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Summary:
Like many other clinical and economic studies, each subject of our motivating transplant study is 
at risk of recurrent events of Non-Fatal Tissue Rejections (NFTR) as well as the terminating event 
of death due to total graft rejection. For such studies, our model and associated Bayesian analysis 
aim for some practical advantages over competing methods. Our semiparametric latent-class based 
joint model has coherent interpretation of the covariate (including race and gender) effects on all 
functions and model quantities that are relevant for understanding the effects of covariates on 
future event trajectories. Our fully Bayesian method for estimation and prediction using a 
complete specification of the prior process of the baseline functions. We also derive a practical and 
theoretically justifiable partial likelihood based semiparametric Bayesian approach to deal with 
analysis when there is a lack of prior information about the baseline functions. Our model and 
method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte 
Carlo tools for both Bayesian methods are implementable via publicly available software. Our 
Bayesian analysis of transplant study and simulation study demonstrate the practical advantages 
and improved performance of our approach.
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1. Introduction
Data on times to recurrent events until termination are common in various studies in cancer, 
chronic diseases, organ-transplant, repairable systems and economics. For example, in our 
motivating study for evaluating the covariate effects on each patient after receiving 
transplant, two types of responses for each transplant patient are: (1) the recurrent events of 
Non-fatal Tissue Rejections (NFTR) that were treated effectively by drug therapy, and (2) 
the terminating event of Graft-versus-Host Disease event (GvHD event) resulting in either 
total graft rejection or death. Although methodologies for recurrent events data have a long 
history in the literature (Cook and Lawless, 2007), the topic of recurrent events data with 
informative termination is a relatively new research field.
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Either using the naive assumption of non-informative termination (as defined in Cook and 
Lawless, 2007) or making inference about every recurrence while treating the termination 
and the remaining events as nuisances (Hougaard, 2000) often leads to seriously biased and 
even misleading inference (Miloslavsky et al., 2004). Other methods (see review by 
Miloslavsky et al., 2004) using an extension of the Coarsening-At-Random (CAR) 
assumption of Heitjan and Rubin (1991) preclude any inference on the termination event. 
Also, the CAR assumption is not verifiable from observed data and often lacks any practical 
meaning especially for transplant and studies with terminating event being death (Huang and 
Wang, 2004; Sinha et al., 2008). All of these approaches fail to coherently explain covariate 
effects on termination, evaluate the link between the recurrences and the risk of termination, 
and make prediction about future event processes. In many studies including our transplant 
study, evaluation of covariate effects and the predictions of future trajectories of both 
recurrent and terminating events are important analysis and prediction goals. For example, 
given some previous evidence of racial disparity on recurrent NFTR after rejection 
(example, Higgins and Fishman (2006)), one of the major goals of the analysis of our 
transplant study is a comprehensive and coherent evaluation of the race effect on joint 
trajectories of both NFTR and fatal GvHD events after transplant. To present a coherent and 
comeprehensive interpretation of the overall effect of race on both types of events, the main 
challenge of any useful joint model is to present clinically interpretable effects of race on 
following functions related to the trajectories of events after transplant: (1) the intensity 
function of recurrence and the hazard of termination, both conditional on recurrence history; 
and (2) the mean number and the rate of events, both unconditional on history. The former 
functions represent the dynamic effects of race and recurrence history on future events. 
Second set of functions express the non-dynamic (marginal) effects of race on future events. 
For the sake of physical interpretation, it is further desirable that a joint model should ensure 
similar signs and magnitudes of the race effect on all of these functions.

Since Lancaster and Intrator (1998), the joint modeling literature of such data has been 
dominated by models that use a patient-specific “frailty” random-effect shared by both 
recurrence and termination within a patient (e.g., Liu et al., 2004; Ye et al., 2007; Sinha et 
al., 2008; Zeng and Lin, 2009; Huang et al., 2010; Kalbfleisch et al., 2013; Xu et al., 2017). 
Except few (Xu et al., 2017; Paulon et al., 2018), these shared-frailty models usually require 
an assumption of parametric frailty distribution that can not be easily assessed from the 
observed data. These shared-frailty models usually lack simultaneous physical 
interpretations of covariate effects on all functions of interest listed above. For example, to 
obtain a reasonable expression of effect of race on mean and rate of recurrences over time, 
most of the existing shared-frailty models need the recurrent events given the frailty to be a 
Poisson process, an assumption considered too restrictive in practice. Whereas, other shared-
frailty models with clear interpretations of covariate effects on the mean recurrence and rate 
(e.g. Xu et al., 2017) lack practical interpretation of dynamic effects of covariates on risks of 
new recurrence and termination at time t given current history of events. There are some 
recent interesting works using copula structure (Shih and Louis, 1995) for bivariate and even 
multivariate frailty random effects to model association among several types of events, 
recurrences and termination while preserving some desired marginal distribution of each 
frailty effect (e.g., Lee and Cook (2019) and Cook et al. (2010)). The goal is to use the 
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desired marginal density of a particular frailty effect, say, a marginal Gamma frailty effect 
on the recurrent events, to obtain a computationally tractable likelihood. In spite of being 
more flexible than shared frailty models, these approaches also share some of the same 
difficulties in expressing simultaneous physical interpretation of covariate effects on all 
functions of interest. Also, models using multivariate frailty with copula are not amenable to 
Bayesian partial likelihood-based approach.

Recently popular Joint Latent Class Models (JLCM) for joint analysis of survival and 
longitudinal responses outlined in Proust-Lima et al. (2014), Barrett et al. (2015) and others 
avoid several several pitfalls of shared random effects models, such as increasing dimension 
with sample size and lack of estimation of individualized survival risk given past 
longitudinal outcome trajectory. Our goal is also to develop latent class models for our 
current problem to replicate the successes and advantages of these methods for joint analysis 
of longitudinal and survival outcomes.

In Section 2, we present a novel JLCM for recurrent events and termination with several 
practical advantages including a prediction of future profiles of recurrent and terminal events 
given covariates. We demonstrate the methodological advantages of the JLCM compared to 
existing models by showing that the JLCM has a coherent interpretation of the dynamic 
effects of the covariates on the risks of future events given the history, as well as the 
covariate effects on the rate and mean number of recurrences, unconditional on history. In 
Section 3, we present two semiparametric Bayesian methods of analysis using JLCM. These 
methods include the directions for choosing the priors, and demonstration of the ease of 
implementing associated Markov Chain Monte Carlo (MCMC) tools. The fully Bayesian 
method of Section 3 requires prior opinions on baseline functions; however, it is capable of 
predicting the future event trajectories. A partial likelihood based Bayesian method of 
Section 3 is useful when there is no available prior opinions about these unknown baseline 
functions of both events. Our MCMC based practical Bayesian methods are easy to 
implement via publicly available software such as OpenBUGS and these programs are made 
available by the corresponding author. In Section 4, our simulation studies show the 
performances of the JLCM under different priors compared to existing Bayesian methods. In 
Section 5, we provide an analysis of transplant data to illustrates the clinical interpretation 
and advantages of our models and associated methods in practice. Section 6 presents the 
concluding discussion including the extension of our methods and results to studies with 
time-varying covariates.

2. Joint Latent Class Model
Our JLCM assumes that future event trajectories of patients i = 1, ⋯, n depend on the latent 
class Mi of one of K + 1 latent homogeneous sub-populations G0, G1, ⋯, GK. The unknown 
class membership variables M1, ⋯, Mn are independent multinomial with

Mi ∣ (K,π)iidMult π0,…,πK , (1)

where πj = P[Mi = j] for π = (π0, …, πK) is the unknown probability of patient i being from 
class j, and (K + 1) is the unknown number of latent classes with ∑j = 0

K πj = 1. In some 
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applications, this latent class distribution π may be a function of a set of covariates Z, 
however, for time being we assume that it does not depend on the observed p-dimensional 
fixed covariate vector xi = (xi1, ⋭, xip) that only affects the recurrent and termination events. 
We will later extend our model and methods to time-varying covariates.

Similar to currently popular JLCM models of longitudinal data (e.g, see Proust-Lima et al., 
2014, and the references therein), we incorporate an unknown parameter ηj that models the 
relationship between the profile/trajectory of cumulative counts of NFTR recurrence Ni(t) 
and the “point-process of termination” Di(t) = 1 Ti ⩽ t  of termination time Ti for all patients 

from latent class Gj (see (2) and (3)). We make a clear distinction between “termination” at 
Ti due to GvHD (either death or total graft rejection) and the non-informative “censoring” at 
Ci (Kalbfleisch and Prentice, 2002) due to loss of follow-up, end of study, and other factors. 
Additionally for our JLCM, ηj is used to accommodate the dynamic effect of the observed 
history ℋi(t − ) on increments dNi(t) = Ni(t+dt)−Ni(t−) and dDi(t) = Di(t+dt)−Di(t−) of both 
recurrences and termination over time interval [t, t+dt), where ℋi(t − ) up to time t− (and not 
including t) is defined as the σ-algebra generated by the set {Ni(u), Di(u), Ai(u) : u < t} and 
Ai(t) = 1 Ti,Ci ⩾ t  is the “at observation process”. For this purpose, we assume the intensity 

function to be

lim
dt 0

P dNi(t) > 0 ∣ ℋi(t − ), xi,Mi = j, ηj
dt = λj t ∣ xi,ℋi(t − ), ηj = Ai(t)λ0(t

) ηjk + θi ,
(2)

where θi = exp(β′xi) with β′xi = ∑m = 1
p ximβm is the dynamic effect of covariate xi, β = (β1, 

⋯, βp) is the regression parameter, λ0(t) is the baseline intensity function, and Ni(t−) = k is 
the number of past recurrences at time t (included as part of the history ℋi(t − )). For a 
patient with {Mi = j}, the parameter ηj in (2), quantifies the dynamic effect of past 
recurrence history ℋi(t − )) on the risk of future recurrence {dNi(t) > 0} because every past 
recurrence contributes to an additional ηjλ0(t) to the risk of dNi(t) around time t. In 
particular, the first NFTR event for any latent group Gj has the common hazard function 
λ0(t) exp(βxi) with Cox’s (1972) relative risk model for the covariate effect. The class G0 
with η0 = 0 includes patients for whom future recurrence dNi(t) does not depend on number 
of past recurrences Ni(t−).

For the increment dDi(t) in our JLCM, we assume the relative risk model (Cox, 1972)

lim
dt 0

P dDi(t) ∣ ℋi(t − );xi,Mi = j, ηj
dt = Ai(t)ℎj t ∣ ηj;xi = Ai(t)ℎ0(t)eγxi + αηj, (3)

where the unknown γ = (γ1, ⋯, γp) quantifies the dynamic effect of covariate vector xi on 
dDi(t), and the scalar parameter α represents the fixed effect of the class-specific profile 
parameter ηj on the future risk/hazard of termination Ti when Mi = j. The practical 
assumption in (3) ensures that different latent classes have different risks of termination. 
Also, assumptions (2) and (3) together ensure that all patients within same class Gj share the 
same joint regression profile of recurrences and termination characterized by the unknown 
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class-profile parameter ηj of Gj. For longitudinal data, the JLCM is a popular modeling 
option that allows for practical interpretation of covariate effects, heterogeneity of the 
population and comparison of various patients’ response profiles within and across latent 
classes while bypassing distributional assumption on random effects. Our novel JLCM for 
recurrence and termination also aims to achieve all of these above goals.

A major challenge for a joint model is to present a good physical interpretation of the 
covariates effects on joint process {Ni, Di}. Existing joint models use a shared patient-
specific frailty random effect Wi to accommodate the dynamic dependence between dNi(t) 
and dDi(t) given the history ℋi(t − ) (Huang and Wang, 2004; Liu et al., 2004; Ouyang et al., 
2013; Qu et al., 2017). These models even accommodate the effect of history ℋi(t − ) on 
{dNi(t), dDi(t)} via the shared Wi. Consequently, the dynamic effects of xi on {Ni, Di} can 
only be explained conditional on random Wi that varies among patients and cannot be 
reliably estimated. Furthermore, any direct interpretation of the dynamic effect of xi on the 
marginal intensity λ t ∣ ℋi(t − ), xi  and on the marginal hazard ℎ t ∣ ℋi(t − ), xi  are lacking 
because these functions (obtained after integrating the random Wi) do not have any 
interpretable functional forms. Thus, the profiles of two subjects with different covariate 
values are difficult to compare without some additional restrictive model assumptions. 
Unlike them, our JLCM model presents the dynamic effects of xi on the joint profiles of 
{dNi(t), dDi(t)} via (2) and (3) based on finite dimensional and estimable η.

The JCLM also presents a synthesized interpretation of covariate effects on multiple 
quantities of interest related to both Ni and Di. This is apparent when we evaluate the 
covariate effects on important marginal functions such as the mean and the rate functions—
both of them are unconditional on the observed history ℋi(t − ). We obtain the differential 
equation dμj(t|xi) = E[dNi(t)|xi;Mi = j, ηj] = dΛ0(t)[ηjμj(t|xi) + θi] from (2), where μj(t|xi) = 
E[Ni(t)|Ai(t) = 1; xi, Mi = j, ηj] is the mean function (expected number) of recurrences given 
the patient in class Gj is under risk at time t. Solving this differential equation, we obtain the 
mean function

μj t ∣ xi = θi
ηj

exp ηjΛ0(t) − 1 , (4)

and corresponding rate function dμj(t|xi)/dt = θiλ0(t)exp{ηjΛ0(t)} given that Ti > t. The (4) 
implies that even the population rate function dμ t ∣ xi /dt = θiλ0(t)∑j = 0

K πjexp ηjΛ0(t)
given {Ti > t} is proportional in time with interpretable fixed effect θi = exp(β′xi) of 
covariate xi. This shows that unlike previous frailty models of Oakes (1992), Lawless (1995) 
and Lin et al. (2000) under non-informative termination, our JLCM model produces 
interpretable fixed effects of covariates and latent class index on the expected and rate of 
recurrences for a patient not terminated at time t. This property is similar to the property of 
the frailty model of Xu et al. (2017). However, for our transplant study as well as other 
practical applications, it is sensible to focus on the mean μj* t ∣ xi  of Ni*(t) = Ni Min Ti, t , 

the point-process of number of recurrences only until termination time Ti. Using similar 
arguments as to what were used for deriving (4), we obtain
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μj* t ∣ xi = E N*(t) ∣ xi;Mi = j, ηj = θi∫
0

t
Sj u ∣ xi λ0(u)exp ηjΛ0(u) du, (5)

with the corresponding rate-function rj* t ∣ xi ≡ dμj* t ∣ xi /dt = θiSj t ∣ xi λ0(t)exp ηjΛ0(t) , 

where Sj t ∣ xi = S0(t)exp γxi + αηj  is the survival function of Ti with corresponding class-
specific hazard function in (3). Unlike previous shared-frailty models, (4) and (5) guarantee 
that the covariate effect θi on the cumulative mean function μj*(t ∣ x) and the rate function 

rj* t ∣ xi  (both unconditional on history) is same as the dynamic effect of xi on the risk 

function λj t ∣ xi,ℋi(t − ), ηj  for any subject i in Gj. Unlike expression (5) for the JLCM, the 
shared-frailty models lack any interpretation of the effects of xi on the marginal mean μ*(t|x) 
and rate r*(t|x) (after integrating out frailty) because these models provide no simple 
expressions for these functions (without some strong and unrealistic additional modeling 
assumptions). There are also issues regarding the sensitivity of these marginal regression 
functions, say, r*(t|x) and λ(t ∣ ℋ(t − );x), to the assumed parametric form of the frailty 
density. Recent shared-frailty models of Xu et al. (2017) focus solely on E[Ni(t)|Xi] without 
considering termination at Ti, and do not provide the marginal function r*(t|xi).

3. Bayesian Analysis of Joint Model
The observed data is the set Y0 = {xi, yi, δi, Ni(t) for 0 < t ⩽ yi : i = 1, ⋯, n}, where yi = 
min{Ti, Ci} is the last observation time and δi = 1 Ti < Ci  is the censoring indicator for 

patient i. The likelihood under the JLCM in (1)–(3) based the observed data Y0 is a product 
of two following parts. Using the contributions from the observed NFTR recurrences Ni(t) in 
the observation interval (0, yi], the first part based on the intensity function in (2) is:

LR β, η,Λ0,M ∣ Y0 = ∏
i = 1

n
∏
q = 1

Q
dΛ0 tq NiqW i* + θi

niqexp

−AiqΛ0q NiqW i* + θi ,
(6)

where t1 < ⋯ < tQ are ordered distinct NFTR recurrence and last observation times yi from i 
= 1, ⋯, n subjects, Λ0q = Λ0 tq − Λ0 tq − 1  is the increment in Λ0(t) = ∫0

tλ0(u)du in interval Iq 

= (tq−1, tq] with t0 = 0, Aiq is the at-risk indicator Ai(tq) of subject i at time tq, Niq = Ni(tq−) 
is the number of past NFTR recurrences to subject i before time tq, niq = Ni, q+1 − Niq is the 
number of NFTR recurrences occurring to subject i at time tq, and W i* = ∑j = 0

K ηjI Mi = j . 

Under the hazard function (3), another part of the likelihood based on the observed (yi, δi) is

LS γ, η, α,H0,M ∣ Y0 = ∏
i = 1

n
exp −H0 yi exp γxi + αW i*

dH0 yi exp γxi + αW i*
δi,

(7)
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where dH0(t) is the increment in baseline cumulative hazard H0(t) = ∫0
tℎ0(u)du in the interval 

[t, t + dt). Full semiparametric Bayesian analysis (see Ibrahim et al., 2005) is based on the 
joint posterior distribution given by

p β, γ, α, η,Λ0,H0,M ∣ Y0 ∝ LR β, η,Λ0,M × LS γ, α,H0,M

× ∏
i = 1

n
pC Mi ∣ K,π × p1 Λ0 × p2 H0 × p3(η ∣ K) × p4(K,π) × p5(β, α, γ),

(8)

where pC(Mi|K, π) is the multinomial distribution of Mi in (1). The density of p4(K, π) is 
the prior of its parameter (K, π), p1(Λ0) and p2(H0) are two independent prior processes for 
non-parametric cumulative functions Λ0(t) and H0(t) respectively, p3(η|K) is the prior 
distribution of η = (η1, ···, ηK) given K, and p5(β, α, γ) is the joint prior of the regression 
parameters (β, α, γ). It is reasonable and common practice to assume a priori mutual 
independence of the regression parameters, baseline functions, and latent class parameters 
(η, π, K).

There are several ways to specify a prior p4(K, π) for unknown latent class variables (K, π). 
Methods using K +1 to be known, as used in popular JLCM based joint analysis of survival 
and longitudinal data (Huang and Wang, 2004; Han et al., 2007; Proust-Lima and Taylor, 
2009), usually lead to higher than adequate number of classes in practice. The Dirichlet 
process mixture (DPM) model (Neal, 2000) for W i* in (6) also leads to high computational 

cost and substantially higher than adequate number of classes. Provided it is supported by 
the observed data, it is desirable to have a small value of K to ensure that marginal mean, 
rate and intensity functions in (3) and (5) enable a comprehensive comparison among 
patients with different covariate values. A JLCM with large value of K is subject to the same 
criticisms leveled at shared-frailty models because shared-frailty models are in some sense 
JLCM with different classes for all different patients! So, we use the Mixture of Finite 
Mixtures (MFM) hierarchical prior (Miller and Harrison, 2016) for p4(K, π) in (8). This is 
presented hierarchically as

π0,…,πK ∣ K DirK + 1(γ,…, γ) and K ∣ ζ Pois(ζ), (9)

where Dirm(a1, …, am) is the Dirichlet distribution with parameter (a1, …, am), and Pois(ζ) 
is the Poisson distribution with mean ζ. A popular choice for the prior process p1(Λ0) in (8) 
is the Gamma process (Kalbfleisch, 1978) denoted by GP(Λ*(t), bλ), with a “prior guess” 
(prior mean) Λ*(t) of Λ0(t) and precision bλ (assumed known). For example, Λ*(t) = aλt 
represents the user-specified aλ > 0 being the prior guess for baseline intensity λ0(t). 
Similarly, we use p2 H0  as GP H0*(t), bℎ  with prior mean H0*(t) = aℎt and precision bh for 

some known ah, bh > 0. Unless there are substantial prior information about functions (Λ0, 
H0), these two Gamma processes with small precision bλ and bh can be reasonably 
approximated by independent Gamma priors for unknown increments Λ0q = Λ0(tq)−Λ0(tq−1) 
and H0q = H0(tq) − H0(tq−1) for q = 1, ⋯, Q with prior mean (tq − tq−1)aλ and variance (tq − 
tq−1)aλ/bλ, and prior mean (tq − tq−1)ah and variance (tq − tq−1)ah/bh, respectively.
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When we have useful prior information about both Λ0(t) and H0(t), we recommend a full 
semiparametric Bayesian analysis that is capable of inference as well as prediction using our 
JLCM in (2), (3) and (9). For such an analysis, we need MCMC samples from the posterior 
in (8). However, when there is a lack of credible prior information about (λ0, h0), we 
recommend following partial likelihood based semiparametric Bayesian inference.

Bayesian Analysis with Partial Likelihood:
Under the intensity function of (2) for JLCM, the partial likelihood for the recurrent events 
is

PLR β, η,M ∣ Y0 = ∏
i = 1

n
∏
q = 1

Q W i*Niq + θi
∑s = 1

n As tj W s*Nsq + θs

niq
, (10)

where As(tq) is the ”at risk” indicator of whether subject s is at observation at time tq. 
Similarly, for observed (yi, δi), the partial likelihood under the hazard in (3) is

PLS γ, α, η,M ∣ Y0 = ∏
i = 1

n exp γxi + αW i*
∑s = 1

n As yi exp γxs + αW s*

δi
. (11)

Following arguments of Ibrahim et al. (2005), we can prove that the joint posterior

pPL β, γ, α, η,M ∣ Y 0 ∝ PLR β, η,M ∣ Y 0 × PLS γ, α, η,M ∣ Y0

× ∏
i = 1

n
pC Mi ∣ K,π × p3(η ∣ K) × p4(K,π) × p5(β, α, γ)

(12)

based on the partial likelihoods of (10) and (11) is always a proper joint density as long as 
the priors p3(η|K), p4(K, π), and p5(β, α, γ) are proper. In Appendix I, we present a proof of 
the posterior of (12) being an approximation of the marginal posterior obtained via 
integrating (Λ0, H0) from the full posterior of (8) under very “diffuse” Gamma processes for 
p1(Λ0) and p2(H0). This gives a theoretical justification to use the posterior in (12) when 
there is no substantial prior opinion available for (Λ0, H0). Unlike the full posterior of (8), 
the posterior of (12) does not involve (Λ0, H0) and needs fewer steps within the MCMC 
while sacrificing the ability to make useful posterior predictions and posterior estimation of 
number and rate of future events.

The choice of priors for regression and variance component parameters often have 
substantial influence on Bayesian estimates (Gelman et al., 2006, 2008). For frailty models, 
the sensitivity of the results of Bayesian analysis to the priors of the frailty parameter is 
already well documented (Ouyang et al., 2013). Following Gelman et al. (2006), we present 
Bayesian analysis of JLCM using the ordered uniform distribution of size K as the “non-
informative” prior and the ordered half-Cauchy distributions of size K and scale 2.5 as the 
“weakly-informative” prior for η1 < ⋯ < ηK. We use independent Cauchy density with 
center 0 and scale 2.5 as the priors for the regression parameters β and γ because these 
priors for regression parameters often outperform other non-informative and weakly-
informative priors, including Gaussian and Laplace priors (Gelman et al., 2008). We use a 
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Gamma(1, 1) density as the prior for the parameter α associated with the class-effects ηj on 
termination.

4. Simulation Study
Our first two simulation studies compare the performances of Bayesian estimates of mainly 
the single regression parameter obtained from 3 methods: (1) JLCM with ordered uniform in 
(−3, +3) priors for η1 < ··· < ηK, (2) JLCM with ordered half-Cauchy prior on η1 < ··· < ηK, 
(3) shared-frailty model of Huang and Wang (2004). We compare the performances of these 
3 Bayesian methods at sample sizes n = 100 and n = 400. To compare performances of the 
Bayesian estimates from competing methods, these two as well as other simulation studies 
use 500 replicates of datasets from each simulation model and sample-size to approximate 
the relative bias (RB), the average posterior standard deviation (SD), and the approximate 
square-root of mean square error (RMSE) of the Bayesian estimates under different 
methods. To facilitate fair comparisons among all three models, we present results of only 
full Bayesian analysis (partial likelihood based Bayesian analysis is not readily available for 
shared-frailty model) of them. Following conventional choices (Bender et al., 2005), we use 
independent Cauchy priors with center 0 and scale 2.5 for all regression parameters, GP(aλt, 
bλ) and GP(aht, bh) with bλ = bh = 0.001 and aλ = ah = 1 for cumulative baseline functions 
Λ0 and H0 respectively.

All simulation models use the baseline functions λ0(t) = 1 and h0(t) = 0.5, and fixed 
censoring time Ci = 2. For Simulation Study 1 and 2, we simulate from JLCM with η = (0, 
0.4, 0.8) for K + 1 = 3, a positive association between recurrence and termination with α = 
0.5, and independent Bernoulli covariate xi ~ Ber(0.5). The only difference between two 
simulation models is that the simulation model of former has same direction of covariate 
effects on risks of both recurrence and termination with β = γ = 1, whereas in later 
simulation model these true covariate effects are in opposite directions with β = 1 and γ = 
−1. For, The values of RB, SD and RMSE in Table 1 (for Simulation Study 1) and Table 2 
(for Simulation Study 2) indicate that JLCM based Bayesian estimates under uniform priors 
for η perform the best among competing methods. As expected, the RB and RMSE for 
smaller sample-size n = 100 are slightly larger than corresponding values obtained from 
larger datasets (n = 400), however, the estimates for both sample sizes have very small RB. 
Especially for the estimating η1 and η2, the JLCM performs better while using ordered 
uniform priors compared to using half-Cauchy priors on η, because the later method 
substantially underestimates η and over-estimates the number of latent groups K with a large 
RMSE. The RMSE values of the estimates of regression parameter from both JLCM based 
methods are smaller than the corresponding RMSE values from the shared-frailty model 
based estimates. Thus, the JLCM bases methods substantially outperform the shared-frailty 
method when the data is generated from a JLCM.

Simulation Study 3 tests the robustness of JLCM based Bayesian estimates via comparing 
these three estimates when the true simulation model is the shared-frailty model of Huang 
and Wang (2004) with conditional intensity function 
λ t ∣ xi,ℋi(t − ),W i = λ0(t)exp xiβ 1 +W i  and hazard function 
ℎ t ∣ xi,ℋi(t − ),W i = ℎ0(t)exp xiβ 1 +W i  with β = γ = 1, and the frailty density Wi ~ 
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Gamma(1.5, 1.5). Table 4 shows that the estimated regression parameters from all three 
competing methods have comparable RB and RMSE when the sample size is small (n = 
100). However, as the sample-size increases (n = 400), the RB values of shared-frailty based 
regression estimates seem to decrease faster than those from JLCM based estimates. Thus, 
the JLCM with uniform prior for η is preferable for Bayesian estimates unless we are 
assured about the validity of the shared-frailty assumption and the sample size is large.

Our next three simulation studies now compare the estimates from JLCM with ordered 
uniform prior for η (since it performs better than Cauchy prior in previous three simulation 
studies) with those from the shared-frailty model when the simulated datasets have both 
binary and continuous covariates and the interaction among them. So, each of these 
simulation studies use 500 replicates of datasets of n = 100 subjects in each with two 
independent covariates x1 ~ Ber(0.5) and x2 ~ N(0.25, 1) and their interaction x3 = x1×x2. In 
Simulation Study 4, the simulation model is JLCM with β1 = 0.5, β2 = 0.2, β3 = 0.6, γ1 = 
0.3, γ2 = 0.4 and γ3 = 0.3 to ensure that the simulated datasets have approximately the same 
expected value of Xβ and the same a number of recurrent events until terminationas as in 
Simulation Study 1. In Simulation Study 5, we simulate from same JLCM except with γ1 = 
−0.3, γ2 = −0.4 and γ3 = −0.3 to ensure the direction of covariate effects on recurrent events 
to be different from the effects on termination (unlike in Simulation Study 4).

For Simulation Study 4–5, the values of RB, SD and RMSE of the estimates from two 
competing methods are in Table 4. These results show that the estimates from JLCM have 
similar performances to the JLCM based estimates in Simulation Study 1–2 with single 
binary covariate. However, the estimates from the shared-frailty model are perform worse 
than the results for JLCM except for the γ2 corresponding to the effect of continuous 
covariate on termination. These results emphasize the earlier findings that the JLCM based 
estimates have substantially better performance than the shared-frailty model when the 
underlying true model is JLCM. Again, unlike Simulation Study 4 and 5 using simulations 
from JLCM, the Simulation Study 6 uses simulations from the shared-frailty model to assess 
the robustness of the estimates from JLCOM. The results in Table 4 show JLCM based 
estimates have comparable and even smaller RB than the shared-frailty model for some 
parameters. Values of SD and RMSE from JLCM are sometime little smaller than those 
from the shared-frailty model to indicate better performance of JLCM here. Overall, JLCM 
model based estimates have better performances than estimates from the shared-frailty 
model when there are multiple covariates.

Overall, these simulation studies show that the JLCM with ordered uniform priors for η 
performs better than JLCM with Cauchy priors, especially for small sample-size. JLCM 
gives reasonable estimates of regression parameters even when the true model is the shared-
frailty model, and the estimates from JLCM performs much better than shared-frailty when 
the true model is JLCM.

5. Analysis of Heart Transplant Data
We compare (1) JLCM with ordered uniform priors for η and (2) shared-frailty model with 
gamma frailty using Bayesian analyses of a study of n = 114 cardiac transplant patients 
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treated between 1992–2007 under these two competing models. Each patient is at risk of 
recurrent Non-Fatal Tissue Rejections (NFTR), usually treated with medication, as well as 
death due to GvHD (considered termination event). Some patients are censored due to loss 
of follow-up at their last follow-up times. The maximum number of observed recurrent 
NFTR events amnong these patients is 7, where the median and maximum of follow-up 
periods are 3 and 17.8 months. There are two binary covariates: race with x1 = 1 for African 
American (AA) patients and x1 = 0 otherwise, and Gender with x2 = 0 for male and 1 for 
female.

We use independent mean 0 and variance 1 Gaussian priors for the regression parameters βk 
and γk for k = 1, 2 to accommodate effectively non-informative prior opinions about the 
effects of race and gender, ordered uniform priors for vector η in JLCM, and exponential 
prior for the variance of the Gamma frailty of the shared-frailty model. To summarize the 
Bayesian analysis under two competing models, Table 5 presents the posterior means as 
Bayesian estimates (BE), posterior standard deviation (SD) and 95% credible interval (CI) as 
Bayesian interval estimates of the relevant parameters of interest.

For Bayesian analysis under JLCM, the interval estimates of K, π and η in Table 5 show a 
strong data evidence that this study has three latent classes with no class G0 (K = 3 and π0 
being very close to 0). This means that this patient population has no latent class for which 
the number of past NFTR events has no effect on the risk of GvHD event of the patient. To 
understand and assess the future risk of GvHD for every patient, the effect of his/her past 
history of NFTR events has to be considered. The Bayesian point estimates of class effects 
are η1 = 0.504, η2 = 1.054, and η3 = 1.661. Results show strong evidence of increased risk and 
rate of NFTR recurrence for any AA patient (compared to non-AA patient) with no 
termination at time t because the CI of exp(β1) is (1.03, 2.28). However, there is no strong 
evidence of direct race-effect on the risk of termination because the CI of γ1 is (−0.967, 
0.861), containing 0. Also, the evidence of gender-effects on both recurrence and 
termination are weak because the CIs of both β2 and γ2 contain 0. These suggest that in 
spite of the strong data evidence of higher risk and higher rate of NFTR recurrences for an 
AA patient at any time t, there is no good data evidence of the AA patient being at higher 
risk of death from fatal GvHD after adjustment of the effects of of latent class and number 
of past recurrences. As a consequence of JLCM’s property in (5) and results of our Bayesian 
analysis imply an increased population lifetime rate r*(t ∣ x) = ∑k = 0

K πkrk*(t ∣ x) and an 

population lifetime mean NFTR recurrence μ*(t ∣ x) = ∑k = 0
K πkμk*(t ∣ x) for an AA patient 

compared to another non-AA patient at time t because when γ = 0 (as our Bayesian analysis 
results suggest for this study) we have r*(t ∣ x) = exp βxi λ0(t)∑k = 0

K πkSk(t)exp ηkΛ0(t)  and 

similar expression for μ*(t|x).

The advantages of our JLCM based analysis is that we can compare the expected event 
profiles of two patients, say, an African American (AA) patient (x1 = 1) versus a non-AA 
patient (x1 = 0) of same gender within same latent class. The ratio eβ1 of their NFTR 
recurrence rates before termination at any time t has posterior mean 1.53 and CI 
(1.030,2.288) if they are from the same latent class. The ratio of risks of first recurrence 
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(dynamic comparison given past history of recurrences at time t) between these two patients 
is also same as the rate-ratio eβ1. However, this ratio of risks of recurrence is ηj + eβ1  if, say, 

an AA male patient is at risk for the second recurrence and the non-AA male patient is still 
at risk of first NFTR at that time-point. The Bayesian point estimates for this risk-ratio are 
2.038, 2.588 and 3.195 when they from classes 1, 2 or 3 respectively. Because our JLCM 
based analysis produces moderate number of latent classes, it is possible to compare the 
dynamic event profiles and mean/rate of events among patients from two different latent 
classes and even among patients with latent classes unknown. For example, the interval 
estimate of ratio of mean number of recurrences is (1.5, 4.3) when the latent class is 
unknown and the model even incorporates covariate effects on termination. Unfortunately, 
for the sake of brevity, we omit detailed comparisons of future event trajectories of different 
patients.

JLCM based Bayesian analysis also allows the estimation of probability πk of any patient 
being in a latent class Gk and also facilitates the updating the estimates given the past events 
history of any subject. For example, Bayesian point estimate of π3 is 0.7 for an AA Male 
patient with recurrence history as a patient i = 6 and without termination compared to this 
Bayesian estimate being less than 0.2 for a future patient with events history similar to the 
patient i = 1.

In Table 5, the posterior means and CIs of β1 and β2 under shared-frailty model are close to 
the corresponding estimates from JLCM. Overall, analysis from both models have 
agreement about the evidences of dynamic effects of race and gender on NFTR recurrence 
and termination conditional on history. However, the shared-frailty model cannot effectively 
interpret the ratio of rates of NFTR recurrence and ratio of termination risk of two patients 
with different covariate values. So, the JLCM based analysis is preferable because it allows 
comparisons of event profiles of two future patients and accommodates a comprehensive 
interpretation of covariate effects on all relevant functions.

6. Conclusion and Discussion
Our novel JLCM achieves five major practical/clinical goals: (1) explaining the effect of 
covariates on the future event profiles within each patient; (2) evaluating the risk of events in 
[t, t + dt) given the history ℋ(t − ); (3) assessing the risk of termination given ℋ(t − ); (4) 
explaining the heterogeneity among patients via latent class parameters η; (5) providing 
predictions of future events. Unlike JLCM, existing methods often focus on single main 
response of interest (say, recurrence) and the corresponding regression function of interest 
(say, mean number of recurrence), and regression parameters of mean recurrence, in general, 
do not have any physical interpretation for another regression function, say, for hazard 
function for termination (Miloslavsky et al., 2004).

We can accommodate right-predictable time-varying covariate xi(t) within the joint latent 
class model of (2–3) via re-expressing them as λj t ∣ ℋi(t − ); ηj = λ0(t) ηjk + exp β′xi(t)  and 

ℎj t ∣ ℋi(t − ); ηj = ℎ0(t)eγxi(t) + αηj, where the event history 
ℋi(t − ) = Ni(u),Di(u),Ai(u), xi(u):u < t  now also contains the information about the sample-
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path Xi(t) = xi(u):u ⩽ t  of the predictable process {xi(·)} up to time t. Our full Bayesian 
method for studies with time-varying covariates is similar to what is presented in Section 3 
as long as the entire sample path of time-varying xi(t) have been available in the interval 
when Ai(t) = 1. To facilitate the partial likelihoods (10) and (11) for our Bayesian method 
based on partial likelihoods will only require this time-varying xi(t) to be measured/known 
for all subjects at risk/observation at each event time (Li et al., 2016). Instead of (2), 
dμj t ∣ Xi(t) = E dNi(t) ∣ xi(t); ηj = dΛ0(t) ηjμj t ∣ xi(t) + eβxi(t) is the new differential 

equation of the mean function (expected number) μj t ∣ Xi = E Ni(t) ∣ Ai(t) = 1;Xi(t), ηj  of 
recurrences given the patient in class Gj, with class-effect ηj, is under observation at time t. 
For ease of presentation, we consider the special case of piecewise constant xi(·) with Xi(t) = 
xik and for all t ∈ Ik = (ak−1, ak] with the grid 0 = a0 < a1 < ⋯ < aK−1 < aK = ∞. The solution 
of this differential equation in this case is the recursive formula

μj t ∣ Xi(t) = μj ak − 1 ∣ Xi ak − 1 eηjΛ0 ak − 1, t + θik
ηj

eηjΛ0 ak − 1, t − 1  for t
∈ ak − 1, ak ,

(13)

where θik = exp(βxik) and Λ0(a, b) = ∫a
bλ0(t)dt for 0 ⩽ a < b. Unlike (4), the class-specific 

rate function dμj t ∣ Xi(t) /dt = θik + ημj ak − 1 ∣ Xi ak − 1 λ0(t)exp ηjΛ0 ak − 1, t  as well as 
the population rate function dμ t ∣ Xi(t) /dt given {Ti > t} corresponding to (13) can not be 
expressed as a product of exp(β′xi(t)) and a baseline function free of Xi(t) . However, the 
expression in (13) shows that similar to the fixed covariate case, the effect of the sample-
path Xi(t) of time-varying x(·) on mean function has two parts. The multiplicative effect of 
the current covariate value xi(t) is accommodated in the second-term of right-hand-side of 
equation (13), and the first part accommodates the effects of past sample path xi(u) for u < t. 
Obviously for this case, past sample-path xi(u) for u < t may be different from the current 
value xi(t) of the covariate. Using arguments similar to what were used for deriving (5), we 
obtain the mean μj* t ∣ Xi(t) = E Ni*(t) ∣ Xi(t); ηj = ∫0

tSj u ∣ Xi(u) dμj u ∣ Xi(u)  and the 

corresponding rate function

rj* t ∣ Xi(t) = θik + μj ak − 1 ∣ Xi ak − 1 Sj t ∣ Xi(t) λ0(t)exp ηjΛ0 ak − 1, t (14)

of Ni*(t) = Ni Min Ti, t  for t ∈ ak − 1, ak , where 

Sj t ∣ Xi(t) = exp −∫0
tℎ0(u) exp γxi(u) + αηj du . In (14), the first term of rj* t ∣ Xi(t)

representing the effect of the current value of covariate xi(t) is proportional to θik = exp(β
′xi(t)). Computing the posterior estimates of μj*(t ∣ X(t)) and rj*(t ∣ X(t)) of any future patient 

are straightforward within Bayesian analysis as long as we use full Bayesian analysis 
(instead of partial likelihood based Bayesian analysis) that presents a Bayesian estimate of 
Λ0(t).

We present an innovative MCMC based tool that is scalable via popular Bayesian software 
such as JAGS (used in this paper) and WinBUGS because our computational method does 
not need Reversible Jump MCMC. This code is made available in Appendix II. We note that 
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this JAGS code is not computationally feasible for massive datasets, and in this setting, we 
suggest optimizing the code using other software besides the standard JAGS option. Our 
simulation results show that JLCM produces good regression estimates even when the true 
model is not JLCM. Even though, we only consider non-negative ηj (appropriate for our 
transplant study), one can, in principle, consider even negative ηj as long as exp(βx) + ηjNi(t
−) > 0 for all observed values of Ni(t−). Irrespective of the true model, JLCM based analysis 
is preferable because it allows comparisons of event profiles of two future subjects (via 
estimating class effects) and accommodates a comprehensive interpretation of covariate 
effects on all relevant functions.

Appendix I:: Partial Likelihood Based Posterior As The Marginal Posterior
We are going to show the partial likelihood based posterior in (12) is an approximation of 
the marginal posterior after integrating out the cumulative baseline function Λ0(t) and H0(t) 
from the joint posterior of (8). For GP(Λ*, bλ) prior on Λ0(t), each increment Λ0q of the 
Λ0(t) in in interval Iq = (tq−1, tq], has a Gamma prior Ga(aλw0qbλ, bλ), where wq = (tq 
−tq−1) and t1 < ⋯ < tQ are the ordered distinct event times. Then we integrate out the 
increments dΛ0(t) from the (6) as follows,

PLR β, η,M ∣ aλ, bλ;Y0
= ∫ LR β, η,Λ0,M ∣ Y0 × p1 Λ0 ∣ aλ, bλ dΛ0

= ∏
q = 1

Q ∫ ∏
i = 1

n
Λ0q NiqWi* + θi

niq × e−Λ0q∑i = 1
n Aiq NiqWi* + θi × e−bλΛ0q Λ0q

aλwqbλ − 1dΛ0q

= ∏
q = 1

Q
∏
i = 1

n
NiqWi* + θi

niq ×∫ e−Λ0q ∑i = 1
n Aiq NiqWi* + θi + bλ

× Λ0q
∑i = 1
n niq + aλwqbλ − 1dΛ0q

= ∏
q = 1

Q
∏
i = 1

n
NiqWi* + θi

niq Γ ∑i = 1
n niq + aλwqbλ

bλ + ∑i = 1
n Aiq NiqWi* + θi ∑i = 1

n niq + aλwqbλ

∝ ∏
q = 1

Q
∏
i = 1

n
NiqWi* + θi

niq
bλ + ∑

i = 1

n
Aiq NiqWi* + θi

−∑i = 1
n niq − aλwqbλ

.

When we choose a very diffuse Gamma processes with bλ and aλ → 0, then the above 
marginal likelihood PLR(β, η, M) from recurrent events is approximately (in the limit) 

∏q = 1
Q ∏i = 1

n NiqW i* + θi
niq ∑i = 1

n Aiq NiqW i* + θi
−∑i = 1

n niq, same as the partial 

likelihood of (10) from recurrent events. Using similar steps as above, we can show that the 
marginal likelihood (after integrating H0(·)) from (yi, δi)

PLS γ, η,M ∣ Y0 ∫ LS γ, η,H0,M ∣ Y0 × p2 H0 ∣ aℎ, bℎ dH0

∝ ∏
i = 1

n
e γxi + αWi* δi bℎ + ∑

i = 1

n
Aj yi γxi + αWi*

−δi − aℎwqbℎ
PLS γ, η,M ∣ Y0 ,

Xu et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2022 February 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



as bh and ah → 0 (11).

Appendix II:: Model Code in JAGS

# input data:

# x1, x2, x3: covariates

# YN[i, j]: number of events happened before time t[j] for subject i.

# Y[i, j]: indicator to show patients i is at risk or not at time t[j]

# t[j]: time point when j-th event happen among all subjects

# T: number of total different event time for all subjects

# N: total subjects number

# final[i]: location of censored time for subject i in variable t.

#Start model

model{

  # compute the log-likelihood by using the zero-trick in Poisson 

distribution 

  for(i in 1:N) { #Begin loop over subjects

    zeros[i]~ dpois(zeros.mean[i])

    M[i]~ dcat(pi[]) # the group for i-th subject

    for(j in 1:T) {#Begin loop over distinct recurrent event times

      Log.S1[i, j]=−dL0[j]*(K[i, j]*eta[M[i]]

+exp(x1[i]*beta[1]+x2[i]*beta[2]+x3[i]*beta[3]))*Y[i, j]

      Log.Lambda1[i, j]=(log(dL0[j])−log(t[j+1]-t[j])+log(K[i, 

j]*eta[M[i]]+exp(x1[i]*beta[1]+x2[i]*beta[2]+x3[i]*beta[3])))*YN[i, j]

      dH[i, 

j]=dH0[j]*exp(x1[i]*gamma[1]+x2[i]*gamma[2]+x3[i]*gamma[3]+alpha*eta[M[i]])*

Y[i, j]

    }

    L1[i]=sum(Log.Lambda1[i, 1:T])+sum(Log.S1[i, 1:T]) 

    log.H1[i]=−sum(dH[i, 1:T]) 

    log.H2[i]=(log(dH0[final[i]-1])−log(t[final[i]]-t[final[i]−1])

+x1[i]*gamma[1]+x2[i]*gamma[2]+x3[i]*gamma[3]+alpha*eta[M[i]])*fail[i]

    L2[i]=log.H1[i]+log.H2[i] 

    LL[i]=L1[i]+L2[i]

    zeros.mean[i]=−LL[i]+C

  }

  # prior settings 

  for (j in 1:T) {#Gamma process prior

    dL0[j]~dgamma((t[j+1]-t[j]), 0.001)

    dH0[j]~dgamma((t[j+1]-t[j]), 0.001)

  }

  #prior for regression parameters 

  for(i in 1:3){

    beta[i]~dnorm(0, 0.16) 
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    gamma[i]~dnorm(0, 0.16)

  }

  alpha~dgamma(1, 1)

  # ordered prior for eta W[1]=0

  for(m in 2:num_class){

    W[m]~dunif(0, 3)

  } 

  eta=sort(W)

  #establish a Dirichlet prior

  for(m in 1:num_class){ 

    a[m]~dgamma(1, 1) 

    p[m]=ifelse(m<=KM, 1, 0)

    pi[m]<-a[m]*p[m]

  }

  #number of groups

  KM1~dpois(num_class −1)T(0, num_class −1) # number of groups exclude 

group 0.

  KM=KM1+1

}
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Table 1

Comparison of Bayesian estimates using data simulated from a JLCM with a same covariate effects on 
recurrence and termination risks: RB is the relative bias, SD is the average posterior Standard-Deviation, and 
RMSE is the square-root of mean square error based on 500 replicates.

n=100 n=400

Methods Paramter RB SD RMSE RB SD RMSE

JLCM with uniform prior for η

α −0.026 0.421 0.165 −0.004 0.331 0.160

β −0.008 0.198 0.193 −0.005 0.139 0.137

γ −0.094 0.220 0.214 −0.057 0.154 0.177

η1 0.022 0.262 0.097 0.006 0.221 0.083

η2 0.078 0.433 0.145 0.004 0.381 0.124

K 0.159 0.877 0.480 0.150 0.801 0.451

JLCM with Cauchy prior for η

α 0.043 0.497 0.211 0.008 0.361 0.185

β −0.081 0.187 0.203 0.005 0.122 0.111

γ −0.126 0.218 0.250 −0.074 0.146 0.205

η1 −0.942 0.028 0.377 −0.918 0.014 0.367

η2 −0.909 0.083 0.727 −0.948 0.016 0.758

K 0.852 0.475 1.727 0.862 0.542 1.752

Shared-frailty Model β −0.163 0.207 0.263 −0.147 0.152 0.212

γ −0.127 0.245 0.276 −0.084 0.217 0.178
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Table 2

Summary of performances of estimates from different methods when data is simulated from a JLCM with 
opposite covariate effects on recurrence and termination risks: RB is the relative bias, SD is the average 
posterior Standard-Deviation, and RMSE is the square-root of mean square error based on 500 replicates.

n=100 n=400

Methods Parameter RB SD RMSE RB SD RMSE

JLCM with uniform prior for η

α −0.034 0.423 0.017 −0.009 0.311 0.011

β 0.004 0.174 0.004 0.004 0.151 0.003

γ 0.066 0.284 0.066 0.047 0.236 0.044

η1 0.035 0.230 0.014 0.008 0.222 0.009

η2 0.033 0.373 0.026 0.005 0.364 0.015

K 0.150 0.813 0.300 0.114 0.747 0.280

JLCM with Cauchy prior for η

α −0.076 0.411 0.038 −0.026 0.330 0.033

β −0.050 0.166 0.050 −0.016 0.136 0.034

γ 0.068 0.283 0.068 0.051 0.256 0.062

η1 −0.938 0.031 0.375 −0.653 0.013 0.328

η2 −0.895 0.096 0.716 −0.613 0.018 0.686

K 0.923 0.333 1.846 0.935 0.313 1.548

Shared-frailty Model β −0.049 0.218 0.222 −0.024 0.217 0.197

γ 0.186 0.327 0.375 0.173 0.259 0.376
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Table 3

Summary statistics for estimates using data simulated from model introduced in Section 4.4 (i.e., a shared-
frailty model). RB is the average relative bias, SD is the average posterior Standard-Deviation, and RMSE is 
the approximate square-root of mean square error.

n=100 n=400

Methods Parameter RB SD RMSE RB SD RMSE

JLCM with uniform prior for η β −0.031 0.200 0.202 −0.012 0.116 0.121

γ −0.157 0.207 0.260 −0.108 0.149 0.159

JLCM with Cauchy prior for η β −0.050 0.198 0.207 −0.003 0.153 0.152

γ −0.152 0.207 0.257 −0.105 0.151 0.163

Shared-frailty Model β −0.036 0.208 0.211 −0.006 0.144 0.143

γ −0.122 0.235 0.265 −0.087 0.146 0.151
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Table 4

Summary statistics for estimates using data simulated from simulation study 4 to 6 that introduced in Section 
4.4. RB is the average relative bias, SD is the average posterior Standard-Deviation, and RMSE is the 
approximate square-root of mean square error.

JLCM Shared-frailty Model

Simulation Model Parameter RB SD RMSE RB SD RMSE

Simulation Study 4 α −0.054 0.415 0.167 - - -

β1 0.020 0.218 0.234 −0.153 0.236 0.281

β2 0.021 0.160 0.165 −0.068 0.173 0.182

β3 −0.015 0.211 0.216 −0.094 0.238 0.246

γ1 −0.194 0.245 0.240 −0.327 0.293 0.283

γ2 −0.132 0.170 0.170 −0.080 0.206 0.184

γ3 −0.010 0.243 0.235 −0.034 0.292 0.269

η1 0.036 0.262 0.091 - - -

η2 0.085 0.428 0.135 - - -

K 0.107 0.866 0.464 - - -

Simulation Study 5 α −0.061 0.408 0.152 - - -

β1 −0.002 0.216 0.215 −0.168 0.235 0.470

β2 0.027 0.150 0.151 0.026 0.163 0.166

β3 0.004 0.183 0.189 0.041 0.220 0.218

γ1 0.228 0.259 0.243 0.485 0.304 0.445

γ2 0.024 0.177 0.167 0.161 0.213 0.200

γ3 0.108 0.276 0.282 0.184 0.324 0.317

η1 0.042 0.235 0.090 - - -

η2 0.040 0.377 0.124 - - -

K 0.107 0.820 0.453 - - -

Simulation Study 6 β1 −0.016 0.157 0.150 −0.088 0.224 0.191

β2 −0.051 0.155 0.147 −0.169 0.223 0.181

β3 −0.011 0.157 0.154 −0.088 0.223 0.187

γ1 −0.240 0.221 0.215 −0.319 0.271 0.261

γ2 −0.152 0.221 0.208 −0.205 0.270 0.261

γ3 −0.262 0.221 0.209 −0.289 0.270 0.252
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Table 5

Results of heart transplant data based on the partial likelihood with the non-informative prior. BE is the 
posterior mean (Bayesian point estimate), SD is the posterior Standard-Deviation and 95% CI is the 95% 
credible interval of the parameter.

JLCM Frailty Model

Parameter BE SD 95% CI BE SD 95% CI

β1 0.428 0.205 (0.030,0.828) 0.429 0.159 (0.109,0.732)

β2 0.261 0.212 (−0.153,0.651) 0.177 0.172 (−0.185,0.524)

γ1 0.063 0.460 (−0.967,0.861) −0.055 0.977 (−1.974,1.835)

γ2 −0.076 0.435 (−0.973,0.807) 0.031 1.012 (−1.929,1.933)

α 0.152 0.126 (0.006,0.477) - - -

η1 0.504 0.399 (0.018,1.455) - - -

η2 1.054 0.511 (0.218,2.166) - - -

η3 1.661 0.566 (0.598,2.730) - - -

K 3.212 0.755 (2.000,4.000) - - -
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