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Abstract—Considered is a network of parallel wireless channels
in which individual parties are engaged in secret communication
under the protection of cooperative jamming. A strategic eaves-
dropper selects the most vulnerable channels to attack. Existing
works usually suggest the defender allocate limited cooperative
jamming power to various channels. However, it usually requires
some strong assumptions and complex computation to find
such an optimal power control policy. This paper proposes a
probabilistic cooperative jamming scheme such that the defender
focuses on protecting randomly selected channels. Two different
cases regarding each channel’s eavesdropping capacity are dis-
cussed. The first case studies the general scenario where each
channel has different eavesdropping capacity. The second case
analyzes an extreme scenario where all channels have the same
eavesdropping capacity. Two non-zero-sum Nash games model the
competition between the network defender and an eavesdropper
in each case. Furthermore, considering the case that the defender
does not know the eavesdropper’s channel state information
(CSI) leads to a Bayesian game. For all three games, we derive
conditions for the existence of a unique Nash equilibrium (NE),
and obtain the equilibria and the value functions in closed form.

Index Terms—wireless communication network, eavesdrop-
ping, cooperative jamming, security game, Bayesian equilibrium.

I. INTRODUCTION

THE broadcast nature of wireless communication allows
for the transmitted messages to be eavesdropped by

unintended receivers who are within the communication range.
Over the years, efforts have been made to facilitate the secu-
rity of wireless communication channels, and game-theoretic
models naturally arise in such resource allocation problems
[1]. Garnaev and Trappe [2] solved a power allocation problem
of a transmitter working against nature, which decides on the
transmission and eavesdropping gains using a zero-sum game.
Yüksel et al. [3] investigated a rate allocation game between
a source and a hostile jammer helping an eavesdropper. As
suggested in [4]–[6], eavesdroppers, through different means,
may also strategically manipulate the secrecy performance

This material is based upon work supported by the National Science
Foundation (Grant No.1901721)

of wireless networks. Various game theoretic models with
eavesdroppers as decision makers have been investigated, such
as the stochastic game studied in [7] and [8], in which a
sender and an attacker can both switch between multiple
working modes. In [9], the authors suggested a game against
an attacker who can choose which one of multiple parallel
channels to eavesdrop on.

Research on interference channels has led to the intro-
duction of using artificial noise to enhance the secrecy of a
communication channel (see [10], [11]). Tekin and Yener [12],
[13] showed that the secrecy of a wireless wire-tap chan-
nel consisting of multiple sender-receiver links can be in-
creased when some of the senders transmit jamming signals
to the eavesdropper. The authors coined the term Cooperative
Jamming for the proposed scheme. Other researchers have
investigated different aspects of friendly interference since
then. For instance, Tang et al. [14], [15] investigated the
achievable secrecy rate when a friendly interferer is employed
to jam passive eavesdroppers. Rabbachin et al. [16] studied
a wireless network assisted by multiple friendly interferers.
Comprehensive reviews of cooperative jamming and friendly
interference can be found in [17], [18].

The effect of interference has been introduced into games
against eavesdroppers as well, such as the information secrecy
game in [19] in which a second legitimate user tries to
jam the eavesdropper in a cognitive network, and the relay
selection game in [20] with multiple users interfering with
each other when they use the same relay. Game theoretic
models have also been used to study the interaction between
users and friendly interferers, such as the Stackelberg pricing
game by Han et al. [21] for a single communication pair and
friendly jammers. Zhong et al. [22] extended this game to
the case of power sharing between the sender and friendly
interferers. Wang et al. [23] investigated another pricing game
in which a single friendly interferer protects all sub-channels
of an OFDMA network. Garnaev et al. [24] analyzed a game
between a friendly interferer and a strategic eavesdropper in
which each player could target a single channel. The authors
showed that both players adopted threshold type equilibrium

2021 IEEE Conference on Communications and Network Security (CNS)

978-1-6654-4496-5/21/$31.00 ©2021 IEEE 47

20
21

 IE
EE

 C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
k 

Se
cu

rit
y 

(C
N

S)
 | 

97
8-

1-
66

54
-4

49
6-

5/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

N
S5

30
00

.2
02

1.
97

05
04

4

Authorized licensed use limited to: Rutgers University. Downloaded on August 31,2022 at 20:15:59 UTC from IEEE Xplore.  Restrictions apply. 

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


policies.
In this paper, we consider using cooperative jamming to

protect a network of parallel wireless channels against a strate-
gic eavesdropper who selects a limited number of channels
as targets. Existing works, such as [25] and [26], usually
focus on hard-to-compute power allocation strategies and rely
on strong assumptions. In [25], Zhang et al. proposed a
Lagrange dual method with the help of exhaustive search to
find the optimal power allocation strategy. In [26], Xu and
Baykal-Gürsoy restricted discussions to the situation where the
eavesdropping channels are the degraded versions of the wire-
tapped communication channels, and used bi-section search
algorithms to find a Nash equilibrium. However, those assump-
tions may not be realistic since CSIs are essentially random
variables that may change from time to time. In this paper, we
propose a probabilistic cooperative jamming scheme such that
the defender focuses on protecting channels selected randomly
from time to time. We develop a game-theoretic approach
to study the channel selection strategy without assuming the
relationships between the intended receiver’s CSI and the
eavesdropper’s CSI. We introduce two games corresponding
to different possibilities of eavesdroppers’ CSI. Moreover, we
present a Bayesian game in which the eavesdropper’s CSI
is private information. The analysis demonstrates that the
equilibrium and the value of each game are derived in closed
form equations without the need for iterative computations.

The rest of this paper is organized as follows. Section II
introduces the basic notation and the utility function of the
defender. Section III presents two non-zero-sum games asso-
ciated with two cases of eavesdroppers’ CSI, and derives the
closed form solutions of equilibrium strategies. Section IV
suggests a Bayesian game that takes into account the un-
certainty of eavesdroppers’ CSIs. Section V demonstrates
numerical examples. Sections VI summarizes the conclusions
and makes suggestions for future research. Finally, Appendices
A and B contain the proofs of Theorems 1 through 3.

II. FORMULATION OF THE PROBLEM

A. System Model

Consider a parallel wireless communication network con-
sisting of N independent sender-receiver channels, such as the
frequency-division-multiplexing (FDM) communication net-
work shown in Fig. 1, or an orthogonal-frequency-division-
multiplexing (OFDM) network discussed in [23] and [25].
Each channel works at a non-overlapping frequency and the
inter-channel interference is mitigated via techniques like
pulse-shaping filters. Confidential messages are transmitted
through these channels in blocks of T length of time. For
each channel i, the communication capacity is

CLi = log2
(
1 +

hLiPi

σ2
i

)
, (1)

with hLi
denoting the channel gain between sender i (Alice

i) and legitimate receiver i (Bob i), Pi, σ2
i denoting the

transmission power and the noise, respectively, on channel i.
Meanwhile, an eavesdropper (Eve) tries to intercept the

communication between senders and receivers. Due to budget

Fig. 1. Interference Assisted Parallel Communication Network

limitation, or to reduce the risk of Local Oscillator (LO)
leakage that may be caught by Intrusion Detection Systems
(see, e.g., [8]), Eve can only use hardware with limited
capability to listen on nE of N different frequencies at the
same time. The eavesdropping capacity of channel i is

CEi = log2
(
1 +

hEiPi

σ2
i

)
, (2)

with hEi denoting Eve’s channel gain at eavesdropping chan-
nel i. Under an eavesdropping attack, channel i’s achievable
transmission rate is equal to its secrecy capacity [27]–[29]

CSi = (CLi − CEi)
+ = (CLi − CEi) + ∆Ii , (3)

where x+ = max {x, 0} and ∆Ii = (CEi − CLi)
+. In this

paper, we consider the scenario where Alice and Bob will
only send information when the default secrecy capacity, CSi

,
is positive, that is, ∆Ii = 0.

A friendly interferer (Ian), with total power J at hand, can
send out cooperative jamming signals to decrease eavesdrop-
ping capacities. If Ian chooses to jam channel i that Eve also
picks, channel i’s eavesdropping capacity will be reduced to

C
′
Ei

= log2
(
1 +

hEiPi

σ2
i + gEiJ

)
, (4)

where gEi
is the channel gain on i between Ian and Eve [16].

This paper adopts the worst case scenario where cooperative
jamming may not be perfectly mitigated by Bob i. Thus, the
communication capacity of channel i will also be decreased
to

C
′
Li

= log2
(
1 +

hLiPi

σ2
i + gLiJ

)
, (5)

where gLi is the channel gain between Ian and Bob i.
Therefore, the secrecy capacity of channel i with the help of
cooperative jamming becomes

C
′
Si

=
(
C

′
Li

− C
′
Ei

)+
, ∀i = 1, ..., N. (6)

This paper adopts the common assumption that the instan-
taneous CSI of intended users, hLis and gLis, are perfectly
known to both Ian and Eve (see, e.g., [25], [30], [31]).
Meanwhile, hEi

s and gEi
s may be instantaneous values if

eavesdropper’s CSIs are also known; otherwise, since Eve
is typically listening passively, hEi

s and gEi
s denote some

approximate value such as mean or mode when only statistical
CSI of eavesdropping channels is available [32]–[34].

It is clear that Ian should not interfere with channels with
C

′

Si
≤ CSi

. Also, applying cooperative jamming to a channel
i that is not under attack will only harm the network’s
throughput. In practice, it is hard for Ian to know the target
chosen by Eve ahead of time. Similarly, Eve is unlikely to
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identify all the channels protected by Ian within T time due
to her limited eavesdropping capability. Hence, assume that
Ian and Eve make their choices simultaneously and thus, they
are engaged in a one-shot simultaneous play Nash game.

B. Game Formulation

In this paper, we consider a probabilistic cooperative jam-
ming scheme such that Ian protects a single channel, i.e.,
nI = 1, at every transmission block and will select the channel
strategically. Also, we focus on a limited-capability Eve with
nE = 1, and leave the more general case for future research.

The other parameters are as follows:
• di ∈ (0, 1]: efficiency of cooperative jamming on eaves-

dropping channel i, where di = (CEi − C
′

Ei
)/CEi .

• pi ∈ (0, 1]: detrimental effect of cooperative jamming on
Bob i, where pi = (CLi

− C
′

Li
)/CLi

.
• xi ∈ [0, 1]: probability of Ian defending channel i for i ≤
N , and probability of not interfering at all for i = N+1.
Let x = (x1, ..., xN+1)

ᵀ represent Ian’s mixed strategy
and X = {x|x ≥ 0,

∑N+1
i=1 xi = 1}.

• yi ∈ [0, 1]: probability of Eve attacking channel i for
i ≤ N . y = (y1, ..., yN ) represents Eve’s mixed strategy
and Y = {y|y ≥ 0,

∑N
i=1 yi = 1} .

With probabilistic strategies xi and yi, the achievable trans-
mission rate for secret communication at channel i is a random
variable, say RSi

, where

RSi =


C

′
Si

with probability xiyi,

CSi with probability (1− xi)yi,

(1− pi)CLi , with probability xi(1− yi),

CLi , otherwise.

(7)

Ian, working as a helper to improve the overall secrecy
of the network, aims to maximize the expected achievable
transmission rate of the whole network [9]. Thus, Ian’s payoff
under arbitrary mixed strategies (x,y) is

µD(x,y)=E

[
N∑
i=1

RSi

]
=

N∑
i=1

E[RSi ]

=

N∑
i=1

xi

[(
N∑

k=1

CLk−
N∑

j=1

yj
(
CEj−∆Ij

))
−piCLi+yidiCEi

−yi∆Ii

]
+xN+1

[
N∑

k=1

CLk−
N∑

j=1

yj
(
CEj−∆Ij

)]
.

(8)

Note that we have omitted the positive operation (·)+ for C
′

Si

in function (8), which is due to the fact that the optimal value
of xi must be 0 if C

′

Si
= 0, and thus Ian’s payoffs with and

without the positive operation have the same optimal value.
The next section introduces two types of Eve with different

configurations of CSI. Type I Eve has distinct eavesdropping
capacities at each channel, while Type II Eve has the same
eavesdropping capacity at all channels. We present a non-zero-
sum game for each type, and show that the eavesdropper has
different behavioral patterns under each situation. The Nash
equilibrium (NE) strategy for each type of Eve, namely type

h = I, II, together with the corresponding interference strategy
x∗, i.e., the strategy pair (x∗,y∗

h), satisfies
vDh ≡ µD(x∗,y∗

h) ≥ µD(x,y∗
h), ∀x ∈ X,

vAh ≡ µA
h (x

∗,y∗
h) ≥ µA

h (x
∗,yh), ∀yh ∈ Y,

where vDh and vAh denote the game value of the two players.

III. COMPLETE INFORMATION GAMES: TWO BASIC CASES

A. Against Type I Eve

In this scenario, we consider the general case where Eve’s
eavesdropping capacities are all distinct and call this Eve as
Type I Eve. For the sake of simplicity, assume that all CEi

’s
are arranged in decreasing order, that is,

CE1 > CE2 > · · · > CEN
> 0.

With probabilistic strategies xi and yIi , the eavesdropping
capacity utilized by Eve at channel i is a random variable,
say REi

, where

REi =


C

′
Ei

with probability xiyIi ,

CEi with probability (1− xi)yIi ,

0, with probability 1− yIi .

(9)

Thus, the expected payoff for Type I Eve under arbitrary mixed
strategies (x,yI), is

µA
I (x,yI) =

N∑
i=1

E [REi ] =

N∑
i=1

yIiCEi

(
1− xidi

)
. (10)

The following theorem demonstrates the water-filling form
[35] of the equilibrium, (x∗,y∗

I ).

Theorem 1. Consider the non-zero-sum game against Type I
Eve. Let k be a positive integer such that φk < 1 < φk+1

where φi is a strictly increasing sequence defined as φi =∑i
j=1

CEj
−CEi

djCEj
, ∀i = 1, .., N and φN+1 = ∞. Let m be a

non-negative integer such that ψm < 1 < ψm+1, where ψi is
a strictly increasing sequence defined as ψi =

∑i
j=1

pjCLj

djCEj
,

∀i = 1, .., N and ψN+1 = ∞.
(a) If k ≤ m, then the game has a unique NE (x∗,y∗

I ) with

x∗j=


1

djCEj∑k
i=1

1
diCEi

(1−
∑k

i=1

CEi
−CEj

diCEi
), ∀j ≤ k,

0, ∀k < j ≤ N + 1,

(11)

y∗Ij=


1

djCEj∑k
i=1

1
diCEi

(1−
∑k

i=1

piCLi
−pjCLj

diCEi
), ∀j ≤ k,

0, ∀k < j ≤ N.

(12)

(b) If m < k, then the game has a unique NE (x∗,y∗
I ) with

x∗j =


CEj

−CEm+1

djCEj
, ∀j ≤ m,

0, ∀m < j ≤ N,

1−
∑m

i=1

CEi
−CEm+1

diCEi
, j = N + 1,

(13)

y∗Ij =


pjCLj

djCEj
, ∀j ≤ m,

1−
∑m

i=1
piCLi

diCEi
, j = m+ 1,

0, ∀j > m+ 1.

(14)

Proof. We provide a proof in Appendix A.

2021 IEEE Conference on Communications and Network Security (CNS)

49

Authorized licensed use limited to: Rutgers University. Downloaded on August 31,2022 at 20:15:59 UTC from IEEE Xplore.  Restrictions apply. 

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


Remark. Note the assumptions that φk 6= 1 and ψm 6= 1.
In case φk = 1 and ψm 6= 1, the defender, in case φk 6= 1
and ψm = 1, the attacker may have infinitely many solutions,
depending on k ≤ m or m < k, respectively.

The value of m will be smaller if pjCLj s are close to
djCEj s. This means that when the intended receivers suffer
more from interference, the number of channels that will be
protected by Ian gets smaller. Besides, if m < k, Ian will not
even expand his resources fully into interference.

B. Against Type II Eve

In this scenario, we consider an extreme case in which Eve’s
eavesdropping capacities at different channels are similar to
each other. That is,

CE1
≈ CE1

≈ · · · ≈ CEN
≈ CE ,

where CE is the average value of all CEi
’s. It will be shown

that the equilibrium strategies are no longer of threshold type.
Using CE instead of CEi

in equation (10), the expected payoff
for Type II Eve under arbitrary mixed strategies, (x,yII), can
be characterized as

µA
II(x,yII) = CE

N∑
i=1

yIIi

(
1− xidi

)
. (15)

Since all channels’ eavesdropping capacities are the same,
Type II Eve can focus on avoiding strong interference signals
with high di. Ian also approximates each channel’s eavesdrop-
ping capacity CEi

using CE , so the defender’s payoff in this
scenario changes to

µD(x,yII)=

N∑
i=1

xi

[( N∑
k=1

CLk−CE+

N∑
j=1

yIIj∆IIj

)
−piCLi+yIIidiCE−yIIi∆IIi

]

+xN+1

[
N∑

k=1

CLk−CE+

N∑
j=1

yIIj∆IIj

]
,

(16)

where ∆IIj =
(
CE − CLj

)+
. We still consider that all

channels to be protected has positive default secrecy capacity,
that is, ∆IIj = 0 in this paper.

The following theorem provides analytical expressions for
the equilibrium strategies x∗ and y∗

II, and reveals an all-or-
nothing defending pattern.

Theorem 2. Consider the non-zero-sum game against Type II
Eve. Let ξN =

∑N
j=1

pjCLj

djCE
.

(a) If ξN < 1, then the game has a unique equilibrium
strategy for both players as

x∗j =


1
dj∑N

i=1
1
di

, ∀j = 1, ..., N,

0, j = N + 1,
(17)

y∗IIj =

1
dj∑N
i=1

1
di

(
1−

N∑
i=1

piCLi
− pjCLj

diCE

)
, ∀j ≤ N. (18)

(b) If ξN > 1, then the game has a unique equilibrium
strategy for the defender but a continuum of equilibrium

strategies for the eavesdropper, as given below.

x∗j =

{
0, ∀j ≤ N,

1, j = N + 1,
and y∗IIj ≤

pjCLj

djCE
, ∀j ≤ N. (19)

Proof. We provide a proof in Appendix A.

Remark. Here we assume ξN 6= 1 to focus on the cases in
which Ian has unique equilibrium strategies. When ξN = 1,
Ian may have infinitely many solutions.

The condition ξN < 1 actually implies that pjCLj
is much

smaller than djCE for all j < N . In this situation, Ian
will interfere with all channels probabilistically but pay more
attention to the channels with small djs since Type II Eve
tries to avoid strong interference. But, if ξN > 1, Ian will
not interfere at all since the attacker can always eavesdrop on
channels with relatively large djCE .

IV. BAYESIAN GAME WITH UNCERTAINTY ABOUT
EAVESDROPPER’S CSI

This section considers the scenario where the instantaneous
CSI of eavesdropping channels is privately known by the
eavesdropper, while the defender has distributional knowledge
that the eavesdropping capacities are {Ck

Ei
, ∀i} with probabil-

ity αk, where
∑K

k=1 αk = 1. That is, the defender needs to
use one consistent cooperative jamming strategy to counter
the attack initiated by possibly K different eavesdroppers.
We propose a Bayesian game theoretic model in which the
defender’s expected payoff is characterized as

µD(x,yh1
, ...,yhK

) =

K∑
k=1

αkµ
D(x,yhk

), (20)

where yhk
is the strategy adopted by a type k eavesdropper.

In this paper, we focus on the scenario where Ian will
encounter either a Type I or a Type II Eve with probability
α∈(0, 1) and 1− α, respectively, and we leave more compli-
cated scenarios for future discussion. The expected payoff for
Ian, µD, under a mixed policy triple (x,yI,yII), of Ian, Type
I Eve and Type II Eve, respectively, is
µD(x,yI,yII)=α·µ

D(x,yI)+(1−α)µ
D(x,yII)

=

N∑
i=1

xi

[
N∑

k=1

CLk−α
N∑

j=1

yIjCEj−(1−α)CE

]

+

N∑
i=1

xi

(
−piCLi+αyIidiCEi+(1−α)yIIidiCE

)
+xN+1

[
N∑

k=1

CLk−α
N∑

j=1

yIjCEj−(1−α)CE

]
.

(21)

Meanwhile, Eve is playing a game with complete information.
Let (x∗,y∗

I ,y
∗
II) be the Bayesian equilibrium such that

vDB ≡ µD(x∗,y∗
I ,y

∗
II) ≥ µD(x,y∗

I ,y
∗
II), ∀x ∈ X,

vAI ≡ µA
I (x

∗,y∗
I ) ≥ µA

I (x
∗,yI), ∀yI ∈ Y,

vAII ≡ µA
II(x

∗,y∗
II) ≥ µA

II(x
∗,yII), ∀yII ∈ Y,

where vDB , vAI and vAII denote the game value of Ian, Type I
Eve and Type II Eve, respectively.
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The following lemma reveals a channel sharing structure for
Type I and Type II Eves. The equilibrium target sets of two
Eves have at most one channel in common.

Lemma 1. For the Nash equilibrium (x∗, y∗
I , y

∗
II), if y∗Ii > 0,

then y∗IIj = 0, ∀j < i.

Proof. Let SA
i be a pure policy of Eve attacking channel i

with probability 1. Given y∗Ii > 0, it holds that

µA
I (x

∗, SA
i ) ≥ µA

I (x
∗, SA

j ), ∀j = 1, ..., N,

implying
CEi

− x∗i diCEi
≥ CEj

− x∗jdjCEj
, ∀j = 1, ..., N.

This inequality, then, provides the following bound on the
payoff function of Type II Eve under the pure policy of
attacking channel j, i.e., µA

II(x
∗, SA

j ), as

µA
II(x

∗, SA
j ) = CE(1− x∗

jdj)

≤ CEi

CEj

CE(1− x∗
i di), ∀j = 1, ..., N

< CE(1− x∗
i di) = µA

II(x
∗, SA

i ), ∀j < i

since CEj > CEi , ∀j < i. This means that SA
j s are not Type

II Eve’s best responses for all j < i.

According to lemma 1, there must exist an integer n such
that y∗Ii > 0, ∀1 ≤ i ≤ n, y∗Ii = 0, ∀n + 1 ≤ i ≤ N and
y∗IIi = 0, ∀1 ≤ i ≤ n − 1, y∗IIi ≥ 0 ∀n ≤ i ≤ N . Let
µ̄D
Bi

≡ µD(SD
i ,y

∗
I ,y

∗
II) − µD(SD

N+1,y
∗
I ,y

∗
II) is the benefit

of interfering with channel i as opposed to not interfering at
all. It is equal to

µ̄D
Bi

=


−piCLi + αy∗

Ii
diCEi , ∀i = 1, ..., n− 1,

−piCLi + αy∗
Ii
diCEi + (1− α)y∗

IIi
diCE , i = n,

−piCLi + (1− α)y∗
IIi

diCE , ∀i = n+ 1, ..., N,

0, i = N + 1.

This implies that Ian will confront only Type I Eve from
channels 1 to n− 1, only Type II Eve from channels n+1 to
N , and a mix of Type I Eve and Type II Eve at channel n in
the Bayesian equilibrium.

The next theorem provides an analytical solution
(x∗,y∗

I ,y
∗
II) to this Bayesian game.

Theorem 3. Consider the Bayesian game described above.
Let ṽDB be the solution to

ṽDB = µ̄D
B1

= · · · = µ̄D
BN

,∑n
i=1 y

∗
Ii
= 1,∑N

i=n y∗
IIi

= 1.

(22)

Let k and φk be defined as in Theorem 1. Let m be a non-
negative integer such that ζm < 1 < ζm+1 where ζi is a
strictly increasing sequence defined as

ζi =
1

α

i∑
j=1

pjCLj +max
{
ṽDB , 0

}
djCEj

, ∀i = 1, ..., N, (23)

and ζN+1 = ∞.

(a) If k ≤ m, then the game has unique equilibrium
strategies for the defender and for Type I Eve, and a continuum

of equilibrium strategies for Type II Eve, given as

x∗j=


1

djCEj∑k
i=1

1
diCEj

(1−
∑k

i=1

CEi
−CEj

diCEi
), ∀j ≤ k,

0, ∀j > k,

(24)

y∗Ij=


1

djCEj∑k
i=1

1
diCEi

(
1− 1

α

∑k
i=1

piCLi
−pjCLj

diCEi

)
, ∀j ≤ k,

0, ∀j > k,

(25)

y∗IIj

= 0, ∀j ≤ k,

≤ α
1−α

1
djCE∑k

i=1
1

diCEi

(1− 1
α

∑k
i=1

piCLi
−pjCLj

diCEi
), ∀j > k.

(26)
(b) If k > m, and
(b - 1) ṽDB < 0, then the game again has unique equilibrium

strategies for the defender and for Type I Eve, and a continuum
of equilibrium strategies for Type II Eve, given as

x∗j =


CEj

−CEm+1

djCEj
, ∀j ≤ m,

0, ∀m < j ≤ N,

1−
∑m

i=1

CEi
−CEm+1

diCEi
, j = N + 1,

(27)

y∗Ij =


1
α · pjCLj

djCEj
, ∀j ≤ m,

1− 1
α

∑m
i=1

piCLi

diCEi
, j = m+ 1,

0, ∀j > m+ 1,

(28)

y∗IIj =


0, ∀j < m,

≤ 1
1−α · pjCLj

djCE
− αCEj

(1−α)CE
(1− 1

α

∑m
i=1

pjCLj

diCi
),

j = m+ 1,

≤ 1
1−α · pjCLj

djCE
, ∀j > m+ 1.

(29)
(b - 2) ṽDB > 0, then all players have unique equilibrium

strategies as

y∗Ij =


1
α · pjCLj

+ṽD
B

djCEj
, ∀j ≤ m,

1− 1
α

∑m
i=1

piCLi
+ṽD

B

diCEi
, j = m+ 1,

0, ∀j > m+ 1,

(30)

y∗IIj =


0, ∀j < m,

1− 1
1−α

∑N
i=m+1

piCLi
+ṽD

B

diCE
, j = m+ 1,

1
1−α · pjCLj

+ṽD
B

djCE
, ∀j > m+ 1.

(31)

x∗j =


CEj

−vA
I

djCEj
, ∀j ≤ mI ,

CE−vA
II

djCE
, ∀mI < j ≤ N,

0, j = N + 1,

(32)

where

vAI =
1∑m

i=1
1

diCEi
+

∑N
i=m+1

1
diCEm+1

( N∑
i=1

1

di
− 1

)
, (33)

vAII =
CE

CEm+1

vAI . (34)
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Proof. We provide a proof in Appendix B.

Remark. Here we assume that ṽDB 6= 0, φk 6= 1 and ζm 6=
1 to focus on the cases in which most players have unique
equilibrium strategies.

Note that Ian’s optimal strategy in this scenario becomes a
mixture of optimal defense strategies from scenarios in section
III. The cut-off index m is positively correlated with Ian’s
belief α, that is, when α is larger, it is likely that more
channels will be attacked by Type I Eve. Indices k and m
decide whether Ian should intercept type II Eve. So Theorem
3 case (a) with k ≤ m is similar to Theorem 1 case (a), in
the sense that all defense resources are used to counter type
I Eve. When k > m, the value of ṽDB indicates whether it is
beneficial for Ian to intercept Type II Eve. Thus, Theorem 3
case (b - 1) is similar to Theorem 1 case (b) combined with
Theorem 2 case (b), in which Ian has additional resources after
defending type I Eve but is not willing to defend type II Eve
since ṽDB < 0. While in case (b - 2), Ian will intercept both
type I and type II Eve.

V. NUMERICAL ILLUSTRATION

In this section we present three numerical examples corre-
sponding to each game model. For all three examples, consider
a wireless communication network with N = 5 parallel chan-
nels with the thermal noise σ2

i = 1, ∀i = 1, ..., 5, and channel
communication capacities {CLi

, i = 1, ..., 5} = (0.9, 1.1, 0.7,
0.6, 0.8). Also, let {di} = {70%, 40%, 50%, 60%, 45%}
such that some eavesdropping channels are more resistant to
friendly interference.

The first and second examples demonstrate how the detri-
mental effects of interference on the intended receivers, i.e., pi,
affect the NE. For every i, pi is positively correlated with user
i’s channel gain of the jamming signal, i.e., gLi

. Specifically,
if gLi = 0, then pi = 0%; if gLi → +∞, then pi → 100%.

The third example visualizes the NE of the Bayesian game
as α and pi changes. One can clearly see the load sharing
structure between Type I and Type II Eves.

A. Game against Type I Eavesdropper
Assume the eavesdropping capacity of each channel to be

{CEi , i = 1, ..., 5} = (0.5, 0.45, 0.4, 0.35, 0.3). For the sake
of simplicity, let pi = p, ∀i = 1, ..., 5 and let p vary between
0% to 15%.

Fig. 2(a) displays the optimal defense strategies in NE.
Clearly, the optimal defense strategies are always of threshold
type such that Ian only needs to work on channels with high
eavesdropping capacity. As p increases from 0% to 15%, the
number of protected channels decreases from 3 to 2, and
Ian starts not to expand the full power for p ≥ 8.21%. In
general, as p increases, the friendly interferer uses less time
for protection, and the eavesdropper focuses more on channels
with higher eavesdropping capacity.

Fig. 2(c) illustrates the average total secrecy capacity against
Type I Eve, when Ian uses the game theoretic model backed
Algorithm 1 (GT Algorithm), uses an Equal Proportion al-
gorithm (EP Algorithm) that protects every channel with the

same frequency, and does nothing (Without CJ), respectively.
Eve is assumed to always apply her best response. As p
increases, the GT Algorithm always outperforms the others.
More importantly, using the naive EP Algorithm is even worse
than not sending cooperative jamming signals at all when p is
large.

B. Game against Type II Eavesdropper

In this example, let the eavesdropping capacity of each
channel be CEi = 0.45, ∀i = 1, ..., 5 for a type II Eve. Still,
let pi = p, ∀i = 1, ..., 5. As shown in Fig. 3(a) and 3(b), there
is a clear all-or-nothing structure for the friendly interferer’s
optimal defense strategy as p increases. All channels are under
protection when p ≤ 5.48%, but it is not worthwhile for the
friendly interferer to protect any channel when p > 5.48%.

Fig. 3(c) depicts the average total secrecy capacity against
Type II Eve when Ian uses the game theoretic model backed
Algorithm 2 (GT Algorithm), uses an EP Algorithm, and
adopts Without CJ, respectively. As p increases, the GT
Algorithm outperforms the Without CJ method until it stops
sending cooperative jamming signals. Still, using the naive EP
Algorithm is worse than Without CJ for large p.

C. Bayesian Game with Uncertainty about the Attacker’s Type

Let {CEi , i = 1, ..., 5} = (0.5, 0.45, 0.40, 0.35, 0.30) for
Type I Eve, and CE = 0.45 for Type II Eve. Still assume
pi = p, ∀i = 1, ..., 5. Let α = 60% be fixed.

Fig. 4 demonstrates the equilibrium strategies as p increases.
When p ≤ 5.49%, Theorem 3 gives k = 3, m = 2 and ṽDB >
0. So the Bayesian equilibrium falls in the Theorem 3 case
(b - 2), and Ian uses up all his resources to have all channels
under protection. As p ≥ 5.49%, k is still larger than m but
ṽDB < 0. Hence, the Bayesian equilibrium falls in the Theorem
3 case (b - 1), and Ian’s defense resources are not fully utilized.
Moreover, Ian is not willing to intercept Type II Eve anymore.
As p increases, the number of protected channels decreases to
1, and Ian will not protect some channels even though they
are at risk of being attacked by Type I Eve. When p is large,
Type I Eve can focus more on attacking channels with higher
eavesdropping capacity, while type II Eve has the flexibility to
attack more channels. Therefore, reducing interference caused
by cooperative jamming on legitimate users is still important
when the eavesdropper’s type is unknown.

Fig. 4(d) displays the simulated expected total secrecy
capacity against unknown type eavesdroppers with α = 60%.
It presents the comparison between Ian’s Bayesian game based
Algorithm 3 (BG Algorithm), EP Algorithm, and Without CJ
decision. As observed in both Type I and Type II games, as p
increases, the BG Algorithm outperforms the others, and using
the naive EP Algorithm is worse than Without CJ when p is
large.

As seen in Fig. 4(b,c), the attackers’ NE strategies have a
clear load sharing structure. Notice that an eavesdropper can
indeed exploit the friendly interferer’s incorrect belief about
the attacker’s type. Hence, an accurate inference on the type
of upcoming attackers is crucial.
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(a) Optimal defense strategy as p increases (b) Optimal attack strategy as p increases (c) Expected total secrecy capacity

Fig. 2. NE strategies against Type I eavesdropper.

(a) Optimal defense strategy as p increases (b) Optimal attack strategy as p increases (c) Expected total secrecy capacity

Fig. 3. NE strategies against Type II eavesdropper.

(a) Optimal defense strategy (b) Type I Eve’s optimal strategy (c) Type II Eve’s optimal strategy (d) Expected total secrecy capacity

Fig. 4. NE strategies for Bayesian game against unknown types of Eavesdroppers as p increases.

VI. CONCLUSION

This paper investigates game theoretic probabilistic chan-
nel selection strategies for cooperative jamming to protect a
network of parallel wireless channels against intelligent eaves-
droppers. Eavesdroppers with two types of CSI configuration
are discussed; I) either she has distinct eavesdropping capacity
at each channel, or II) all eavesdropping channels have the
same capacity. Two non-zero-sum games model the problem
for each type of eavesdropping CSI. Analytical expressions
for the equilibrium strategies derived demonstrate that the
defender should use a threshold type strategy against a type I
eavesdropper and an all-or-nothing strategy against a type II
eavesdropper. The level of interference on legitimate receivers,
which is represented by {pi}, is critical in deciding how
to select channels for protection. The results imply that the
interferer must carefully configure the interfere signals to make
then beneficial to achieving communication secrecy.

In the case that eavesdropping CSIs are privately known
to the attacker, a Bayesian game model is proposed and
analytical expressions for NE strategies are provided when
the eavesdropping capacity is either of Type I or Type II. The

defender’s best strategy can be considered as a mixture of the
threshold type policy against Type I Eve and the all-or-nothing
policy against type II Eve, depending on his belief about the
type of eavesdropper’s CSIs. The attackers’ best policy reveals
a load sharing structure, in which a Type I attacker will focus
on a few channels with high eavesdropping capacities, while
a Type II attacker attacks the rest.

Of interest for future research is to complete the discussion
of the Bayesian game when there are K scenarios of different
eavesdropping CSI. Another interest for future research is
to consider investment or pricing decisions associated with
reducing the detrimental effect of friendly interference on
legitimate users. For instance, the defender may be involved
in a pricing game with legitimate users such that the user at
each channel may agree to pay a price for decreasing gLi

.

APPENDIX A
PROOF OF THEOREM 1 AND THEOREM 2

Consider the network of parallel channels as a network of
heterogeneous nodes, where CEi and CE are rewards paid
to a Type I attacker and a Type II attacker if an attack
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is successfully initiated at node i, respectively. di is the
effectiveness of applying cooperative jamming to intercept the
attacker at node i. And gi = piCLi

represents the cost of
intercepting the attacker at channel i. Then the NE solutions
of the Type I and Type II game follow Theorem 1 and Theorem
2 of [36], respectively.

APPENDIX B
PROOF OF THEOREM 3

One can interpret the discussed Bayesian game in the
following way: the defender is playing against a Type I
attacker from channel 1 to channel n and is playing against a
Type II attacker from channel n to channel N where the two
games intersect at channel n. The Bayesian game should have
similar properties to the previous games including:

• Property 1, if y∗Ii > 0, then x∗j > 0, ∀j < i.
• Property 2, if x∗i > 0, then y∗Ii > 0.
• Property 3, either x∗i > 0, ∀i ≥ n, or x∗i = 0, ∀i ≥ n,

will be true between the defender and Type II Eve.
Let SD

i , i = 1, ..., N, be the pure policy that the defender
selects channel i with probability one, and let SD

N=1 be the
pure policy of not using cooperative jamming. Let v̄DB = vDB −
µD(SD

N+1,y
∗
I ,y

∗
II). The next proposition will be essential for

constructing an upper bound for n.

Proposition. v̄DB ≥ ṽDB .

Proof. If ṽDB ≤ 0, then v̄DB ≥ ṽDB since v̄DB ≥ 0 by definition.
If ṽDB > 0, consider the following optimization problem:

min
v̄D
B ,y∗

I ,y
∗
II

v̄DB

s.t. v̄DB ≥ µ̄D
Bi

∀i = 1, ..., N,

with
∑n

i=1 y
∗
Ii
= 1 and

∑N
i=n y

∗
IIi

= 1. It is easy to show that
the optimal value of this minimization problem is ṽDB .

Hence, it holds that v̄DB ≥ max
{
ṽDB , 0

}
. This in turn

suggests an upper bound for the cut-off index n, given the
indices m and k defined in Theorem 3.

Proposition. n ≤ min {k,m+ 1}.

Proof. By the definition of n, y∗In > 0. Then, property 1

implies that x∗j ≥ CEj
−CEn

djCEj
≥ 0, ∀i = 1, ..., n. Moreover, be-

cause xj = 0, ∀j = n+1, ..., N ,
∑n

j=1 x
∗
j = 1− x∗N+1 ≤ 1.

Hence,
∑n

j=1

CEj
−CEn

djCEj
≤

∑n
j=1 x

∗
j ≤ 1, and n ≤ k follows.

By property 1 and 2, clearly, x∗i > 0, y∗Ii > 0, ∀i ≤ n−1, and

µ̄D
Bi

= v̄DB , ∀i ≤ n − 1, giving y∗Ii =
v̄D
B+piCLi

αdiCEi
> 0, ∀i ≤

n−1. Since it is also true that y∗In > 0 and v̄DB ≥ max
{
ṽDB , 0

}
,

then
∑n−1

i=1
ṽD
B+piCLi

αdiCEi
≤

∑n−1
i=1

v̄D
B+piCLi

αdiCEi
≤ 1 holds, and by

definition, n ≤ m+ 1 follows.

The final value of n and the explicit solution of
(x∗,y∗

I ,y
∗
II) depends on the value of k, m and ṽDB as defined

in Theorem 3. There are three possible cases: (a) k ≤ m, (b -
1) m < k and ṽDB < 0, (b - 2) m < k and ṽDB > 0.

(a) The case k ≤ m is similar to case (a) in Theorem 1,
where the defender will use up all his attention to intercept

Type I Eve at the first k channels with n = k and will not
interfere with Type II Eve. Meanwhile, a Type I attacker will
also focus on channels 1 through k. The equilibrium strategies
for the defender and Type I attacker are the solution to

vAI = µA
I (x

∗, SA
1 ) = · · · = µA

I (x
∗, SA

k ),

v̄DB = µ̄D
B1

= · · · = µ̄D
Bk

,∑k
i=1 x

∗
i = 1,

∑k
i=1 y

∗
Ii
= 1,

(35)

which gives CEk+1
< vAI < CEk

, v̄DB > max
{
ṽDB , 0

}
and

x∗i > 0, ∀i = 1, ..., k. Since xi = 0, ∀i = k + 1, ..., N + 1,
it holds that

vAII = µA
II(x

∗, SA
k+1) = · · · = µA

I (x
∗, SA

N ) = CE

> µA
II(x

∗, SA
i ), ∀i = 1, ..., k.

So in equilibrium, a Type II attacker attacks channels k + 1
to N and makes sure that it is always more beneficial for
the defender to intercept a Type I attacker. Any strategy that
satisfies µ̄D

Bi
≤ v̄DB , ∀i = k+1, ..., N , and

∑N
i=k+1 y

∗
IIi

= 1,
is a NE strategy of a Type II attacker.

(b) The case k > m can be imagined as case (b) of Theorem
1 combined with the Type II game. The defender has extra
resources to fight against a Type II attacker, but whether the
defender will interfere with a Type II attacker depends on the
value of an indicator, ṽDB .

Proposition. Given k > m, if ṽDB < 0, then x∗i = 0, ∀i =
n ≥ N ; but, if ṽDB > 0, then x∗i > 0, ∀i = n ≥ N .

Proof. Assume x∗i 6= 0 for some i = n ≥ N given ṽBD < 0.
By property 3, x∗i > 0, ∀i = n ≥ N . Moreover, by property
1 and 2, it is also true that x∗i > 0, ∀i ≤ n−1. That requires,

µ̄D
Bi

= v̄DB ≥ 0, ∀i = 1, ..., N.

However, it is impossible to find such µ̄D
Bi

∀i = 1, ..., N , since
ṽBD < 0. Hence, the assumption cannot be true.
Assume x∗i = 0 for some i = n ≥ N, under the constraint
ṽBD > 0. Then, property 3 implies x∗i = 0, ∀i = n ≥ N .
Furthermore, x∗N+1 = 0 since v̄DB ≥ ṽDB > 0 = µ̄D

BN+1
. That

will lead to
∑n−1

i=1 x
∗
i = 1. Meanwhile, if x∗i > 0 for an integer

i ≤ n, then y∗i > 0 by property 2 and µA
I (x

∗, SA
i ) = vAI .

Moreover, vAI ≥ CEn
since x∗n = 0. It can be seen that it is

impossible to find a solution of
∑n−1

i=1 x
∗
i = 1 given n−1 ≤ m,

k > m and the constraint µA
I (x

∗, SA
i ) ≥ CEn , ∀i ≤ n − 1.

Hence, the assumption cannot be true.

(b - 1) If k > m and ṽDB < 0, this case is similar to case (b)
of Theorem 1 combined with case (b) of Theorem 2. One can
use similar techniques to show that the cut-off index is equal
to m + 1, i.e., n = m + 1. A Type I attacker will focus on
channels 1 to m+1, while the defender can protect more than
m channels but it is beneficial not to protect the remaining
channels so that x∗i = 0, ∀i = m+ 1, ..., N by lemma 6 and
has x∗N+1 > 0. Thus, the equilibrium strategies of the defender
and a Type I attacker are solutions to

vAI = µA
I (x

∗, SA
1 ) = · · · = µA

I (x
∗, SA

m) = CEm+1 ,

v̄DB = µ̄D
B1

= · · · = µ̄D
Bm

= 0,

x∗N+1 = 1−
∑m

i=1 x
∗
i , y∗Im+1

= 1−
∑m

i=1 y
∗
Ii
.

Note that x∗i > 0, ∀i = 1, ...,m and xi = 0, ∀i = m +
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1, ..., N . Thus, any strategy that satisfies µ̄D
Bi

≤ 0, ∀i = m+

1, ..., N , and
∑N

i=m+1 y
∗
IIi

= 1, can be a NE strategy of a
Type II attacker.

(b - 2) If k > m and ṽDB > 0, this case can be regarded
as case (b) of Theorem 1 combined with case (a) of Theorem
2. The attackers’ equilibrium strategies (y∗

I , y
∗
II) are solutions

to the system of equations 22 since x∗i > 0, ∀i = 1, ..., N ,
which gives v̄DB = ṽDB and n = m+ 1. Thus, (y∗

I , y
∗
II) need

y∗Ii > 0, y∗IIi = 0, ∀1 ≤ i < n,

y∗In > 0, y∗IIn > 0,

y∗Ii = 0, y∗IIi > 0, ∀n < i ≤ N.

Hence, x∗ is the solution to
vAI = µA

I (x
∗, SA

1 ) = · · · = µA
I (x

∗, SA
m+1),

vAII = µA
II(x

∗, SA
m+1) = · · · = µA

II(x
∗, SA

N ),∑N
i=1 x

∗
i = 1,

which is unique.
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[33] L. Wang, H. Wu, and G. L. Stüber, “Cooperative jamming-aided secrecy
enhancement in p2p communications with social interaction constraints,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1144–
1158, 2017.

[34] L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-
jamming-aided secrecy enhancement in wireless networks with passive
eavesdroppers,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 3, pp. 2108–2117, 2018.

[35] E. Altman, K. Avrachenkov, and A. Garnaev, “Closed form solutions for
water-filling problems in optimization and game frameworks,” Telecom-
munication Systems, vol. 47, no. 1-2, pp. 153–164, 2011.

[36] Z. Xu and M. Baykal-Gürsoy, “Efficient network protection games
against multiple types of strategic attackers,” in ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2021, pp. 2620–2624.

2021 IEEE Conference on Communications and Network Security (CNS)

55

Authorized licensed use limited to: Rutgers University. Downloaded on August 31,2022 at 20:15:59 UTC from IEEE Xplore.  Restrictions apply. 

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db



