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We present 500 high-resolution, full-sky millimeter-wave deep learning (DL) simulations that include
lensed CMB maps and correlated foreground components. We find that these MillimeterDL simulations
can reproduce a wide range of non-Gaussian summary statistics matching the input training simulations,
while only being optimized to match the power spectra. The procedure we develop in this work enables the
capability to mass produce independent full-sky realizations from a single expensive full-sky simulation,
when ordinarily the latter would not provide enough training data. We also circumvent a common limitation
of high-resolution DL simulations that they be confined to small sky areas, often due to memory or GPU
issues; we do this by developing a “stitching” procedure that can recover the large-scale, high-order
statistics and avoid discontinuities or repeated features in the maps. In addition, since our network takes as
input a full-sky lensing convergence map, it can in principle take a full-sky lensing convergence map from
any large-scale structure (LSS) simulation and generate the corresponding lensed CMB and correlated
foreground components at millimeter wavelengths; this is especially useful in the current era of combining
results from both CMB and LSS surveys, which require a common set of simulations.
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I. INTRODUCTION

The cosmic microwave background (CMB) has been a
cornerstone of modern precision cosmology. The study of
the primordial anisotropy imprinted on the CMB at the
surface of last scattering has shed light on the physics of
the early Universe. A rich set of secondary anisotropies
induced by intervening large scale structures (LSS) and
complex astrophysical phenomena has revealed a picture of
the evolving Universe. As the sensitivity of CMB experi-
ments has improved, more information has been obtained
from these features. A few recent examples include the
constraints on cosmological parameters from CMB power
spectra [1–5], the measurement of CMB lensing auto
spectra [6–8], and the study of kinematic and thermal
Sunyaev-Zel’dovich effects [9–12].
Current CMB data analyses rely heavily on simulations to

(1) model the underlying physical processes, (2) verify the
data analysis pipeline, (3) investigate potential biases, and
(4) generate covariance matrices used in likelihood analyses.
As a result, there have been efforts to improve simulations
of the microwave sky [13–22]. Current and future high-
resolution CMB experiments, such as the Atacama
Cosmology Telescope (ACT) [23,24], the South Pole
Telescope (SPT) [25], the Simons Observatory (SO) [26],
CMB-S4 [27], and CMB-HD [28,29] will observe large sky
areas at arcminute resolution or better with unprecedented

sensitivity. Analyzing the data from these observations will
needmany realizations of realistic simulations of comparable
resolution and sky coverage. In particular, as the sensitivity
of CMB experiments improves, simulations capturing the
correlations between foreground components and non-
Gaussian features will become ever more important.
Simulations of the millimeter-wave sky can be divided

into several components: (1) primordial CMB maps,
(2) extragalactic foregrounds, and (3) Galactic foregrounds.
The procedure to generate simulations of primordial CMB
maps is well established and computationally efficient at
arcminute resolution [30–34]. The extragalactic foreground
components include the lensing convergence field (κ), the
kinetic and thermal Sunyaev-Zel’dovich effects (kSZ and
tSZ), the cosmic infrared background (CIB), and radio
galaxies (radio). There are a few extragalactic foreground
simulations publicly available that include all the above non-
Gaussian, correlated foregrounds at high-resolution over a
large fraction of the sky [19,22]. These simulations are
generated by first making three-dimensional realizations of
cosmological features, and then projecting them along the
line-of-sight to make two-dimensional maps. To a large
extent, these existing simulations can reproduce the statistics
of the latest CMB observations. However, there are only a
limited number of realizations available due to the high
computational cost of generating initial three-dimensional
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realizations. As a result, many CMB analyses model extra-
galactic foregrounds as Gaussian random fields matched to
the observed foreground power spectra (e.g., [4–6]).
There have also been a number of efforts to simulate

Galactic foregrounds in both intensity and polarization
[35–43]. Modeling the small-scale features of Galactic
foregrounds is particularly challenging given the current
lack of observations on comparable scales in millimeter
wavebands, though there is progress in this direction [44].
In this work, we focus on generating simulations including
the primordial CMB and extragalactic foreground compo-
nents, and leave inclusion of Galactic foregrounds to
future work.
Recently,MachineLearning has found a broad application

in cosmology; parameter estimation [45–52], foreground
cleaning [42,43,53,54], feature extraction [55–58], inpaint-
ing [59–61], filtering [62], and modeling of physical proc-
esses [43,63–69]. Deep learning (DL) is a subset of machine
learning that fitsmultiplenonlinear functions to the input data
using neural networks. In particular, generative DL models
aim at sampling the manifold (which can be high-
dimensional) where the input data lives, so that new points
in that manifold are associated with new complex data with
the same statistical properties as the desired input data.
Recently, there have been many approaches in this direction
[42–44,70–81]. However, these methods are not yet widely
used in CMB data analyses due to their limited sky-coverage
or summary statistics mismatch.
In this work, we generate for the first time, many

independent full-sky millimeter-wave DL simulations that
include all correlated extragalactic foreground components
appropriate for CMB analyses. We find that our
MillimeterDL (hereafter mmDL) simulations are able to
reproduce well the non-Gaussian statistics of the original
input maps. Several recent works have focused on using
various DL techniques to generate two-dimensional pro-
jected microwave fields from three-dimensional N-body
simulations [70,71,73–78,80,81]; in this work, we use
two-dimensional projected simulations at 148 GHz
described in [19] (hereafter S10) as the input data to train
our DL algorithm, as opposed to three-dimensional N-body
simulations. This is suitable for generating maps for a CMB
imaging survey, since most of the relevant information for
CMB data analyses is contained in the two-dimensional
projected maps. The advantage of our approach is that DL
training in two dimensions is computationally more efficient
than that in three dimensions; therefore, for a given comput-
ing resource, one can train on a larger footprint at higher-
resolution.
In particular, we use DL methods to generate 500

realizations of full-sky millimeter-wave simulations that
match the statistics of the S10 simulations. Each of these
500 simulation realizations includes:
(1) a full-sky simulation at half-arcminute resolution at

six different frequencies (30, 90, 148, 219, 277, and
350 GHz).

(2) the lensed CMB in both temperature and polari-
zation.

(3) extragalactic foreground components appropriately
correlated with each other, including:
(i) the lensing convergence map (κ).
(ii) the kinetic Sunyaev-Zel’dovich effect (kSZ).
(iii) the thermal Sunyaev-Zel’dovich effect (tSZ).
(iv) the cosmic infrared background (CIB).
(v) the radio galaxies (radio).

(4) non-Gaussian information that reproduces statistics
such as the one-point function, bispectra, and
trispectra.

These mmDL simulations are trained using the cosmol-
ogy and extragalactic model described in S10 [19].
However, the method presented here is general and can
be applied to reproduce other two-dimensional simulations
with minor modifications. In Sec. III, we present our
procedure to generate the mmDL simulations. The com-
parison between the statistical properties of the mmDL and
the S10 simulations is shown in Sec. IV. We discuss
potential applications and the data products released in
Sec. VI. These mmDL simulations are publicly available in
both HEALPix

1 and CAR formats on the Legacy Archive for
Microwave Background Data Analysis (LAMDA)2 and the
National Energy Research Scientific Computing Center
(NERSC) cluster.3 We also provide the code to produce
additional realizations at [82].

II. DL PRIMARY INPUT DATA

We generate our Primary Input Data from the S10
simulations, which include κ, kSZ, tSZ, CIB and radio
[19] extragalactic foreground components. The S10 simu-
lations were generated by post-processing the output of a
three-dimensional simulation, which has WMAP5 cosmol-
ogy [83]. The S10 simulations have correlated foreground
components, and have been shown to have non-Gaussian
statistics that match observations [84–88]. The S10 simu-
lations and source catalogs are publicly available onNASA’s
LAMBDA website (see Footnote 2). The simulations are
saved in HEALPix format [89] with Nside ¼ 8192, and have
units of Jy/sr. The S10 κ map has Nside ¼ 4096, and is
dimensionless.
We describe our procedure to prepare the mmDL

primary input data below. Our procedure includes
(1) pre-processing the original S10 148 GHz simulations,
)2 ) dividing the pre-processed S10 simulations into small
patches, and (3) applying a normalization to the datasets to
stabilize and speed up the training of a neural network.

1http://healpix.sourceforge.net.
2https://lambda.gsfc.nasa.gov/simulation/tb_sim_ov.cfm.
3https://crd.lbl.gov/departments/computational-science/c3/c3-

research/cosmic-microwave-background/cmb-data-analysis-at-
nersc/.
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A. Preprocessing of the S10 Simulations

Below we detail the steps in our procedure to preprocess
the original HEALPix S10 simulations for the network
training.

(i) Following [26,88], we scale the flux of CIB sources
and the tSZ map by a factor of 0.75 to make the S10
simulations more closely match recent measure-
ments from ACT, Planck and SPT [90–94].

(ii) We convert the units of the maps from Jy/sr to μK,
except for the κ map which is dimensionless.

(iii) We reproject the κ, tSZ, and kSZ foreground
components of the S10 simulations from HEALPix

pixelization to plate carrée (CAR) pixelization at
half arcminute resolution using the public pixell4 and
libsharp5 [95] libraries. Since CAR maps intrinsi-
cally consist of a grid of rectangular pixels, there is a
natural way to extract two-dimensional submaps;
this makes it simpler to train DL networks and apply
two-dimensional Fourier transform operations. On
the other hand, CAR pixels are increasingly over-
sampled farther away from the equator (the image is
stretched), which we discuss below. The reprojection
is done by converting the original HEALPix maps to
spherical harmonic alm up to an lmax of 10,000.
These alm are then reprojected onto full-sky CAR
pixelized maps.

(iv) For the CIB and radio foreground components, we
place sources directly from the S10 catalogs into
full-sky CAR pixelized maps to avoid spectral
leakage (“ringing”) around pointlike sources when
manipulating them in harmonic space. We apply a
flux-cut of 7 mJy at 148 GHz to both CIB and radio
CAR maps in order to match current and future
CMB analyses that typically detect and remove
bright sources.

(v) Since CAR maps require the same number of pixels
at each declination, the image appears stretched at
the poles. To prevent the network from learning non-
physical features induced by this stretching, we use
only the region of the simulations near the equator to
train the network (from -10° to 10° in declination).
However, in order to make use of all the sky area
available in the S10 simulations, we rotate the full
S10 map many times, redefining the equator of the
map each time. In particular, we rotate each full-sky
map by 15 degrees in ψ and 20 degrees in θ, where ψ
and θ are the first two Euler angles. The successive
rotations in ψ and θ described above generate 25
unique cylindrical strips around each new equator,
which strips in CAR projection have minimal image
distortion compared to the sphere. For κ, tSZ, and
kSZ, the rotations are done in spherical harmonic

space. For CIB and radio, we simply remap source
positions for given rotation angles.

B. Division of full sky simulations into smaller patches

To train a network, we need many training samples.
Since we start with a single realization of the full sky S10
simulation, we increase the number of samples by dividing
this simulation into smaller overlapping patches. Below we
detail our steps.

(i) We randomly pull out patches of 128 × 128 pixels
(roughly 1° × 1° patches) between the declination of
−10° and 10°. We cut out patches in this way from
our 25 cylindrical strips (described above) for κ, tSZ,
kSZ, CIB and radio maps. Thus each patch has five
foreground components totaling an array of size
5 × 128 × 128. We repeat this step until we collect
30,000 validation samples (to pick initial parameters
for the training), 200,000 training samples, and
30,000 test samples (to check the performance of
the training). We ensure that we have an equal
number of samples from the 25 rotated maps. We
call the resulting dataset the primary input data. Note
that these samples will necessarily have overlapping
regions among them. We discuss our method to
overcome this issue in Sec. III.

(ii) During the network training, we randomly flip a
sample either vertically or horizontally, or both as a
natural way to augment the training dataset.

C. Normalization to speed up and stabilize the training

We need to normalize the samples to stabilize and to
speed up the neural network training. Since we have
multiple foreground components in a single sample, the
normalization needs to account for two issues. First, the
pixel intensity probability density function (pixel PDF) of
different foreground components follows different distri-
butions. The pixel PDFs of tSZ, CIB, and radio roughly
follow a Poisson distribution, whereas those of κ and kSZ
are better described by a Gaussian distribution. Second,
these pixel PDFs have varying dynamic ranges. For
example, all the pixel values of the κ map fall between
−1.5 and 1.5; on the other hand, the radio map has pixel
values ranging from 0 to 852 μK. Ideally, we would like the
pixel PDFs to follow a standard Gaussian distribution (i.e.,
with unit variance) for faster and more stabile network
training. To address the shape of the pixel PDF, we first
perform a pixel-wise natural log scaling adopted from [74],
to the tSZ, CIB, and radio maps. In particular, we replace
the value of each pixel, given by v, with

fðvÞ ¼ sgnðvÞ ln
!
absðvÞ
σv

þ 1

"
ð1Þ

where sgnðvÞ is sign function, and σv the standard deviation
of the pixel PDF of the input map. After this normalization,

4https://github.com/simonsobs/pixell.
5https://github.com/Libsharp/libsharp.
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the pixel PDFs of the tSZ, CIB, and radio maps are closer to
a Gaussian distribution.
To mitigate the dynamic range issue, we then standardize

the maps using the standard score method (i.e., subtract the
mean of all the pixels from each pixel value and then divide
that by the variance of the map).6

sðv0Þ ¼ ðv0 − μv0Þ=σv0 ð2Þ

Here, v0 is the pixel value, and μv0 and σv0 are the mean and
standard deviation of the pixel values respectively.7 Note
that each foreground component is normalized independ-
ently from the others. The parameter values used in the
normalization procedure are shown in Appendix A. Note
that each of these normalization operations has a well-
defined inverse operation. When we generate the final
products, we undo these normalizations prior to the
interpolation procedures discussed in Sec. III D.

III. METHOD

Generative adversarial networks (GANs) are a class of
networks that will generate new data matching the statistics
of the training dataset [96]. Fundamental to a GAN is a set
of two neural networks, called the generator and discrimi-
nator. A generator makes new data, while a discriminator
tries to distinguish between the real data and the generated
data. By iteratively training a generator and a discriminator,
a GAN reaches an equilibrium where the discriminator can
no longer distinguish new data from training data. For more
discussion about GANs, we refer the reader to [97,98].
GAN models can only generate random samples limited

to the same footprint as the training data. Since our primary
input data consists of 1° × 1° patches, the random samples
output by the GAN do not have the full information about
modes on scales larger than 1 degree (roughly l ≤ 200).
This presents a challenge in stitching together the small
patches to make a full-sky simulation with the correct large-
scale fluctuations. Furthermore, there is no straightforward
way to tile these random patches together to make a full-sky
map without having discontinuities at the tile edges.
Instead, we train a conditional GAN network to predict

the four extragalactic foreground components (tSZ, kSZ,
CIB, and radio) from a κ map. Once this network training
step is completed, we generate a full-sky Gaussian κ map,
and convert it to the other four full-sky extragalactic
components tile by tile. Since the input Gaussian κ maps
is continuous, the resulting extragalactic foreground maps

are also continuous. This image prediction approach also
solves another major concern about using DL to generate
new samples,which ismode collapse.Mode collapse iswhen
the network predicts only a subset of all possible outcomes,
instead of a continuous distribution. However, with our
approach, since we provide a unique input full-sky κ map to
the network for each full-sky realization the network outputs,
we can ensure that the output maps are also unique.
A challenge of this predictive approach, which uses a

conditional GAN model, is that it has a large number of
parameters that need to be trained; thus this conditional
GAN requires a much larger training dataset than simple
GANs. Since our primary input data is relatively small and
has over-lapping patches (see Sec. II for details), we first
use the primary input data to train a simple GAN network
(which is easier to train) to make a large sample of non
over-lapping patches of κ, tSZ, kSZ, CIB and radio maps
(intermediate product 1 in Fig. 1). This larger dataset is then
used to train a conditional GAN (training step 2 in Fig. 1).
After training step 2 is done, the network can now predict
extragalactic foregrounds given a κ map. We input a unique
full-sky Gaussian κ map into the network to generate the
other extragalactic foreground components (tSZ, kSZ, CIB
and radio) tile by tile (intermediate product 2 in Fig. 1). The
extragalactic components predicted from the Gaussian κ
map will be missing some non-Gaussian information due to
the missing non-Gaussian information in the κ map; thus,
we introduce a simpler version of the conditional GAN that
can restore this missing non-Gaussian information, which
we train on the primary input data plus intermediate
product 2. Once this training is done, the network is
equipped to go from unique input full-sky Gaussian κ
maps and unlensed CMB T, Q, and U maps to a full-sky
simulation including non-Gaussian extragalactic fore-
grounds, a non-Gaussian κ map, and the corresponding
lensed CMB T, Q, and U maps (T, Q, and U are the
temperature and two polarization fields of the CMB). The
schematic of the overall procedure is shown in Fig. 1.
Since the extragalactic maps are statistically invariant

under translation, a natural choice is to use a deep convolu-
tional generative adversarial network (DCGAN) since it has
convolution kernels that are also invariant under translation.
In this work, we use three variations of the DCGAN:
(1) Deep convolutional Wasserstein GAN with gradient
penalty (DCWGAN-GP) to make intermediate product 1
(this is training step 1 discussed in Sec. III A), (2) Pix2Pix
GAN (PIXGAN) to make to make intermediate product 2
(this is training step 2 discussed in Sec. III B), and
(3) Variational autoencoder GAN (VAEGAN) to augment
the missing non-Gaussian information (this is training
step 3 discussed in Sec. III C).

A. Training step 1: Learning on small patches with
WassersteinGANwith gradient penalty (DCWGAN-GP)

The DCWGAN-GP model we use is summarized by the
generator depicted in Fig. 2 and the discriminator described

6Another popular approach is to scale an image such that all
the pixel values lie between −1 and 1. During our network
training, we found that using the standard score method leads to
more stable training compared to this rescaling.

7Note that we distinguish v and v0 here because the pixel values
of the tSZ, CIB, and radiomaps are first scaled byEquation (1) (i.e.,
p0 ¼ fðpÞ), whereas p0 ¼ p for the κ and kSZ maps.
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in Table I.We take theCosmoGANnetwork architecture used
in [72] as a starting point of our DCWGAN-GP network
because it has been demonstrated to reproduce non-Gaussian
statistics for a one-component map. From this starting point,
we make the following adjustments. First, we switch the
simple GAN loss function used in CosmoGAN with the
Wasserstein loss functionwith gradient penalty introduced in
[99]; the loss function is the statistic that all GANs optimize.
We find that this change of the loss-function substantially
improves the stability of our networkagainstmode-collapsing
(i.e., against the network missing critical features). To be
consistent with the standard Wasserstein GAN (WGAN)
architecture, we remove the batch normalization layers (i.e.,
the intermediate normalization steps within the GAN) from

the discriminator to stabilize the loss function gradient, and
replace the sigmoid function activation layer with a linear
function activation layer, following [99]. In addition, we
increase the depth of the convolution layers in both gen-
erators and discriminators from four to five, and we increase
the latent-vector length (i.e., array size of input random
numbers) from the original 64 to 256 in order to have a
more expressive network. We also change the last activation
layer in the generator model from tanh x to a % tanh b=a % x,
which we call a scaled tanh. Here a is chosen to be 15 to
accommodate the dynamic range of the normalized pixel
valueswe obtained using Eq. (1), while b is chosen to be 2 so
that the gradient around the boundary values (i.e., −15 and
15) do not vanish too rapidly; we find the form of the scaled

FIG. 1. Shown is a schematic of the overall procedure to train the network and generate the output maps from the input data. The
network is represented by the shaded gray box in the center. The mmDL procedure starts with the Primary Input Data consisting of
200,000 1° × 1° overlapping patches cut out from the original S10 simulations. The pink boxes represent the three major training steps
described in Sec. III. The blue boxes represent inputs into each training step. The dark grey arrows indicate the input and output of each
step. Once the network training is completed, we feed full-sky Gaussian kappa maps and unlensed CMB maps (T, Q, U) into the
network (top green box); given these inputs, the network generates the final output products (bottom green box), which are full-sky
millimeter-wave simulations including lensed T, Q, and U maps, non-Gaussian kappa maps, and non-Gaussian extragalactic
foregrounds correlated with the kappa map and each other.
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tanh function and its parameters by checking the training
statistics when using the validation set of patches (see
Sec. II B). We also add a custom linear layer that linearly
rescales each extragalactic component independently so that
the network has more freedom to rescale the components
relative to each other. We call this custom layer the “linear
channel” (LC). We find that using this LC helps the network
to converge faster. We reduce the two-dimensional convo-
lution layer kernel size (i.e., the width and the height of a
convolution filter) from 5 × 5, used in CosmoGAN, to 4 × 4
to account for the difference in the input image size from
256 × 256 pixels to 128 × 128 pixels (the latter is for
1° × 1° patches at 0.5 arcmin resolution). Lastly, we replace
the rectified linear unit (ReLU) layers in the generator with
the leaky rectified linear unit (Leaky ReLU) with α ¼ 0.2 to

achieve better performance, as suggested by [100]. (Formore
discussion about various types of activation functions, we
refer to [101]).
We train the DCWGAN-GP network with the primary

input data using up to 100 epochs (i.e., the number of cycles
through the entire training dataset used by the network during
training). Following [99], we adopt a gradient penalty
coefficient (λ) of 10 and the number of discriminator
iterations per generator iteration (ncritic) of 5. For gradient
decent, we use theAdam optimizer [102] with a learning rate
(lr) of 10−4 and ðβ1; β2Þ ¼ ð0.5; 0.9Þ. Throughout this
training, we check not only the loss function values, but
also the visual images, Minkowski functionals, power
spectra, cross spectra, andpixel PDFs of the network outputs;
we will discuss each metric in Sec. IV. If the network shows
signs of overfitting or mode-collapsing, we restart the
training either from the beginning or after reducing the
learning rate by half (i.e., effectively reducing the step size).
We terminate the training cycle once all the statistics
considered are satisfactorily reproduced. We use the trained
DCWGAN-GP network to produce intermediate product 1
(800,000 1° × 1° patches of non-Gaussian κ maps and
correlated non-Gaussian foregrounds) which we use in
training step 2. Note that the samples in intermediate product
1 are no longer overlapping and are statistically independent
of each other.

B. Training step 2: Generate extragalactic foregrounds
from kappa map with Pix2Pix GAN (PIXGAN)

The PIXGAN model we use is summarized by the
generator depicted in Fig. 3 and the discriminator described
in Table I. A PIXGAN can convert input images to other
images by implementing a U-NET generator [103,104]. We
use the PIXGAN network to convert a given κ map to the
other four non-Gaussian extragalactic foregrounds consist-
ing of tSZ, kSZ, CIB, and radio components. We start with
the original PIXGAN architecture presented in [104], and
make the following modifications. We first replace the tanh

FIG. 2. Shown is a diagram of the DCWGAN-GP generator model described in Sec. III A and indicated in the schematic of Fig. 1 as
training step 1. The input to this generator is a latent-vector consisting of 256 random numbers drawn from a Gaussian distribution with
mean equal to zero and variance equal to one (μ ¼ 0, σ ¼ 1). The output is one set of 1° × 1° maps consisting of the five foreground
components. The direction of data flow is indicated by arrows. A solid arrow is a fully connected linear layer. A short-dashed arrow,
labeled TC-BN-LRU, represents a sequence of (1) a 4 × 4 two-dimensional transposed convolution, (2) a batch normalization, and (3) a
leaky rectified linear unit activation function with α ¼ 0.2. Lastly, a long-dashed arrow, labeled TC-LC-STanh, is a sequence of (1) a
4 × 4 two-dimensional transposed convolution, (2) a linear channel, and (3) a scaled tanh activation function. The linear channel and
scaled tanh are defined in Sec. III A. Note that a transposed convolution upsamples an image by a factor of two.

TABLE I. Summary of the discriminator model described in
Sec. III A. We use the same discriminator model throughout all
three training steps described in Sec. III. The first and second
columns list the layers and the corresponding activation func-
tions. The third and the fourth columns give the shapes of the
output arrays and the number of trainable parameters in each
layer. Here, N is the number of input components, i.e., N ¼ 5 for
DCWGAN-GP and PIXGAN and N ¼ 10 for VAEGAN. Conv
4 × 4 indicates a two-dimensional convolution layer with a 4 × 4
kernel, and LReLU stands for a leaky rectified linear unit
activation with α ¼ 0.2 (see Sec. III A for details). Note that
Conv 4 × 4 downsamples an image by a factor of two, and
increases the number of features to consider.

Layer
Activation
function

Output shape of
tensor

# of trainable
parameters

Input map N/A N × 128 × 128 N/A
Conv 4 × 4 LReLU 64 × 64 × 64 5,184
Conv 4 × 4 LReLU 128 × 32 × 32 131,200
Conv 4 × 4 LReLU 256 × 16 × 16 524,544
Conv 4 × 4 LReLU 512 × 8 × 8 2,097,664
Conv 4 × 4 LReLU 1024 × 4 × 4 8,389,632
Linear N/A 1 16,385

Total trainable parameters 11,164,609
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activation layer in the generator with a sequence of a linear
channel and a scaled tanh; the latter two are defined in III A.
Since we terminate the training well before the network
shows signs of overfitting, we also remove the drop-out
layers from the generator to speed up the training. Lastly,
instead of using the PatchGAN discriminator as in [104],
we use the same DCWGAN-GP discriminator model
described in Sec. III A, and summarized in Table I.
We use intermediate product 1 (800,000 1° × 1° non-

overlapping patches of non-Gaussian κ, tSZ, kSZ, CIB and
radio maps) generated by training step 1 to train the
PIXGAN network.8 We use the same optimizer setup as
in training step 1. During the training process, we find that
the PIXGAN network tends to overestimate the number of
massive tSZ clusters, which results in an excess of tSZ
power at large scales. To mitigate this effect, we add a linear
loss term to the DCWGAN-GP generator loss function
evaluation defined as the second term in the right side of the
equation below.

LPIXGAN
G ¼ LDCWGAN−GP

G

þ γ
X

i

jσ2ðSinetworkÞ − σ2ðSiinputÞj ð3Þ

where LDCWGAN−GP
G is the standard DCWGAN-GP gen-

erator loss function defined in [99], and σ2ðSiÞ is the total
pixel variance of the ith foreground component in a sample.
Since the sum of power spectra values across multipoles is
the equal to the total pixel variance of the map (a corollary
of Parseval’s theorem), it follows that penalizing the
difference in the total pixel variance is equivalent to
penalizing the mismatch in the summed power spectra.
We train the model with γ ¼ 100, and find that it helps to
regulate the excess power in the tSZ map.
We train the PIXGAN network using up to 10 epochs.9

We validate the network every 200,000 training samples
(four times per epoch) with the updated loss function in
Eq. (3), checking the same metrics as in Sec. III A. We
intentionally terminate early the training of the PIXGAN
network for two reasons. First, once the PIXGAN network

FIG. 3. Shown is a diagram of the UNET generator model described in Sec. III B and indicated in the schematic of Fig. 1 as training
step 2. The generator takes as input a 1° × 1° κ map, and it outputs a set of 1° × 1° extragalactic foreground maps consisting of tSZ, kSZ,
CIB, and radio components. The direction of the data flow is indicated by the arrows. A solid arrow, labeled C-BN-LRU, represents a
sequence of (1) a 4 × 4 two-dimensional convolution, (2) a batch normalization, and (3) a leaky rectified linear unit activation function.
A short-dashed arrow, labeled TC-BN-RU, represents a sequence of (1) a 4 × 4 two-dimensional transposed convolution, (2) a batch
normalization, and (3) a rectified linear unit activation function. A two-dimensional convolution downgrades an image by a factor of
two, while a transposed convolution upsamples an image by the same factor. A dotted arrow is a concatenation operation, which
concatenates the output of an originating box to the output of a destination box. A long-dashed arrow, labeled LCþ STanh, on the top
right represents a sequence of a linear channel and a scaled tanh activation function. Linear channel and scaled tanh are defined in
Sec. III A. Deviating from our notation, we do not apply a batch normalization to the first and the last convolution layers, indicated by a
star over a line.

8We still use the test and the validation datasets from our
primary input data to fine-tune the network parameters and to
validate the network outputs.

9Note that each epoch here has fours times more samples than
the epochs in Sec. III A.
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starts to overfit, the quality of the output degrades quickly.
We find it more conservative to undertrain the PIXGAN
network rather than to risk over-fitting. Second, we find
that the VAEGAN network described in the next training
step (training step 3) can absorb some imperfection in the
simulations and correct for them. Therefore, the output
from the PIXGAN network can have minor defects without
affecting the quality of the final products. We terminate the
training once we see signs of over-fitting; these signs are
(1) minimal improvement of the loss function over the
training samples, (2) large fluctuations of the other metrics
with respect to the S10 simulations, and (3) images missing
significant features. At this point, we choose the snapshot
of the network that reproduces the summary statistics the
best. In particular, for the power spectra, we check that the
PIXGAN network can reproduce the shape of each
foreground component power spectra up to a constant
multiplication factor.10 When this network snapshot repro-
duces the shape of the power spectra to within 10% for
l ∈ ð2000; 8000Þ, and the cross spectra and Minkowski
functionals also show similar agreement, we consider the
training complete. Otherwise, we repeat the training pro-
cedure until we reach this criteria. After this training step is
done, we feed in several full-sky Gaussian κ maps through
the trained PIXGAN network, producing 200,000 1° × 1°
nonoverlapping patches of extragalactic foregrounds con-
sisting of tSZ, kSZ, CIB, and radio components; we call
this intermediate product 2. The full-sky Gaussian κ maps
are generated using pixell; we use the power spectra of the

S10 kappa map as the input spectra to these Gaussian kappa
simulations.

C. Training step 3: Restoration of non-Gaussian
information with variational autoencoder GAN

(VAEGAN)

The VAEGAN model we use is summarized by the
generator depicted in Fig. 4 and the discriminator described
in Table I. Neural networks can be used to improve existing
simulations, either by improving the resolution or by
adding missing small-scale information [44,105]. In this
work, we adopt the variational autoencoder GAN
(VAEGAN) in order to add back missing non-Gaussian
information [106]. Our VAEGAN generator architecture is
similar to the U-NET generator architecture discussed in
Sec. III B except for the following. Unlike the PIXGAN,
the VAEGAN generator does not have skip-connections for
each layer (i.e., there are no array concatenations for each
layer like as shown by the dotted lines in Fig. 3), except that
we add back input maps from intermediate product 2 at the
very end (see dotted line in Fig. 4) as done in [80]. This
addition at the end allows the VAEGAN network to focus
just on the missing non-Gaussian information (i.e., to focus
on the residual difference between the network product of
training step 3 and intermediate product 2). Another
difference between the PIXGAN and VAEGAN generators
are that the latter has fewer trainable parameters, which
makes it easier to train; thus we only need 200,000 samples,
as opposed to 800,000, to train it. Regarding the discrimi-
nator, we use the same DCWGAN-GP discriminator (i.e.,
the same Wasserstein loss function with the gradient
penalty) discussed in Sec. III A, and summarized in Table I.

FIG. 4. Shown is a diagram of the VAEGAN generator model described in Sec. III C and indicated in the schematic of Fig. 1 as
training step 3. The input to this generator is a set of 1° × 1° Gaussian κ maps and their corresponding extragalactic foreground maps
from the PIXGAN network in Fig. 3 (i.e., intermediate product 2). The output are a set of non-Gaussian κ maps and their corresponding
non-Gaussian extragalactic foreground maps. The direction of the data flow is indicated by arrows. A solid arrow, labeled C-BN-LRU,
represents a sequence of (1) a 4 × 4 two-dimensional convolution, (2) a batch normalization, and (3) a leaky rectified linear unit
activation function. A short-dashed arrow, labeled TC-BN-RU, represents a sequence of (1) a 4 × 4 two-dimensional transposed
convolution, (2) a batch normalization, and (3) a rectified linear unit activation function. The two-dimensional convolution downgrades
the image by a factor of two, while the transposed convolution upsamples the image by the same factor. Shown as a dotted arrow is a
concatenation operation between the input intermediate product 2 and the VAEGAN network output, which focuses the network on the
residual difference between the two; note that we apply the inverse of scaled tanh to this input prior to the concatenation. A long-dashed
arrow, labeled LCþ STanh, represents a sequence of a linear channel and a scaled tanh activation function; they are described in
Sec. III A. Deviating from our notation, we do not apply a batch normalization to the first and the last convolutions layers, indicated by a
star below the arrow.

10Note that the next network (training step 3) can rescale each
foreground component by a constant factor as described in
Sec. III C.
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We use as input both the Primary Input Data and
intermediate product 2 to train the VAEGAN network.
The output of the VAEGAN network is the restoration of
the missing non-Gaussian information in intermediate
product 2. The VAEGAN network does this by comparing
the original intermediate product 2 to the S10 simulations
and learning the difference. To do this we use the same loss
function and training setup as in training step 2. Since the
output from training step 3 is our final product, except for a
few corrections described later in Sec. III D, we further
fine-tune the training step 3 training procedure to achieve
optimal results. In particular, we revisit the issue of
overestimation of massive tSZ clusters that we described
in Sec. III B. In order to further reduce the chance of
overestimation, we make the following adjustments to our
training procedure: (1) first, we sort the training samples by
the total variance of the tSZ component, (2) then we start
training with the bottom eighty percent of samples in terms
of the total tSZ variance; (3) Once the training is stabilized,
we restart the training with the full set of training samples.
We closely monitor the tSZ statistics along with the loss
function and other summary statistics. We terminate the
training when all the statistics considered are within 5%
for l ∈ ð2000; 8000Þ.

D. Post-processing the network simulations

As discussed in Sec. III, we convert a full-sky Gaussian κ
map to other foreground components tile by tile, where
each tile is a 1° × 1° flat patch of sky. Here, we describe our
method to divide full-sky κ maps into tiles and to reproject
the processed tiles back on to a full-sky map. When we
sample a 1° × 1° patch from a full-sky κ map, we rotate that
patch to the celestial equator and then cut out a tile of size
128 × 128 pixels with a 20-pixel overlap region between
each tile as shown in Fig. 15 in Appendix B. This is similar
to how we cut the original S10 simulations as discussed in
Sec. II B. This results in a grid of tiles with 200 tiles along
a longitudinal direction and 400 tiles along a latitude
direction.11 When we reproject the tiles back on to a
full-sky map, we interpolate them back to the correct
location on the sphere according to their coordinates.
Here, we take advantage of the fact that CAR pixels in
a full-sky map get stretched only along the latitude
direction. As a result, the pixels in the longitudinal
direction can be remapped without any interpolation.
This effectively reduces the dimensions of the interpolation

from two to one, which lowers the overall computa-
tional cost.
We use two different interpolation methods depending

on which foreground component we would like to repro-
ject. We use a linear interpolation to reproject the κ, tSZ,
and kSZ foreground components because they are
continuous fields.12 To reproject the CIB and radio gal-
axies, we use the nearest neighbor method (i.e., each CAR
pixel in the full-sky map obtains a value from the nearest
pixel in the flat-sky tile). We use this method because linear
interpolation can “blur” sharp variations in amplitude,
which is not ideal for interpolating discrete point sources.
We remove any superfluous negative flux sources before
reprojecting point source tiles back onto the full-sky. Since
we initially sample the full-sky κ map with overlapping
regions, one pixel in the full-sky map can be mapped onto
more than one flat-sky tile. Therefore, we precompute the
number of mapped tiles for each full-sky map pixel and
construct an effective “hit-counts” map. If more than one
tile corresponds to a single full-sky pixel, then we add the
tile pixel values and divide by the hit-counts map to obtain
an average. In addition, we apodize each tile with a cosine
apodization mask prior to the full-sky reprojection as done
in [44] to suppress any discontinuity around the edges; this
is done by weighting the overlapping regions by the
apodization mask to downweight pixels closer to the edges
of a given tile.13 Lastly, following Sec. IV. 3 in [107], we
compute two-dimensional transfer functions to correct for
the reprojection effects for the κ, tSZ, and kSZ maps. Note
that we do not apply two-dimensional transfer functions to
the CIB and radio maps to avoid spectral leakage when
shifting to Fourier space.
We find that the raw full-sky outputs from the network

can reproduce the statistics of the S10 simulations overall
quite well. However, we do find some small mismatches in
the summary statistics between the network and the S10
simulations; for example, for the power spectra in the range
l ∈ ð2000; 8000Þ, the agreement is better than 3%, 10%,
0.5%, 17%, and 0.3% for κ, kSZ, tSZ, CIB and radio
respectively, however, it is not perfect. Therefore, we make
a few corrections to the network simulations to match the
S10 simulations more closely. Here, we describe the
corrections we apply. First, to correct for the small mis-
match in the power spectra, we apply one-dimensional
transfer functions to the κ, kSZ, and tSZ maps. These
transfer functions are computed as the square root of the
ratio of the average of 10 network power spectra to the S10
power spectra. We compute the transfer functions at each11Around the poles of the sphere (i.e., the first and the last

longitudinal rows of the grid), there is not enough physical area to
sample a 1° × 1° tile. Hence, we take the second and the second-
to-the-last rows of the grid, mirror them longitudinally, and
replace the first and the last rows of the grid with these mirrored
rows. This ensures that we have continuous physical tiles around
the poles at the cost of them not being unique. We find that this
pole correction does not affect the overall statistics of the network
simulations.

12We tried both linear interpolation and popular cubic spline
methods, and found no noticeable difference in the resulting
summary statistics. Thus, we chose to use the linear interpolation
method which is more computationally efficient.

13We set the pixel values at the outermost edges of the
apodization mask to the values of pixels one pixel away inside
the map to avoid losing information.
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multipole, and apply to these transfer functions a one-
dimensional Gaussian filter with σl ¼ 10 to smooth them
out. We then convert these to isotropic two-dimensional
transfer functions, and apply them to the spherical har-
monics of the full-sky map.
We find larger deviations in the power spectrum between

the network and the S10 simulations than specified above at
larger (l ≤ 2000) and smaller scales (l ≥ 8000). The large
scale deviation is due to the limited size of the sample
patches as discussed in Sec. III. For the small scales, we
find a roll-off in the power spectra starting at l ¼ 8000. We
find that this roll-off starts at larger scales (l ≤ 8000) if we
train the network with lower resolution simulations (for
example, 1 arcminute resolution), which indicates that the
roll-off is related to the resolution of the initial training
samples.
A second correction we apply is to adjust the CIB and

radiomaps as follows.We re-scale theCIBmapby a factor of
1.1 tomatch the S10 power spectra forl ∈ ð4000; 8000Þ.We
also re-scale the network CIB and radio source fluxes to
match the rescaled S10 source counts.14 After this re-scaling,
we still find that the network overestimates the number
counts of CIB sources with flux values greater than 1 mJy;
thus we reduce the flux of those sources by replacing the
original flux value, S, with S0.63. For radio sources, we find
that replacing the original flux by SðλÞ ¼ ððSþ 1Þλ − 1Þ=λ
with λ ¼ 1.25 [108] improves thematch at the high-flux end.

E. Generating lensed CMB and multifrequency maps

In order to generate lensed CMB (T,Q,U) maps, we first
generate full sky unlensed CMB (T, Q, U) maps as
Gaussian random fields on a CAR full-sky grid using
the CAMB theory spectra used in S10.15 Then, these
unlensed CMB maps are lensed with a network full-sky
κ map using the lensing method described in [4]. As in [4],
the lensing operation is performed at 1 arcminute resolution
and agrees with the theory to better than few percent up
to l ¼ 10;000.
Up to this point, all the training and corrections are done

with the 148 GHz network simulations. Here, we discuss
how we simulate the other frequency maps. We assume to
leadingorder that the lensedCMBand kSZperfectly follow a
black-body spectrum (i.e., they do not varywith frequency in
units of differential CMB temperature). The κ map is
frequency independent. In order to simulate the tSZ map
at different frequencies, we use the analytic calculations in
[109,110] to compute the frequency dependent scaling
factor, aðνÞ, and scale the 148 GHz tSZ map following
MtSZðνÞ ¼ aðνÞ=að148Þ %MtSZð148 GHzÞ, where MtSZ is
the real-space tSZ map. For CIB and radio sources, we find

the mean spectral indices between each frequency and the
reference frequency of 148 GHz, directly from the S10
catalogues; this results in the spectral indices shown in
Table III of Appendix C. For each source in the 148 GHz
map, we then randomly sample a spectral index from a
Gaussian distribution with the mean and the standard
deviation given in Table III, and scale its flux accordingly.
In this way, we generate full-sky maps of the combined
lensed CMB, kSZ, tSZ, CIB, and radio signals at 30, 90, 148,
219, 277, and 350 GHz.

IV. RESULTS

In this section, we study the statistical properties of the
mmDL simulations generated by our network. Unless
otherwise noted, all statistics are computed using full-
sky maps after applying a flux-cut of 7 mJy at 148 GHz to
radio and CIB maps, and appling the corrections discussed
in Sec. III D. We first visually compare the full-sky mmDL
and S10 simulations in Fig. 5. Here we show the full-sky
maps in the Mollweide projection, as well as zoom-ins of
1° × 1° patches. Visually, the mmDL simulations and the
S10 simulations are indistinguishable.

A. Pixel-level Summary Statistics

There are a number of pixel-level summary statistics
used in the literature. Such examples are (1) Minkowski
functionals [111], (2) one-point probability distributions,
and (3) source counts. For two dimensional images,
Minkowski functionals measure the area (F), the contour
length (U), and the dimensionless curvature known as the
Euler characteristic (χ) as a function of varying pixel
threshold value. Combined together these three functionals
give an estimate of the topology of an image, which is
sensitive to the presence of non-Gaussianity. We compute
Minkowski functionals using the minkfncts2d software,
which is publicly available at [112]. Figure 6 shows as solid
curves the functionals computed using the average of 100
1° × 1° tiles output by theVAEGANdescribed inSec. III C.16

The dashed curves are calculated using the full-sky S10
simulation described in Sec. II. Here, we compute the
functionals from the network without the corrections dis-
cussed in Sec. III D. Hence, the Minkowski functionals
shown in Fig. 6 give an estimate of how well the network
performs before applying any corrections. Overall, we find
very good agreement between the functionals computed
from the network and the S10 simulations. The only
noticeable mismatch is in the U and χ functionals of the
radio sources, which indicates a mismatch in the real-space
shape of radio point sources between the mmDL and S10

14Note that the original S10 CIB source fluxes have been
rescaled by a factor of 0.75 as discussed in Sec. II A.

15The CAMB theory spectra used in this work can be found
under the resources directory at [82].

16We recomputed the Minkowski functionals on a 20 degree
wide band around the celestial equator after making the correc-
tions described in Sec. III D; we did not find any significant
change, except a slight shift of the CIB curves as compared to
Fig. 6.
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FIG. 5. From top to bottom, shown are the lensing convergence (κ), the kinetic Sunyaev-Zel’dovich effect (kSZ), the thermal Sunyaev-
Zel’dovich effect (tSZ), and the cosmic infrared background (CIB) maps at 148 GHz from the S10 simulations (left column) and from
the network (right column). A flux cut of 7 mJy at 148 GHz is applied to the CIB maps. Full-sky maps are shown in the Mollweide
projection in the background, while center panels show zoom-ins of 1° × 1° patches. All maps have the units of μK, except for the κ map
which is dimensionless. Note that the S10 simulations are unique for only one octant of the sky; on the other hand, the network
simulations do not have any repeated tiles.
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simulations. The S10 point sources are “true” point sources
by construction (i.e., each source falls into a single pixel).
On the other hand, the network point sources are constructed
as the summation ofmultiple convolution kernels, hence they
can potentially extend beyond a single pixel. In practice, the
simulations will be convolved with a beam with a full width
at half maximum (FWHM) larger than 0.5 arcminute. So this
minor mismatch in the radio source shape will have a
negligible effect in actual analyses.
Another pixel-level summary statistic we consider is the

one-point probability distribution function (one-point PDF)
shown in Fig. 7; this one-point PDF is the histogram of
pixel values. Before computing this histogram, we divide
the pixels in each component map by the standard deviation
of pixel values in that map in order to have unit variance.
One-point PDFs have been studied previously in the
context of CMB weak lensing and tSZ analyses (e.g.,
[80,113,114]), and have been shown to be good probes of
non-Gaussian information. We find good overall agreement

between a random realization of a full-sky network
simulation and the S10 simulations.
The last pixel-level statistics we consider is the source

number counts. In Fig. 8, we show the histogram of the
source number counts per square degree per flux bin for the
simulated CIB and radio maps. As discussed in Sec. III D,
the network overestimates the number of CIB sources with
flux levels greater than 1 mJy, and we correct for this by
scaling down the network flux levels at the high flux tail.
This scaling substantially improves the overall match. This
scaling has negligible impact on the other CIB statistics
discussed below, since the other statistics are largely driven
by lower flux sources.

B. Two-point statistics

Next, we show the two-point statistics of the simulations
in Figs. 9 and 10. Since we apply one-dimensional transfer
functions and scale factors, computed by comparing the
network power spectra to the S10 power spectra (see
Sec. III D for details), the power spectra of the network
and S10 match by construction, as shown in Fig. 9.
Figure 10 shows the cross spectra between the κ map
and the extragalactic foreground components at 148 GHz.
Overall, we find a good match between the two sets of cross
spectra. We find only a small extra correlation between κ
and tSZ at small scales (l ≥ 8000). We also check the cross
correlation among the other components (for instance the

FIG. 7. Shown are one-point probability distribution functions
of the extragalatic foregrounds at 148 GHz. Solid curves are
calculated from a random sample of a full-sky simulation from
the network, and dashed curves are calculated using the full-sky
S10 simulation. A flux-cut of 7 mJy is applied to both CIB maps.
Each map is divided by the standard deviation of its pixel values
in order to have unit variance. We find good agreement between
the network curves and the S10 curves.

FIG. 6. Shown are the Minkowski functionals of the extra-
galactic foreground components at 148 GHz. The solid curves are
calculated using the average of 100 1° × 1° tiles output by the
VAEGAN described in Sec. III C. The dashed curves are
calculated using the full-sky S10 simulation described in Sec. II.
Both the S10 and the network simulations are normalized
following the procedure detailed in Sec. II C. To compute the
Minkowski functionals, a binary map is first constructed with a
value of one above a certain pixel threshold, and zero otherwise.
Then, the this binary map is used to compute the area above the
threshold (F), its boundary (U), and the dimensionless curvature
known as the Euler characteristic (χ). These three functionals,
give an estimate of the non-Gaussianity of each component [111].
We find that the network can reproduce well the Minkowski
functionals calculated using the S10 simulations. This indicates
that the network learned the non-Gaussian information in S10.
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tSZ and CIB), and similarly find good matches. Note that
we do not apply any correction to the network cross spectra.
The matches between the network and the S10 cross spectra
indicate that the network has correctly learned the corre-
lations among the foreground components.

C. Three-point and four-point functions

We also compute higher order statistics, in particular the
three-point and four-point functions. We compute the
bispectra of foregrounds following [88,115,116] using
the PiInTheSky software.17 The binned bispectra of the
simulations are shown in Fig. 11 and Fig. 12. One
advantage of the binned bispectrum method is that it
requires no explicit modeling of the signal. For visualiza-
tion purposes, we plot the absolute value of the kSZ
bispectra, and we plot the tSZ bispectra multiplied by a
factor of −1. Overall we find a good match in the shape and
amplitude of the bispectra, even though our training
procedure was not explicitly optimized to reproduce the
bispectra. With minor modifications to the training pro-
cedure, we expect this match can be further improved.
In Fig. 12, we show a squeezed configuration bispectra,

where one leg of the triangle is l1 ¼ 35, and the other two
legs have the same length (l2 ¼ l3). As discussed in
Sec. III D, we generate the full-sky realizations by “stitch-
ing” up 1° × 1° tiles. Naively, the network simulations are

not expected to reproduce the statistics for modes larger
than the tile size (i.e., roughly l ≤ 200). However, we find
that the network correctly reproduces the correlations
between the super tile modes (l1 ¼ 35) and the smaller
scale modes (l ≥ 200). This indicates that our overall
procedure can generate faithful full-sky realizations, which
contain the correct information at all scales.
Figures 13 and 14 shows the comparison for the four-

point functions used to reconstruct the lensing potential. To
do this comparison, we first generate an unlensed Gaussian
CMB realization using theWMAP5 cosmology [83]; we then
make two lensed versions of this CMB map, one lensed by
the network κ and another lensed by the S10 κmap. Since our
lensing reconstruction filter requires some instrument noise
and a finite resolution, we add to each simulation a white
noise level of10 μK-arcminute and a 1.3 arcminuteGaussian
beam, which matches current ground-based CMB experi-
ment sensitivity. We reconstruct the lensing potential using
the temperature-only quadratic estimator [117] in order to
focus on the bias induced fromextragalactic foregrounds.We
include CMB multipoles in the range of l ∈ ½100; 3000' for
the reconstruction. Figure 13 shows the cross spectra
between the reconstructed lensing convergence and the input
lensing convergence from both the network and S10 simu-
lations, in the absence of other foreground contamination.

FIG. 8. Shown is a histogram of the source number counts per
square degree per flux bin for CIB and radio maps. The solid
curves are generated using a random simulation from the
network, while the dashed curves are generated using the S10
simulation. A flux cut of 7 mJy is applied to both CIB and radio
maps for both network and S10 simulations. We find good overall
agreement.

FIG. 9. Shown are the power spectra of simulations at 148 GHz.
The solid curves are calculated from a random sample of a full-
sky simulation from the network, and dashed curves are calcu-
lated using the full-sky S10 simulation. A flux-cut of 7 mJy is
applied to both CIB and radio maps. For the purpose of
visualization, we multiply the κ map by a factor of 100 before
taking the power spectrum. Since we apply one-dimensional
transfer functions and scale factors, computed by comparing the
network power spectra to the S10 power spectra (see Sec. III D
for details), the power spectra of the network and S10 match by
construction.

17https://github.com/simonsobs/PiInTheSky.

DEEP LEARNING SIMULATIONS OF THE MICROWAVE SKY PHYS. REV. D 104, 123521 (2021)

123521-13

https://github.com/simonsobs/PiInTheSky
https://github.com/simonsobs/PiInTheSky


FIG. 11. Shown are the binned bispectra of simulations at
148 GHz. The solid curves are calculated from a random sample
of a full-sky simulation from the network, and dashed curves are
calculated using the full-sky S10 simulation. A flux-cut of 7 mJy is
applied to both CIB and radio maps. Here l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l2

2 þ l2
3

p
,

where l1, l2, and l3 form a triangle.

FIG. 12. Similar to Fig. 11, but for a squeezed configuration,
where one leg is l1 ¼ 35, and the other two legs are the same
length (l2 ¼ l3Þ. We find that the network can correctly
reproduce the correlations between modes larger than the tile
size (i.e., 1° × 1° or roughly l ≤ 200 in the harmonic domain)
and modes within the tiles (i.e., roughly l ≥ 200).

FIG. 13. Shown are the reconstructed lensing auto spectra. The
red solid curve is generated from a CMB map lensed with a full-
sky κ map from the network. The blue dashed curve is generated
using the same CMB map, instead lensed with the full-sky S10 κ.
No foregrounds are added. Lensing reconstruction is done using
the temperature-only quadratic estimator, including multipoles of
l ∈ ½100; 3000'. We compute the lensing auto spectrum as the
cross spectra of the reconstructed kappa map and the input kappa
map in order to avoid reconstruction noise bias.

FIG. 10. Shown via cross correlation coefficients are the cross
spectra between the κ map and the extragalactic foreground
components at 148 GHz. The solid curves are generated with a
full-sky map from our network, while the dashed curves are
generated from the S10 simulations. A flux-cut of 7 mJy is
applied to both the CIB and radio maps. There is a good overall
match between the curves. Note that we do not apply any
correction to the network cross spectra; the matches between
the network and the S10 cross spectra indicate that the network
has correctly learned the correlations among the foreground
components.
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We find a good match for all the scales considered. Fig. 14
shows the contamination of the reconstructed lensing
convergence from simulated lensed CMB maps plus the
extragalactic foregrounds as a percent bias (i.e.,
Cκκ
L;biased=C

κκ
L;unbiased × 100, where Cκκ

L is computed from
the cross spectra between the reconstructed and the input
lensing convergences as described above). We find good
agreement between the biases computed from the network
and those from the S10 simulations.

V. FINAL NETWORK PRODUCT

We make 500 mmDL realizations in total using our
network, and release them publicly on the Legacy Archive
for Microwave Background Data Analysis (LAMDA)18 and
the National Energy Research Scientific Computing
Center (NERSC) cluster.19 These are full-sky simulations at
half-arcminute resolution at six different frequencies (30, 90,
148, 219, 277, and 350 GHz), which include:

(i) the lensing convergence map (κ),
(ii) the kinetic Sunyaev-Zel’dovich effect (kSZ),

(iii) the thermal Sunyaev-Zel’dovich effect (tSZ),
(iv) the cosmic infrared background (CIB), and
(v) the radio galaxies (radio).
For each realization, we generate six maps of the

frequency-dependent components (tSZ, CIB, and radio),
and one map of the frequency-independent components
(lensed CMB (T,Q,U), κ, and kSZ). We release all of these
components separately, as well as a combined final micro-
wave sky map in temperature at each of the six frequencies.
In total, each realization contains 29 (6 × 3þ 5þ 6) full
sky maps. The simulations are natively made in the CAR
pixelization and converted to HEALPix by reprojecting the
CAR maps to spherical harmonic alm up to an lmax of
10,000 for κ, kSZ, and tSZ maps, and an lmax of 25,000 for
CIB and radio maps; note that we chose a higher lmax of
25,000 for CIB and radiomaps to reduce the effect of spectral
leakage around the sources and to reproduce the source
number counts shown in Fig. 8. These alm are then
reprojected onto full-sky HEALPix maps of Nside ¼ 8192.
We release this set of simulations in both HEALPix and CAR
pixel formats, however, for space reasons we provide 500
HEALPix realizations and only 30 CAR realizations. We also
provide scripts to convert between HEALPix and CAR maps.
Each HEALPix fits file is 3.2 GB for double-precision, and
each CAR file is 3.6 GB for single-precision. Thus the full
package is 50 TB, for 500×29×3.2GBþ30×29×3.6GB.
We also release the code used in this work at [82].

VI. DISCUSSION

We have presented for the first time high-resolution full-
sky DL simulations at millimeter wavelengths that include
correlated foreground components. We find that these
mmDL simulations can reproduce not only the power
spectra of the original simulations, but also can naturally
reproduce the other non-Gaussian statistics considered in
this work (i.e., one-point PDFs, cross-spectra, bispectra,
lensing reconstructions, and lensing reconstruction biases)
with good overall agreement. This is notable since we only
amend the mmDL simulations to reproduce the power
spectra and the source number counts above 1 mJy.
The procedure we developed can be used to generate an

unlimited number of full-sky realizations starting from just
a single realization of a full-sky simulation. Ordinarily
there would not be enough independent small tiles from a
single full-sky simulation to train a network to predict new
foreground maps given a kappa map. However, in this work
we achieve this by first generating an augmented dataset
(intermediate product 2 in Fig. 1) by training our network
on the original simulations. This augmented dataset is more
than four times larger than the original one and each patch
is statistically independent; thus it can be used to train the
next network step (training step 2 in Fig. 1) that requires a
larger amount of training data. This enables the capability
to mass produce independent full-sky realizations from a
single expensive full-sky simulation.

FIG. 14. Shown is the percent bias to the reconstructed lensing
auto spectrum induced by extragalactic foregrounds at 148 GHz.
The solid curves are calculated with a random full-sky simulation
from the network, while the dashed curves are computed using
the S10 simulation. Lensed CMB maps are made as discussed in
Fig. 13. A flux-cut of 7 mJy is applied to both CIB and radio
maps. The lensing auto spectra are computed as the cross spectra
of the reconstructed and input kappa maps as in Fig. 13. We find
good agreement between the S10 simulation and the network.

18https://lambda.gsfc.nasa.gov/simulation/tb_sim_ov.cfm.
19https://crd.lbl.gov/departments/computational-science/c3/c3-

research/cosmic-microwave-background/cmb-data-analysis-at-
nersc/.
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Currently, DL training is mostly done with small tiles
due to limited computing resources (both memory and
GPU). Though these resource issues will be alleviated as
hardware improves overtime, we expect that they will
persist for the foreseeable future. Unfortunately, these
small DL simulations have a limited use when analyzing
current and future wide-field CMB survey data. In this
work, we outline a procedure for generating many realiza-
tions of full-sky maps, stitching together many individual
tiles, that can faithfully recover the high-order statistics of a
full-sky map without discontinuities or repeated features.
An advantageous feature of our network is that the input

is a full-sky kappa map (top green box in Fig. 1). Thus one
can now in principle take a full-sky kappa map from any
large-scale structure (LSS) simulation and generate the
corresponding lensed CMB and correlated foreground
components at millimeter wavelengths. This is especially
useful in the current era of combining results from both
CMB and LSS surveys, which require a common set of
simulations. One can, for example, input in a full-sky kappa
map taken from a simulation developed for the Rubin or
Roman surveys [118,119], and generate the corresponding
CMB maps, resulting in simulations with both galaxies and
CMB secondary components.20

We envision these mmDL simulations useful for all parts
of CMB data analyses, such as verification of pipelines,
generation of covariance matrices, and analyses of fore-
ground biases. Furthermore, since our procedure is numeri-
cally efficient, especially for generating foreground
realizations on a small patch of the sky, we can use our
DL method as a part of a forward modeling pipeline (such
as discussed in [120]) where one varies the initial con-
ditions to match observations.
Before we conclude, we briefly comment on the poten-

tial origin of the corrections we make in Sec. III D. The
properties of generative DL models, in particularly those of
GAN, are active areas of research (see [121] for more
discussion), which is out of the scope of this work.
However, we discuss a couple considerations relevant to
the applications of generative DL models in physics. First,
there is no simple way to impose physical constraints (for
instance, symmetry requirements) to neural networks,
though there are studies in this direction (for example
[122,123]). This prevents DL practitioners from leveraging
some physical insights important to the traditional model-
ing of physical processes. Second, even though the
Wasserstein distance used throughout this work is the most
general way to compute the distance between two distri-
butions (i.e., the most general discriminator), we can only
compute an approximated form of the Wasserstein metric
due to numerical reasons. It is not intuitively clear whether
optimizing this approximated version should always lead to

physical results. These limitations are unlikely fundamental
short comings of generative DL models, and we expect that
they will be eventually overcome.
We also acknowledge that additional external indepen-

dent datasets, similar to S10, would be useful for the further
validation of the method presented in this work, in
particular to assess both the statistical and systematic error
inherent to the method. This would also potentially allow
us to tune network parameters to match high-order statistics
with greater precision. Given the expense of generating
such simulations via traditional methods, it is not clear
when many such datasets will become available.
Finally, we note that our network is trained to the specific

cosmology and baryonic model used to generate the S10
simulations. In principle, a GAN network should be able to
generate simulations at different cosmologies and with
different gas physics by extrapolating the latent space
variables (see [79] for discussion). This is potentially a
very powerful technique that can vastly expand the appli-
cability of these mmDL simulations.
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APPENDIX A: NORMALIZATION PARAMETERS

In the DL literature, normalization refers to a set of
techniques to modify the training data in order to stabilize

TABLE II. The normalization parameters described in Sec. II C.
Here σp is the standard deviation of pixel values used in the log-
normalization [Eq. (1)]. μp0 and σp0 are related to the mean and the
standard deviation of the pixel values used in the standard score
[Eq. (2)]. Note that the log-normalization is not applied to κ and
kSZ maps as discussed in Sec. II C.

Component σp μp0 σp0

κ N/A 5.342e−19 0.081
kSZ N/A 5.173e−17 2.347
tSZ 3.6809 −0.629 0.286
CIB 17.134 0.605 0.349
Radio 6.392 0.199 0.421

20If the given LSS kappa map includes non-Gaussian structure,
we would just remove training step 3 from our network.
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and to speed up the training. A few popular normalization
methods are the Box-Cox transformation [124] (which
includes a log scaling), clipping, min-max, and the standard
score. We tried a number of different normalization
methods, and found that the combination of log scaling
(adopted from [74]), and the standard score yielded the best
results in our case. In Table II, we list the parameter values
used in our normalization procedure. These parameter
values are derived from the validation dataset described
in Sec. II B. Each of these parameters are described in detail
in Sec. II C.

APPENDIX B: GRID SCHEMATIC

Since our network can only process relatively small tiles,
we need a systemic way to divide a full-sky map into a grid
of tiles. For numerical reasons, the natural choice of tile
width and height is 2n pixels. In this work, we use the tile
size of 128 × 128 pixels, which is roughly 1° × 1°. The
schematic of our tile grid is shown in Fig. 15. Note that we
include 20 pixels overlap between tiles, which ensures
continuity when we reproject tiles on to a full-sky map.
This grid procedure results in a grid of tiles with 200 tiles
along a longitudinal direction and 400 tiles along a latitude
direction.

APPENDIX C: FREQUENCY DEPENDENCE OF
CIB AND RADIO SOURCES

As discussed in Sec. III D, we estimate the frequency
dependence of CIB and radio sources using the S10
catalogues. For each source in the catalogues, we compute
its spectral index between a given frequency and the
reference frequency of 148 GHz by comparing the flux
of that source at the given frequency (30, 90, 219, 277,
and 350 GHz) to the flux at the reference frequency.
In Table III, we show the means and standard deviations

FIG. 15. We show a schematic of the tiling grid described in
Sec. III D. Each tile is 128 × 128 pixels (roughly 1° × 1°) in the
CAR pixellization and corresponds to a patch effectively centered
at the celestial equator. We cutout each tile with a 20-pixel
overlap region around the edges to ensure that the final maps are
continuous when we reproject the tiles back on to a full-sky
CAR map.

TABLE III. The estimated spectral indices of CIB and radio
sources described in Sec. III D and Appendix C. The spectral
indices are estimated using the S10 source catalogues by
comparing the flux of a source at a given frequency (30, 90,
219, 277, and 350 GHz) to the flux at the reference frequency of
148 GHz; the mean and standard deviation of the source spectral
indices are listed in the Table.

Frequency (GHz) βCIB βradio

30 3.304( 0.138 −0.799( 0.158
90 3.202( 0.442 −0.811( 0.144
219 2.973( 0.567 −0.820( 0.135
277 2.870( 0.372 −0.822( 0.134
350 2.745( 0.301 −0.823( 0.133

FIG. 16. We show the power spectra of CIB maps at different
frequencies. The solid curves are calculated from a random
realization of a full-sky simulation from the network, and dashed
curves are calculated using the full-sky S10 simulation. A flux-
cut of 7 mJy at 148 GHz is applied to all CIB maps. For each
source in the 148 GHz map, we simulate its frequency depend-
ence as described in Sec. III D and Appendix C. We find good
agreement for the CIB power spectra between the S10 simulation
and the network.
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of the spectral indices for CIB and radio sources. Note that
we only consider the sources that meet our flux-cut criteria
(≤7 mJy at 148 GHz) in this estimation.
For each source in the network 148 GHz map, we

randomly assign it a spectral index for each frequency, with
each index drawn from a Gaussian distribution with a mean
and the standard deviation as specified in Table III; we then
scale the source’s 148 GHz flux accordingly and place it in
the new frequency map. We find that we can recover well
the frequency dependence of the original S10 CIB and
radio maps using this method as shown in Figs. 16 and 17.

APPENDIX D: REALIZATION DEPENDENT
SCATTER

One common failure mode of GANs is mode collapse,
which is when a GAN repeatedly generates the same or
statistically similar images. In the context of our work,
mode collapse will lead to a lower variance of the
simulations than expected, due to the presence of repeated
tiles. In this section, we empirically show that the variances
of our network simulations match the expected variances.
Figure 18 shows the diagonal elements of the covariance
matrix derived from the κ power spectrum of 20 network
simulations. Here, the expected variance is given by Eq. (4)
in [125]; in the absence of experimental noise, this equation
gives the expected variance of an approximately Gaussian
random field. Similarly, we show the estimated variance of
20 network kSZ and CIB maps in Figs. 19 and 20. For each
of these components, we find that the variance from the
network simulations matches the expected variance.

Since each lensed CMB realization is generated from
independent unlensed CMB realizations, the lensed
CMB maps should have the correct variance by the
construction.

FIG. 17. The same as Fig. 16 above, but for radio maps instead
of CIB maps.

FIG. 18. We show the diagonal elements of the covariance
matrix derived from the κ power spectrum. The blue curves are
estimated from 20 realizations of a full-sky simulation from the
network, and the dashed curve is calculated using Eq. (4) in [125]
given the S10 κ power spectrum. We find good agreement
between the variance from the network simulations and the
expected variance.

FIG. 19. The same as Fig. 18 above, but for kSZ maps instead
of κ maps.
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APPENDIX E: SUPPLEMENTARY NETWORK
TRAINING DETAILS

The details of our network architectures are discussed in
Sec. III. In this section, we provide supplementary details
of our training procedure. Table IV summarizes a few

additional parameters of our network training procedure.
As shown in the table, all three GAN layers share most of
the common parameters including the learning rate and
the Adam optimizer parameters. We check our metrics
(images, loss function, power spectra, and others) every
100,000 training data samples processed (i.e., two times per
epoch for DCWGAN-GP and VAEGAN; eight times per
epoch for PIXGAN). If we find a degradation of the output
quality, we restart the training from the last epoch with the
learning rate reduced by a factor of two. Also, if the model
either can not reproduce the power spectra after the loss
function plateaus or images are not visually correct, we
start the training from scratch with the learning rate reduced
by a factor of two. Lastly, we do not explicitly check for
mode collapse, but rely on the summary statistics (shown
in Sec. IV) and the estimated variances (shown in
Appendix D) to infer the presence of mode collapse.
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