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We present the implementation of two quantum-like algorithms which exploit classical

entanglement (i.e., nonseparability) of elastic waves. The Deutsch–Jozsa-like algorithm

can distinguish between the even or odd character of all possible binary functions

for two elastic bits inputs. The Deutsch-like algorithm distinguishes between constant

and balance binary functions also using two elastic bits. These algorithms can be

implemented on simple elastic systems composed of a planar array of two finite one-

dimensional discrete elastic waveguides mutually coupled periodically along their length

and driven externally.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Human speech uses sound waves as analog signal to encode and convey information. Acoustic cues such as frequency

and amplitude modulations allow communicators to derive meaning. However, today, most information encoding,

transmission and processing techniques are carried out in the digital domain where signaling cues are restricted to some

discrete set of values. Modern digital information processing machines are built from electronic digital logic circuits whose

elementary units are Boolean logic gates. They use the binary numbers 0 and 1 to implement Boolean functions such as

the NOT, AND, OR gates. It is desirable to consider information processing techniques relying on all mechanical integrated

circuits for energy efficiency. Mechanical information processing platforms have been suggested for traditional digital

operations using non-linear interactions [1]. The development of phononic crystals and acoustic metamaterials has also

provided physical platforms for the realization of acoustic Boolean logic gates. By exploiting the unique spectral, refractive

and phase properties of some phononic crystals one can achieve constructive or destructive interference between input

and control acoustic waves to achieve Boolean functions [2]. Similarly, interferences have been used to demonstrate

oolean logic gates in acoustic metamaterials [3]. Interference-based gating relies on the linear behavior of the acoustic

aves. Acoustic logic elements have also been demonstrated in driven chains of spherical particles [4,5]. These gates

xploit the nonlinear dynamical effects associated with the contact forces between spheres.

Moreover, the analogies between classical wave physics and quantum mechanics offer avenues to go beyond Boolean

ogic to pursue sound-based information processing that emulate quantum-like computing functionalities. In contrast to

onventional computing, where a bit can be in a 0 or 1 state, quantum computing processes coherent superposition of

tates. A quantum computer uses quantum bits, or qubits. Qubit-based computing platforms capitalize on the phenomenon
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f superposition, which allows a quantum computer to simultaneously process information beyond that achievable with
lectronic transistor-based processors. A qubit is a two-state (level) quantum-mechanical system, such as an electron in
hich the levels can be taken as spin up (0) and spin down (1). Another example is the polarization of a single photon

n which the two states can be taken to be the vertical polarization (0) and the horizontal polarization (1). An electron
pin qubit can be in a coherent superposition of spin up or down. A single photon can be in a superposition of vertical
nd horizontal polarization. Superposition is essentially the ability of a system to be in multiple states—that is a qubit
an store and process a ‘‘0’’ and a ‘‘1’’ at the same time. Furthermore, quantum computers harness strong quantum
orrelations between qubits (also known as entanglement) to achieve massive-data information processing. Entangled
ubits are inseparable, that is the state of each entangled qubit cannot be described separately from that of the other
ubits. Manipulation of the state of one qubit affects the state of the other qubits. Entanglement is at the core of today’s
econd quantum revolution [6]. Quantum algorithms harness entanglement to speed up computational tasks beyond what
an be achieved with classical computers [7].
The similarity between the equations governing quantum mechanics and classical waves have been exploited to

llustrate quantum phenomena. Metamaterials which can simulate quantum algorithms such as the Deutsch/Deutsch–
ozsa or Grover’s search algorithms with classical light have been reported [8–13]. However, these simulations rely
n wave superposition and interference as both class of algorithms for two bits do not need entanglement. While
onlocality of entangled states is a unique feature of quantum mechanics, nonseparability is not. The notion of ‘‘classical
ntanglement’’, i.e., local nonseparable superposition of states has received a significant amount of attention, theoretically
nd experimentally in optics [14–20]. Recent work in the field of acoustics, has demonstrated the possibility of creating
‘classically entangled’’ elastic waves. For instance, externally driven parallel arrays of coupled metallic elastic waveguides
nabled preparation and tunability of acoustic nonseparable states, i.e., Bell states, supported by coupled elastic waveg-
ides [21]. These nonseparable states, are analogous to ‘‘entangled’’ states of qubits and are constructed as a superposition
f elastic waves, each a tensor product of a spinor part and an orbital angular momentum part, which cannot be factored as
single tensor product. The concept of classical entanglement was also demonstrated in elastic analogues of nonseparable
utrits, the three-level equivalent of the two-level qubit [22]. These nonseparable superpositions of acoustic states possess
omplex amplitude coefficients which can be tuned to navigate a sizeable portion of the Bell state’s Hilbert space enabling
uantum-like operations. The possibility of achieving maximally entangled exponentially complex superpositions was
lso shown in nonlinear product states supported by externally driven arrays of nonlinear waveguides [23]. Finally, a
lanar array of three one-dimensional elastic waveguides mutually coupled periodically along their length and driven
xternally was shown theoretically and numerically to support expansive nonseparable superpositions of product states
epresentative of a bipartite system composed of two subsystems. These states are the product of Bloch waves describing
he elastic displacement along the waveguides (states of subsystem 1) and spatial modes representing the displacement
cross the array of waveguides (states of subsystem 2) [24]. The periodicity of the coupling was used to fold bands enabling
uperpositions of states that span the complete Hilbert space of product states. The bipartite system is analogous to two
its if we chose |ei⟩, i=1,2, to be two discrete spatial modes of the subsystem 1 and by

⏐⏐kj⟩, j=1,2, two discrete plane
ave components of the Bloch modes of the subsystem 2. Indeed, externally driven periodically coupled arrays of elastic
aveguides can sustain general superposition of product states: A |e1⟩ |k1⟩+ B |e1⟩ |k2⟩+ C |e2⟩ |k1⟩+D |e2⟩ |k2⟩. Here, the
oefficients A, B, C and D are effectively complex resonant amplitudes when the driven elastic system is dissipative. By
uning the physical and/or geometrical attributes of the system as well as by varying the characteristics of the external
river, one can explore a sizeable region of the Hilbert space of product elastic states. Manipulation of such a superposition
f product states allows the creation of non-separable Bell states of the form: A |e1⟩ |k1⟩+D |e2⟩ |k2⟩ or B |e1⟩ |k2⟩+C |e2⟩ |k1⟩
r separable states that can be factored in the form (a |e1⟩ + b |e2⟩) (c |k1⟩ + d |k2⟩).
It is the objective of the present study to show that band folding within a finite Brillouin zone due to periodic coupling

etween two elastic waveguides offers the possibility of creating superpositions of product states that can be tuned
etween separable and nonseparable forms by stimulating the system externally with an oscillatory driver. This freedom
an be used to implement a Deutsch and Deutsch–Jozsa-like algorithm involving classical entanglement of two elastic
its. More specifically, these algorithms, are shown to distinguish between the even/odd or constant/balanced character
f binary functions for elastic bits inputs.
The paper is organized as follows. In Section 2, we introduce the model constituted of two one-dimensional discrete

lastic waveguides mutually coupled periodically along their length. We detail the decomposition of the elastic modes into
roducts of spatial modes across the waveguides and Bloch modes along the waveguides. Section 3 highlights the creation
f superpositions of product states by driving the periodically coupled elastic waveguides externally. The navigation of
he Hilbert space of the bipartite system between separable and nonseparable states by tuning the driver’s frequency is
escribed in Section 4. We exploit the tunability of the separability of superpositions of product states to implement a
eutsch–Jozsa-like algorithm that requires classical entanglement. This algorithm distinguishes between the even or odd
haracter of all possible binary functions of two bits by utilizing a controlled Z gate unitary transformation as its primary
peration. In Section 6, we show how to achieve a controlled NOT (CX) gate and implement a Deutsch-like algorithm
o distinguish between constant and balanced binary functions. Conclusions concerning the applicability, scalability and
xtension of this work to other elastic systems that support nonseparable superpositions and to other quantum-like

lgorithms are drawn in Section 7.
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Fig. 1. Schematic representation of the model system composed of two discrete elastic waveguides coupled periodically along their length. See text
for definition of symbols.

2. One-dimensional elastic waveguides mutually coupled periodically along their length

The model system is initially constituted of two identical infinite discrete elastic waveguides taking the form of
harmonic chains with mass, m, and spring stiffness, β . The two chains are coupled elastically along their length via springs
with alternating stiffness, α1 and α2. The system is therefore periodic with period, L = 2a where a is the inter-mass
spacing. Units cells along the coupled waveguides are labeled, N,N + 1, etc (see Fig. 1) .

The equations of motion of this system are given below:

m
∂2u1,N

∂t2
= β

(
u2,N−1 − 2u1,N + u2,N

)
+ α1

(
v1,N − u1,N

)
(1a)

m
∂2u2,N

∂t2
= β

(
u1,N − 2u2,N + u1,N+1

)
+ α2

(
v2,N − u2,N

)
(1b)

m
∂2v1,N

∂t2
= β

(
v2,N−1 − 2v1,N + v2,N

)
− α1

(
v1,N − u1,N

)
(1c)

m
∂2v2,N

∂t2
= β

(
v1,N − 2v2,N + v1,N+1

)
− α2

(
v2,N − u2,N

)
(1d)

n Eq. (1a,b,c,d), u and v represent the displacement in the top and bottom chains, respectively.

To solve these equations of motion, we use the ansatz, U⃗N =

⎛⎜⎜⎜⎜⎝
u1,N

u2,N

v1,N

v2,N

⎞⎟⎟⎟⎟⎠ = A⃗eikNLeiωt with the amplitude vector A⃗ =

⎛⎜⎜⎜⎜⎝
A1

A2

B1

B2

⎞⎟⎟⎟⎟⎠.

k and ω are a wave number and angular frequency. Inserting this ansatz into Eq. (1a,b,c,d) and after some factorization,
one obtains:(

←→
M ⊗

←→
I 2 +

←→α ⊗
←→c

)
A⃗ = 0 (2)

where
←→
M =

(
γ −δ∗

−δ γ

)
,
←→
I 2 is the 2 × 2 identity matrix, ←→α =

(
α1 0

0 α2

)
and ←→c =

(
1 −1

−1 1

)
. Here

= −mω2
+ 2β , δ = β

(
1+ eikL

)
and δ∗ is its complex conjugate. The form of Eq. (2) suggests solutions of the form of

ensor products: A⃗ = s⃗n⊗ e⃗n where e⃗n is an Eigen vector of the coupling matrix←→c . The spatial Eigen vectors e⃗n represent

he displacement across the array of waveguides. The Eigen values and vectors of ←→c are: λ1 = 0, e⃗1 = 1
√
2

(
1

1

)
and

λ2 = 2, e⃗2 = 1
√
2

(
−
1
)
. s⃗n is a 2 × 1 vector.
1

3
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ith these, Eq. (2) yields:(
←→
M + λn

←→α

)
s⃗n = 0 (3)

Nontrivial solutions exist if det
(
←→
M + λn

←→α

)
= 0, i.e.,

(γ + λnα1) (γ + λnα2)− δδ∗ = 0 (4)

The dispersion relations for the two possible values of n are

mω2
1 (k) = 2β

(
1±

⏐⏐⏐⏐cos kL
2

⏐⏐⏐⏐) (5a)

mω2
2 (k) = 2β + α1 + α2 ±

√
(α1 − α2)

2
+ 4β2 cos2

kL
2

(5b)

e now consider that the coupled system is composed of finite waveguides. Let Nc be the number of unit cells along the
waveguides. The cell index N now runs over the finite set 0, 1, 2, 3, . . .,Nc − 1. The waveguides are arranged in a loop
anner by imposing periodic boundary conditions, that is, U⃗Nc = U⃗0 or eikNc L = 1. The wave number is now discrete with

kj = 2π
Nc L

j with j = 0, 1, 2, 3, . . .,Nc − 1. In Fig. 2(A), we illustrate the dispersion relations given by Eq. ((5)a,b) for a finite
system composed of 10 units cells. The physical and geometrical parameters are listed in the caption of Fig. 2.

The band structure can be tuned by varying the physical parameters of the system m, β , α1, α2 but also the geometrical
parameter Nc . In Fig. 2, we have chosen a combination of parameters such that the n = 1 upper band crosses the bottom
n = 2 band. These parameters also lead to an intersection flanked by four modes. This intersection is made possible by
the folding of the n = 1 band resulting from the periodicity of the coupling between the two chains. The ‘‘a’’ (n = 1) and
‘‘c’’ (n = 2) modes correspond to different Eigen vectors e⃗n but possess the same wave number k. The ‘‘b’’ (n = 1) and ‘‘d’’
(n = 2) modes also represent the different Eigen vectors e⃗n but now possess the same wave number k’. This particular
onfiguration will enable the creation of externally driven nonseparable superpositions of states discussed in the next
ection.

. Externally driven periodically coupled elastic waveguides

Eq. ((1)a,b,c,d) (limited to the finite size waveguides) are now augmented by an external force F⃗ = D⃗δN=0eiωDt with

mplitude D⃗ =

⎛⎜⎜⎜⎜⎝
F1

F2

G1

G2

⎞⎟⎟⎟⎟⎠. Here, δN=0 is the Dirac delta function that enforces that the external driver is applied onto the

N = 0 unit cell. ωD is the angular frequency of the external driver. We seek solutions as superpositions over available

wave numbers, U⃗D
N =

∑Nc−1
j=0 A⃗D(kj)eikjNLeiωDt with the driven amplitude vector A⃗D =

⎛⎜⎜⎜⎜⎝
A1,D

A2,D

B1,D

B2,D

⎞⎟⎟⎟⎟⎠. We also expand the Dirac

elta function as a Riemann sum over the same available wave numbers, namely δN=0 =
1
Nc

∑Nc−1
j=0 eikjNL. Inserting these

xpressions in the equations of motion of the driven system for each kj, leads to:(
←→
M D ⊗

←→
I 2 +

←→α ⊗
←→c

)
A⃗D(kj) = D⃗ (6)

In Eq. (6),
←→
M D takes the same form as

←→
M in the previous section but with γ replaced by γD = −mω2

D + 2β .
Since e⃗1 and e⃗2 form a complete orthonormal basis, we can expand D⃗ as

D⃗ = f⃗ e⃗1 + g⃗ e⃗2 (7)

here f⃗ =

(
f1

f2

)
and g⃗ =

(
g1

g2

)
with f1 =

F1+G1√
2

, f2 =
F2+G2√

2
, g1 =

F1−G1√
2

, and g2 =
F2−G2√

2
.

ithin that same basis, we seek driven solutions given by:

A⃗D
(
kj
)
= S⃗D1

(
kj
)
⊗ e⃗1 + S⃗D2

(
kj
)
⊗ e⃗2 (8)

Inserting Eqs. (7) and (8) into Eq. (5) results in the set of equations:(
←→
M + λ ←→α

)
S⃗D
(
k
)
= f⃗ (9a)
D 1 1 j

4
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Fig. 2. (A) Band structure of the coupled finite length waveguides. The open circles represent the bands ω±1 (k) and the closed circles the bands
ω±2 (k). We have chosen the dimensionless parameters m = 1, β = 1.153, α1 = 1, α2 = 2.55, and Nc = 10, such that the top open circle band
intersects the bottom closed circle band. (B) magnified region with band intersection. Note that the modes labeled ‘‘a’’ and ‘‘c’’ have the same wave
number k. ‘‘b’’ and ‘‘d’’ correspond to modes with the same wave number k’.

(
←→
M D + λ2

←→α

)
S⃗D2
(
kj
)
= g⃗ (9b)

Solutions of Eqs. ((9) a,b) take the form

SD1,1
(
kj
)
=

γDf1 + δ∗f2
γ 2
D − γ 2

1
(10a)

SD2,1
(
kj
)
=

δf1 + γDf2
γ 2
D − γ 2

1
(10b)

SD1,2
(
kj
)
=

(γD + 2α2) g1 + δ∗g2
(γD + 2α1) (γD + 2α2)− (γ2 + 2α1) (γ2 + 2α2)

(10c)

SD2,2
(
kj
)
=

δg1 + (γD + 2α1) g2 (10d)

(γD + 2α1) (γD + 2α2)− (γ2 + 2α1) (γ2 + 2α2)

5
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n Eqs. ((10)a,b,c,d), we have use SD1,1 and SD2,1 to denote the two components of the vector S⃗D1 . Similarly, SD1,2 and SD2,2 stand
for the components of S⃗D2 . Here, γ1 and γ2 are the γ ’s solutions of Eq. (4) for n = 1,2.

In the presence of dissipation, we add to the equations of motion terms of the form−µ ∂
∂t . µ is a dissipation coefficient.

n that case, γD becomes complex and γD = −mω2
D + 2β − iµωD.

In summary, the displacement field in the externally driven coupled finite waveguide system is

U⃗D
N =

Nc−1∑
j=0

(
S⃗D1
(
kj
)
⊗ e⃗1 + S⃗D2

(
kj
)
⊗ e⃗2

)
eikjNLeiωDt (11)

With the components of S⃗D1 and S⃗D2 given by Eqs. (10). If we expand these two vectors on the complete orthonormal

asis x⃗ =

(
1

0

)
and y⃗ =

(
0

1

)
, Eq. (11) can be reformulated as

U⃗D
N =

Nc−1∑
j=0

(
SD1,1x⃗⊗ e⃗1 + SD1,2x⃗⊗ e⃗2 + SD2,1y⃗⊗ e⃗1 + SD2,2y⃗⊗ e⃗2

)
eikjNLeiωDt (12)

The external driver creates a coherent superposition of elastic states. By changing the driving frequency, we can change
he superposition of states.

If we now consider that the driving frequency is chosen in the vicinity of the band intersection of Fig. 2(B), and using
he fact that the components SD1,1, S

D
2,1, S

D
1,2, and SD2,2 are resonant terms, we can approximate Eq. (12) by restrict the

ummation over the available wave numbers to the two dominant wave numbers k and k’. In that case, the displacement
ield reduces to

U⃗D
N =

(
SD1,1 (k) x⃗⊗ e⃗1eikNL + SD1,2 (k) x⃗⊗ e⃗2eikNL + SD2,1 (k) y⃗⊗ e⃗1eikNL + SD2,2 (k) y⃗⊗ e⃗2eikNL

+ SD1,1
(
k′
)
x⃗⊗ e⃗1eik

′NL
+ SD1,2

(
k′
)
x⃗⊗ e⃗2eik

′NL
+ SD2,1

(
k′
)
y⃗⊗ e⃗1eik

′NLSD2,2
(
k′
)
y⃗⊗ e⃗2eik

′NL
)
eiωDt (13)

n other words, we are driving near resonance a subset of near-degenerate modes so that a small subspace of vibrations
s suitable for describing the state of the much larger number of modes.

Here, the 8 terms x⃗ ⊗ e⃗1eikNL, x⃗ ⊗ e⃗2eikNL, y⃗ ⊗ e⃗1eikNL, y⃗ ⊗ e⃗2eikNL, x⃗ ⊗ e⃗1eik
′NL, x⃗ ⊗ e⃗2eik

′NL, y⃗ ⊗ e⃗1eik
′NL, y⃗ ⊗ e⃗2eik

′NL

orm the basis of a 23 dimensional Hilbert space H = H1 ⊗ H2 ⊗ H3, tensor product of three 2D Hilbert spaces. H1 is
he Hilbert space associated with the sites in a unit cell with basis

{
x⃗, y⃗
}
. H2 is the space associated with degrees of

reedom across the coupled chains with basis
{
e⃗1, e⃗2

}
. H3 represents degrees of freedom along the waveguides labeled

y the wave numbers k and k’ with basis functions
{
eikNL, eik

′NL
}
. Each one of these two-level subsystems represents an

lastic bit. Eq. (13) consists of a superposition of product states of three two-level elastic bits with complex amplitude
omponents. This superposition of states is not separable (classically entangled) if it cannot be written as a product
Xx⃗+ Y y⃗

)
⊗
(
E1e⃗1 + E2e⃗2

) (
KeikNL + K ′eik

′NL
)

with X, Y, E1, E2, K and K ′ complex coefficients. By varying the driving
requency ωD one can ‘‘rotate’’ the superposition of state by tuning the complex amplitude components, SD1,1, S

D
2,1, S

D
1,2,

nd SD2,2. The extent of such a rotation in the Hilbert space H is dictated by the physical system.

. Nonseparable superpositions of elastic states in coupled waveguides

We investigate Eq. (13) further by considering that measurements of the displacement field are performed on the first
ite of the Nth unit cell. This condition reduces the expression for the displacement field to the x⃗ terms only in Eq. (13).
e denote this displacement field, V⃗D

N and write

V⃗D
N =

(
SD1,1 (k) e⃗1eikNL + SD1,1

(
k′
)
e⃗1eik

′NL
+ SD1,2 (k) e⃗2eikNL + SD1,2

(
k′
)
e⃗2eik

′NL
)
eiωDt (14)

he sum of terms in the parenthesis is now a superposition of states in the 22-dimensional Hilbert subspace: Hsub =

2 ⊗ H3. Controlling the driving frequency ωD enables us to navigate that subspace within some range dictated by the
hysical system. The operation being performed on the coupled waveguides through the action of changing the external
riving frequency, is a process that is agnostic to the state it is being performed on.
To simplify our argument, we choose a driving force such that f1 = g1 = 0 and f2 = g2 = 1. This is equivalent to

riving the second mass in the top chains in the 0th unit cell. In this case, the complex amplitudes are rewritten as

SD1,1 (k, ωa) =
δ∗(k)

γ 2
D − γ 2

1 (ωa)
(15a)

SD1,1
(
k′, ωb

)
=

δ∗(k′)
2 2 (15b)
γD − γ1 (ωb)
6
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Fig. 3. Phase of the complex amplitudes Eqs. ((15)a,b,c,d)) as functions of the driving frequency. We have chosen m = 1, β = 1.153, α1 = 1,
α2 = 2.55, Nc = 10, and a dissipation coefficient µ = 0.001. We recall as illustrated in Fig. 2(B), that the modes labeled ‘‘a’’ and ‘‘c’’ have the same
wave number k (solid lines). ‘‘b’’ and ‘‘d’’ correspond to modes with the same wave number k′ (dashed lines).

SD1,2 (k, ωc) =
δ∗(k)

(γD + 2α1) (γD + 2α2)− (γ2(ωc)+ 2α1) (γ2(ωc)+ 2α2)
(15c)

SD1,2
(
k′, ωd

)
=

δ∗(k′)
(γD + 2α1) (γD + 2α2)− (γ2(ωd)+ 2α1) (γ2(ωd)+ 2α2)

(15d)

n Eqs. ((15)a,b,c,d), we have added for clarity the full dependency on wave numbers and frequencies.
Using the numerical values corresponding to Fig. 2(B), k = 0.7854, k′ = 0.9425, ωa = 1.9841, ωb = 1.9135,

c = 1.8990 and ωd = 1.9486, we have plotted in Fig. 3 the argument (phase) of the complex amplitudes Eqs. ((15)a,b,c,d)
s functions of the driving frequency ωD.
The phase of the complex amplitudes takes the usual form of a resonance. The change in phase across each resonance

s nearly π . It is not exactly π because of the small additional phase arising from δ∗(k) and δ∗(k′). The ordering of the
esonances, SD1,2 (k, ωc), SD1,1

(
k′, ωb

)
SD1,2

(
k′, ωd

)
, and SD1,1 (k, ωa) follows the arrangement of the a, b, c, and d modes in

rder of increasing frequencies ωc , ωb, ωd, and ωa.
Let us define ϕ1 = arg

(
SD1,1 (k, ωa)

)
, ϕ2 = arg

(
SD1,1

(
k′, ωb

))
, ϕ3 = arg

(
SD1,2 (k, ωc)

)
, and ϕ4 = arg

(
SD1,2

(
k′, ωd

))
.

We now construct a state vector, W⃗ , that also lies in a 22 dimensional Hilbert space related to Hsub:

W⃗ (ωD) =

⎛⎜⎜⎜⎜⎝
ei∆ϕ1

ei∆ϕ2

ei∆ϕ3

ei∆ϕ4

⎞⎟⎟⎟⎟⎠ where ∆ϕl = ϕl (ωD) − ϕl (ωD = 1.85), l = 1, 2, 3, 4. Since the phases ϕl (ωD = 1.85) are all very

lose to each other, we effectively refer the argument of the complex amplitude to a general phase.
In Eq. (14), we ‘‘partitioned’’ the system between the spatial degrees of freedom across and along the waveguides.

owever, the partitioning of the Hilbert space of a physical system into subsystems is not unique and may be dictated
y the resources available to access and manipulate its degrees of freedom [25,26]. Therefore, Eq. (14) is but one possible
epresentation of the state of the system. Since the notion of classical entanglement (i.e., nonseparability) is relative to a
hoice of representation, we have chosen a representation which leads to bipartite states based on phases. The normalized
omponents of W⃗ form the complex coefficients of a linear combination of 22 dimensional tensor product basis vectors.
qs. (14) and ((15)a,b,c,d) show that the phase differences ∆ϕ1,2,3,4 are expressible in terms of good ‘‘quantum’’ numbers,
amely the two ‘‘n’’ labeling the spatial Eigen vectors e⃗n and the associated discrete sets of wave numbers, k and k′. Any
epresentation W⃗ of the elastic state of the system, V⃗D

N , that is a function of the ∆ϕ1,2,3,4 is therefore expressible in terms of
hese ‘‘quantum’’ numbers. For the given representation, W⃗ , there will exist a tensor product structure and tensor product
7
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b
s

asis in which it can be expanded which is also expressible in terms of e⃗n and k and k′. We use this representation for
ubsequent nonseparability-based information processing.

For ωD ∼ 1.92, W⃗ is approximately

⎛⎜⎜⎜⎜⎝
1

−1

−1

1

⎞⎟⎟⎟⎟⎠ =
(

1

−1

)
⊗

(
1

−1

)
. This vector could also be obtained by listing the sign

of the ei∆ϕl , l = 1, 2, 3, 4. This is a separable state as W⃗ can be written as a tensor product of two 2 × 1 vectors. In

contrast, W⃗ (ωD ∼ 1.96) is approximately

⎛⎜⎜⎜⎜⎝
1

−1

−1

−1

⎞⎟⎟⎟⎟⎠. This vector cannot be factored as a tensor product hence this state

is nonseparable. As we continue to increase the driving frequency, we see that W⃗ (ωD > 2.0) =

⎛⎜⎜⎜⎜⎝
−1

−1

−1

−1

⎞⎟⎟⎟⎟⎠ which is fully

separable. The ability to tune the separability or nonseparability of the displacement field is a critical property of the
coupled waveguide systems that enables the development of algorithms analogous to quantum algorithm. An example is
given in the next section.

5. Implementation of Deutsch–J ozsa-like algorithm exploiting classically entangled elastic states

Here, we develop a two-bit algorithm, in the same vein as the Deutsch–Jozsa algorithm [27], that involves nonsepara-
bility of the elastic states (i.e., classical entanglement) [28]. This algorithm determines whether binary functions of two
variables, f (z1, z2), with both z1, z2 ∈ 0, 1, are odd or even. The odd or even character of the function is defined as follows.
Since the binary function takes only the values, 0 and 1; there are 16 possibilities. For example, f (z1, z2) can take the value
0 or 1 for all {z1, z2}, that is, f (0, 0) = f (0, 1) = f (1, 0) = f (1, 1) = 0 or f (0, 0) = f (0, 1) = f (1, 0) = f (1, 1) = 1.
These belong to the class of even functions labeled [0, 4] , [4, 0] where the first and second number in the square bracket
stand for the number of values of f equal to 1 and 0, respectively. The function can take on one single value of 1; these are
functions of the form f (0, 0) = 1, f (0, 1) = f (1, 0) = f (1, 1) = 0 with all the corresponding permutations of 0s and 1.
In this case, the functions are odd and belong to the class [1, 3]. Functions with two values of 1 (e.g., f (0, 0) = f (0, 1) = 1
and f (1, 0) = f (1, 1) = 0 and the corresponding permutations of 0s and 1s) are even and classified as [2, 2]. Finally, the
permutations of functions with three ones (e.g., f (0, 0) = f (0, 1) = f (1, 0) = 1 and f (1, 1) = 0) are odd and in the
class [3, 1]. Half of the total of 16 possible functions are even or odd. The algorithm addresses the following question:
for a given function, how can we determine if it is even or odd? A classic computational approach answers that question
by evaluating the function serially for the two possible values of z1 and z2. The objective of the quantum-like algorithm
is to assess the nature of the function with a single operation using the analogies of superposition and entanglement
described in the previous sections. We now use the conventional bra-ket notation of quantum mechanics and apply it
to the elastic states of the coupled waveguides. Let |0⟩1 ≡ e⃗1, |1⟩1 ≡ e⃗2, |0⟩2 ≡ eikNL, and |1⟩2 ≡ eik

′NL. We note that
the four possible inputs of the function (0, 0) , (0, 1) , (1, 0) , (1, 1) can be mapped on the basis of the Hilbert space Hsub:
|0⟩1 |0⟩2 , |0⟩1 |1⟩2 , |1⟩1 |0⟩2 , |1⟩1 |1⟩2. Eq. (14) is now represented as:

V⃗D
N =

(
SD1,1 (k, ωa) |0⟩1 |0⟩2 + SD1,1

(
k′, ωb

)
|0⟩1 |1⟩2 + SD1,2 (k, ωc) |1⟩1 |0⟩2 + SD1,2

(
k′, ωd

)
|1⟩1 |1⟩2

)
eiωDt (16)

or

V⃗D
N =

(
rD1,1e

i∆ϕ1 |0⟩1 |0⟩2 + rD,′

1,1e
i∆ϕ2 |0⟩1 |1⟩2 + rD1,2e

i∆ϕ3 |1⟩1 |0⟩2 + rD,′

1,2e
i∆ϕ4 |1⟩1 |1⟩2

)
eiωDt (17)

rD1,1, r
D,′

1,1, r
D
1,2 and rD,′

1,2 are the moduli of the complex amplitudes. As mentioned before, Eq. (17) is expressed to within a
general phase.

In terms of the representation based on the complex exponentials only (i.e., phases), we prepare the system in the
tensor product state:

W⃗ (ωD ∼ 1.92) = (|0⟩ − |1⟩)1 (|0⟩ − |1⟩)2 =

(
1

−1

)
⊗

(
1

−1

)
=

⎛⎜⎜⎜⎝
1

−1
−1

⎞⎟⎟⎟⎠

1

8
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This is done by driving the coupled system at the frequency ωD ∼ 1.92. The algorithm proceeds by invoking an oracle
that implements the function f and encodes it into a unitary operation. Each possible function f is encoded by the unitary
transformation, Uf , that will act on the prepared state. The unitary transformation is given by:

←→
U f =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1+ 2Σ 0 0

0 0 −1+ 2Σ 0

0 0 0 1− 2Σ

⎞⎟⎟⎟⎟⎠ (18)

where Σ = f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1) modulo 2. Σ = 0 for the even functions and 1 for the odd one. In the
first case, functions in the classes [0, 4] , [2, 2] , [4, 0], the unitary transformation applied to the prepared state gives

←→
U f W⃗ (ωD ∼ 1.92) =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1

−1
−1

1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1

1
1

1

⎞⎟⎟⎟⎠ =
(
1

1

)
⊗

(
1

1

)

This is a separable state.
In the case of odd functions, in the classes [1, 3] , [3, 1], the unitary operation produces a nonseparable state

←→
U f W⃗ (ωD ∼ 1.92) =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1

−1
−1

1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1

−1
−1

−1

⎞⎟⎟⎟⎠
Note that this later unitary transformation is equivalent to the controlled Z (CZ) gate. Because of the symmetry of the

superposition, this operation could be controlled by either bit with the other serving as the target. For instance, the spatial
degree of freedoms

{
e⃗1, e⃗2

}
serve as control bit. The CZ gate acts on the second bit

{
k, k′

}
only when the first bit is in

state , e⃗2. Equivalently, we can exchange the roles of
{
e⃗1, e⃗2

}
and

{
k, k′

}
.

The matrix
←→
U f encodes mathematically the physical process of changing the driving frequency. The action of the

oracle in implementing the unitary operation,
←→
U f , results in one of two possible outcomes, the driving frequency of

the system is increased either by ∆ωD = 0.04 corresponding to the even functions or by 2∆ωD corresponding to the
odd functions. Note that the Hermitian conjugate of

←→
U f ,
←→
U †

f would correspond to a reduction in driving frequency
−∆ωD. The sequential application of the transformation and its Hermitian conjugate results in the expected identity as
this process corresponds to a frequency that is first up-tuned and then down-tuned by the same amount.

To identify whether a function f is even or odd, one just needs to identify if the final state is separable or nonseparable.
The challenge for quantum systems lies now in the measurability of the final states. There is no unambiguous single
measurement of entangled states of quantum systems. To distinguish between separable and nonseparable quantum
superpositions of states, one needs to make multiple measurements and obtain a statistical representation of the
superpositions. However, in the case of elastic waves, the superpositions of states are stable against measurements. For
instance, one may detect the separability or nonseparability of the elastic states by employing non-contact methods such
as scanning laser Doppler vibrometry which can provide unambiguous information on the wave number as well as the
phase of elastic waves supported by the coupled elastic system [22].

6. Implementation of Deutsch-like algorithm exploiting classically entangled elastic states

First, let us consider again the phases of the complex amplitudes of Fig. 3. We now drive the elastic system at three
requencies, ω1

D, ω
2
D, and ω

ref
D . The corresponding phases are labeled, ϕ1

1 , ϕ
1
2 , ϕ

1
3 , ϕ

1
4 , ϕ

2
1 , ϕ

2
2 , ϕ

2
3 , ϕ

2
4 , and ϕ

ref
1 , ϕref

2 , ϕref
3 , ϕref

4 ,
espectively. The upper script in the phases refer to the driving frequencies. The subscript refers to the same complex
mplitudes as Section 5. The system driven at ω

ref
D serves as reference. We now encode information in the following

× 1 vector:

∆W⃗ I
=

⎛⎜⎜⎜⎜⎝
ei
⏐⏐⏐ϕI

1−ϕ
ref
1

⏐⏐⏐
ei
⏐⏐⏐ϕI

2−ϕ
ref
2

⏐⏐⏐
ei
⏐⏐⏐ϕI

3−ϕ
ref
3

⏐⏐⏐
i
⏐⏐⏐ϕI

4−ϕ
ref
4

⏐⏐⏐

⎞⎟⎟⎟⎟⎠ (19)
e
9
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a
a

Fig. 4. Phase of the complex amplitudes (Eqs. ((15)a,b,c,d)) as functions of the driving frequency. Physical and geometrical parameters are the same
s in Fig. 3. ω1

D , ω2
D , and ω

ref
D are three possible driving frequencies. The phases of the complex amplitudes corresponding to the reference frequency

re indicated by open circles, respectively. The phases corresponding to the driving frequencies ω1
D , and ω2

D are indicated with arrows.

where the upper script I again refers to the driving frequencies 1, 2. This is one of many possible representations of the
elastic state of the system for which there will exist a tensor product structure and tensor product basis since all phases
involved are also expressible in terms of e⃗n and k and k′.

At the frequency ω1
D, we have ∆W⃗ 1

=

⎛⎜⎜⎜⎜⎝
1

−1

1

1

⎞⎟⎟⎟⎟⎠ and at the frequency ω2
D, ∆W⃗ 2

=

⎛⎜⎜⎜⎜⎝
1

1

1

−1

⎞⎟⎟⎟⎟⎠. Both states are nonseparable.

They are, however, related to each other through a controlled NOT (CNOT) gate unitary transformation, namely⎛⎜⎜⎜⎜⎝
1

1

1

−1

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1

−1

1

1

⎞⎟⎟⎟⎟⎠
or

∆W⃗ 2
= CX∆W⃗ 1

This is a controlled NOT gate CX where the second bit
{
k, k′

}
serves as control bit. The CX gate acts on the target

bit
{
e⃗1, e⃗2

}
only when the second bit is in state , k′. We can now use this transformation as the primary operation in a

variation on the Deutsch algorithm [29].
The objective of this algorithm is to determine if a binary function f (x) defined on the binary domain x ϵ {0, 1} is

balanced or constant. The binary function can only take the values 0 or 1. The function is constant if for all x the function
takes on the same value, that is, f (0) = f (1) = 0 or 1. The function is said to be balanced if f (0) ̸= f (1) (i.e., f (0) = 0
and f (1) = 1 or f (0) = 1 and f (1) = 0). This is a simplified version of the algorithm developed in Section 6. A classic
computation approach would evaluate the function twice serially for the two possible values of x. We seek a quantum-like
algorithm that can assess the constant or balanced nature of the function with a single operation (see Fig. 4).

For this, we remap the function (f (0) , f (1)) → (g (0) , g (1)) = (f (0) , |f (0)− f (1)|). We reformulate now the
problem as that of finding if the function g is balanced or constant.
10
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In a quantum-like algorithm we would prepare the system in a state driven at the frequency ω1
D, ∆W⃗ 1

= |0⟩1 |0⟩2 +

|0⟩1 |1⟩2 + |1⟩1 |0⟩2 − |1⟩1 |1⟩2 ≡

⎛⎜⎜⎜⎜⎝
1

1

1

−1

⎞⎟⎟⎟⎟⎠ where again |0⟩1 , |1⟩1 corresponds to the target bit
{
e⃗1, e⃗2

}
and |0⟩2 , |1⟩2

corresponds to the control bit
{
k, k′

}
.

Given the functions f and g , we map |x⟩1 |y⟩2 to
⏐⏐f (y)⨁ x

⟩
1 |y⟩2 where

⨁
is the addition modulo 2. Therefore if

f (0) = f (1) = 0, that is g (0) = g (1) = 0 (g is constant), then the prepared state remains the same ∆W⃗ 1 after
transformation. If f (0) = 0 and f (1) = 1 that is g (0) = 0 and g (1) = 1 (g is balanced), then the prepared state

transforms to |0⟩1 |0⟩2 + |1⟩1 |1⟩2 + |1⟩1 |0⟩2 − |0⟩1 |1⟩2 ≡

⎛⎜⎜⎜⎜⎝
1

−1

1

1

⎞⎟⎟⎟⎟⎠.

If f (0) = 1 and f (1) = 0 that is g (0) = 1 and g (1) = 1 (g is constant), then the prepared state transforms into
itself. If f (0) = 1 and f (1) = 1 that is g (0) = 1 and g (1) = 0 (g is balanced), then the prepared state transforms

to |1⟩1 |0⟩2 + |1⟩1 |1⟩2 + |0⟩1 |0⟩2 − |0⟩1 |1⟩2 ≡

⎛⎜⎜⎜⎜⎝
1

−1

1

1

⎞⎟⎟⎟⎟⎠. The unitary transformations corresponding to these four cases

are therefore the identity matrix if g is constant and the CX operation if g is balanced. From a practical point of view,
an oracle would apply these transformations by not changing the driving frequency of the prepared state if the function
g is constant and up-tuning the frequency of the driver to ω2

D in the case of a balanced function. Since the prepared
and transformed nonseparable superpositions are elastic states, they can be experimentally examined without further
application of quantum gate operations as is necessary in a true quantum algorithm.

7. Conclusion

We have presented Deutsch-like and Deutsch–Jozsa-like algorithms which involve ‘‘classical entanglement’’ that can be
implemented on classical systems composed of a planar array of two finite one-dimensional discrete elastic waveguides
mutually coupled periodically along their length and driven externally. The elastic modes of this system have been
analyzed in detail and shown to be products of states associated with degrees of freedom along (Bloch modes) and across
the waveguides (spatial modes). Superpositions of product states of the periodically coupled waveguides analogous to
those of a two partite system composed of two two-level elastic bits can be generated by application of an external
driver. The driver’s frequency and amplitudes serve as tuning parameters to navigate the Hilbert space of product
states. The Deutsch–Jozsa-like quantum-like algorithm can distinguish between the even or odd character of all possible
binary functions for two elastic bits inputs. The Deutsch-like algorithm distinguishes between constant and balance
binary functions. The algorithms presented here solve these problems in a single operation by using the nonseparability
(i.e., the parallelism) of the superpositions of product states of the periodically coupled waveguides. At the core of these
algorithms are two controlled unitary operations, a controlled Z gate (CZ) and a controlled NOT gate (CX). The advantage
of using nonseparable superpositions of elastic states, is that they can be examined directly via contact ultrasonic methods
(e.g., transducers) [21] or non-contact methods (e.g., scanning laser Doppler vibrometry) [22]. From a practical point of
view, the discrete coupled elastic system studied theoretically in this paper could be physically realized by using finite
continuous one-dimensional rod-like elastic waveguides coupled along their length with an elastically stiff adhesive such
as epoxy. A periodic arrangement of segments of the adhesive between the rod-like waveguides will enable periodic
coupling leading to the desired band folding [24]. Ultrasonic transducers attached to the detection end of the finite length
rod-like waveguides will enable measurement of the relative phase between the waveguides. The laser Doppler vibrometer
will enable the mapping of the longitudinal displacement field along the rod-like waveguides [22]. Fourier transformation
in space of the spatial waveform enables the determination of the wave number associated with each mode of oscillation.
These measurements can then be used to extract the complex amplitudes in the expansion of the displacement field given
by Eqs. (14) and (16) and therefore, determine their associated phase.

The algorithms described here exploit discrete jumps in the phase (or differences between phases) of resonances. By
increasing dissipation, the bandwidth of the resonances will increase giving access to a variety of choices of the value
of phases by tuning the driving frequency. This will provide access to phase shift gates, a necessary feature in quantum
Fourier Transform algorithms [30]. Furthermore, while we have considered here, algorithms that can be performed on
two elastic bits, we note that the form of Eq. (13) may enable navigation of the Hilbert space of a three-bit elastic
system. Extension to larger numbers of bits, will require elastic systems that can support larger numbers of degrees of
11
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reedom or exhibit nonlinear elasticity. Maximally entangled exponentially complex superpositions of nonlinear product
tates in externally driven arrays of nonlinear waveguides have been demonstrated theoretically [31]. The phase of the
omplex resonant amplitudes of the superposition of nonlinear product states can then be used in manners similar to
hose described in this paper to expand the capability and scalability of arrays of elastically coupled waveguides for
uantum-like information processing.
Finally, the recent emergence of topological acoustics enables us to foresee all-acoustic information processing

latforms that go beyond the canonical attributes of sound wave frequency, wave vector and dynamical phase by
mbracing the realm of the geometric phase [32–34]. For example, periodic topological elastic systems may support bands
ith ‘‘quantized’’ geometric phase (e.g., Berry phase). This quantization suggests that such elastic system may lead to
nalogies with true quantummechanical systems. It may, therefore, be possible to employ and control the geometric phase
o encode information similarly to that encoded in emerging quantum information storage and processing devices [35].
n addition, symmetry breaking in acoustic topological insulators creates Dirac-like physics such as pseudospin degrees of
reedom and topologically protected edge states. Pseudospin dependent edge modes can propagate unidirectionally along
nterfaces between structurally differing domains with different topological characteristics (i.e., domains with different
eometric phases). For instance, interfaces between tunable structures of honeycomb-lattice sonic crystals have been
econfigured to program the propagation path of acoustic edge modes and realize acoustic switches and tunable logic
ates [36,37]. Acoustic topological insulators exhibit robust properties with respect to a variety of structural changes
otentially providing flexibility in the design of a wide range of acoustic logic elements.
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