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ABSTRACT:

We computationally investigate a method for spatiotemporally modulating a material’s elastic properties, leveraging
thermal dependence of elastic moduli, with the goal of inducing nonreciprocal propagation of acoustic waves.
Acoustic wave propagation in an aluminum thin film subjected to spatiotemporal boundary heating from one side
and constant cooling from the other side was simulated via the finite element method. Material property modulation
patterns induced by the asymmetric boundary heating are found to be non-homogenous with depth. Despite these
inhomogeneities, it will be shown that such thermoelasticity can still be used to achieve nonreciprocal acoustic wave
propagation. © 2022 Acoustical Society of America. https://doi.org/10.1121/10.0011543
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I. INTRODUCTION

Periodic modulation of a material’s properties in space
and time has been shown to enable one-way wave propaga-
tion."™'? For acoustic and elastic waves, this process can be
thought of as one that creates a phononic crystal that sup-
ports bandgaps and then moves the crystal with some veloc-
ity relative to a propagating wave. Compared to a static
phononic crystal, the added time modulation breaks the
symmetry of the band structure around the Brillouin zone
(BZ) center such that the bandgaps for positive and negative
wavevectors occur in different frequency ranges. As a result
of this asymmetry and in contrast to wave propagation in
conventional materials, waves with a given frequency prop-
agate nonreciprocally and they do not propagate equally
when traveling in one direction compared to the opposite
direction.'® Systems supporting such nonreciprocal wave
propagation have been proposed for applications such as
zero backscatter waveguides and logic devices.

Methods shown to experimentally induce nonreciprocal
acoustic wave propagation via spatiotemporal modulation
have leveraged various forms of electromagnetic-elastic
coupling.* "' In this paper, using finite element method
(FEM) simulations, we show how spatiotemporal elastic
property modulation via the thermal dependence of elastic
moduli can be used to enable nonreciprocal elastic wave
propagation in metallic thin films (we note a related study
exploring modified diffusive heat flux in the presence of
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spatiotemporally modulated thermal conductivity and heat
capacity'”). This method has potential benefits, including its
applicability to a wide range of materials, as well as poten-
tial flexibility of unit cell size and modulation speed via
future photo- or electrothermal heating schemes. One major
drawback, as shown herein, is that this method results in a
nonuniform elastic modulus profile throughout the depth of
the film. However, despite this disadvantage, we also show
that such nonuniformity does not preclude the breaking of
acoustic wave propagation symmetry.

Il. MATERIALS AND METHODS

Aluminum films subjected to dynamic mechanical and
thermal loads were simulated using the time-dependent two-
dimensional (2D) heat transfer and solid mechanics modules
within the COMSOL Multiphysics® FEM software (version
5.4; COMSOL AB, Stockholm, Sweden). The simulations
simultaneously solve the thermal and elastic equations, with
the thermoelastic equation of aluminum’s temperature-
dependent Young’s modulus coupling the two models. The
setup is illustrated in Fig. 1(a), where the y axis denotes the
“out-of-plane” direction, the x axis denotes the “in-plane”
direction, and the z-axis denotes the “depth” direction. Film
thicknesses (in the out-of-plane direction) of 1, 0.5, and
0.25 um were studied. The depth of the film was z=1 mm,
and plane strain behavior was assumed for this direction.
Rectangular elements of length 1 um x 0.25 um were used.
Mesh size independence studies were conducted to verify
that 1 um x 0.25 um is a sufficient element size, whereas for
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FIG. 1. (Color online) The (a) schematic of a metallic thin film subjected to a periodic heat flux along the top boundary with a 2 um period and constant
cooling rate along the bottom boundary is shown. The top heat flux pattern moves across the top boundary with a speed of v,, = 300 m/s. The 4 um length
sections show the thermal patterns formed in films of (b) 1 um, (c) 0.5 um, and (d) 0.25 um thicknesses.

smaller elements, no change was observed in the simulated
acoustic and thermal responses of the system. Quadratic ele-
ments are employed in this study. The ambient temperature
was set to 300 K. The top boundary of the film was set as a
boundary heat flux that introduces heat into the system in a
periodic pattern, and the bottom boundary of the film was
set as a constant cooling boundary heat flux. The top and
bottom surfaces of the plate were set as mechanically “free”
boundary conditions. The application of spatiotemporally
varying heating only on one side of the film was chosen to
model potential future experimental scenarios, leveraging
optothermal heating strategies. For characterization of the
acoustic dispersion of the films, the length of the film was
set to 400 um with periodic boundary conditions, and an
out-of-plane Gaussian impulse (with a standard deviation of
1 ns) point force was applied in the center of the film at the
top and bottom surfaces in the same, out-of-plane direction.
By exciting the two surfaces in the same direction, we more
closely mimic the shape of and primarily excite antisymmet-
ric (flexural) Lamb wave modes. In the experimental scenar-
ios, leveraging laser-based techniques also for the acoustic
excitation as well as the thermal modulation, we expect to
primarily excite such antisymmetric modes caused by the
strong optical absorption of aluminum.'® For characterization
of nonreciprocal acoustic wave transmission at single fre-
quency excitations, two 200 um long homogenous regions
were added on either end of the 400 yum long patterned region
in the film. Thermal periodic boundary conditions at the left
and right ends were used for the characterization of the non-
reciprocal behavior. The mostly vertical heat flow between
the top and bottom surfaces of the film prevented significant
temperature-induced alteration of the homogenous regions.
Each film was then excited by a sinusoidal prescribed dis-
placement, sequentially, at the left and right boundaries.
Aluminum was used as the material of choice because of
its high thermal conductivity, k4, = 238 W/m K, and thermal
diffusivity, o = 97 mmz/s,17 which helps maintain a uniform
temperature profile throughout the thickness of the film. We
assumed that the heat capacity, C,, = 900 J/kg K, and thermal
conductivity are constant with the temperature.'”'® The alu-
minum film was modeled with a density of p=2700kg/m’
and a Poisson’s ratio of » =0.33. The temperature-
dependent elastic modulus of the aluminum was modeled as
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E(T) = A(T — 300) + 70, where A = 0.0677 GPa/K and the
film temperature, 7, is in Kelvin.'” The Poisson ratio is kept
constant for this simulation. From a temperature range of
0-1000 K, the Poisson ratio changes from 0.34 to 0.38, which
is about a 10% increase.”’ This is overshadowed by the
greater than 40% increase we see in Young’s modulus from
600 to 100 K. Similarly, the mass density for aluminum varies
approximately between 2725 and 2625 kg/m® in the tempera-
ture range under consideration, less than a 4% change, which
is considered negligible for the purpose of this simulation.'

The spatiotemporally periodic heating pattern applied
to the top boundary was modeled as ¢” = Q(1
+sgn(sin ((2n/A)x — 2nFt))), where A =2 um is the spatial
period and F = 150 MHz is the frequency of the heating pat-
tern, resulting in a translation speed of the pattern of
v,, =300 m/s, and sgn( ) denotes the signum function.?? The
modulation frequency of the thermal pattern impacts the
depth of penetration of the modulation. The penetration
depth can be estimated as d = \/k/nF Cy ,23 where, using
the given material parameters and modulation frequency,
d=0.46 ym. From this, the ratio of penetration depth to film
thickness, r,, can be defined for each system. Values for r,
are reported as 0.456 for the 1 ym film, 0.912 for the 0.5 um
film, and 1.82 for the 0.25 um film. We neglect the thermal
expansion effects in our simulation as we estimate their
influence to be significantly smaller than that due to the
change in elasticity. For instance, assuming a linear thermal
expansion coefficient for aluminum of oy = 23.6 um/m K
(Ref. 24) and isotropic volumetric expansion proportional to
the cube of o, the density change per change in temperature
is over 10 orders of magnitude smaller than the elastic mod-
ulus change. Furthermore, elastic wave generation at the
modulation frequency is expected to be inefficient as the fre-
quency and wavelength pair of the modulation does not
match with the flexural mode dispersion relation. The factor,
0, was set to give a difference between the maximum and
minimum temperature of 475K in each of the films. The
bottom boundary of the film is modeled as a heat flux
boundary with a magnitude of —Q, ranging from 77.4 to
142.8 GW/m?. Such heat flux values may be possible using
forced cooling with liquid oxygen.?” This keeps the film in
thermal equilibrium and maintains the shape of the moving
thermal pattern.
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As can be seen in Fig. 1(b), the thermal pattern of each
film changes its uniformity in the out-of-plane direction
depending on the thickness of the film relative to the thermal
penetration depth.”® For instance, the 1um film shows a
nonuniform thermal profile, where the high temperature
spots penetrate only the top portion of the film. In contrast,
the 0.25 yum film in Fig. 1(d) shows a nearly uniform thermal
profile with high and low temperature regions that are
largely maintained throughout the thickness of the film.
When observing the transient thermal behavior of the films,
we see that the system is able to achieve steady state in a
small amount of time, as can be seen in Fig. 2. The pattern
reaches steady state within 3 ns, which is less than one-third
of the period of the modulation. Because of this relatively
small transient period, we ignore the transient thermal
effects in our system. We suggest that the acoustic waves
thermoelastically excited by the spatiotemporal modulation
field will not be efficiently excited as their wavelength and
frequency do not fall on the band diagram for these films.
Furthermore, because linear elastic equations are used, any
waves by the spatiotemporal modulation will not influence
the nonreciprocal behavior of the film at the acoustic wave
frequency of interest.

lll. RESULTS AND DISCUSSION
A. Nonreciprocal band structure

We characterized the band structure of the spatiotempo-
rally modulated systems as described previously. The point
loads primarily excite the antisymmetric modes of the film.
Out-of-plane displacements are measured along the top sur-
face of the film at intervals of 0.2 um. Two-dimensional
(space and time) fast Fourier transforms (FFTs) were used
to generate the band diagrams shown in Fig. 3.

The band diagram in Fig. 3(a) shows the band structures
of primarily flexural modes of the 1 um thick film, as evi-
dent by the quadratic dispersion of the lowest-lying band in
the first BZ.%® The lack of a clear bandgap stems from the
lack of modulation uniformity in the film depth. Figure 3(b)
corresponds to the 0.5 um thick film, and the band diagram
shows two distinct bandgaps centered approximately at 212
and 363 MHz for negative and positive wavevectors, respec-
tively. Bands extending from the second BZs “L” and “R” in
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FIG. 2. (Color online) The transient thermal behavior of a 10 um length
region of the 0.5 um thick film at a depth halfway through the film over a
10ns period is depicted. The thermal pattern reaches steady state within
3 ns of being initiated.
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FIG. 3. (Color online) The 2D FFTs measured for films of (a) 1 um, (b)
0.5 um, and (c) 0.25 um thicknesses subjected to spatiotemporally periodic
surface heating and an out-of-plane impulsive acoustic excitation, where f
and k are the frequency and wavenumber of the propagating acoustic wave,
respectively, are shown. The inset magnifies the band intersection induced
by the spatiotemporal modulation. The color bar shows the amplitude of the
FFT normalized by the maximum amplitude for each dispersion plot.

Fig. 3(b) are shifted =150 MHz (equal to the modulation
frequency) relative to the primary band, and hybridization
occurs where the bands intersect, resulting in asymmetric
bandgaps. The band structure for the 0.25 um thick film
shown in Fig. 3(c) is similar to that shown for the 0.5 um
thick film but with wider bandgaps relative to their center
frequency. The band diagram shows two distinct bandgaps
centered at about 94 and 241 MHz for negative and positive
wavevectors, respectively. It is determined that the penetra-
tion depth ratio, r,, necessary to form asymmetric bandgaps
is between 0.456 and 0.912 for this system.

B. Analytical model of partially modulated
quasi-one-dimensional system

We now present an analytical model representing the
modulation seen in the aluminum thin films to justify the
presence and location of the bandgaps given the vertically
inhomogeneous elastic property modulation field. The sys-
tem is represented by two coupled elastic waveguides in
which spatiotemporal modulation of stiffness is only applied
to the top guide, as can be seen in Fig. 4(a), which models
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FIG. 4. (Color online) The (a) schematic of the analytical model describing
coupled elastic waveguides and (b) schematic of the conditions required for
resonance in the analytical system with ¢ = 2n/L are depicted. The solid
lines show primary bands w(k*), w(k* +K), and w(k* — K). The blue
dashed line shows w(k* + g) — Q, which intersects with w(k* + g — K) at
point A. The orange dashed line shows w(k* — g) + Q, which intersects
with w(k* — g + K) at point B.

the behavior of a heated system with an 7, of 0.5. The equa-
tions of motion for the system are given as

Pu 0 Ou
Pﬁ =~ (ﬁ(xa 1) 8x) —y(u—v),

O%v O*v
Pﬁ*ﬂz@Jﬂ/(”—U), (D

where p represents the mass density of each waveguide, u
represents the displacement of the top guide, and v repre-
sents the displacement of the bottom guide. The term 7y is
the stiffness per unit volume and represents the coupling
between waveguides. The bottom waveguide has constant
elastic modulus, f3,, whereas the top waveguide has spatio-
temporally modulated modulus, f(x, ), and they are mod-
eled as

ﬁ(x7t> :ﬁ0+2ﬂl sin (KX—QI), (2)

where K = 27t/L, where L is the spatial period of the modu-
lation, and Q is the angular frequency of modulation. We
note that in the absence of modulation and coupling, the
model of Eq. (1) does not capture the quadratic dispersion
of flexural waves as shown in the simulation results and
rather describes linear nondispersive waves for a single
degree of freedom. We choose this as a first step to justify
the presence and location of the asymmetric bandgaps in the
presence of vertically inhomogenous material property mod-
ulation fields and suggest that future studies may augment
this model to account for flexural mode dispersion. Along
this line, a recent study also numerically explored asymmet-
ric Lamb wave propagation enabled by spatiotemporal
material property modulation.*”

We now choose Bloch waves as solutions to the system
of Eq. (2),
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u(x,t) = ZZM(/{, e ™,
kg

o(n, 1) =Y > v(k, 1)e ™™, 3)
kg

where k= (k" +g), g =2mm/L for me Z, k" € [-n/L,
n/L] and x € [0, L]. After substituting the solutions [Eq. (3)]
into the system of Eq. (1), we obtain

82
# n %kzu(k, 1)+ % (u(k, 1) — v(k, 1))

= icfiu(k',t)e™ + iefu(k”, t)e ™, 4)

dv(k,1) B y
T R~ (k) — ok ) =0, ()

where €= f,/p, fi = —Kk' — (K')* for ¥ =k—K and
fo = —KK" + (K")* for k" = k + K. Note that Eq. (4) can be
obtained by multiplying both sides of Eq. (1) by e/**, where
Kk is a placeholder wavevector, integrating with respect to x
from O to L and equating with the Dirac delta function.
Multiple time scale perturbation theory was applied to
second-order correction to analytically interpret the behav-
ior of the quasi-one-dimensional (1D) system chain (see the
Appendix). We show that there is a correction to the
second-order to the band structure of the system,

N £
ow(k) = 200 {(w6)2 ~ (w0 — Q)z + ((1)6/)2 — (o + Q)Z},
(6)

where @, w{), and wg denote the frequencies of the zeroth-
order dispersion relations for wavenumbers k, k', and k”,
respectively, as is detailed in the Appendix. We see that the
correction is large when the two denominators of each term
in Eq. (6) approach zero. This gives rise to two resonance
conditions for our system in which bandgaps will form

(w0 — Q)7 ~ (@),

(w0 +Q)° ~ (). )

By plotting these conditions, we can visualize where the
correction is large and where bandgaps will be opened due
to the corrections, as is shown in Fig. 4(b).

Figure 4(b) shows where the conditions of Eq. (7) are
satisfied, which indicates where bandgaps will form. The
orange and blue curves in the second BZ are representative
of the bands L and R shifted by the frequency, Q, in Fig. 3.
As can be seen, the intersections of these bands at points A
and B are asymmetric with the bands at A crossing within
the first BZ while the bands at B cross outside of the first BZ
at a lower frequency. At these points, the correction to the
dispersion relation will be high and bandgaps will form,
causing the system to have an asymmetric band structure
because of the asymmetry of where the bands at points A
and B cross. This result agrees with the observation in
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FIG. 5. (Color online) The (a) schematic of the finite system used to demon-
strate nonreciprocal propagation with single frequency boundary driving is
shown. Transmission spectra of (b) 1 um, (c) 0.5 um, and (d) 0.25 um thick
finite phononic crystal excited at 517 MHz, 363 MHz, and 241 MHz, respec-
tively, are depicted. The blue curve represents transmission for right propa-
gating waves (positive wavevector). The orange curve represents
transmission for left propagating waves (negative wavevector).

metallic thin films that uniform modulation throughout the
depth of the system is not required for the system to break
reciprocity and support nonreciprocal wave propagation.
The analytical model demonstrates the effect of the

A[m]
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N
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modulation frequency, Q, on the shift in the bandgap loca-
tion, which is valid for all modulation speeds below the
speed of sound in the film. Studies investigating the effect
of modulation frequency on acoustic behavior have been
conducted previously.®*®

C. Demonstration of nonreciprocal propagation

We now demonstrate nonreciprocal acoustic wave prop-
agation using single frequency boundary excitation. The fre-
quency of excitation, e, was chosen to lie within the
bandgap frequency range of each of the films. As is shown
in Fig. 5(a), the vertical displacement of the film was moni-
tored at two locations, D and D,, which were used to mea-
sure the amplitude of the transmitted wave after propagating
through the phononic crystal. The transmission ratio of the
films is independent of the depth of the locations of D; and
D,. The transmission spectra were calculated by taking a
FFT (with amplitude A) of the time domain signal and nor-
malizing to the maximum of the input measurement posi-
tion’s spectrum (denoted by Ag). The simulation duration is
1000 ns. For Fig. 5(b), corresponding to the 1 um thick film
with partial thermal penetration, the two spectra represent-
ing the right and left propagating waves lie nearly on top of
each other at 517 MHz, which represents reciprocal wave
propagation and complements the lack of clear bandgap for-
mation shown in Fig. 3(a). Figure 5(c) represents the trans-
mission spectra of the 0.5 um finite phononic crystal film
when excited near the bandgap center frequency at
363 MHz, and the spectrum is calculated using a 260 ns win-
dow following the wave that first reaches the detector point.
Figure 5(d) similarly represents the transmission spectra for
the 0.25 um thick film when excited in the bandgap at a fre-
quency of 241 MHz. Due to the wave velocity at this fre-
quency, a larger 460ns window of the incident signal is
used for the spectral analysis. For the 0.5 and 0.25 um thick
films, the left propagating wave spectra show largely unat-
tenuated propagation, whereas the right propagating waves
show a strong dip resulting from reflection in the bandgap
frequency range. There are also two smaller peaks for each
signal (for instance, at 213MHz and 513 MHz for the
0.5 um thick film), which are shifted by the modulation fre-
quency away from the primary peak. Figure 6 shows the

A[m]
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FIG. 6. (Color online) The out-of-plane displacement fields of waves at a bandgap frequency 363 MHz for 0.5 um film at 200ns is depicted. The right-
propagating waves show attenuation in amplitude from (a) x € [170, 180] um, (b) x € [230,240] um, and (c) x € [290, 300] um. The left-propagating waves
show little to no attenuation from (d) x € [420,430] um, (e) x € 360, 370] um, and (f) x € (300, 310] um. The uniform displacement with depth is indicative

of antisymmetric vibration modes.
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out-of-plane component of the displacement fields of the
0.5 pum film as waves at bandgap frequency (363 MHz) prop-
agate to the right [Figs. 6(a)-6(c)] and to the left [Figs.
6(d)-6(f)]. As can be seen in Fig. 6, right-propagating waves
have diminishing amplitude along the length of the film
while left-propagating waves are sustained and maintain a
similar amplitude as they propagate. The uniform displace-
ment profile with the depth is characteristic of the antisym-
metric vibration modes excited in the film.

IV. CONCLUSIONS

We have computationally demonstrated a strategy for
enabling nonreciprocal acoustic wave propagation induced
via thermoelastic spatiotemporal material property modula-
tion. It was shown that nonreciprocal wave propagation
could be further achieved, within limits, while the modula-
tion is nonuniform and does not span the entire depth of the
film. Future studies may involve the development of analyti-
cal models to better understand the effect of modulated pat-
tern depth on quasi-1D phononic crystals, experimental
demonstrations leveraging photo- or electrothermal modula-
tion, and explorations of applications in signal processing
devices.
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APPENDIX

Starting with the system of equations (4), we express
the displacement in each of the waveguides as a second-
order power series in the perturbations, €, for cases where ¢
is assumed to be small

u(k,t) = uo(k, 7o, 71,72) + euy (k, 70,71, 72)

+ 62”2(ka‘[07‘517‘[2)7 (Al)
v(k,t) = vo(k, 0, T1,72) + €vi(k, 70,71, T2)
+ €va(k, 70,71, T2), (A2)

where u; and v; represent the displacement functions to the
ith order. The time variables are replaced with 7o = ¢,
7, = et, and 1, = €’t, representing the multiple time scales.
To the zeroth-order, the equations become

*ug(k, 1)

Po 2 ? ~ _
8‘[% + p k Lt()(k7 T) + p (Mo(k, T) Uo(k7 T)) - 07

(A3)
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O vo(k,7) | B :
%—1—%/@0@(/@ 7) —é(uo(k, 1) — vo(k, 7)) = 0,
(A4)

where 7 is the compact notation for 7, 71, and 7,. Solutions
to the zeroth-order equations take the form of a Bloch wave,

iwo’L’o
)

uo(k, 70,71, 72) = ao(k, 71, 12)e (A5)

iwoTo

vo(k, 70,71, 72) = bo(k, 71, T2)e (A6)

where g is a function of k. Under the assumption that
o = P,, the zeroth-order dispersion relation then becomes

pjus
oo = [Poge L 75
p p

which represents the dispersion relation for propagation in a
homogeneous medium. To eliminate secular terms that reso-
nate with the frequency, m, the first-order equations assume
that uy and v,y are independent of t;. The first-order equa-
tions are then given by

0%uy (k, 1)
073

= ifiug(K', 1) ™™ + ifyuo (K", 7)e "%,

(A7)

n %kzul(k, 7) +%(u1(k, ) — vy (k, 7))

(A3)

2 k N
8178145(%’7:)+%k201(k, 7) fﬁ(ul(k, 7) — vy (k, 7)) = 0.
(A9)

Solutions to Eqgs. (A8) and (A9) can be represented as
the combination of the homogeneous solution (which takes
the form of the zeroth-order solution) and a particular solu-
tion. We seek particular solutions of the form

ul.p(]€7 ‘L') _ Aei((/16+§2)ru + Bei(u)f{—Q)m7 (A10)

Ul,p (k, T) — Cei(u)(’)+Q)‘L'0 + Dei(u)gfﬂﬁo’ (A] 1)

where w, o, and wf denote w, as a function of &, k', and
k", respectively. This allows us to solve for coefficients A,
B, C, and D to find that

ifiao(k', 12)

A= Al12
(@0 — (@) + O (12
ifrao (K", 12)
B = Al3
(00 — (@ + Q) (A1
—zl’fﬂo(k/?‘fz)
C= p - (Al14)
(@0 ~ (0 + QP
—zijczao(k//,fz)
D= p (A15)

[0 = @+ 27|
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For the second-order equations, we similarly assume that u,
and v; are independent of 7;. The second-order equations
are now given by

82”2 (kv ‘C) 82”0(k7 T) ﬁO 2 Y
2 Po 7
a7 Deadtg + ) kuy (k) + ; (ua(k, 1)
— 02k, 7)) = ifiuy (K, 1) + ifauy (K", 7)e ",
(A16)
82v2(k, ‘L') 8200(/(, ‘C) ﬂO B
ot ane Tl nkY
—%WAhﬂ—w@JDZO (A7)

There are terms that arise from the particular solution,
uy p(k, 7), that take the form of ¢'™. These lead to secular
behavior in the terms

Fuecutr = [ifiB' + i A"] ™, (A18)
where B’ is a function of (k —K) and A” is a function of

(k 4+ K). These two secular terms can be canceled by equat-
ing them to the second term in Eq. (A16),

2('92u()(k, 7)

Al
01,07 (A19)

= [ifiB' + ifA"] ™.

Equation (A19) will allow us to find the correction to
the dispersion relation. Now that we have terms for
up(k,t) = ag(k,t2)e™%, A" = a(k")ay(k) in Eq. (Al2),
and B' = b(k")aop(k) in Eq. (A13), Eq. (A19) now takes the
form

8610(](7 ‘L'z) o

1 / "
e = 2a [1b(K) + k)] ao (k). (A20)

We now choose solutions of the form ao(k,1,)
= ay(k)e'?™, which makes dao(k,t2)/0t) = ao(k)ige™.
Substituting this derivative back into Eq. (A20) and solving
for ¢ gives the expression for ¢J(k) = dw(k), which is the
correction to the band structure appearing in Eq. (6) in the
main text.
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