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Abstract
Spatio-temporal change of support methods are designed for statistical analysis on
spatial and temporal domains which can differ from those of the observed data. Pre-
vious work introduced a parsimonious class of Bayesian hierarchical spatio-temporal
models, which we refer to as STCOS, for the case of Gaussian outcomes. Application
of STCOSmethodology from this literature requires a level of proficiency with spatio-
temporal methods and statistical computing which may be a hurdle for potential users.
The present work seeks to bridge this gap by guiding readers through STCOS com-
putations. We focus on the R computing environment because of its popularity, free
availability, and high quality contributed packages. The stcos package is introduced
to facilitate computations for the STCOSmodel. Amotivating application is theAmer-
ican Community Survey (ACS), an ongoing survey administered by the U.S. Census
Bureau that measures key socioeconomic and demographic variables for various pop-
ulations in the United States. The STCOS methodology offers a principled approach
to compute model-based estimates and associated measures of uncertainty for ACS
variables on customized geographies and/or time periods. We present a detailed case
study with ACS data as a guide for change of support analysis in R, and as a foundation
which can be customized to other applications.

Keywords American Community Survey · Areal data · Basis functions · Bayesian
statistics · Model-based estimates · Official statistics

1 Introduction

In the course of an analysis where data are inherently spatio-temporal, an investiga-
tor may desire estimates on spatial and/or temporal domains not coinciding exactly
with domains of the observations. This can include customized geographies and time
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periods conceived long after the data have been collected. Spatio-temporal change
of support methods aim to provide this capability. A methodology recently proposed
by Bradley et al. (2015b) captures spatio-temporal dependencies in areal data by con-
structing several keymatrices which become the foundation of a Bayesian hierarchical
model. Model fitting is done via Markov chain Monte Carlo (MCMC); in particular,
the model permits a Gibbs sampler which is conveniently composed of draws from
standard distributions. Estimates, predictions, and appropriatemeasures of uncertainty
are provided by the fittedmodel. This methodology, hereafter referred to as the STCOS
model or STCOS methodology, is the focus of the present paper. Although STCOS
methodology has been fully specified by Bradley et al. (2015b), potential users—such
as subject-domain scientistswhomaynot be experts in spatio-temporal statistics—may
find proceeding from the previous literature to their own applications to be a difficult
hurdle. A successful implementation requires managing datasets containing estimates,
geospatial data, operations on sparse matrices, Bayesian computing, plotting, as well
as carrying out computations tailored to the STCOS model.

In this paper, we demonstrate an assortment of tools to perform STCOS modeling
through a detailed case study, with the objective of making the methodology more
accessible to potential users. The required tasks can be accomplished with a variety
of modern computing platforms, but we will focus on R, the popular open source
environment for statistical computing (R Core Team 2020). R is supported by an active
community of academic, corporate, and individual users.A large and diverse collection
of packages has been contributed by its community and published to repositories such
as the Comprehensive R Archive Network (CRAN). Much of R, including the base
platform and CRAN packages, is freely available on the internet. The high-level R
programming language facilitates data analysis, fast prototyping of new methods,
and simulation, and can be augmented with C, C++, and FORTRAN when speed or
efficient use of memory are crucial. In addition to highlighting some established R
packages, we introduce the stcos package to handle some of the more intricate
STCOS computations in an efficient and user-friendly way. Familiarity with R will be
assumed throughout the remainder of the paper.

Bradley et al. (2015b) developed STCOSwith amotivating application to theAmer-
ican Community Survey (ACS), an ongoing survey administered by the U.S. Census
Bureau for the purpose of measuring key socioeconomic and demographic variables
for the U.S. population. ACS is again showcased in the present paper as it remains
an important application for change of support methods (Weinberg et al. 2018). How-
ever, STCOSmethodology is not limited to applications involving the ACS or the U.S.
Census Bureau. The problem of spatial change of support has arisen in atmospheric
science and oceanography (Wikle and Berliner 2005), water quality modeling (Rode
et al. 2010), environmental health (Fuentes et al. 2006), and remote sensing (Nguyen
et al. 2012), among others. See Gotway and Young (2002), Bradley et al. (2015b), and
the references therein for a review of the change of support literature.

Existing software tools for change of support appear to originate from geographic
information systems (GIS) literature, emphasizing methods such as pycnophylactic
interpolation (Tobler 1979), areal-weighted interpolation (Lam 1983), and dasymetric
mapping (e.g. Eicher and Brewer 2001). In R, such tools include the pycno package
(Brunsdon 2014), the st_interpolate_aw function in the sf package (Pebesma
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2018), and the areal package (Prener and Revord 2019). The Tobler package
was developed for Python by Cortes et al. (2019). Qiu et al. (2012) and Mileu and
Queirós (2018) describe adding change of support capabilities to the ArcGIS and
QGIS platforms, respectively. From the perspective of software tools, the present work
offers two major contributions: (1) measures of uncertainty expressed via a statistical
model, and (2) the capability to carry out change of support in both space and time.

The remainder of the article proceeds as follows. Section 2 discusses STCOS con-
cepts in the context of the ACS. Section 3 reviews STCOS methodology. Here some
additional details are provided—and some small modifications are made—from the
original formulation of Bradley et al. (2015b). Section 4 discusses the set of R tools
to be demonstrated, including basic functionality of the stcos package. Section 5
presents our case study to demonstrate STCOS programming; we produce model-
based estimates of median household income for several neighborhoods in the City of
Columbia in Boone County, Missouri. Section 6 concludes the article. This article is
intended to be largely self-contained for a wide range of readers; those eager to begin
programming can focus primarily on Sects. 4 and 5. The stcos package is available
on CRAN at https://CRAN.R-project.org/package=stcos. The complete code for the
City of Columbia data analysis is provided as a supplement to this article.

2 Change of support concepts and the ACS

To facilitate our discussion of the change of support problemandSTCOSmethodology,
wenowgive a brief overviewof theACS. Public-useACSdata are available through the
Census Bureau’s ACS website (https://www.census.gov/programs-surveys/acs) dat-
ing back to the year 2005. Estimates have historically been released for 1-year, 3-year,
or 5-year periods; 3-year period estimates were discontinued after 2013. The Census
Bureau releases annual ACS period estimates for a variety of geographies including
states, counties, census tracts, and school districts. At their finest geography, data are
released at the census block-group level; however, estimates for an area are suppressed
unless the area meets certain criteria. An area typically must have a population of at
least 65,000 for 1-year estimates to be released, but there is no population require-
ment for 5-year estimates (U.S. Census Bureau 2016). ACS estimates consist of point
estimates and associated measures of uncertainty such as margins of error (MOEs)
corresponding to 90%confidence intervals, or variance estimates; wewill refer to them
collectively as direct estimates. Because statistical agencies like the Census Bureau
have direct access to the confidential microdata, special tabulations for new geogra-
phies or period lengths can be prepared internally as needed. However, data users out-
side of theCensusBureaumay be interested in customgeographies and/or nonstandard
time periods which are not provided by the agency. Providing ACS data users tools for
change of support has recently been identified as an important problem by a National
Academy of Sciences panel (National Academy of Sciences 2015). STCOS method-
ology enables model-based estimates to be computed with public-use ACS releases.

The change of support problem can be illustrated by a concrete example, taking
median household income as the variable of interest here and for the remainder of
the article. Suppose we would like to produce 3-year model-based estimates in Mis-
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Fig. 1 The state of Missouri in
2015. Thin lines mark
boundaries between the 114
counties and one independent
city. Shaded areas with thick
lines mark the eight
congressional districts

souri congressional districts for the year 2015. Congressional districts are geographic
regions which receive representation by an elected official in the U.S. House of Rep-
resentatives and are determined by a redistricting process which is based on data from
each decennial census. The Census Bureau does release ACS estimates on congres-
sional districts, but releases of 3-year estimates for all geographies were discontinued
after 2013; therefore, model-based estimates may be of interest to data users. Geogra-
phies on which we want to produce estimates and predictions are referred to as target
supports. Figure 1 displays the eight designated congressional districts inMissouri for
the year 2015. Geographies on which direct estimates are available are used to fit the
STCOS model and are referred to as source supports. For this illustration, we could
take the source supports to be all 1-year, 3-year, and 5-year ACS releases for the coun-
ties within Missouri. Including available periods over a number of years allows the
STCOS model to find trends in both time and space, and make use of estimates which
represent varying levels of granularity and sparseness. Figure 2 shows direct estimates
for Missouri in the year 2013. We notice that 1-year and 3-year period estimates have
been suppressed for many counties. We emphasize that counties and congressional
districts do not necessarily align, and the crux of the STCOS problem is to “translate”
between the county-level observations and the congressional districts. The third type
of support which must be discussed is the fine-level support. For this example, we
could take the fine-level support to be the 2015 definition of counties in Missouri,
shown in Fig. 1. The STCOS methodology works by translating each of the source
supports to the fine-level support during the model fitting process. Once the model
has been fit, estimates and predictions on target supports of interest are obtained by
translating from the fine-level support. Raim et al. (2017) presents a model selection
study with counties in the continental U.S. as target and source supports, congres-
sional districts as target supports, and median household income as the ACS variable
of interest. Section 5 will demonstrate a smaller-scale problem which requires less
computing time.
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Spatio-temporal change of support modeling with R 753

Fig. 2 County-level ACS data for median household income in Missouri for the year 2013. The left column
shows direct estimates and the right column displays standard errors. The first, second, and third rows
correspond to 1-year, 3-year, and 5-year period estimates, respectively. Public ACS estimates were not
available for areas with white shading

3 The STCOSmodel

Let T = {v1, . . . , vT } represent the set of times for which direct estimates are avail-
able, indexed by t = 1, . . . T . Let L denote the set of possible lookback periods for
which these estimates have been constructed. We will take T to consist of the years
2005 through 2017, corresponding to the ACS releases available during the prepa-
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ration of this article, and L = {1, 3, 5} to denote 1-year, 3-year, and 5-year period
releases. Therefore, �-year direct estimates for year vt are based on the time period
(vt−�+1, . . . , vt ). Data may not be released for all (vt , �) ∈ T ×L; for example, ACS
3-year estimates were discontinued after 2013. Let (T × L)∗ denote the subset of
T ×L that corresponds to a data release. For each (vt , �) ∈ (T ×L)∗, the associated
source support Dt� is a collection of areal units whose estimates are included in the
release. For each areal unit A ∈ Dt�, Z

(�)
t (A) is the direct point estimate for one ACS

variable of interest and V (�)
t (A) is the corresponding variance estimate. The fine level

support will be denoted DB = {B1, . . . , BnB }. The total surface area of a given areal
unit A will be denoted |A|.

The STCOS model is a Bayesian hierarchical model (Cressie and Wikle 2011,
Section 2.1) which will first state before describing components in detail. Let
N(μ,Σ) denote the multivariate normal distribution with density φ(x | μ,Σ) =
(2π)−k/2|Σ |−1/2 exp{− 1

2 (x − μ)�Σ−1(x − μ)} for x ∈ R
k , where the dimension

k depends on the context. Let IG(a, b) denote the Inverse Gamma distribution with
density fIG(x | a, b) = bax−a−1e−b/x/�(a) · I (x > 0), where I (·) is the indicator
function. First, the data model is

Z (�)
t (A) = Y (�)

t (A) + ε
(�)
t (A), ε

(�)
t (A)

ind∼ N(0, V (�)
t (A)),

for A ∈ Dt� and (vt , �) ∈ (T × L)∗. Second, the process model is

Y (�)
t (A) = h(A)�μB + s(�)t (A)�η + ξ

(�)
t (A),

[η | σ 2
K ] ∼ N(0, σ 2

K K ),

[ξ (�)
t (A) | σ 2

ξ ] iid∼ N(0, σ 2
ξ ),

for A ∈ Dt� and (vt , �) ∈ (T × L)∗. Finally, the parameter model is

μB ∼ N(0, σ 2
μ I), σ 2

μ ∼ IG(aμ, bμ), σ 2
K ∼ IG(aK , bK ), σ 2

ξ ∼ IG(aξ , bξ ).

The STCOS model assumes that direct estimates Z (�)
t (A) constitute a noisy obser-

vation of an underlying latent process Y (�)
t (A). The variance of the noise ε

(�)
t (A) is

assumed to be the direct variance estimate V (�)
t (A). The mean of the latent process

Y (�)
t (A) consists of a coarse spatial trend h(A)�μB and a spatio-temporal random

process s(�)t (A)�η. Conjugate priors are assumed for the coefficients and variance
parameters from the previous two stages. Thematrix K , which provides the covariance
structure for the random coefficient of η, is assumed to be known and is computable
from the fine-level support.

The latent process model is motivated by the following construction. Define a
continuous-space discrete-time process,

Y (u, v) = δ(u) +
∞∑

j=1

ψ j (u, v) · η j , for u ∈
nB⋃

i=1

Bi and v ∈ T ,
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where δ(u) is a large-scale spatial trend process and {ψ j (u, v)}∞j=1 is a prespecified
set of spatio-temporal basis functions. Integrating Y (u, v) uniformly over u ∈ A and
an �-year period v = (vt−�+1, . . . , vt ),

Y (�)
t (A) = 1

|A|
∫

A
δ(u) du + 1

�|A|
t∑

k=t−�+1

r∑

j=1

∫

A
ψ j (u, vk) · η j du

+ 1

�|A|
t∑

k=t−�+1

∞∑

j=r+1

∫

A
ψ j (u, vk) · η j du

= μ(A) + s(�)t (A)�η + ξ
(�)
t (A). (3.1)

In (3.1), we have used the notation

μ(A) = 1

|A|
∫

A
δ(u) du, (3.2)

s(�)t (A)�η = 1

�|A|
t∑

k=t−�+1

r∑

j=1

∫

A
ψ j (u, vk) · η j du, (3.3)

ξ
(�)
t (A) = 1

�|A|
t∑

k=t−�+1

∞∑

j=r+1

∫

A
ψ j (u, vk) · η j du, (3.4)

so that (3.2) represents a large-scale spatial trend, (3.3) is a spatio-temporal random

process, and (3.4) is the remainder. We assume that [ξ (�)
t (A) | σ 2

ξ ] iid∼ N(0, σ 2
ξ ), and

make use of local bisquare basis functions for the small-scale spatio-temporal trend,
which are of the form

ψ j (u, v) =
[
2 − ‖u − c j‖2

w2
s

− |v − g j |2
w2
t

]2
· I (‖u − c j‖ ≤ ws) · I (|v − g j | ≤ wt ),

(3.5)

for j = 1, . . . , r , with specified knots {(c j , g j ) : j = 1, . . . , r}. Knots may be taken
as the Cartesian product of a set of spatial knot points {ca : a = 1, . . . , rspace} and
a set of temporal knot points {gb : b = 1, . . . , rtime}; however, this is not required
in general. The basis functions also require specification of a spatial radius ws and
temporal radius wt . We will select evenly spaced temporal knot points and spatial
knot points according to a space-filling design (Nychka and Saltzman 1998). It can
be difficult to specify ws directly, as the influence of ws depends on the coordinate
system used in the supports. We therefore take ws = w̃s · Q0.05, where Q0.05 is the
0.05 quantile of all nonzero pairwise distances between spatial cutpoints and w̃s is
a parameter to be selected by the user. See Raim et al. (2017) for a model selection
study varying several factors in this model such as the number of knot points and the
selection of w̃s and wt .
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Basis functions at the area level may be obtained from bases (3.5) defined at the
point level; for area A and an �-year period specified by years v = (vt−�+1, . . . , vt ),
let

ψ
(�)
j (A, v) = 1

�

t∑

k=t−�+1

1

|A|
∫

A
ψ j (u, vk)du, (3.6)

which can be computed by Monte Carlo approximation via

ψ
(�)
j (A, v) ≈ 1

�Q

t∑

k=t−�+1

Q∑

q=1

ψ j (uq , vk),

based on a random sample of locations u1, . . . , uQ from a uniform distribution
on the region A. Therefore, the basis expansion for an �-year lookback period
v = (vt−�+1, . . . , vt ) and area A is

s(�)t (A)� =
(
ψ

(�)
1 (A, v), . . . , ψ(�)

r (A, v)
)

.

Next, for the large-scale spatial trend process, we make the simplifying assumption
that

δ(u) =
nB∑

i=1

μi I (u ∈ A ∩ Bi ),

for an area A. Then δ(u) takes on a constant value on each overlap A∩Bi for Bi ∈ DB .
Define

h(A) =
( |A ∩ B1|

|A| , . . . ,
|A ∩ BnB |

|A|
)�

as the vector of proportions in which A overlaps with each area Bi in the fine-level
support; this is based on the geography, and is therefore a known quantity in the
analysis. Manipulation of geographical data in R will be discussed in Sects. 4 and 5.
Integrating over u ∈ A yields

μ(A) = 1

|A|
nB∑

i=1

∫

A∩Bi
δ(u)du = 1

|A|
nB∑

i=1

μi

∫

A∩Bi
du

=
nB∑

i=1

μi
|A ∩ Bi |

|A| = h(A)�μB .

The coefficient μB = (μ1, . . . , μnB )� represents the change of support coefficient
between the fine-level support and all other supports, and is the primary quantity of
interest in the model.
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To simplify the remaining presentation, we now write the model in vector form.
Suppose there are N total observations, indexed i = 1, . . . , N , in all of the source
supports combined. Let H be the mapping from each index i to a triple (A, t, �)
consisting of the area A, time vt , and lookback � for the i th observation. Let vec(S)

denote a vector constructed from the elements of an ordered collection S, Diag(S)

represent a diagonal matrix with the elements of S, and rbind(S) represent a matrix
with the elements of S as rows. We may then write

Z = vec
(
Z (�)
t (A) : (A, t, �) = H(i), i = 1, . . . , N

)
,

H = rbind
(
h(�)
t (A)� : (A, t, �) = H(i), i = 1, . . . , N

)
,

S = rbind
(
s(�)t (A)� : (A, t, �) = H(i), i = 1, . . . , N

)
,

ξ = vec
(
ξ

(�)
t (A) : (A, t, �) = H(i), i = 1, . . . , N

)
,

ε = vec
(
ε
(�)
t (A) : (A, t, �) = H(i), i = 1, . . . , N

)
,

V = Diag
(
V (�)
t (A) : (A, t, �) = H(i), i = 1, . . . , N

)
, (3.7)

where h(�)
t (A) = h(A) does not vary with t or �. The STCOS model can now be

written

Z = HμB + Sη + ξ + ε,

ε ∼ N(0, V ), [η | σ 2
K ] ∼ N(0, σ 2

K K ), [ξ | σ 2
ξ ] ∼ N(0, σ 2

ξ I),

[μB | σ 2
μ] ∼ N(0, σ 2

μ I), σ 2
μ ∼ IG(aμ, bμ), σ 2

K ∼ IG(aK , bK ), σ 2
ξ ∼ IG(aξ , bξ ).

(3.8)

We will also define Y = HμB + Sη + ξ as the latent process for the observations.
We now discuss specification of the matrix K . Let A ∼ B be the predicate that area

A is adjacent to area B with A ∼ A taken to be false by definition. DenoteW = (wi j )

as the nB × nB adjacency matrix with wi j = I (Bi ∼ Bj ) for i, j ∈ {1, . . . , nB}, and
D = Diag(w1+, . . . , wn+)with i th diagonal entrywi+ = ∑nB

�=1 wi j . Thematrix Q =
I − τ D−1W corresponds to the precision matrix of a particular class of conditional
autoregressive (CAR) process.We take τ ∈ (0, 1) to be known, for simplicity, to ensure
that Q is nonsingular provided that areas B1, . . . , BnB form a connected graph. Other
choices of Q can be considered to obtain other classes of CAR precision matrices (see
Cressie and Wikle 2011; Banerjee et al. 2014, and the references therein).

For the purpose of specifying a spatio-temporal variance, suppose the fine-level
support is distributed according to the process

Y∗
t = μB + ζ t , ζ t = Mζ t−1 + bt , [bt | σ 2

K ] iid∼ N(0, σ 2
K Q−1), (3.9)

for vt ∈ T and assume b0 = 0. That is, {Y∗
t } is a vector autoregressive (VAR)

process in time and a CAR process in space. Let ΣY ∗ denote the covariance matrix of
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(Y∗
t : vt ∈ T ) under model (3.9). We take K to be the minimizer of

‖ΣY ∗ − S∗CS∗�‖F, such that C is an r × r positive semidefinite matrix, (3.10)

under the Frobenius norm ‖·‖F, where S∗ = rbind
(
s(�)t (A)� : A∈DB, vt ∈T , �∈L

)

is the basis function expansion on the fine-level geography. In (3.10), ΣY ∗ represents
the desired covariance structure under model (3.9), while S∗CS∗� represents the
realized covariance contribution of Sη in the model (3.8), where

Var(Y | μB, σ 2
μ, σ 2

ξ , σ 2
K ) = σ 2

K SK S� + σ 2
ξ I,

conditionally on the random variables in the parameter model. The solution to (3.10),

C∗ = (S∗�S∗)−1S∗�ΣY ∗S∗(S∗�S∗)−1,

provides the best positive approximant to ΣY ∗ ; details are given in “Appendix A”.
For the remainder of the article, we will take ΣY ∗ to be positive definite and S∗ to
be full rank so that K is positive definite. Bradley et al. (2015b) and Bradley et al.
(2015a) further discuss this approach within the context spatio-temporal models, and
Higham (1988) discusses the positive approximant problem in the general setting. We
may write ΣY ∗ = σ 2

K Σ̃Y ∗ so that

C∗ = σ 2
K K , K = (S∗�S∗)−1S∗�Σ̃Y ∗S∗(S∗�S∗)−1. (3.11)

Notice that Σ̃Y ∗ and K are free of unknown parameters so that the solution of (3.10)
does not need to be recomputed within MCMC iterations as parameter values are
updated.

We consider several possible structures for K . First, assume that M = I so that
the fine-level process defined in (3.9) is a vector random walk with nonstationary
autocovariance function

�(s, t) = Cov(Y∗
s ,Y

∗
t ) = min(s, t)σ 2

K Q−1,

conditioning on σ 2
K . Letting �̃(s, t) = σ−2

K �(s, t), which is free of σ 2
K , and choosing

Σ̃Y ∗ =
⎡

⎢⎣
�̃(1, 1) · · · �̃(1, T )

...
. . .

...

�̃(T , 1) · · · �̃(T , T )

⎤

⎥⎦

as the covariance of {Y∗
t }, K is obtained from (3.11) to be

K = (S∗�S∗)−1

[
T∑

s=1

T∑

t=1

min(s, t)S∗�
s Q−1S∗

t

]
(S∗�S∗)−1, (3.12)
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where we define S∗
t = rbind

(
s(�)t (A)� : A ∈ DB, � ∈ L

)
for each vt ∈ T . Another

useful covariance structure arises if we assume thatM = 0. This yields autocovariance
function �(s, t) = I (s = t)σ 2

K Q−1 and ΣY ∗ = σ 2
K Q−1 ⊗ IT , conditioning on σ 2

K ,
where⊗ represents theKronecker product. This structure supports nonzero covariance
among areas at common times but independence between areas across times. The
approximant (3.11) with Σ̃Y ∗ = Q−1 ⊗ IT is

K = (S∗�S∗)−1

[
T∑

t=1

S∗�
t Q−1S∗

t

]
(S∗�S∗)−1. (3.13)

One more useful covariance structure assumes no spatial or temporal covariance;

K = I . (3.14)

It is worth emphasizing that K describes the covariance structure for η, but the
covariance contribution to the model occurs through Y via SK S�. For example, an
independence assumption for η yields SK S� = SS�, which is not necessarily a diag-
onal matrix using the basis functions (3.6) or the dimension-reduced version discussed
in Sect. 5. The covariance structures we consider in this work—namely (3.12), (3.13),
and (3.14)—are a departure from Bradley et al. (2015b), who recommend computing
M itself by further basis function decomposition.

We can obtain a Gibbs sampler by considering the joint distribution of the random
quantities in (3.8),

f (Z, η, ξ ,μB, σ 2
μ, σ 2

K , σ 2
ξ )

= φ(Z | HμB + Sη + ξ , V ) · φ(ξ | 0, σ 2
ξ I) · φ(η | 0, σ 2

K K )

× φ(μB | 0, σ 2
μ I) · fIG(σ 2

μ | aμ, bμ) · fIG(σ 2
K | aK , bK ) · fIG(σ 2

ξ | aξ , bξ ),

and deriving the full conditional distribution of each unknown parameter (e.g., Baner-
jee et al. 2014, Section 5.3). Here, the derivation is routine and details have been
omitted for brevity. The steps of the Gibbs sampler which result from the full condi-
tionals of μB , η, ξ , σ

2
μ, σ

2
K , and σ 2

ξ are stated as Algorithm 3.1. The notation [X | —]
is used to denote the distribution of a given random variable X conditioned on all other
random quantities.

4 Implementing STCOS in R

STCOS modeling can be roughly separated into three phases: assembling published
estimates and geospatial data into a usable form, preparingmatrices and vectors needed
to fit the model, and finally fitting the model and producing results. To read andmanip-
ulate geospatial data, we will highlight the sf package (Pebesma 2018), which we
find to be intuitive and comprehensive. For general data manipulation, such as filtering
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Algorithm 3.1 Gibbs sampler steps for STCOS model.

1. Draw [μB | —] ∼ N(ϑμ, Ω−1
μ ), with Ωμ = H�V−1H + σ−2

μ I . and ϑμ = Ω−1
μ H�V−1(Z −

Sη − ξ).
2. Draw [η | —] ∼ N(ϑη,Ω−1

η ), with Ωη = S�V−1S + σ−2
K K−1 and ϑη = Ω−1

η S�V−1(Z −
HμB − ξ).

3. Draw [ξ | —] ∼ N(ϑξ , Ω−1
ξ ), with Ωξ = V−1 + σ−2

ξ I and ϑξ = ΩξV−1(Z − HμB − Sη).

4. Draw [σ 2
μ | —] ∼ IG(a∗

μ, b∗
μ), with a∗

μ = aμ + nB/2 and b∗
μ = bμ + μ�

BμB/2.

5. Draw [σ 2
K | —] ∼ IG(a∗

K , b∗
K ), with a∗

K = aK + r/2 and b∗
K = bK + η�K−1η/2.

6. Draw [σ 2
ξ | —] ∼ IG(a∗

ξ , b∗
ξ ), with a∗

ξ = aξ + N/2 and b∗
ξ = bξ + ξ�ξ/2.

records and selecting columns from a table, we will make use of the dplyr pack-
age (Wickham et al. 2020). To produce high quality graphics, we use the ggplot2
package (Wickham 2016). The dplyr and ggplot2 packages are especially conve-
nient because of their compatibility with sf objects. The tigris package (Walker
2018) provides a convenient way to request geographical data from the Census Bureau
Tiger/Line database within R. The fields package (Nychka et al. 2017) can be used
to select spatial knot points by a space-filling design. General purpose platforms for
Bayesian computing, including Stan (Carpenter et al. 2017), JAGS (Depaoli et al.
2016), BUGS (Lunn et al. 2009), and Nimble (de Valpine et al. 2017), are accessible
through an R interface. A major advantage of such platforms is that samplers can be
programmed simply by specifying a model and providing the data. In contrast, the
traditional Gibbs sampler approach may require derivation, programming, and testing
for each new model. However, general purpose platforms may not be well-suited to
certain classes ofmodels or to very large datasets.Wewill illustrate the use ofStan via
the rstan package (Stan Development Team 2020) in addition to the Gibbs sampler
from Sect. 3.

Some aspects of implementing STCOS analysis in R can be laborious and prone to
error. To reduce the burden, we introduce the stcos package. The stcos package
provides several major capabilities including: functions to compute overlap matrix H
and adjacency matrix W , basis functions to compute S, construction of covariance
K , maximum likelihood estimation for the STCOS model, and an STCOS Gibbs
sampler. Basis functions discussed in Sect. 3 will be demonstrated shortly. Internal
basis function calculations are carried out in C++, for efficiency, via the Rcpp and
RcppArmadillo packages (Eddelbuettel 2013; Eddelbuettel and Sanderson 2014).
Matrices such as H and S are likely to be sparse in many STCOS applications; we
use the Matrix package (Bates and Maechler 2019) to support operations on sparse
matrices.

We will now give an overview of the major STCOS computations which will be
needed in R. Section 5 will provide a demonstration connecting these pieces into a
complete analysis. The following packages are assumed to be loaded in all coding
examples.

1 R> library("sf")
2 R> library("dplyr")
3 R> library("stcos")

123



Spatio-temporal change of support modeling with R 761

Anatural way to encode geographical features in source, fine-level, and target supports
is viasf objects. Data associatedwith the supports can be embedded intosf objects to
facilitate model preparation and graphical display. Therefore, our preferred workflow
will be to produce sf objects with direct and model-based estimates. An example of
a prepared source support object is as follows.
1 R> head(acs5_2013, 3)
2 Simple feature collection with 3 features and 8 fields
3 geometry type: POLYGON
4 dimension: XY
5 bbox: xmin: -10280140 ymin: 4712766 xmax: -10277220 ymax: 4714750
6 CRS: EPSG:3857
7 geoid state county tract blockgroup DirectEst DirectMOE DirectVar
8 1 290190005001 29 019 000500 1 9970 3157 3683788
9 2 290190005002 29 019 000500 2 12083 7048 18360194

10 3 290190006001 29 019 000600 1 105156 16979 106553987
11 geometry
12 1 POLYGON ((-10278231 4713772...
13 2 POLYGON ((-10279369 4713339...
14 3 POLYGON ((-10280135 4712926...

Note that we have manipulated this output and some subsequent outputs to ensure
that they fit on the page. The CRS descriptor specifies a geographical coordinate
system for the data. A number of standard coordinate systems are used to express
geographical data, each having its own benefits and drawbacks. Coordinates such as
latitude and longitude used in the global positioning system (GPS) describe points
on the surface of the globe. Map projections provide two-dimensional representations
of a region, which are convenient in many applications but necessarily distort the
geography in some way. Conformal projections are designed to preserve local shape
and are considered suitable for smaller domains, but distort areas when applied to
large regions. On the other hand, equal-area projections are designed to preserve areas
over large regions. To apply STCOS and other spatial-temporal methods, the analyst
must select an appropriate coordinate system. We have chosen the Web Mercator
projection (EPSG:3857) which is utilized in a number of online mapping services and
is a variation of the conformal Mercator projection (Battersby et al. 2014). Further
discussion and references on coordinate systems can be found in Bivand et al. (2013,
Chapter 4) and Waller and Gotway (2004, Chapter 3).

All source, target, and fine-level supports in an analysis should use a common
coordinate system so that they are compatible; this is not a limitation, as the analystmay
transform ansf object from its original coordinates using the sf::st_transform
function. Furthermore, methods described in this article are suited toward coordinates
in a map projection rather than a globe representation. For example, the Euclidean
distance utilized in (3.6) does not take into account the curvature of the Earth. An
analysis using spherical coordinates—which may be appropriate for a larger-scale
domain—might instead consider a great circle distance. Now that the importance of
the coordinate system has been emphasized, coordinates will be considered as raw
numerical values for the remainder of the article.

The last four lines of the previous display show a table with nine fields, where each
row corresponds to an area (county) in the file. The geometry field contains details
about the county’s geography, which we typically will not want to manipulate directly.
The fields STATE and COUNTY represent Federal Information Processing Standards
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(FIPS) codes for the state and county respectively, and GEO_ID is an identifier which
combines the two. The fieldsDirectEst,DirectMOE, andDirectVar represent
direct ACS estimates of median household income and an associated estimate of
margin of error and variance. Preparation of such an sf object from geographical data
and direct estimates will be discussed in Sect. 5.1.

A function overlap_matrix is provided to compute the H matrix.

1 R> H = overlap_matrix(dom1, dom2, proportion = TRUE)

Here, dom1 and dom2 are sf objects which describe domains of areal units. The
result is an nrow(dom1) by nrow(dom2) matrix. If proportion = FALSE,
the entries represent the amount of area for each overlap; otherwise rows are normal-
ized to proportions which sum to 1.

Thestcos package provides several variations of the local bisquare basis functions
discussed inSect. 3. The following functions operate ondatawhere space is represented
at the point-level.

1 R> S = spatial_bisquare(dom, knots, w_s)
2 R> S = spacetime_bisquare(dom, knots, w_s, w_t)

The function spacetime_bisquare implements (3.5) which uses information
both in space and time,whilespatial_bisquare implements a space-only version

ϕ j (u) =
[
1 − ‖u − c j‖2/w2

]2 · I (‖u − c j‖ ≤ w). (4.1)

The object dom may either be a numerical matrix or an object of type sf or sfc
containing points. In both cases, the first two columns/coordinates represent the spatial
coordinates and the third represents time, if applicable. The object knots provides
knot points, and may similarly be specified as either a numerical matrix or a sf
or sfc object containing points. Coordinate systems for the points in knots are
expected to be compatible with those in dom. Two-dimensional points are expected
in spatial_bisquare, where each represents a c j . Similarly, three-dimensional
points are expected in spacetime_bisquare so that each represents a (c j , g j ).
The variablesw_sandw_t correspond to the spatial and temporal radius, respectively.

The following functions operate on data where space is represented at an area-level.

1 R> S = areal_spatial_bisquare(dom, knots, w_s, control = NULL)
2 R> S = areal_spacetime_bisquare(dom, period, knots, w_s, w_t, control = NULL)

The function areal_spacetime_bisquare implements (3.6), while
areal_spatial_bisquare computes a space-only version

ϕ̄ j (A) = 1

|A|
∫

A
ϕ j (u)du,

based on (4.1). Here, the object dom is of type sf or sfc and provides the geography
for one or more areal units. The variable period is a numeric vector which repre-
sents time period v = (vt−�+1, . . . , vt ) used to evaluate (3.6). For example, if dom
represents ACS 5-year estimates for 2017, we will take period = 2013:2017.
The arguments knots, w_s and w_t are interpreted similarly as in the point-level
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functions. The optional control argument is a list in which some additional factors
can be adjusted, such as the number of Monte Carlo repetitions to be used in the
approximation. The remainder of the demonstration focuses on the STCOS analysis;
further details and examples for the basis functions can be found in thestcosmanual.

Several options were described in Sect. 3 to compute the covariance matrix K ; the
stcos package provides functions to assist with the computations.

1 R> K = cov_approx_blockdiag(Qinv, S_fine)
2 R> K = cov_approx_randwalk(Qinv, S_fine)

Both calls produce an r × r matrix. The call to cov_approx_randwalk corre-
sponds to the random walk structure in (3.12), while cov_approx_blockdiag
corresponds to (3.13) which assumes independence across time. The structure in
(3.14) which represents independent and identically distributed elements of η can
be achieved with K = Diagonal(n = r). The arguments Qinv, and S_fine
correspond to the matrices Q−1 and S∗ described in Sect. 3. Note that the function
car_precision in stcos can be used to compute Q from adjacency matrix W .

1 R> Q = car_precision(W, tau = 0.9, scale = TRUE)

The matrix I − τ D−1W is returned if scale = TRUE; otherwise D − τW is
returned.

Although we focus on Bayesian analysis, a function to compute maximum likeli-
hood estimates (MLEs) is provided.

1 R> out = mle_stcos(z, v, H, S, K, init = list(sig2K = 1, sig2xi = 1))
2 R> sig2K_hat = out$sig2K_hat
3 R> sig2xi_hat = out$sig2xi_hat
4 R> mu_hat = out$mu_hat

Some details on MLE computation are given in “Appendix A”. MLE computation is
often much quicker than Bayesian computation, and may provide good starting values
for an MCMC sampler. Here, H, S, and K are the matrices H , S, and K described in
(3.7), while z represents the vector Z and v is the diagonal of the matrix V . The Gibbs
sampler described in Sect. 3 can be invoked using the gibbs_stcos function.

1 R> out = gibbs_stcos(z, v, H, S, Kinv = solve(K),
2 + R = 10000, report_period = 1000, burn = 1000, thin = 10,
3 + init = init)
4 R> muB_mcmc = out$muB_hist
5 R> eta_mcmc = out$eta_hist
6 R> xi_mcmc = out$xi_hist
7 R> sig2mu_mcmc = out$sig2mu_hist
8 R> sig2xi_mcmc = out$sig2xi_hist
9 R> sig2K_mcmc = out$sig2K_hist

Some helper functions are provided to process the output from the Gibbs sampler.

1 print(out)
2 logLik(out)
3 DIC(out)
4 E_mcmc = fitted(out, H_new, S_new)
5 Y_mcmc = predict(out, H_new, S_new)

The print function displays a brief summary of results from the sampler, while
logLik computes the log-likelihood for each saved draw and DIC computes the
Deviance information criterion (Spiegelhalter et al. 2002) using saved draws. Let H̃
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be an Ñ × n overlap matrix and S̃ be an Ñ × r basis matrix computed from target
supports of interest, and H_new and S_new denote their representations in code. Let
Ỹ denote the vector composed of the Ñ latent process variables

Ỹ (�)
t (A) = h̃(A)�μB + s̃(�)t (A)�η + ξ̃

(�)
t (A)

associated with matrices H̃ and S̃. The fitted function produces draws from the
posterior distribution of the mean

E(Ỹ | μB, η) = H̃μB + S̃η,

so that E_mcmc is a matrix with Ñ columns where each row corresponds to a saved
draw. Alternatively, the predict function produces draws from the posterior distri-
bution of

∫
φ

(
Ỹ | H̃μB + S̃η, σ 2

ξ I
)
f (μB, η, σ 2

ξ , | Z, V ) dμB dη dσ 2
ξ .

5 Demonstration: City of Columbia neighborhoods

We now demonstrate an STCOS analysis on a small-scale but complete example using
real data. Our target support consists of four neighborhoods in the City of Columbia in
Boone County,Missouri. Geospatial data of the four neighborhoods has been provided
by staff from the GIS Office for the City of Columbia. We would like to produce
model-based estimates of median household income using observed ACS estimates
from recent years. Specifically, we will consider 5-year ACS estimates at the block-
group level for years 2013–2017 as our source supports, and will produce 5-year ACS
estimates for year 2017 on the four neighborhoods as our target support.

The demonstration is split into several subsections. Section 5.1 considers raw
inputs—ACS direct estimates and geographical features—and discusses how they can
be assembled into a useful form for the analysis. Section 5.2 then prepares the inputs
to the STCOS model: namely, Z, V , H , S, and K . Section 5.3 uses the Gibbs sampler
in the stcos package to produce draws from the posterior distribution of STCOS
parameters and consequently obtain the desired results from the analysis. Section 5.4
uses the Stan platform via the rstan package as an alternative method to obtain
results. Finally, Sect. 5.5 compares the MLE to Bayesian results.

5.1 Assembling the data

We now briefly discuss how to gather geospatial data and ACS estimates and assemble
them into sf objects for convenience. This is not intended to be an extensive guide,
as numerous options to gather data (e.g. portals, APIs, and R packages) are available
and continue to evolve. In Sect. 5.2, we will make use of datasets which have been
constructed for the demonstration.
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Geospatial data representing the target supportwere provided in the shapefile format
(ESRI 1998). We now read the file and transform it to a projection of choice.
1 R> neighbs = st_read("neighborhoods.shp") %>% st_transform(crs = 3857)

To prepare the source supports, we must gather ACS estimates and corresponding
geographical features. For this example, ACS estimates can be requested from the
Census Bureau’s Data API. The interface and data availability of the API are subject to
change in the future, and examples shown next may need to be modified accordingly.
Breakstone and Anderson (2019) provide a user guide with current specifications,
including URL query format, available datasets, and codes for variable names. Note
that limits are placed on the frequency and size of queries for unregistered users;
higher-volume users may register for an API key to reduce restrictions. Estimates for
our source supports can be requested from the API by constructing URLs with the
following formats.
1 R> est_url = paste(’https://api.census.gov/data/’, year,
2 + ’/acs/acs5?get=NAME,B19013_001E&for=block%20group:*&in=state:29+county:019’,
3 + sep = ’’)
4 R> moe_url = paste(’https://api.census.gov/data/’, year,
5 + ’/acs/acs5?get=NAME,B19013_001M&for=block%20group:*&in=state:29+county:019’,
6 + sep = ’’)

Data for the direct point estimates and correspondingMOEs have been gathered using
two separate calls to the API. The FIPS code for Missouri is 29 and the code for
Boone County is 019. The variable B19013_001E represents point estimates for
“Median household income in the past 12 months”, and B19013_001M represents
correspondingMOEs.We can request the years of interest by takingyear to be values
2013 through 2017. We use the jsonlite package (Ooms 2014) to call the API
and load the results into an R data.frame.
1 R> json_data = jsonlite::fromJSON(est_url)
2 R> est_dat = data.frame(json_data[-1,])
3 R> colnames(est_dat) = json_data[1,]
4

5 R> json_data = jsonlite::fromJSON(moe_url)
6 R> moe_dat = data.frame(json_data[-1,])
7 R> colnames(moe_dat) = json_data[1,]

We now merge est_dat and moe_dat together into a single data.frame.

1 my_dat = est_dat %>%
2 inner_join(moe_dat, by = c(’state’ = ’state’, ’county’ = ’county’,
3 ’tract’ = ’tract’, ’block group’ = ’block group’)) %>%
4 select(state, county, tract, blockgroup = ‘block group‘,
5 DirectEst = B19013_001E, DirectMOE = B19013_001M) %>%
6 mutate(DirectEst = as.numeric(DirectEst)) %>%
7 mutate(DirectMOE = as.numeric(DirectMOE)) %>%
8 mutate(DirectEst = replace(DirectEst, DirectEst < 0, NA)) %>%
9 mutate(DirectMOE = replace(DirectMOE, DirectMOE < 0, NA)) %>%

10 mutate(DirectVar = (DirectMOE / qnorm(0.95))ˆ2) %>%
11 arrange(tract, blockgroup)

There are a few details to mention in this data manipulation. We have taken some care
because there is a space in the variable name block group, and because variables
in the ACS data are interpreted as strings by default. We have transformed the MOE
to a variance estimate, noting that published MOEs are to be interpreted as margins
of error from α = 0.90 confidence intervals (U.S. Census Bureau 2018); i.e.,
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MOE = zα/2

√
V̂ ⇐⇒ V̂ =

(
MOE

zα/2

)2

,

where zα/2 ≈ 1.645. We have also taken care to handle special values coded in the
data; namely, large negative numbers for estimates and MOEs are returned by the API
when estimates are not available,1 which we convert to NA. We sort the entries by tract
and block group for readability. The resulting data.frame appears as follows.

1 R> head(my_dat)
2 state county tract blockgroup DirectEst DirectMOE DirectVar
3 1 29 019 000200 1 41063 6512 15673799
4 2 29 019 000200 2 31250 6978 17997303
5 3 29 019 000300 1 19420 7643 21591022
6 4 29 019 000300 2 NA NA NA
7 5 29 019 000300 3 21369 14558 78333750
8 6 29 019 000500 1 10995 5563 11438356

The presence of NA values in direct estimates—such as in tract 000300, blockgroup
2—can vary over area, year, and period. NA values will be addressed in Sect. 5.2,
before the analysis. The tigris package (Walker 2018) provides a convenient way
to request shapefiles from the Census Bureau Tiger/Line database. It is necessary that
all supports are converted to a common coordinate system for the analysis, so use
the function st::transform to match the projection we used earlier in the target
support.

1 my_shp = tigris::block_groups(state = ’29’, county = ’019’, year = 2017) %>%
2 st_as_sf() %>%
3 st_transform(crs = 3857)

Now we augment the geospatial data with direct point estimates, MOEs, and variance
estimates obtained earlier.

1 acs5_2017 = my_shp %>%
2 inner_join(my_dat, by = c(’STATEFP’ = ’state’, ’COUNTYFP’ = ’county’,
3 ’TRACTCE’ = ’tract’, ’BLKGRPCE’ = ’blockgroup’)) %>%
4 select(geoid = GEOID, state = STATEFP, county = COUNTYFP,
5 tract = TRACTCE, blockgroup = BLKGRPCE,
6 DirectEst, DirectMOE, DirectVar)

The resulting acs5_2017 is an object of type sf, whose first few entries are as
follows (geometry column is not shown).

1 R> head(acs5_2017)
2 Simple feature collection with 6 features and 8 fields
3 geometry type: POLYGON
4 dimension: XY
5 bbox: xmin: -10280690 ymin: 4712766 xmax: -10256290 ymax: 4752109
6 CRS: EPSG:3857
7 geoid state county tract blockgroup DirectEst DirectMOE DirectVar
8 1 290190005001 29 019 000500 1 10995 5563 11438356
9 2 290190005002 29 019 000500 2 13872 9503 33378510

10 3 290190006001 29 019 000600 1 45208 39073 564285643
11 4 290190006002 29 019 000600 2 107500 19868 145899495
12 5 290190020002 29 019 002000 2 62237 13529 67651414
13 6 290190020003 29 019 002000 3 51019 11166 46082999

1 https://census.gov/data/developers/data-sets/acs-1year/notes-on-acs-estimate-and-annotation-values.
html.
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5.2 Preparing the analysis

The steps in Sect. 5.1 can be repeated so that all target, source, and fine-level sup-
ports are assembled as sf objects. The stcos package includes the following
pre-constructed datasets to facilitate our demonstration.
1 R> data("acs_sf")
2 R> ls(pattern = "acs5_.*")
3 [1] "acs5_2013" "acs5_2014" "acs5_2015" "acs5_2016" "acs5_2017"
4 R> data("columbia_neighbs")
5 R> ls(pattern = "columbia")
6 [1] "columbia_neighbs"

Before we begin to prepare the terms in (3.7) for the STCOS model, let us create a
version of the source supports with NA estimates removed. This will help to avoid
complications in model fitting.
1 source_2013 = acs5_2013 %>% filter(!is.na(DirectEst) & !is.na(DirectVar))
2 source_2014 = acs5_2014 %>% filter(!is.na(DirectEst) & !is.na(DirectVar))
3 source_2015 = acs5_2015 %>% filter(!is.na(DirectEst) & !is.na(DirectVar))
4 source_2016 = acs5_2016 %>% filter(!is.na(DirectEst) & !is.na(DirectVar))
5 source_2017 = acs5_2017 %>% filter(!is.na(DirectEst) & !is.na(DirectVar))

We will choose our fine-level support based on the acs5_2017 geography; i.e. the
block group level geography for Boone County in 2017. However, because we
have dropped some areas from the source supports, we should check for areas in
acs5_2017 which have zero or very little overlap with any areas in the source
supports. If we identify such areas, we will drop them from the analysis to avoid
rank-deficiency of the H matrix.
1 U = rbind(
2 overlap_matrix(source_2013, acs5_2017, proportion = FALSE),
3 overlap_matrix(source_2014, acs5_2017, proportion = FALSE),
4 overlap_matrix(source_2015, acs5_2017, proportion = FALSE),
5 overlap_matrix(source_2016, acs5_2017, proportion = FALSE),
6 overlap_matrix(source_2017, acs5_2017, proportion = FALSE)
7 )
8 dom_fine = acs5_2017 %>%
9 mutate(keep = (colSums(U) >= 10)) %>%

10 filter(keep == TRUE) %>%
11 select(-c("DirectEst", "DirectMOE", "DirectVar", "keep"))
12 n = nrow(dom_fine)

This creates dom_fine as a version of acs5_2017, excluding two block-groups
having very little overlap (less than 10 square meters) with any of the source support
areas, and ignoring the columns for the direct estimates,MOEs, and variance estimates.

The overlap matrix H for the analysis can now be created as follows.
1 H = rbind(
2 overlap_matrix(source_2013, dom_fine),
3 overlap_matrix(source_2014, dom_fine),
4 overlap_matrix(source_2015, dom_fine),
5 overlap_matrix(source_2016, dom_fine),
6 overlap_matrix(source_2017, dom_fine)
7 )
8 N = nrow(H)

To construct a bisquare basis, we must select spatio-temporal knot points. To select
spatial knot points, we first draw a large number of points uniformly over the fine-level
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domain using the st_sample function. We then use the cover.design function
in the fields package, which finds a subset of these points to fill the space.
1 u = st_sample(dom_fine, size = 2000)
2 P = st_coordinates(u)
3 out = fields::cover.design(P, 200)
4 knots_sp = out$design

To select the spatial radius ws , we compute the 0.05 quantile of the pairwise distances
among the rows of knots_sp, as discussed in Sect. 3.
1 ws_tilde = 1
2 D = dist(knots_sp)
3 w_s = ws_tilde * quantile(D[D > 0], prob = 0.05, type = 1)

Alternatively, evenly spaced points can be achieved with the hexagonal sampling
method in the sf::st_sample function. This is quicker than fields::cover.
design.
1 u = st_sample(dom_fine, 200, type = "hexagonal")
2 knots_sp_alt = st_coordinates(u)
3 D = dist(knots_sp_alt)
4 w_s_alt = ws_tilde * quantile(D[D > 0], prob = 0.05, type = 1)

Figure 3 illustrates the selected spatial knot points and radius using both the space-
filling method and hexagonal sampling. Both methods succeed in creating a grid of
evenly-spaced points, although the latter follow a more strict pattern. More evenly-
spaced points can also be obtained with the space-filling method by taking an initial
sample size larger than our selection of 2000.

We choose the temporal knot points to be (2009, 2009.5, . . . , 2016.5, 2017), cov-
ering the years relevant to the 5-year ACS estimates for years 2013–2017.
1 knots_t = seq(2009, 2017, by = 0.5)
2 w_t = 1

More sophisticated date/time functions can assist in constructing temporal knots,
though a numerical representation is ultimately needed. An alternative choice for
temporal knots created with Date objects is given next. When treated as numerical,
such objects represent days elapsed since January 1, 1970. Here we may again use the
quantile approach to determine a radius which is suitable for this unit of time.
1 dates = seq(as.Date("2009-01-01"), as.Date("2017-01-01"), by = "6 months")
2 knots_t_alt = as.numeric(dates)
3 wt_tilde_alt = 1
4 D = dist(knots_t_alt)
5 w_t_alt = wt_tilde_alt * quantile(D[D > 0], prob = 0.05, type = 1)

Nowwe use the merge function in the base package (R Core Team 2020) to perform
a Cartesian join between the spatial knots knots_sp and temporal knots knots_t,
which yields the set of spatio-temporal knots.
1 knots = merge(knots_sp, knots_t)

Now, we use the basis functions to compute the design matrix S.
1 bs_ctrl = list(mc_reps = 500)
2 S_full = rbind(
3 areal_spacetime_bisquare(source_2013, 2009:2013, knots, w_s, w_t, bs_ctrl),
4 areal_spacetime_bisquare(source_2014, 2010:2014, knots, w_s, w_t, bs_ctrl),
5 areal_spacetime_bisquare(source_2015, 2011:2015, knots, w_s, w_t, bs_ctrl),
6 areal_spacetime_bisquare(source_2016, 2012:2016, knots, w_s, w_t, bs_ctrl),
7 areal_spacetime_bisquare(source_2017, 2013:2017, knots, w_s, w_t, bs_ctrl)
8 )
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Fig. 3 Spatial knot points selected for spatio-temporal basis function. Red dots indicate knot points and
blue circles display the spatial radius at one particular knot point. a The space-filling design whose radius
was ws = 7712.70, using the quantile calculation and taking w̃s = 1. bHexagonal sampling, whose radius
was ws = 7169.13 using the same quantile calculation and choice of w̃s . Note that units of ws are meters
in the selected coordinate system (color figure online)

We can also compute the design matrix S∗ on the fine-level support, which is needed
to compute K under some of the possible structures.
1 S_fine_full = rbind(
2 areal_spacetime_bisquare(dom_fine, 2009, knots, w_s, w_t, bs_ctrl),
3 areal_spacetime_bisquare(dom_fine, 2010, knots, w_s, w_t, bs_ctrl),
4 areal_spacetime_bisquare(dom_fine, 2011, knots, w_s, w_t, bs_ctrl),
5 areal_spacetime_bisquare(dom_fine, 2012, knots, w_s, w_t, bs_ctrl),
6 areal_spacetime_bisquare(dom_fine, 2013, knots, w_s, w_t, bs_ctrl),
7 areal_spacetime_bisquare(dom_fine, 2014, knots, w_s, w_t, bs_ctrl),
8 areal_spacetime_bisquare(dom_fine, 2015, knots, w_s, w_t, bs_ctrl),
9 areal_spacetime_bisquare(dom_fine, 2016, knots, w_s, w_t, bs_ctrl),

10 areal_spacetime_bisquare(dom_fine, 2017, knots, w_s, w_t, bs_ctrl)
11 )

Next we need vectors z and v to represent the direct point estimates and associated
variance estimates.
1 z = c(source_2013$DirectEst, source_2014$DirectEst, source_2015$DirectEst,
2 source_2016$DirectEst, source_2017$DirectEst)
3 v = c(source_2013$DirectVar, source_2014$DirectVar, source_2015$DirectVar,
4 source_2016$DirectVar, source_2017$DirectVar)

Because z and v contain rather large numbers, we standardize z for the analysis and
make a corresponding transformation to v.
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Fig. 4 Plot of the eigenvalues of
S�S. The vertical line shows
that 5 eigenvectors are needed to
capture 65% of the variation.
The y-axis has been truncated to
maintain visibility for small
dimensions; the total number of
eigenvalues is 7500
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1 z_scaled = scale(z)
2 v_scaled = v / var(z)

The expression for v_scaled arises from considering Var[a−1/2(Zi − b)] =
a−1 Var(Zi ) for constants a > 0 and b ∈ R, which is estimated by a−1e�

i Vei with
ei the i th column of an N × N identity matrix. The design matrix S with our choice
of basis function can have a large number of columns and a high degree of multi-
collinearity; if not addressed, this can lead to poor mixing in the MCMC sampler. A
simple workaround is to reduce the dimension of S using principal components anal-
ysis (PCA). First we compute the reduction, using 65% of the variability, as expressed
as a proportion of the eigenvalues.
1 eig = eigen(t(S_full) %*% S_full)
2 idx_S = which(cumsum(eig$values) / sum(eig$values) < 0.65)

Figure 4 shows that this can be accomplished by projecting from the original 3,400
columns to r = 19 columns. Now we apply the reduction to S as well as S∗.
1 Tx_S = eig$vectors[,idx_S]
2 S = S_full %*% Tx_S
3 S_fine = S_fine_full %*% Tx_S
4 r = ncol(S)

The last ingredient needed to run the analysis is the matrix K . We will use the random
walk structure in (3.12) to express both spatial and temporal dependence. First, let us
compute the covariance matrix Q−1 of a CAR process for the fine-level support.
1 W = adjacency_matrix(dom_fine)
2 Q = car_precision(W, tau = 0.9, scale = TRUE)
3 Qinv = solve(Q)

Now compute K using Q−1 and S∗.
1 K = cov_approx_randwalk(Qinv, S_fine)

5.3 Fitting with Gibbs sampler

Wenowproceed to run theGibbs sampler.Wewill produce a chain of 10,000 iterations,
discard the first 2000 draws, and keep one of every 10th remaining draw. We will use
hyperparameters aμ = 1, bμ = 1, aK = 1, bK = 2, aξ = 1, and bξ = 2.
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Fig. 5 Trace and density plots for draws of the variance components σ 2
μ, σ

2
K , and σ 2

ξ from theGibbs sampler

1 R> hyper = list(a_sig2K = 1, b_sig2K = 2, a_sig2xi = 1, b_sig2xi = 2,
2 + a_sig2mu = 1, b_sig2mu = 2)
3 R> gibbs_out = gibbs_stcos(z = z_scaled, v = v_scaled, H = H, S = S,
4 + Kinv = Kinv, R = 10000, report_period = 2000, burn = 2000,
5 + thin = 10, hyper = hyper)
6 2020-05-17 17:11:15 - Begin Gibbs sampler
7 2020-05-17 17:11:52 - Begin iteration 2000
8 2020-05-17 17:12:29 - Begin iteration 4000
9 2020-05-17 17:12:50 - Begin iteration 6000

10 2020-05-17 17:13:09 - Begin iteration 8000
11 2020-05-17 17:13:28 - Begin iteration 10000
12 2020-05-17 17:13:28 - Finished Gibbs sampler
13 R> print(gibbs_out)
14 Fit for STCOS model
15 --
16 Mean SD 2.5% 25% 75% 97.5%
17 sig2mu 0.52574414 0.094603198 0.36964018 0.45835116 0.57962109 0.74252701
18 sig2K 1.12632689 0.829211900 0.34238233 0.62142495 1.34628662 3.35183509
19 sig2xi 0.04368451 0.005022067 0.03485603 0.04021765 0.04669926 0.05533603
20 --
21 Saved 800 draws
22 DIC: 210.798981
23 Elapsed time: 00:02:08

The mcmc class in the coda package (Plummer et al. 2006) helps to manage and plot
the draws.
1 library("coda")
2 varcomps_mcmc = mcmc(data.frame(
3 sig2mu = gibbs_out$sig2mu_hist,
4 sig2xi = gibbs_out$sig2xi_hist,
5 sig2K = gibbs_out$sig2K_hist
6 ))
7 plot(varcomps_mcmc)

Figure 5 displays trace and density plots of the variance components σ 2
μ, σ

2
ξ , and σ 2

K .
Using the fitted model, we can produce model-based estimates on target supports

of interest. In this example, we would like to produce 5-year 2017 estimates for our

123



772 A. M. Raim et al.

four neighborhoods in Boone County: Central, East, North, and Paris. The following
code computes model-based estimates for these areas and embeds them into an sf
object for plotting.

1 nb_out = neighbs
2 H_new = overlap_matrix(nb_out, dom_fine) # New overlap
3 S_new_full = areal_spacetime_bisquare(nb_out,
4 2013:2017, knots, w_s, w_t, bs_ctrl) # New basis fn
5 S_new = S_new_full %*% Tx_S # Reduce dimension
6

7 EY_scaled = fitted(gibbs_out, H_new, S_new) # Get draws of E(Y)
8 EY = sd(z) * EY_scaled + mean(z) # Uncenter and unscale
9

10 alpha = 0.10
11 nb_out$E_mean = colMeans(EY) # Point estimates
12 nb_out$E_sd = apply(EY, 2, sd) # SDs
13 nb_out$E_lo = apply(EY, 2, quantile, prob = alpha/2) # Credible interval lo
14 nb_out$E_hi = apply(EY, 2, quantile, prob = 1-alpha/2) # Credible interval hi
15 nb_out$E_median = apply(EY, 2, median) # Median
16 nb_out$E_moe = apply(EY, 2, sd) * qnorm(1-alpha/2) # MOE

The objectsH_new andS_new represent designmatrices H̃ and S̃, respectively, based
on the geography of neighborhoods. The fitted function was then used to produce
draws from the posterior distribution of E(Ỹ). We then transformed the resulting
estimates back to the original scale, having previously centered and scaled them before
model fitting. The remainder of the code display summarizes draws of the posterior
mean in several ways, obtaining a model-based estimate of its median, mean, standard
deviation,MOE (zα/2×standard deviation), and a 90% credible interval. The resulting
sf object is displayed below (geometry column is not shown).

1 R> print(nb_out)
2 Simple feature collection with 4 features and 7 fields
3 geometry type: POLYGON
4 dimension: XY
5 bbox: xmin: -10280270 ymin: 4715036 xmax: -10269750 ymax: 4723860
6 CRS: EPSG:3857
7 Region E_mean E_sd E_lo E_hi E_median E_moe
8 1 Central 26705.85 1921.623 23456.96 29709.53 26720.70 3160.788
9 2 East 44127.78 2450.811 40155.21 47983.46 44186.03 4031.225

10 3 North 44171.24 2863.373 39519.40 48933.11 44040.79 4709.829
11 4 Paris63Corridor 20386.72 3663.098 14448.61 26325.73 20309.78 6025.261

We are now ready to plot our estimates. The code to reproduce our plots is somewhat
lengthy and can be found in the supplemental materials. First we compare direct and
model-based estimates for 2017 source supports to assess whether the model fit is
reasonable. Figure 6a, b show maps of the two sets of estimates. Figure 6c, d compare
the two sets of estimates via scatter plots; year 2014 and year 2017 estimates are
shown for comparison. Variation between direct and model-based estimates appears
to be smaller for year 2014, with the exception of the block group with the largest
direct estimate that year. Finally, Fig. 7 shows the four neighborhoods of our target
support in the context of the 2017 5-year direct estimates. This provides a visual aid to
assess plausibility of the target support estimates. The North and East neighborhoods
appear to be in the immediate vicinity of block groups with higher median household
income than the West and Paris neighborhoods.
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Fig. 6 Comparison of direct and model-based ACS 5-year estimates. a, bMaps based on the two estimates
for year 2017. c, d Scatter plots comparing the two sets of estimates for years 2014 and 2017 respectively

5.4 Fitting with Stan

We will now refit the model from Sect. 5.3 using Stan instead of the Gibbs sam-
pler. First, we will need a Stan model specification. We will create a file named
stcos.stan with the following contents.

1 data {
2 int<lower=0> N; int<lower=0> n; int<lower=0> r;
3 vector[N] z; vector[N] v; matrix[N,n] H;
4 matrix[N,r] S; matrix[r,r] K; real alpha_K;
5 real beta_K; real alpha_xi; real beta_xi;
6 real alpha_mu; real beta_mu;
7 }
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8 parameters {
9 vector[n] mu; real<lower=0> sig2K;

10 vector[r] eta; real<lower=0> sig2xi;
11 vector[N] xi; real<lower=0> sig2mu;
12 }
13 model {
14 sig2K ˜ inv_gamma(alpha_K, beta_K);
15 sig2xi ˜ inv_gamma(alpha_xi, beta_xi);
16 sig2mu ˜ inv_gamma(alpha_mu, beta_mu);
17 eta ˜ multi_normal(rep_vector(0,r), sig2K * K);
18 mu ˜ normal(0, sqrt(sig2mu));
19 xi ˜ normal(0, sqrt(sig2xi));
20 z ˜ normal(H*mu + S*eta + xi, sqrt(v));
21 }

Now, in R, pass the data and model specification to stan to initiate fitting.
1 library("rstan")
2 stan_dat = list(
3 N = N, n = n, r = r, z = z_scaled, v = v_scaled, H = as.matrix(H),
4 S = as.matrix(S), K = as.matrix(K),
5 alpha_K = 1, beta_K = 2, alpha_xi = 1, beta_xi = 2, alpha_mu = 1, beta_mu = 2
6 )

1 R> stan_out = stan(file = "stcos.stan", data = stan_dat, iter = 2000, chains = 2)
2 SAMPLING FOR MODEL ’stcos’ NOW (CHAIN 1).
3 ...
4 Chain 1: Elapsed Time: 11.8561 seconds (Warm-up)
5 Chain 1: 10.5266 seconds (Sampling)
6 Chain 1: 22.3827 seconds (Total)
7 ...
8 SAMPLING FOR MODEL ’stcos’ NOW (CHAIN 2).
9 ...

10 Chain 2: Elapsed Time: 10.9951 seconds (Warm-up)
11 Chain 2: 9.87796 seconds (Sampling)
12 Chain 2: 20.873 seconds (Total)

Here we have requested two chains of length 2000 each. In addition to the time
needed for sampling, Stan may require time to compile the model specification.
Upon successful completion of sampling, the following R code can be used to extract
draws and produce results.
1 stan_draws = extract(stan_out, pars = c("mu", "eta"), permuted = TRUE)
2

3 nb_out = neighbs
4 H_new = overlap_matrix(nb_out, dom_fine) # New overlap
5 S_new_full = areal_spacetime_bisquare(nb_out,
6 2013:2017, knots, w_s, w_t, bs_ctrl) # New basis fn
7 S_new = S_new_full %*% Tx_S # Reduce dimension
8

9 EY_scaled = stan_draws$mu %*% t(H_new) +
10 stan_draws$eta %*% t(S_new) # Draws of E(Y)
11 EY = sd(z) * EY_scaled + mean(z) # Uncenter and unscale
12

13 alpha = 0.10
14 nb_out$E_mean = colMeans(EY) # Point estimates
15 nb_out$E_sd = apply(EY, 2, sd) # SDs
16 nb_out$E_lo = apply(EY, 2, quantile, prob = alpha/2) # Credible interval lo
17 nb_out$E_hi = apply(EY, 2, quantile, prob = 1-alpha/2) # Credible interval hi
18 nb_out$E_median = apply(EY, 2, median) # Median
19 nb_out$E_moe = apply(EY, 2, sd) * qnorm(1-alpha/2) # MOE

The result of print(nb_out) can be compared to the corresponding output from
the Gibbs sampler in Sect. 5.3.
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Region Mean SD CI Lo CI Hi Median MOE
Central 26,931.74 1,921.27 23,693.43 29,925.61 26,963.39 3,160.21
East 44,199.97 2,449.92 40,217.61 48,043.27 44,256.71 4,029.76
North 44,329.41 2,861.68 39,679.15 49,037.54 44,202.85 4,707.04
Paris 20,822.12 3,636.90 14,965.75 26,665.93 20,772.98 5,982.17

(a) Estimates based on STCOS model.

(b) Map of 2017 5-year direct estimates.

Fig. 7 Model-based ACS 5-year estimates for the Central, East, North, and Paris neighborhoods in year
2017 are shown in a. b The locations of the four neighborhoods (shaded in black), and year 2017 direct
5-year estimates in Boone County block groups for comparison. Direct estimates were not available for
block groups marked as “Missing”, which are shaded white
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Fig. 8 Comparison ofMLEs and draws from theGibbs sampler. Thefirst 10 components ofμB are displayed
in a, while b displays estimates for the four neighborhoods which have been transformed to the original
scale of the direct estimates. Boxplots correspond to Gibbs sampler draws and red triangles represent MLEs
(color figure online)
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5.5 Fitting withmaximum likelihood

Finally,we computemaximumlikelihood estimates to compare to ourBayesian results.

1 R> mle_out = mle_stcos(z_scaled, v_scaled, H, S, K)
2 R> print(mle_out$sig2K_hat)
3 [1] 1.310004e-11
4 R> print(mle_out$sig2xi_hat)
5 [1] 1.225813e-11
6 R> print(mle_out$loglik)
7 [1] 67.29006

Estimates for both σ 2
ξ and σ 2

K are very small, which indicates that the direct variance
estimates V are capturing much of the variability among Z. This can be contrasted
with the Bayesian approach, which finds a non-zero effect of σ 2

ξ and σ 2
K through

the addition of prior information. The following code extracts the MLE μ̂B , computes
estimates H̃μ̂ of the four neighborhoods, and transforms those estimates to the original
scale of the direct estimates.

1 H_new = overlap_matrix(neighbs, dom_fine)
2 mu_hat = mle_out$mu_hat
3 z_hat_scaled = as.numeric(H_new %*% mu_hat)
4 z_hat = sd(z) * z_hat_scaled + mean(z)

Figure 8 plots MLEs with box plots of corresponding saved draws from the Gibbs
sampler. Figure 8a plots the first 10 components of μ̂B , while Fig. 8b plots the four
components of H̃μ̂ corresponding to neighborhoods. Code to reproduce Fig. 8 is
provided in the supplemental materials. Bayesian and maximum likelihood estimates
are not seen to be vastly different, and we anticipate that they would become closer as
the total number of observations N becomes large relative to nB . In the current setting
where N = 421 and nB = 85, we would recommend the Bayesian approach.

6 Conclusions

In this article, we have demonstrated a complete implementation of STCOS method-
ology for R users. We worked through a small example to estimate median household
income in several neighborhoods in the City of Columbia in Boone County, MO.
Established R packages such as sf, dplyr, Matrix, and rstan were instrumental
in the process, from initially gathering the data, to carrying out the MCMC, to placing
results into a usable form. The stcos package was introduced to assist with some
intricate programming steps not covered by other packages, especially computing areal
spatio-temporal basis functions. Use of the highlighted tools significantly reduces the
learning curve to program an analysis; however, some technical experience and effort
are still required for a successful implementation. Future work may involve additional
improvements to the stcos package for efficiency and usability, as well as software
support for other spatial and spatio-temporal methodologies.
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A Computational details and proofs

We will make use of the following well-known property in several places.

Property 1 If A ∈ R
m×k , B ∈ R

k×l , C ∈ R
l×n , then vec(ABC) = (C� ⊗ A)vec(B).

The following proposition gives the explicit solution to the minimization problem
stated in (3.10). Bradley et al. (2015a) considers a similar problem featuring a more
general objective functionbut assuming that the columnsof S are orthonormal.Higham
(1988) gives a general discussionof problems involvingFrobenius and2-normdistance
minimization.

Proposition 1 (Frobenius Norm Minimization) Suppose S ∈ R
n×r has rank r and

Σ ∈ R
n×n is positive definite. The minimizer X ∈ R

r×r of ‖Σ − SXS�‖F is X =
(S�S)−1S�ΣS(S�S)−1.

Proof Using Property 1, we have

‖Σ − SXS�‖2F = vec
[
Σ − SXS�]�

vec
[
Σ − SXS�]

=
[
vec(Σ) − vec(SXS�)

]� [
vec(Σ) − vec(SXS�)

]

= [vec(Σ) − (S ⊗ S)vec(X)]� [vec(Σ) − (S ⊗ S)vec(X)]

= ‖vec(Σ) − (S ⊗ S)vec(X)‖22, (A.1)

where the normon the last line is the usual 2-normonRn2 .We recognize the expression
in (A.1) as a standard least squares minimization whose solution is

vec(X) = [(S ⊗ S)�(S ⊗ S)]−1(S ⊗ S)�vec(Σ)

= [(S� ⊗ S�)(S ⊗ S)]−1(S� ⊗ S�)vec(Σ)

= [S�S ⊗ S�S]−1vec(S�ΣS)

= [(S�S)−1 ⊗ (S�S)−1]vec(S�ΣS)

= vec
[
(S�S)−1S�ΣS(S�S)−1

]
.

Therefore, the minimizer is X = (S�S)−1S�ΣS(S�S)−1, as desired. ��
Remark 1 (MLE Computation) To compute the MLE for the STCOS model, we first
note that the likelihood, excluding the parameter model, is

f (Z | μB, σ 2
K , σ 2

ξ ) =
∫

φ(Z | HμB + Sη, σ 2
ξ I + V ) · φ(η | 0, σ 2

K K )dη
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= φ(Z | HμB,Δ)

= (2π)−N/2|Δ|−1/2 exp

{
−1

2
(Z − HμB)�Δ−1(Z − HμB)

}
,

where Δ = σ 2
ξ I + V + σ 2

K SK S�. Given σ 2
K and σ 2

ξ , the likelihood is maximized by

the weighted least squares estimator μ̂B = (H�Δ−1H)−1H�Δ−1Z. To estimate the
unknown σ 2

K and σ 2
ξ , we carry out numerical maximization on the partially maximized

log-likelihood

�(σ 2
K , σ 2

ξ ) = −N

2
log(2π) − 1

2
log |Δ| − 1

2
(Z − Hμ̂B)�Δ−1(Z − Hμ̂B).

To enforce the constraints that σ 2
K > 0 and σ 2

ξ > 0, we optimize over (ϑ1, ϑ2) ∈ R
2

and take σ 2
K = exp(ϑ1), σ 2

ξ = exp(ϑ2).
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