can compute that
lg(u(®), A) — g(u(t), ()2 < gmm *Il (u(t), A)ll2, (110)
which implies that ~
Ig(u(®), A(®)ll2 < (1 4 6/4)[[g(u(t), A2 (111)
Therefore, we have N
lg(u(®), )2
1 (g(u(t), A1) u(t) (112)
—1 + 6/4 Gmin
1-6/2 3
“Tre/d” =30

This leads to a contradiction.

Analogously, we can show that for ¢ > 22:1 T;, we have ||g(u(t),y/4)||2 > g(;). Thus, by taking
t > > | T we have |[g(u(t),y/4)|]> > J(p) = 9max- However, from the definition of gmax,

we have || g( t),¥/1)|l2 < gmax. This leads to a contradlctlon Therefore, there exists a time
T =" T, =0(logd ') such that v(T)Tu(T) > 1 — 24.

We note that H g(u(T),y/4)|l2 = gmin- As the statements in Lemma (2) hold, we have

I8(u(T).y/4) ~ g(a(T), (D)), < L2 (113)

According to Lemma 7, we have

‘g(um,y/@ g(u(T),\(T))

_ ) < 2lg(T).y/4) — gD AT)]2 _ &
le(u(T).y /D2 [lgu(@), A(T)l2

9 h Jmin 4
(114)
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This implies that

r_g().y/4)
D Tetulr )y/4>||2
Su(T) ‘ D) g(u(T), \(T)) (115)
- l&(a(T) M2 [lg(u(T), X(T))l2 |,
>1-4

Hence, we have

cos Z(u u =u TMZU r 8u(T),y/4) B
A3 =0 )yl = au(m vl =

This completes the proof.

D.5 PROOF OF LEMMA 4

PrROOF This is proved in Lemma 2 in (Phuong & Lampert, 2021). Here we provide an alternative
proof. It is sufficient to prove for the case of local maximizer. Suppose that w is a local maximizer of
y T (Xw), in B. We first consider the case where y (Xw) > 0.

If there exists n € [N] such that (w,x,) < 0 and y,, = 1. Consider v = x,/||x,||2 and let

W, = Hx’fﬁi’”z, where € > 0. For index n’ € [N] such that y,,, = 1, as the dataset is orthogonal

separable, we have xz,xn > (0 and

XD (w4 ev) = x5 w+ —— HX ” x2ix, > xLw. (116)
n |2
This 1mphes that (x ,w€)+ > (XZ,W)+. For y,» = —1, as the data is orthogonal separable, we note
that xn,xn < 0 and
xI(w+ev)=xL,w4 —— HX B xFx, < xLw. (117)
n

T

This implies that (XTWE)+ < (xj W)+ In summary, we have

N
y ' (X(w+ev))y = Zyn (WH+ev)s 2D yn(xfw)y =y (Xw); >0 (118)
n=1

n=1

If (w,x,) < 0, then wl'v < 0. This implies that with sufficiently small €, we have |w + ev||s <

|[wl|2 = 1. Therefore,

1
YT (Xwo)s = ————yT(X(w+ )y >y (X(w+ev))y > yT(Xw)s,  (119)
[w + vl

which leads to a contradiction. If (w,x,,) = 0, we note that
(xI(w+ev))y =e> (xLw),. (120)
This implies that
y (X (w+ev)): >y (Xw), +e. (121)
We also note that ||w + ev|s = /1 + €2 = 1 + O(e?). Therefore, with sufficiently small e, we have
y' (Xw); +e <
Vite

We then consider the case where y? (Xw), < 0. Apparently, we can make y’ (Xw), larger by
replacing w by (1 — €)w, where € € (0, 1), which leads to a contradiction.

y'(Xwe)y > vy (Xw). (122)

Finally, we consider the case where y7 (Xw) = 0. This implies that
Z (X?W)Jr = Z (X?W)+. (123)
n:ynp=1 n:ynp=—1

As (Xw)4 # 0, this implies that there exists at least for one index n € [N] such that y,, = 1 and
xIw > 0. Let v = x,, /|| Xy||2. We note that T(X(w + €ev));+ > 0 for € > 0. This leads

1
. wrelzY
to a contradiction.
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D.6 PROOF OF PROPOSITION 7

It is sufficient to consider the case of the local maximizer. Denote Q = {o € {—1,0,1}"|diag(o) €
P}. Foro,o0' € Q, wesay o C o' if for all index n € [N] with o,, # 0, 0}, = 0,,. Wesay o € Q
is open if o, # 0 for n € [N]. Define

Se = {u|sign(Xu) = o}. (124)

We start with the two lemmas.

Lemma 8 Let A € RY. Suppose that u satisfies that ug = m. Let o = sign(ug). Then,

v € By is a local maximizer of T (Xu) in By if for any open o’ satisfying o C o', we have

Ig(o,y)ll2 = lIgle’, y)l2-

PROOF Suppose that o is open. Then, S, is an open set. In a small neighbor around ug =
g(uo. ) gle X AT(Xu); = uTg(o, ) is a linear function of u. The Riemannian

[ECTRN] PR e VP
gradient of u”g(o, A) at v is zero. This implies that v locally maximizes A” (Xu),..

Suppose that there exists at least one zero in . Consider any v € 3 satisfying ul v = 0. Let € > 0

be a small constant such that for any s € (0, €], ug + sv € S,» where 0 C o’. Letu; = ;{'%"2

Suppose that ||g(a”, A)||2 < ||g(o, A)||2 for all open o satisfying o C o”. For any o’ with

o C o', we construct ” by o/ = —1 for n € [N] such that o}, = 0 and o/ = o, for
n € [N] such that o], = 0. We note that ||g(o”,A)]l2 > [|g(c’,A)||2- Thus, ||g(c’, A2 <
lg@”, Nl < llglo, A)ll2. As A (Xus)4| = [g(e’, ) us| < [g(o”,A)||2. we have

AT (Xug)4| < llg(a’, N2 < |lg(o, A)||2. Therefore, u is a local maximizer of A (Xu),..

Lemma 9 Suppose that the dataset is orthogonal separable. Let A € RY satisfy that diag(y)A > 0.
Suppose that v satisfies that vy = m.
gl A)llz = llg(a; A)ll2.

PROOF If there exists n € [N] such that o,, = 1 and y,, = —1, as the data is orthogonal separable,
we note that

Then, for any o’ satisfying o C o', we have

xPg(o, ) = xL Z Mvxnr | = yn(ynxn)T Z A Yn )Y X | <0, (125)

n’:0,,>0 n':0,r>0

T

which contradicts with sign(xXg(a, A)) = sign(x.ug) = 0, = 1.

Suppose that there exists n € [N] such that o,, and y,, = 1. Then, as the dataset is orthogonal
separable, then, for index n; € [IN] such that o,,, = 0, we note that y,,, # 1. Otherwise,

xp g N =x0 | Y Auxn, | =% | D0 Anana)UnaXn, | >0, (126)

N0, >0 n2:0n, >0

which contradicts with sign(x% g(o, A)) = sign(x% ug) = o,,, = 0. This also implies that the
index set {n € [N]|o, > 0} include all data with y,, = 1.

If there exists o’ such that o C o’ and ||g(o’, A)||2 > ||g(o, A)||2. Then, there exists at least one
index n € [N] such that o, < 0 and o], = 1. However, from the previous derivation, we note that
Yyn = —1 and

ng(a/7 A) = xz: Z )‘n1xn1 = XZ Z (/\n1yn1)ynlxn1 <0, (127)
j:a';m1 >0 nlza';Ll >0

which contradicts with o/, = 1.

By combining Lemma 8 and 9, we complete the proof.

23



Published as a conference paper at ICLR 2022

D.7 PROOF OF THEOREM 4

PROOF For almost all initialization, we can find two neurons such that sign(ws;, )
sign(y”(Xwy,;,)+) = 1 and sign(w,; ) = sign(y”(Xw;,_);) = -1 at initializa-
tion. By choosing a sufficiently small § > 0 in Proposition 6, there exist two neurons
W1, ,Wi,_ and times 7 ,7_ > 0 such that cos Z(w1;, (T),g(wW1,, (T4),y)) > 1 — ¢ and
cos Z(wi, (T1),g(Wi,s, (T4),y)) < —(1 —6). This implies that w1 ;, (T ) and w1 ;_ (T ) are
sufficiently close to certain stationary points of gradient flow maximizing/minimizing y7 (Xu)
over B, i.e., {u € B|cos(u, g(u,y)) = £1}. As the dataset is orthogonal separable, according to
Lemma 4 and Proposition 7, the corresponding diagonal matrices D; L (Ty) and D, (T_) satisfy
that ]5i+ (Ty) > diag(I(y = 1)) and D, (T_) > diag(I(y = —1)). According to Lemma 3 in
(Phuong & Lampert, 2021), we have D;, (t) > diag(I(y = 1)) and D;_(t) > diag(I(y = —1))
hold for ¢t > max{T,T_}.

With ¢ — o0, according to Proposition 4, the dual variable A in the KKT point of the non-convex

max-margin problem (13) is dual feasible, i.e., A satisfies (16). Suppose that 8™ is a limiting point

of {%} - and \* is the corresponding dual variable. From Theorem 1, we note that the pair
t>0

(6", \*) corresponds to the KKT point of the convex max-margin problem (14).

E PROOFS OF MAIN RESULTS ON MULTI-CLASS CLASSIFICATION

E.1 PROOF OF PROPOSITION 1

The neural network training problem (4) can be separated into K subproblems. Each of these
subproblems corresponds to the neural network training problem (3) for binary classification. For
each subproblem, by applying Proposition 2, we complete the proof.

E.2 PROOF OF THEOREM 1

We note that the neural network training problem (4) can be separated into K subproblems. Each of
these subproblems corresponds to the neural network training problem (3) for binary classification.
By applying Proposition 6 with to each subproblem with y = yy, we complete the proof.

E.3 PROOF OF THEOREM 2

Similarly, the corresponding non-convex max-margin problem (5) and the convex max-margin
problem (7) can be separated into K subproblems. Each of these subproblems corresponds to the non-
convex max-margin problem (2) and the convex max-margin problem (14) for binary classification.
By applying Theorem 4 to each subproblem with y = yj, we complete the proof.

F NUMERICAL EXPERIMENT

F.1 DETAILS ON FIGURE 5

We provide the experiment setting in Figure 1 and 5 as follows. The dataset is given by X =

[_1(')6,527 _1(.)3457} €ER??andy = [_11} € R2. Here we have N = 2 and d = 2. We note that this

dataset is orthogonal separable but not spike-free. We plot the ellipsoid set and the rectified ellipsoid
set in Figure 6.
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-2 -1 0 1 2 -2 -1 0 1 2

Figure 6: The ellipsoid set and the rectified ellipsoid set. Orthogonal separable dataset.

We enumerate all possible hyperplane arrangements in the set P and solve the convex max-margin
problem (14) via CVXPY to obtain the following non-zero neurons

0.58 —0.23
ULy = {—0.16} Wi = [0.66 ] : (128)
We note that the dual problem (15) is equivalent to

max )\Ty,
st [ XTD A = XT(2D; — Dz 4 [la < 1,5 € [p],
| = XTD;\ = XT(2D; — Iz, |2 < 1,Vj € [p],
z;+ > 0,z;,_ > 0,Yj € [p],diag(y)A > 0.

(129)

The above problem is a second-order cone program (SOCP) and can be solved via standard convex
optimization frameworks such as CVX and CVXPY. We solve (129) to obtain the optimal dual
variable A. For the geometry of the dual problem, as the dataset is orthogonal separable, the set
{X s max|y|,<1 AT (Xu)4| < 1} reduces to {\ : max|y,<1 A (Xui);| < 1L,AT (Xup)4| <
1}, where uj, u} correspond to two vectors at the spikes of the rectified ellipsoid set. We draw the
sets { A : max|y|,<1 IAT(Xu) 4| <1}, {\ , the optimal dual variable A and the direction of y in
Figure 2.

For each D; € P, we solve for the vector u; which maximize/minimize )\TDquj with the
constraints |[u;|l2 < 1and (2D; — I)Xu; > 0. We plot the rectified ellipsoid set {(Xu)4|||u]l2 <
1}, vectors u;, neurons in the optimal solution to (14) scaled to unit £-norm and the direction of A

in Figure 1. We note that each neuron u}‘ in the optimal solution from (14) (scaled to unit £5-norm)
maximize/minimize the corresponding A’ D;Xu; given (2D, — I)Xuj > 0.

Then, we consider a two-layer ReL.U network with m = 10 neurons and apply the gradient descent

method to train on the logistic loss (3). Let Wy ; = H‘::,lil‘h for i € [m]. We plot wq ; and (XW1 ;) +
at iteration {10'|l = 0,...,4} along with neurons in the optimal solution to (14) scaled to unit

£s-norm in Figure 5. Certain neurons do not move, while the activated neurons trained by gradient
descent tend to converge to the direction of the neurons in the optimal solution to (14).

We repeat the training on the logistic loss (3) with the gradient descent method several times and we
plot the trajectories in Figure 7.
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Figure 7: Multiple independent random initializations of gradient descent trajectories on the same

orthogonal separable dataset.
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F.2 EXPERIMENT ON SPIKE-FREE DATASET

We repeat the previous numerical experiment on a non-spike-free dataset: X = {(1)2‘; (1);,1;}

R?*2andy = [ﬂ € R2. Similarly, we plot the ellipsoid set and the rectified set in Figure 8.

-2 -1 [ 1 2 -2 -1 0 1 2

Figure 8: The ellipsoid set and the rectified ellipsoid set for a non-spike-free dataset.

We enumerate all possible hyperplane arrangements in the set P and solve the convex max-margin
problem (14) via CVXPY to obtain the following non-zero neuron

0.43
uj4 = |:059:| (130)

We plot the rectified ellipsoid set {(Xu)||lull2 < 1}, vectors u;, neurons in the optimal solution to
(14) scaled to unit £5-norm and the direction of A in Figure 9. We also plot W ; and (X ;)4 at

iteration {10'|l = 0,...,4} along with neurons in the optimal solution to (14) scaled to unit /5-norm
in Figure 10.
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Figure 9: Recitified Ellipsoidal set and correspond-
ing extreme points for a non-spike-free dataset.
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Figure 10: Multiple independent random initializations of gradient descent trajectories on the same
non-spike-free dataset. Note that the optimal extreme point (star), which is the uniquely optimal single
neuron is on the boundary of the main two-dimensional ellipsoid and not on the one-dimensional
spikes (projected ellipsoids). Also note that some neurons are stuck at spurious stationary points.
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