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Summary:

Like many other clinical and economic studies, each subject of our motivating transplant study is
at risk of recurrent events of Non-Fatal Tissue Rejections (NFTR) as well as the terminating event
of death due to total graft rejection. For such studies, our model and associated Bayesian analysis
aim for some practical advantages over competing methods. Our semiparametric latent-class based
joint model has coherent interpretation of the covariate (including race and gender) effects on all
functions and model quantities that are relevant for understanding the effects of covariates on
future event trajectories. Our fully Bayesian method for estimation and prediction using a
complete specification of the prior process of the baseline functions. We also derive a practical and
theoretically justifiable partial likelihood based semiparametric Bayesian approach to deal with
analysis when there is a lack of prior information about the baseline functions. Our model and
method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte
Carlo tools for both Bayesian methods are implementable via publicly available software. Our
Bayesian analysis of transplant study and simulation study demonstrate the practical advantages
and improved performance of our approach.
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Data on times to recurrent events until termination are common in various studies in cancer,
chronic diseases, organ-transplant, repairable systems and economics. For example, in our
motivating study for evaluating the covariate effects on each patient after receiving
transplant, two types of responses for each transplant patient are: (1) the recurrent events of
Non-fatal Tissue Rejections (NFTR) that were treated effectively by drug therapy, and (2)
the terminating event of Graft-versus-Host Disease event (GvHD event) resulting in either
total graft rejection or death. Although methodologies for recurrent events data have a long
history in the literature (Cook and Lawless, 2007), the topic of recurrent events data with
informative termination is a relatively new research field.
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Either using the naive assumption of non-informative termination (as defined in Cook and
Lawless, 2007) or making inference about every recurrence while treating the termination
and the remaining events as nuisances (Hougaard, 2000) often leads to seriously biased and
even misleading inference (Miloslavsky et al., 2004). Other methods (see review by
Miloslavsky et al., 2004) using an extension of the Coarsening-At-Random (CAR)
assumption of Heitjan and Rubin (1991) preclude any inference on the termination event.
Also, the CAR assumption is not verifiable from observed data and often lacks any practical
meaning especially for transplant and studies with terminating event being death (Huang and
Wang, 2004; Sinha et al., 2008). All of these approaches fail to coherently explain covariate
effects on termination, evaluate the link between the recurrences and the risk of termination,
and make prediction about future event processes. In many studies including our transplant
study, evaluation of covariate effects and the predictions of future trajectories of both
recurrent and terminating events are important analysis and prediction goals. For example,
given some previous evidence of racial disparity on recurrent NFTR after rejection
(example, Higgins and Fishman (2006)), one of the major goals of the analysis of our
transplant study is a comprehensive and coherent evaluation of the race effect on joint
trajectories of both NFTR and fatal GvHD events after transplant. To present a coherent and
comeprehensive interpretation of the overall effect of race on both types of events, the main
challenge of any useful joint model is to present clinically interpretable effects of race on
following functions related to the trajectories of events after transplant: (1) the intensity
function of recurrence and the hazard of termination, both conditional on recurrence history;
and (2) the mean number and the rate of events, both unconditional on history. The former
functions represent the dynamic effects of race and recurrence history on future events.
Second set of functions express the non-dynamic (marginal) effects of race on future events.
For the sake of physical interpretation, it is further desirable that a joint model should ensure
similar signs and magnitudes of the race effect on all of these functions.

Since Lancaster and Intrator (1998), the joint modeling literature of such data has been
dominated by models that use a patient-specific “frailty” random-effect shared by both
recurrence and termination within a patient (e.g., Liu et al., 2004; Ye et al., 2007; Sinha et
al., 2008; Zeng and Lin, 2009; Huang et al., 2010; Kalbfleisch et al., 2013; Xu et al., 2017).
Except few (Xu et al., 2017; Paulon et al., 2018), these shared-frailty models usually require
an assumption of parametric frailty distribution that can not be easily assessed from the
observed data. These shared-frailty models usually lack simultaneous physical
interpretations of covariate effects on all functions of interest listed above. For example, to
obtain a reasonable expression of effect of race on mean and rate of recurrences over time,
most of the existing shared-frailty models need the recurrent events given the frailty to be a
Poisson process, an assumption considered too restrictive in practice. Whereas, other shared-
frailty models with clear interpretations of covariate effects on the mean recurrence and rate
(e.g. Xu et al., 2017) lack practical interpretation of dynamic effects of covariates on risks of
new recurrence and termination at time ¢ given current history of events. There are some
recent interesting works using copula structure (Shih and Louis, 1995) for bivariate and even
multivariate frailty random effects to model association among several types of events,
recurrences and termination while preserving some desired marginal distribution of each
frailty effect (e.g., Lee and Cook (2019) and Cook et al. (2010)). The goal is to use the
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desired marginal density of a particular frailty effect, say, a marginal Gamma frailty effect
on the recurrent events, to obtain a computationally tractable likelihood. In spite of being
more flexible than shared frailty models, these approaches also share some of the same
difficulties in expressing simultaneous physical interpretation of covariate effects on all
functions of interest. Also, models using multivariate frailty with copula are not amenable to
Bayesian partial likelihood-based approach.

Recently popular Joint Latent Class Models (JLCM) for joint analysis of survival and
longitudinal responses outlined in Proust-Lima et al. (2014), Barrett et al. (2015) and others
avoid several several pitfalls of shared random effects models, such as increasing dimension
with sample size and lack of estimation of individualized survival risk given past
longitudinal outcome trajectory. Our goal is also to develop latent class models for our
current problem to replicate the successes and advantages of these methods for joint analysis
of longitudinal and survival outcomes.

In Section 2, we present a novel JLCM for recurrent events and termination with several
practical advantages including a prediction of future profiles of recurrent and terminal events
given covariates. We demonstrate the methodological advantages of the JLCM compared to
existing models by showing that the JLCM has a coherent interpretation of the dynamic
effects of the covariates on the risks of future events given the history, as well as the
covariate effects on the rate and mean number of recurrences, unconditional on history. In
Section 3, we present two semiparametric Bayesian methods of analysis using JLCM. These
methods include the directions for choosing the priors, and demonstration of the ease of
implementing associated Markov Chain Monte Carlo (MCMC) tools. The fully Bayesian
method of Section 3 requires prior opinions on baseline functions; however, it is capable of
predicting the future event trajectories. A partial likelihood based Bayesian method of
Section 3 is useful when there is no available prior opinions about these unknown baseline
functions of both events. Our MCMC based practical Bayesian methods are easy to
implement via publicly available software such as OpenBUGS and these programs are made
available by the corresponding author. In Section 4, our simulation studies show the
performances of the JLCM under different priors compared to existing Bayesian methods. In
Section 5, we provide an analysis of transplant data to illustrates the clinical interpretation
and advantages of our models and associated methods in practice. Section 6 presents the
concluding discussion including the extension of our methods and results to studies with
time-varying covariates.

2. Joint Latent Class Model

Our JLCM assumes that future event trajectories of patients 7= 1, --*, n depend on the latent
class M;of one of K+ 1 latent homogeneous sub-populations Gy, Gy, ***, Gk. The unknown
class membership variables M, ---, M,, are independent multinomial with

M; | (K, )" Mult(zq, ..., ng), (1

where ;= A M;= j] for == (7, ..., 7g) is the unknown probability of patient 7being from

class 7, and (K + 1) is the unknown number of latent classes with Zf: o7j = 1. In some
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applications, this latent class distribution 7z may be a function of a set of covariates ~Z,
however, for time being we assume that it does not depend on the observed p-dimensional
fixed covariate vector x;= (x;, %, Xjp) that only affects the recurrent and termination events.
We will later extend our model and methods to time-varying covariates.

Similar to currently popular JLCM models of longitudinal data (e.g, see Proust-Lima et al.,
2014, and the references therein), we incorporate an unknown parameter 7); that models the
relationship between the profile/trajectory of cumulative counts of NFTR recurrence Nf?)

and the “point-process of termination” Dj(r) = 1|7, < 7] of termination time 7} for all patients

from latent class Gj(see (2) and (3)). We make a clear distinction between “termination” at
T, due to GvHD (either death or total graft rejection) and the non-informative “censoring” at
C;i(Kalbfleisch and Prentice, 2002) due to loss of follow-up, end of study, and other factors.
Additionally for our JLCM, 7j;is used to accommodate the dynamic effect of the observed
history #;(t — ) on increments dN{(# = N{#+d)—N[t-) and dD(?) = D{t+-df)—D{¢) of both
recurrences and termination over time interval [# #df), where %;(t — ) up to time # (and not
including #) is defined as the o-algebra generated by the set { N(u1), D{u), A(u) : u < £} and
A1) = 1[T;,c; » 1] 18 the “at observation process”. For this purpose, we assume the intensity

function to be

. PlAN0)> 0| Z(t - ). x;, M; = j.n]
lim =

dt — 0 dt
)nik + 6],

ij(t I Xis %i(t - ), 11]) = Ai(l)ﬁo(t @)

where ;= exp(f’ x;) with p'x; = Zﬁ, — 1 XimPm 1s the dynamic effect of covariate x;, 8= (B,
", Bp) is the regression parameter, A(?) is the baseline intensity function, and N(#) = kis
the number of past recurrences at time # (included as part of the history #;(r —)). For a
patient with {M;= j}, the parameter 7;in (2), quantifies the dynamic effect of past
recurrence history #;(t —)) on the risk of future recurrence {dN(#) >0} because every past

recurrence contributes to an additional 7,4¢(2) to the risk of dN(?) around time Z In
particular, the first NFTR event for any latent group G has the common hazard function
Ao(9) exp(Bx;) with Cox’s (1972) relative risk model for the covariate effect. The class G
with 79 = 0 includes patients for whom future recurrence dNy(# does not depend on number
of past recurrences Nf#).

For the increment dD(?) in our JLCM, we assume the relative risk model (Cox, 1972)

_ PldDi) | #i(t —); x;, M = j,
lim
dt—0 dt

= At | nj; x;) = AT, 3)

where the unknown y = (1, -, ¥,) quantifies the dynamic effect of covariate vector x; on
dD(?), and the scalar parameter a represents the fixed effect of the class-specific profile
parameter 7);on the future risk/hazard of termination 7; when M;= j. The practical
assumption in (3) ensures that different latent classes have different risks of termination.
Also, assumptions (2) and (3) together ensure that all patients within same class Gj share the
same joint regression profile of recurrences and termination characterized by the unknown
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class-profile parameter 7;0f G;. For longitudinal data, the JLCM is a popular modeling
option that allows for practical interpretation of covariate effects, heterogeneity of the
population and comparison of various patients’ response profiles within and across latent
classes while bypassing distributional assumption on random effects. Our novel JLCM for
recurrence and termination also aims to achieve all of these above goals.

A major challenge for a joint model is to present a good physical interpretation of the
covariates effects on joint process {/N; D;}. Existing joint models use a shared patient-
specific frailty random effect W, to accommodate the dynamic dependence between dN(7)
and dD({) given the history %;(t — ) (Huang and Wang, 2004; Liu et al., 2004; Ouyang et al.,
2013; Qu et al., 2017). These models even accommodate the effect of history #;(r — ) on
{dN(?), dD(H} via the shared W, Consequently, the dynamic effects of x;on {N, D;} can
only be explained conditional on random W;that varies among patients and cannot be
reliably estimated. Furthermore, any direct interpretation of the dynamic effect of x; on the
marginal intensity A(¢ | #;(t — ), x;) and on the marginal hazard a(z | #;(t — ), x;) are lacking
because these functions (obtained after integrating the random W)) do not have any
interpretable functional forms. Thus, the profiles of two subjects with different covariate
values are difficult to compare without some additional restrictive model assumptions.
Unlike them, our JLCM model presents the dynamic effects of x;on the joint profiles of
{dN{9, dD(?)} via (2) and (3) based on finite dimensional and estimable 7.

The JCLM also presents a synthesized interpretation of covariate effects on multiple
quantities of interest related to both N;and D;. This is apparent when we evaluate the
covariate effects on important marginal functions such as the mean and the rate functions—
both of them are unconditional on the observed history #;(r — ). We obtain the differential
equation du(dx) = ELdN(DlxiM;= j, 7l = dAo(dl mufdx) + 6] from (2), where p(dx) =
E[N(D|ALD = 1; x;, M;=J, ;] is the mean function (expected number) of recurrences given
the patient in class G;is under risk at time & Solving this differential equation, we obtain the
mean function

0;
uit | x;) = n—j[exp{ﬂjAo(f)} - 1], @)

and corresponding rate function du(4x,)/dt= 6 o(Hexp{niAo(9)} given that 7; > £ The (4)
implies that even the population rate function du(t | x;)/dt = 9,-,10(02;(= o|zjexp{njAo®}]
given { 7; > £ is proportional in time with interpretable fixed effect 8;= exp(8’ x;) of
covariate x; This shows that unlike previous frailty models of Oakes (1992), Lawless (1995)
and Lin et al. (2000) under non-informative termination, our JLCM model produces
interpretable fixed effects of covariates and latent class index on the expected and rate of
recurrences for a patient not terminated at time # This property is similar to the property of
the frailty model of Xu et al. (2017). However, for our transplant study as well as other
practical applications, it is sensible to focus on the mean 4 (¢ | x;) of Nj(t) = N(Min{T},1}),
the point-process of number of recurrences only until termination time 7. Using similar
arguments as to what were used for deriving (4), we obtain
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t
pi@ | x;) = E[N*(@t) | x;; M; = j,n;| = 6; A S (u | x;)Ao(w)exp{n;Ao(u) }du, )

with the corresponding rate-function r(t | x;) = duf(r | x;)/dt = 6;S(1 | x;)0(exp{n;Ao(1)},

where S(t | x;) = So(t)e"p(}'xi +a1j) is the survival function of T;with corresponding class-
specific hazard function in (3). Unlike previous shared-frailty models, (4) and (5) guarantee
that the covariate effect 8;on the cumulative mean function ﬂ;‘(t | x) and the rate function
r(t | x;) (both unconditional on history) is same as the dynamic effect of x; on the risk
function (¢ | x;, (1 — ). n;) for any subject 7in G;. Unlike expression (5) for the JLCM, the
shared-frailty models lack any interpretation of the effects of x; on the marginal mean £*(4x)
and rate r*(4x) (after integrating out frailty) because these models provide no simple
expressions for these functions (without some strong and unrealistic additional modeling
assumptions). There are also issues regarding the sensitivity of these marginal regression
functions, say, r*(4x) and A(r | #(t — ); x), to the assumed parametric form of the frailty
density. Recent shared-frailty models of Xu et al. (2017) focus solely on £ N(#)|X}] without
considering termination at 7} and do not provide the marginal function r*(4x;).

3. Bayesian Analysis of Joint Model

The observed data is the set Yo = {x;, y; &; N(f) for 0 <t< y;:i=1, -, n}, where y,;=
min{ T} Cj} is the last observation time and 6; = 1[1; < ;] is the censoring indicator for

patient 7. The likelihood under the JLCM in (1)—(3) based the observed data Yy is a product
of two following parts. Using the contributions from the observed NFTR recurrences N(?) in
the observation interval (0, y,], the first part based on the intensity function in (2) is:

n Q
Lg(p.m Ao M | Yo) = []
i=1g=1

[{dAO(tq)(N Wi+ 91') }nilep (6)

{=AigAog(NigW + 91')}]’

where #; <+ <{pare ordered distinct NFTR recurrence and last observation times y; from 7
=1, -, nsubjects, Aoy = Ao(tg) — Ao(tq — 1) is the increment in Ay(r) = J A0(u)du in interval I
= (Ig-1, tg] with =0, Aj, is the at-risk indicator A[#,) of subject 7at time £y, N3 = N{#;-)
is the number of past NFTR recurrences to subject 7 before time 4, ;3= Nj g+1 — Njgis the
number of NFTR recurrences occurring to subject 7at time #,, and W} = Zf: onil(M; = j).

Under the hazard function (3), another part of the likelihood based on the observed (y;, &) is

n

Ls(y.,n,a, Hp, M | Y) = | | exp{—Ho(y)exp(yx; + aW7) o
=
i

dHo(nexp(rx; + aw )|,
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where dHy(?) is the increment in baseline cumulative hazard Hy(r) = fé ho(u)du in the interval

[¢ ¢+ df). Full semiparametric Bayesian analysis (see Ibrahim et al., 2005) is based on the
joint posterior distribution given by

p(ﬁ’ Y., H, AO’ HO’ M | YO) X LR(ﬂs n, AO’ M) X LS(V’ a, H()s M)

x [T pe(Mi | K.x)  pi(Ao) X pa(Ho) X ps(n | K) X py(K. ) % ps(Pray),

i=1

where p(M{K, ) is the multinomial distribution of M;in (1). The density of p4(K, ) is
the prior of its parameter (X, ), p1(Ag) and pr(Hp) are two independent prior processes for
non-parametric cumulative functions Ag(#) and Hy(?) respectively, p3(7K) is the prior
distribution of n= (7, -**,ng) given K, and p5(B, a, y) is the joint prior of the regression
parameters (B, a, y). It is reasonable and common practice to assume a priori mutual
independence of the regression parameters, baseline functions, and latent class parameters

(n, 7, K).

There are several ways to specify a prior p4(K, ) for unknown latent class variables (XK, 7).
Methods using K +1 to be known, as used in popular JLCM based joint analysis of survival
and longitudinal data (Huang and Wang, 2004; Han et al., 2007; Proust-Lima and Taylor,
2009), usually lead to higher than adequate number of classes in practice. The Dirichlet
process mixture (DPM) model (Neal, 2000) for W in (6) also leads to high computational

cost and substantially higher than adequate number of classes. Provided it is supported by
the observed data, it is desirable to have a small value of K to ensure that marginal mean,
rate and intensity functions in (3) and (5) enable a comprehensive comparison among
patients with different covariate values. A JLCM with large value of K is subject to the same
criticisms leveled at shared-frailty models because shared-frailty models are in some sense
JLCM with different classes for all different patients! So, we use the Mixture of Finite
Mixtures (MFM) hierarchical prior (Miller and Harrison, 2016) for p4(K, ) in (8). This is
presented hierarchically as

(70, ... mk) | K~Dirg 1 1(7, ....v) and K | {~Pois({), ©)

where Dir,(ay, ..., a5) is the Dirichlet distribution with parameter (ay, ..., a,,), and Pois({)
is the Poisson distribution with mean {. A popular choice for the prior process p;(Ag) in (8)
is the Gamma process (Kalbfleisch, 1978) denoted by GPAA*(#), b,), with a “prior guess”
(prior mean) A*(?) of Ag(?) and precision by (assumed known). For example, A*(¢) = a,t
represents the user-specified ay >0 being the prior guess for baseline intensity Aqy(?).
Similarly, we use py(Ho) as G P(H{j(t), by) with prior mean H{(1) = apt and precision by for
some known ay, by >0. Unless there are substantial prior information about functions (A,
Hp), these two Gamma processes with small precision b, and by can be reasonably
approximated by independent Gamma priors for unknown increments Agg = Ag(4)~Ao(Z4-1)
and Hyg = Hy(ty) — Ho(44-1) for g=1, -+, Q with prior mean (¢, — #;-1)a and variance (Z; —
t4-1)ay/by, and prior mean (Z; — f;-1)ap and variance (¢, — ;1) ay/by, respectively.
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When we have useful prior information about both Ay(#) and Hy(?), we recommend a full
semiparametric Bayesian analysis that is capable of inference as well as prediction using our
JLCM in (2), (3) and (9). For such an analysis, we need MCMC samples from the posterior
in (8). However, when there is a lack of credible prior information about (A, fg), we
recommend following partial likelihood based semiparametric Bayesian inference.

Bayesian Analysis with Partial Likelihood:

Under the intensity function of (2) for JLCM, the partial likelihood for the recurrent events
is

n,q

0
PLg(B. M | Yo) = [T [] (10)

where A7) is the “at risk” indicator of whether subject s is at observation at time ;.
Similarly, for observed (y;, 6,), the partial likelihood under the hazard in (3) is

an

i exp(yx; + aW}) o
PLS(J/7 (X, ﬂ?M | YO) = l l N
1 5 = 1 A(r)exp(rx; + aW'¥)

i=1
Following arguments of Ibrahim et al. (2005), we can prove that the joint posterior

ppr(B.v,a,n, M | Yg) « PLR(B,n, M | Yo) X PLs(y,a,n, M | Yo)

x [ pc(M; | K, 7) x p3(n | K) X pa(K, 7) X ps(B, o, 7)

i=1

(12)

based on the partial likelihoods of (10) and (11) is always a proper joint density as long as
the priors p3(7K), p4(K, m), and ps(B, a, y) are proper. In Appendix I, we present a proof of
the posterior of (12) being an approximation of the marginal posterior obtained via
integrating (A, Hy) from the full posterior of (8) under very “diffuse” Gamma processes for
D1(Ag) and pr(Hy). This gives a theoretical justification to use the posterior in (12) when
there is no substantial prior opinion available for (A, Hy). Unlike the full posterior of (8),
the posterior of (12) does not involve (A, Hy) and needs fewer steps within the MCMC
while sacrificing the ability to make useful posterior predictions and posterior estimation of
number and rate of future events.

The choice of priors for regression and variance component parameters often have
substantial influence on Bayesian estimates (Gelman et al., 2006, 2008). For frailty models,
the sensitivity of the results of Bayesian analysis to the priors of the frailty parameter is
already well documented (Ouyang et al., 2013). Following Gelman et al. (2006), we present
Bayesian analysis of JLCM using the ordered uniform distribution of size K as the “non-
informative” prior and the ordered half-Cauchy distributions of size K and scale 2.5 as the
“weakly-informative” prior for n; <+ < ng. We use independent Cauchy density with
center 0 and scale 2.5 as the priors for the regression parameters S and ) because these
priors for regression parameters often outperform other non-informative and weakly-
informative priors, including Gaussian and Laplace priors (Gelman et al., 2008). We use a
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Gamma(1, 1) density as the prior for the parameter a associated with the class-effects r;on
termination.

4. Simulation Study

Our first two simulation studies compare the performances of Bayesian estimates of mainly
the single regression parameter obtained from 3 methods: (1) JLCM with ordered uniform in
(=3, +3) priors for 1 < <7, (2) JLCM with ordered half-Cauchy prior on 7 <:-- <7,
(3) shared-frailty model of Huang and Wang (2004). We compare the performances of these
3 Bayesian methods at sample sizes 7= 100 and n=400. To compare performances of the
Bayesian estimates from competing methods, these two as well as other simulation studies
use 500 replicates of datasets from each simulation model and sample-size to approximate
the relative bias (RB), the average posterior standard deviation (SD), and the approximate
square-root of mean square error (RMSE) of the Bayesian estimates under different
methods. To facilitate fair comparisons among all three models, we present results of only
full Bayesian analysis (partial likelihood based Bayesian analysis is not readily available for
shared-frailty model) of them. Following conventional choices (Bender et al., 2005), we use
independent Cauchy priors with center 0 and scale 2.5 for all regression parameters, GAa,t,
by) and GP(apt, by) with by = bp=0.001 and ay = a5 = 1 for cumulative baseline functions
Ag and H) respectively.

All simulation models use the baseline functions Ay(#) = 1 and /Ay(#H) = 0.5, and fixed
censoring time C;= 2. For Simulation Study 1 and 2, we simulate from JLCM with = (0,
0.4, 0.8) for K+ 1 = 3, a positive association between recurrence and termination with a =
0.5, and independent Bernoulli covariate x;~ Ber(0.5). The only difference between two
simulation models is that the simulation model of former has same direction of covariate
effects on risks of both recurrence and termination with f= y = 1, whereas in later
simulation model these true covariate effects are in opposite directions with =1 and y =
—1. For, The values of RB, SD and RMSE in Table 1 (for Simulation Study 1) and Table 2
(for Simulation Study 2) indicate that JLCM based Bayesian estimates under uniform priors
for n perform the best among competing methods. As expected, the RB and RMSE for
smaller sample-size 7= 100 are slightly larger than corresponding values obtained from
larger datasets (1= 400), however, the estimates for both sample sizes have very small RB.
Especially for the estimating 7; and 75, the JLCM performs better while using ordered
uniform priors compared to using half-Cauchy priors on 7, because the later method
substantially underestimates 7 and over-estimates the number of latent groups K with a large
RMSE. The RMSE values of the estimates of regression parameter from both JLCM based
methods are smaller than the corresponding RMSE values from the shared-frailty model
based estimates. Thus, the JLCM bases methods substantially outperform the shared-frailty
method when the data is generated from a JLCM.

Simulation Study 3 tests the robustness of JLCM based Bayesian estimates via comparing
these three estimates when the true simulation model is the shared-frailty model of Huang
and Wang (2004) with conditional intensity function

At | xp, it =), W;) = Ag(Hexp(x;f)(1 + W;) and hazard function

h(t | x;, Z i@t =), W;) = hg(Dexp(x;p)(1 + W;) with B= y =1, and the frailty density W,;~
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Gamma(1.5, 1.5). Table 4 shows that the estimated regression parameters from all three
competing methods have comparable RB and RMSE when the sample size is small (n=
100). However, as the sample-size increases (2= 400), the RB values of shared-frailty based
regression estimates seem to decrease faster than those from JLCM based estimates. Thus,
the JLCM with uniform prior for 7is preferable for Bayesian estimates unless we are
assured about the validity of the shared-frailty assumption and the sample size is large.

Our next three simulation studies now compare the estimates from JLCM with ordered
uniform prior for 7 (since it performs better than Cauchy prior in previous three simulation
studies) with those from the shared-frailty model when the simulated datasets have both
binary and continuous covariates and the interaction among them. So, each of these
simulation studies use 500 replicates of datasets of n= 100 subjects in each with two
independent covariates x; ~ Ber(0.5) and x, ~ M0.25, 1) and their interaction x3 = x;*x,. In
Simulation Study 4, the simulation model is JLCM with B; = 0.5, 5, =0.2, B3 =0.6, 1 =
0.3, = 0.4 and y3 = 0.3 to ensure that the simulated datasets have approximately the same
expected value of X3 and the same a number of recurrent events until terminationas as in
Simulation Study 1. In Simulation Study 5, we simulate from same JLCM except with y; =
—0.3, » =—0.4 and y3 =—0.3 to ensure the direction of covariate effects on recurrent events
to be different from the effects on termination (unlike in Simulation Study 4).

For Simulation Study 4-5, the values of RB, SD and RMSE of the estimates from two
competing methods are in Table 4. These results show that the estimates from JLCM have
similar performances to the JLCM based estimates in Simulation Study 1-2 with single
binary covariate. However, the estimates from the shared-frailty model are perform worse
than the results for JLCM except for the p, corresponding to the effect of continuous
covariate on termination. These results emphasize the earlier findings that the JLCM based
estimates have substantially better performance than the shared-frailty model when the
underlying true model is JLCM. Again, unlike Simulation Study 4 and 5 using simulations
from JLCM, the Simulation Study 6 uses simulations from the shared-frailty model to assess
the robustness of the estimates from JLCOM. The results in Table 4 show JLCM based
estimates have comparable and even smaller RB than the shared-frailty model for some
parameters. Values of SD and RMSE from JLCM are sometime little smaller than those
from the shared-frailty model to indicate better performance of JLCM here. Overall, JLCM
model based estimates have better performances than estimates from the shared-frailty
model when there are multiple covariates.

Opverall, these simulation studies show that the JLCM with ordered uniform priors for n
performs better than JLCM with Cauchy priors, especially for small sample-size. JLCM
gives reasonable estimates of regression parameters even when the true model is the shared-
frailty model, and the estimates from JLCM performs much better than shared-frailty when
the true model is JLCM.

5. Analysis of Heart Transplant Data

We compare (1) JLCM with ordered uniform priors for 7 and (2) shared-frailty model with
gamma frailty using Bayesian analyses of a study of n= 114 cardiac transplant patients
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treated between 1992—2007 under these two competing models. Each patient is at risk of
recurrent Non-Fatal Tissue Rejections (NFTR), usually treated with medication, as well as
death due to GVHD (considered termination event). Some patients are censored due to loss
of follow-up at their last follow-up times. The maximum number of observed recurrent
NFTR events amnong these patients is 7, where the median and maximum of follow-up
periods are 3 and 17.8 months. There are two binary covariates: race with x; = 1 for African
American (AA) patients and x; = 0 otherwise, and Gender with x, = 0 for male and 1 for
female.

We use independent mean 0 and variance 1 Gaussian priors for the regression parameters Sy
and yy for k=1, 2 to accommodate effectively non-informative prior opinions about the
effects of race and gender, ordered uniform priors for vector 7 in JLCM, and exponential
prior for the variance of the Gamma frailty of the shared-frailty model. To summarize the
Bayesian analysis under two competing models, Table 5 presents the posterior means as
Bayesian estimates (BE), posterior standard deviation (SD) and 95% credible interval (CI) as
Bayesian interval estimates of the relevant parameters of interest.

For Bayesian analysis under JLCM, the interval estimates of K, 7 and 7in Table 5 show a
strong data evidence that this study has three latent classes with no class Gy (K= 3 and
being very close to 0). This means that this patient population has no latent class for which
the number of past NFTR events has no effect on the risk of GVHD event of the patient. To
understand and assess the future risk of GVHD for every patient, the effect of his/her past
history of NFTR events has to be considered. The Bayesian point estimates of class effects
are 71 = 0.504, 77 = 1.054, and 773 = 1.661. Results show strong evidence of increased risk and
rate of NFTR recurrence for any AA patient (compared to non-AA patient) with no
termination at time ¢because the CI of exp(f) is (1.03, 2.28). However, there is no strong
evidence of direct race-effect on the risk of termination because the CI of y; is (—0.967,
0.861), containing 0. Also, the evidence of gender-effects on both recurrence and
termination are weak because the Cls of both 5, and y» contain 0. These suggest that in
spite of the strong data evidence of higher risk and higher rate of NFTR recurrences for an
AA patient at any time ¢, there is no good data evidence of the AA patient being at higher
risk of death from fatal GVHD after adjustment of the effects of of latent class and number
of past recurrences. As a consequence of JLCM’s property in (5) and results of our Bayesian

analysis imply an increased population lifetime rate r*(z | x) = Y, kK = o07kri(t | x) and an
population lifetime mean NFTR recurrence p*#(¢ | x) = Z,If= o7kt | x) for an AA patient
compared to another non-AA patient at time #because when y = 0 (as our Bayesian analysis
results suggest for this study) we have r*(t | x) = exp(ﬁxi)/lo(t)szz 07iSK®)exp{nAg)} and

similar expression for /*(4x).

The advantages of our JLCM based analysis is that we can compare the expected event
profiles of two patients, say, an African American (AA) patient (x; = 1) versus a non-AA
patient (x; = 0) of same gender within same latent class. The ratio ¢P1 of their NFTR
recurrence rates before termination at any time ¢has posterior mean 1.53 and CI
(1.030,2.288) if they are from the same latent class. The ratio of risks of first recurrence

Stat Methods Med Res. Author manuscript; available in PMC 2022 February 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Xu et al.

Page 12

(dynamic comparison given past history of recurrences at time #) between these two patients

is also same as the rate-ratio 1. However, this ratio of risks of recurrence is ('I j+ o 1) if, say,

an AA male patient is at risk for the second recurrence and the non-AA male patient is still
at risk of first NFTR at that time-point. The Bayesian point estimates for this risk-ratio are
2.038, 2.588 and 3.195 when they from classes 1, 2 or 3 respectively. Because our JLCM
based analysis produces moderate number of latent classes, it is possible to compare the
dynamic event profiles and mean/rate of events among patients from two different latent
classes and even among patients with latent classes unknown. For example, the interval
estimate of ratio of mean number of recurrences is (1.5, 4.3) when the latent class is
unknown and the model even incorporates covariate effects on termination. Unfortunately,
for the sake of brevity, we omit detailed comparisons of future event trajectories of different
patients.

JLCM based Bayesian analysis also allows the estimation of probability m; of any patient
being in a latent class Gy and also facilitates the updating the estimates given the past events
history of any subject. For example, Bayesian point estimate of rz3 is 0.7 for an AA Male
patient with recurrence history as a patient 7= 6 and without termination compared to this
Bayesian estimate being less than 0.2 for a future patient with events history similar to the
patient 7= 1.

In Table 5, the posterior means and CIs of 8; and B, under shared-frailty model are close to
the corresponding estimates from JLCM. Overall, analysis from both models have
agreement about the evidences of dynamic effects of race and gender on NFTR recurrence
and termination conditional on history. However, the shared-frailty model cannot effectively
interpret the ratio of rates of NFTR recurrence and ratio of termination risk of two patients
with different covariate values. So, the JLCM based analysis is preferable because it allows
comparisons of event profiles of two future patients and accommodates a comprehensive
interpretation of covariate effects on all relevant functions.

6. Conclusion and Discussion

Our novel JLCM achieves five major practical/clinical goals: (1) explaining the effect of
covariates on the future event profiles within each patient; (2) evaluating the risk of events in
[¢ t+ df) given the history #(t —); (3) assessing the risk of termination given #Z(t —); (4)
explaining the heterogeneity among patients via latent class parameters 7; (5) providing
predictions of future events. Unlike JLCM, existing methods often focus on single main
response of interest (say, recurrence) and the corresponding regression function of interest
(say, mean number of recurrence), and regression parameters of mean recurrence, in general,
do not have any physical interpretation for another regression function, say, for hazard
function for termination (Miloslavsky et al., 2004).

We can accommodate right-predictable time-varying covariate x(#) within the joint latent
class model of (2-3) via re-expressing them as A(r | (1 — );n;) = Ao(0)|n;k + exp(f'x;(1))] and

hi{t | Z it = )inj) = o)’ DT M \where the event history

Fi(t =) = {N;(u), Dij(u), Aj(u), x;(u):u < t} now also contains the information about the sample-
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path &;(r) = {x;(u):u < t} of the predictable process {x(-)} up to time £ Our full Bayesian
method for studies with time-varying covariates is similar to what is presented in Section 3
as long as the entire sample path of time-varying x(# have been available in the interval
when A(# = 1. To facilitate the partial likelihoods (10) and (11) for our Bayesian method
based on partial likelihoods will only require this time-varying x(?) to be measured/known
for all subjects at risk/observation at each event time (Li et al., 2016). Instead of (2),

duj(t | Zi0) = E[dN,0) | x(0;mj] = dAO(t)[n it | xi(0) + P is the new differential
equation of the mean function (expected number) u;(t | X;) = E[N;(t) | Aj(t) = 1;2(1),nj| of
recurrences given the patient in class Gy, with class-effect 7, is under observation at time &
For ease of presentation, we consider the special case of piecewise constant x-) with X =
x;jiand for all £ € I = (a4—1, ai] with the grid 0 = a9 <a; <--+ <ag—; <ag= 00. The solution
of this differential equation in this case is the recursive formula

ui(t | Li®) = pjlax -1 | Lilay - D)eliolk =10 lk[ iAo — 1) _ ]forf

n; (13)

€ (ax - 1 a),

where 6= exp(Bx;) and Ag(a, b) = /: Aog(t)dt for 0 < a < b. Unlike (4), the class-specific
rate function du(t | i(0)/dt = {0 + nujag — 1 | Lilak — 1))} Ao®exp{njAo(ax — 1.1)} as well as
the population rate function du(z | 2;(¢))/dt given { T; > £} corresponding to (13) can not be
expressed as a product of exp(B x(7) and a baseline function free of 2';(r)). However, the

expression in (13) shows that similar to the fixed covariate case, the effect of the sample-
path (1) of time-varying x(*) on mean function has two parts. The multiplicative effect of

the current covariate value x(?) is accommodated in the second-term of right-hand-side of
equation (13), and the first part accommodates the effects of past sample path x{u) for u <+«
Obviously for this case, past sample-path x(u) for u <¢may be different from the current
value x() of the covariate. Using arguments similar to what were used for deriving (5), we

obtain the mean (| (1) = E[NF(®) | Zi();n;] = /0 (u | X iw)dpj(u | X(u)) and the

corresponding rate function
P L Z0) = {0+ uiar -1 | Lilax — 1))}t | Li)doexp{njdo(a - 1.1} (4

of Nj(t) = Ny(Min{Tj,t}) for 1 € (ay _ 1, ax], where
Si(t] L) = exp[— Joho@){exp(rxiw) + omj}du]. In (14), the first term of r¥( | (1))

representing the effect of the current value of covariate x(#) is proportional to 8; = exp(f
"x(9). Computing the posterior estimates of y*(t | Z()) and r*(l | (1)) of any future patient

are straightforward within Bayesian analysis as long as we use full Bayesian analysis
(instead of partial likelihood based Bayesian analysis) that presents a Bayesian estimate of

Ao(D).

We present an innovative MCMC based tool that is scalable via popular Bayesian software
such as JAGS (used in this paper) and WinBUGS because our computational method does
not need Reversible Jump MCMC. This code is made available in Appendix II. We note that
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this JAGS code is not computationally feasible for massive datasets, and in this setting, we
suggest optimizing the code using other software besides the standard JAGS option. Our
simulation results show that JLCM produces good regression estimates even when the true
model is not JLCM. Even though, we only consider non-negative 7); (appropriate for our
transplant study), one can, in principle, consider even negative 7);as long as exp(Bx) + 1;N(t
—) >0 for all observed values of N(#). Irrespective of the true model, JLCM based analysis
is preferable because it allows comparisons of event profiles of two future subjects (via
estimating class effects) and accommodates a comprehensive interpretation of covariate
effects on all relevant functions.

Appendix I:: Partial Likelihood Based Posterior As The Marginal Posterior

We are going to show the partial likelihood based posterior in (12) is an approximation of
the marginal posterior after integrating out the cumulative baseline function Ay(?) and Hy(9)
from the joint posterior of (8). For GAA*, by) prior on Ag(#), each increment Ag of the
Ao(9 in in interval ;= (#4-1, Zy), has a Gamma prior Ga(ay wogba, ba), where w, = (4,
—ltg-1) and f; <-* <{fpare the ordered distinct event times. Then we integrate out the
increments dA(?) from the (6) as follows,

PLR(B.n, M | ay,b);Y0)
= / LR(B,n, Ag. M | Y0) X p1(Ag | ap, by)dAg

Q
/ H Aog(Nigh'* +0)))4 x = 20g X1 = 1 4ig(Nigh § +01) x =0240g( ) 482~ L p¢,

q:

(0] n
H l H NigW§ +6)) "’qx/e-AOq[Zi: 1 Aig(NigW'§ +0;) + by

i = 1 Njg+aywgby —1
X(AOq)Zl_l iqg T A\Wgbj dAOq

0 n "iq an_ njg+ ajwyb
- lH(N,-qW,MO,-) - ( l_l*’q A Zi)
g=1li=1 [b;L+ Yi= 1A,-q(N,-qu- +0,')]Zl- = 1njg+ ajwgby
(0] n Rig n Z,n: 1hig—a,wgby
<[] ‘ I (Nigwi+e)t |ba+ Z Aig(NigWF +6;) .
g=1li=1 i=1

When we choose a very diffuse Gamma processes with 5, and a3 — 0, then the above
marginal likelihood PLR(B, 1, M) from recurrent events is approximately (in the limit)

nj n .
HqQ: I = 1 (NigW i+ 6;)} Iq[z,”: 1 Aig(NigWF + Gi)]_z’ = 1"q, same as the partial
likelihood of (10) from recurrent events. Using similar steps as above, we can show that the
marginal likelihood (after integrating Hy(+)) from (y;, 6,

PLs(y,n. M | Yo)fLS(y,n, Ho, M | Y0) x p(Ho | ap, bp)dHy
6 — apwgbp

n
bh+ ) Aji)rxi+aWy) — PLg(r,n. M | Yo),
i=1

« ﬁ e(yxi + an)&,-
i=1
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as bpand a5 — 0 (11).

Appendix Il:: Model Code in JAGS

# input data:

# x1, x2, x3: covariates

# YN[i, j]: number of events happened before time t[j] for subject 1.
# Y[i, j]l: indicator to show patients i is at risk or not at time t[j]
# t[j]l: time point when j-th event happen among all subjects

# T: number of total different event time for all subjects

# N: total subjects number

# final[i]: location of censored time for subject i in variable t.

#Start model
model {
# compute the log-likelihood by using the zero-trick in Poisson
distribution
for(i in 1:N) { #Begin loop over subjects
zeros [i]~ dpois (zeros.mean[i])
M[i]~ dcat(pi[]) # the group for i-th subject
for(j in 1:T) {#Begin loop over distinct recurrent event times
Log.S1[i, jl=-dLO[j]1*(K[i, jl*eta[M[i]]
+exp (x1[i] *beta [1] +x2 [1] *beta [2] +x3 [1] *beta [3])) *Y[i, j]
Log.Lambdal[i, jl=(log(dLO[j])-log(t[j+1]1-t[j])+log(KI[1i,

jl*eta[M[i]]+exp (x1[i] *beta[l]+x2[i] *beta[2]+x3[i]*beta[3])))*YN[i, 7J]

dH[1,
j1=dHO [j] *exp (x1 [i] *gamma [1] +x2 [i] *gamma [2] +x3 [1] *gamma [3] +alpha*eta [M[i]]) *
Y[i, j]

}
Ll1[i]=sum(Log.Lambdal[i, 1:T])+sum(Log.S1[i, 1:T])
log.H1l[i]=-sum(dH[i, 1:T1)
log.H2[i]=(log(dHO [final[i]-1])-log(t[final[i]]-t[final[i]-1])
+x1[1] *gamma [1] +x2 [1] *gamma [2] +x3 [1] *gamma [3] +alpha*eta [M[1]]) *fail[1i]
L2[i]=log.H1[i]+log.H2[1i]
LL[i]=L1[i]+L2[4]
zeros.mean [i]=-LL[i]+C
}
# prior settings
for (j in 1:T) {#Gamma process prior
dLo[j] "dgamma ( (£ [j+1]-t[j]), 0.001)
dHO [j] "dgamma ( (t [j+1]1-t[j]), 0.001)
}
#prior for regression parameters
for(i in 1:3){

beta[i] "dnorm (0, 0.16)
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gamma [i] "dnorm (0, 0.16)
}
alpha~dgamma (1, 1)
# ordered prior for eta W[1]=0
for(m in 2:num class) {
Wm] "dunif (0, 3)
}
eta=sort (W)
#establish a Dirichlet prior
for(m in 1:num class) {
a[m] "dgamma (1, 1)
plm]=ifelse (m<=KM, 1, 0)
pi[m]<-a[m]*p [m]
}
#number of groups
KM17dpois (num_class -1)T(0, num class -1) # number of groups exclude
group O.
KM=KM1+1
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recurrence and termination risks: RB is the relative bias, SD is the average posterior Standard-Deviation, and

RMSE is the square-root of mean square error based on 500 replicates.

n=100 n=400
Methods Paramter RB SD  RMSE RB SD  RMSE
a —0.026 0.421 0.165 -0.004 0.331 0.160
B —0.008 0.198 0.193 -0.005 0.139  0.137
¥ —0.094 0220 0214 -0.057 0.154 0.177
JLCM with uniform prior for 7
Uil 0.022 0262  0.097 0.006 0221  0.083
h 0.078  0.433  0.145 0.004 0381 0.124
K 0.159  0.877  0.480 0.150  0.801  0.451
a 0.043 0497 0211 0.008 0361  0.185
B —0.081 0.187 0.203 0.005  0.122  0.111
¥y —0.126 0218 0250 -0.074 0.146  0.205
JLCM with Cauchy prior for n
Uil -0.942 0.028 0377 -0918 0.014 0.367
h —0.909 0.083 0.727 -0.948 0.016 0.758
K 0.852 0475 1.727 0.862 0542 1.752
Shared-frailty Model B —0.163 0207 0263 -0.147 0.152 0.212
¥ -0.127 0245 0276 -0.084 0.217 0.178
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Summary of performances of estimates from different methods when data is simulated from a JLCM with

opposite covariate effects on recurrence and termination risks: RB is the relative bias, SD is the average

posterior Standard-Deviation, and RMSE is the square-root of mean square error based on 500 replicates.

n=100 n=400
Methods Parameter RB SD  RMSE RB SD  RMSE
a —0.034 0423 0.017 -0.009 0311 0.011
B 0.004 0.174  0.004 0.004  0.151  0.003
¥y 0.066 0284  0.066 0.047 0236  0.044
JLCM with uniform prior for 7
Uil 0.035 0230 0.014 0.008 0222  0.009
h 0.033 0373  0.026 0.005 0364 0.015
K 0.150  0.813  0.300 0.114  0.747  0.280
a -0.076 0411 0.038 -0.026 0.330 0.033
B -0.050 0.166 0.050 -0.016 0.136  0.034
¥ 0.068 0283  0.068 0.051 0256  0.062
JLCM with Cauchy prior for n
Uil -0.938 0.031 0375 -0.653 0.013 0.328
h —0.895 0.096 0.716 -0.613 0.018 0.686
K 0.923 0333 1.846 0.935 0313  1.548
Shared-frailty Model B —0.049 0218 0222 -0.024 0.217 0.197
b4 0.186 0327 0.375 0.173 0259 0.376
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Summary statistics for estimates using data simulated from model introduced in Section 4.4 (i.e., a shared-
frailty model). RB is the average relative bias, SD is the average posterior Standard-Deviation, and RMSE is
the approximate square-root of mean square error.

n=100 n=400
Methods Parameter RB SD RMSE RB SD RMSE
JLCM with uniform prior for 7 B -0.031 0200 0202 -0.012 0.116 0.121
y -0.157 0207 0260 -0.108 0.149 0.159
JLCM with Cauchy prior for n B —0.050 0.198 0207 -0.003 0.153  0.152
Yy —0.152 0207 0.257 -0.105 0.151 0.163
Shared-frailty Model B -0.036 0208 0211 —0.006 0.144 0.143
Yy —0.122 0235 0265 —0.087 0.146 0.151
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Summary statistics for estimates using data simulated from simulation study 4 to 6 that introduced in Section

4.4. RB is the average relative bias, SD is the average posterior Standard-Deviation, and RMSE is the

approximate square-root of mean square error.

JLCM Shared-frailty Model
Simulation Model  Parameter RB SD RMSE RB SD RMSE
Simulation Study 4 a -0.054 0415 0.167 - - -
B 0.020 0218 0234 —0.153 0236 0.281
B 0.021 0.160 0.165 —0.068 0.173  0.182
B -0.015 0211 0216 —0.094 0.238 0.246
7 —0.194 0245 0240 -0.327 0.293 0.283
7 -0.132  0.170  0.170  —0.080 0.206  0.184
73 -0.010 0243 0235 -0.034 0.292 0.269
m 0.036 0262  0.091 - - -
h 0.085 0428 0.135 - - -
K 0.107 0.866  0.464 - - -
Simulation Study 5 a —0.061 0.408  0.152 - - -
B -0.002 0216 0215 —0.168 0.235 0.470
B 0.027  0.150  0.151 0.026  0.163  0.166
B 0.004 0.183  0.189 0.041 0220 0218
7 0228 0259 0.243 0.485 0304  0.445
» 0.024 0.177  0.167 0.161 0213  0.200
73 0.108 0276  0.282 0.184 0324 0317
m 0.042 0235 0.090 - - -
h 0.040 0377 0.124 - - -
K 0.107  0.820  0.453 - - -
Simulation Study 6 B -0.016 0.157 0.150 —0.088 0.224  0.191
B -0.051 0.155 0.147 —0.169 0223 0.181
B -0.011 0.157 0.154 —0.088 0.223  0.187
7 -0.240 0221 0215 -0.319 0.271 0.261
%3 -0.152 0.221 0.208 —-0.205 0.270  0.261
73 -0.262 0221 0209 -0.289 0.270 0.252
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Table 5

Results of heart transplant data based on the partial likelihood with the non-informative prior. BE is the
posterior mean (Bayesian point estimate), SD is the posterior Standard-Deviation and 95% CI is the 95%
credible interval of the parameter.
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JLCM Frailty Model
Parameter BE SD 95% CI BE SD 95% CI
B 0.428 0205  (0.030,0.828)  0.429  0.159  (0.109,0.732)
B 0.261 0212 (-0.153,0.651) 0.177 0.172 (—0.185,0.524)
7 0.063  0.460 (-0.967,0.861) —0.055 0.977 (—1.974,1.835)
72 —0.076  0.435 (-0.973,0.807)  0.031  1.012 (-1.929,1.933)
a 0.152  0.126  (0.006,0.477) - - -
m 0.504 0399  (0.018,1.455) - - -
7 1.054 0511  (0.218,2.166) - - -
73 1.661  0.566  (0.598,2.730) - - -
K 3212 0.755  (2.000,4.000) - - -
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