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Real world networks contain multiple layers of links whose interactions can lead to extraordinary collective
dynamics, including synchronization. The fundamental problem of assessing how network topology controls
synchronization in multilayer networks remains open due to serious limitations of the existing stability meth-
ods. Towards removing this obstacle, we propose an approximation method which significantly enhances the
predictive power of the master stability function for stable synchronization in multilayer networks. For a class
of saddle-focus oscillators, including Rössler and piecewise linear systems, our method reduces the complex
stability analysis to simply solving a set of linear algebraic equations. Using the method, we analytically predict
surprising effects due to multilayer coupling. In particular, we prove that two coupling layers—one of which
would alone hamper synchronization and the other would foster it—reverse their roles when used in a multilayer
network. We also analytically demonstrate that increasing the size of a globally coupled layer, that in isolation
would induce stable synchronization, makes the multilayer network unsynchronizable.
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I. INTRODUCTION

Many natural and engineering networks contain units
that are coupled through multiple interaction layers [1–3].
Neurons are often coupled via excitatory, inhibitory, and
electrical synapses whose co-action may lead to synergistic
effects [4,5]. Multilayer networks can exhibit rich coop-
erative dynamics [1,6–8], including complete synchroniza-
tion [9–12], clusters of synchrony [13–15], explosive [16], in-
terlayer and intralayer [17,18], and relay synchronization [19].
When compared with their single-layer counterparts, the role
of multilayer network topologies in promoting or hamper-
ing synchronization is significantly less understood [20–36].
Two hallmark methods, the master stability function [20] and
the connection graph method [25,26], are generally used to
predict the stability of synchronization in a single-layer net-
work. However, the predictive power of the master stability
function [9–11] is severely impaired in multilayer networks.
This is due to the fact that the connectivity matrices that
represent interaction layers typically cannot be diagonalized
simultaneously and thus their eigenvalues are not informa-
tive. The most successful application of the master stability
function to multilayer networks was performed in Ref. [10].
This approach consists in simultaneous block diagonalization
(SBD) of the connectivity matrices [10] that can reduce the
dimensionality of the stability problem. However, it remains
a limited approach because the results of the reduction can
remain difficult to analyze [37]. Reductions typically yield
networks with weighted positive and negative connections as
well as self-loops.
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As an alternative, the connection graph-based method for
assessing the impact of multilayer network topology on syn-
chronization was recently developed in Ref. [12]. This method
connects the stability of synchronization with traffic loads on
critical edges. Its application to multilayer networks revealed
a “when good links go bad” effect in which replacing a
link by a pairwise stabilizing coupling via another layer can
make the network unsynchronizable, turning the “good” link
into a destabilizing connection [12]. However, this method is
restricted to oscillator networks with an unbounded interval
of coupling for which synchronization is stable. Networks
of Lorenz oscillators [25] and Hodgkin-Huxley-type neu-
rons [38] are representative examples of such an “unbounded”
type of synchronization behavior. There is a critical gap in
research methods that can explicitly relate the stability of
synchronization to structural changes in multilayer oscillator
networks of “bounded” type that remain synchronized only in
a bounded region of coupling strength [20]. This important
class of networks includes coupled tritrophic Rozenzweig-
MacArthur models [39], Duffing oscillators [40], Van der Pol
oscillators [41], and x-coupled Rössler systems that are widely
used as a test bed [20,22,32,42] for probing the master stabil-
ity function. Therefore, to date, the synchronization properties
of multilayer networks of Rössler and other oscillators of
the bounded type remain poorly understood and are typically
studied on a case by case basis via full-scale simulations of
all Lyapunov exponents of the high-dimensional networked
system [11].

In this paper, we aim to close this gap by offering an
approximation method that can significantly improve the pre-
dictive power of the SBD methods [10,15] or any other
possible generalization of the master stability function. Our
method is based on a structural property of a class of
saddle-focus oscillators, including Rössler [43] and piecewise
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linear saddle-focus systems [44], which indicates that the
stabilization of the focal part of the synchronous trajectory
determined by a linear system implies the overall stability
of synchronization. As a result, our approach reduces the di-
mensionality of the stability problem and replaces numerical
calculations of Lyapunov exponents with a lower-dimensional
set of linear algebraic equations amenable to analytical treat-
ments.

The paper is organized as follows: In Sec. II, we intro-
duce the multilayer network model. In Sec. III, we start with
the simplest three-node multilayer network of Rössler os-
cillators with synchronization properties drastically different
from its single-layer counterpart. We formulate our approx-
imation method that yields tight bounds for the stability of
synchronization and predicts counterintuitive effects caused
by multilayer coupling. In Sec. IV, we study networks that al-
low significant SBD reduction. In Sec. V, we further verify the
predictive power of our method for synchronization in mul-
tilayer networks with arbitrary topologies. Beyond Rössler
oscillators, in Sec. VI, we show that our method is also appli-
cable to a class of saddle-focus oscillators that are connected
through their linear components. Section VII contains the
concluding remarks. The Appendix details the application of
the method to a network of a piecewise linear saddle-focus
oscillator.

II. THE MULTILAYER NETWORKMODEL

We first consider a two-layer undirected network of N
Rössler oscillators

ẋi = −yi − zi + εx

N∑
j=1

di j (x j − xi ),

ẏi = xi + ayi + εy

N∑
j=1

gi j (y j − yi ),

żi = b+ (xi − c)zi, i = 1, . . . ,N, (1)

where a = 0.2, b = 0.2, and c = 9 are the standard param-
eter values that yield chaotic behavior of uncoupled Rössler
oscillators. D = (di j ) and G = (gi j ) are N × N symmetric
adjacency matrices which correspond to the x and y cou-
pling layers, and nonzero di j = 1 and gi j = 1 define links in
the two layers. εx and εy are coupling strengths. Complete
synchronization in network (1) is defined by the synchro-
nization manifold S = {x1(t ) = x2(t ) = · · · = xN (t ) = s(t )},
where xi = (xi, yi, zi ), and the synchronous solution s(t ) =
(x(t ), y(t ), z(t )) is governed by the uncoupled Rössler oscilla-
tor. Our main objective is to determine how the interaction
of the two-layer couplings affects the stability of synchro-
nization. Note that the x coupling induces synchronization of
the bounded type in single-layer networks of Rössler oscilla-
tors [20], whereas the y coupling yields the unbounded-type
behavior (Fig. 1).

III. A PUZZLE: THE ROLE-EXCHANGE EFFECT

To illustrate the complexity of assessing multilayer con-
nections in inducing or hindering the synchronization even
in small networks, we consider the simplest three-node mul-

FIG. 1. Largest Lyapunov exponent (LLE) for the stability of
synchronization in the single layer two-node network of Rössler
oscillators as a function of coupling strength εx (εy). Dashed blue line
shows a bonded interval of coupling εx for stable synchronization of
x-coupled oscillators. Red solid line shows an unbounded interval of
coupling εy for stable synchronization of y-coupled oscillators.

tilayer network (1) with one x link d12 = 1 and one y link
g23 = 1, as depicted in Fig. 2. Remarkably, two striking ef-
fects appear. First, the x coupling switches its type from
bounded to unbounded and supports stable synchronization
for any sufficiently large values of εx, provided that εy is in
some range of intermediate coupling strength (see the dark
region in Fig. 2). Second, the y coupling switches its syn-
chronizing role from unbounded to bounded and destabilizes
synchronization for sufficiently large values of εy, provided

FIG. 2. (top) Three-node multilayer network (1). (bottom) Sta-
bility of synchronization as a function of x and y layer coupling
strengths, εx and εy. Color-coding corresponds to values of the largest
transverse Lyapunov exponent, numerically calculated via (2). Dark
color indicates stability, while light color depicts instability. Yellow
short-dashed, white long-dashed, gray short-dashed lines are analyt-
ical curves M2 = 0, M3 = 0, and M4 = 0, respectively. Analytical
curve M1 = 0 yields the condition that is guaranteed by the other
curves and therefore is not shown. Sample points �, �, and ∇
correspond to the plots in Fig. 3.
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that εx is sufficiently large. This puzzle calls for an explana-
tion and ultimately motivates the development of an effective
approach that can predict the stability bounds at which
the layers reverse their synchronizing and desynchronizing
roles.

Following the standard stability approach [20], we lin-
earize three-node system (1) around synchronous solution s(t )
and obtain the variational stability equations

ξ̇12 = −η12 − ζ12 − 2εxξ12, η̇12 = ξ12 + aη12 + εyη23,

ζ̇12 = z(t )ξ12 + [x(t ) − c]ζ12, ξ̇23 = −η23 − ζ23 + εxξ12,

η̇23 = ξ23 + aη23 − 2εyη23, ζ̇23 = z(t )ξ23 + [x(t ) − c]ζ23,

(2)

where ξi j = xi − x j , ηi j = yi − y j , and ζi j = zi − z j , i = 1,
j = 2 and i = 2, j = 3 are transverse perturbations.

Note that the connectivity matrices for the x and y layers of
this simplest two-layer network do not commute. Therefore,
the master stability function [20] cannot be applied to diag-
onalize and decouple system (2) into two three-dimensional
(3D) systems whose stability would be controlled by the
eigenvalues of the connectivity matrices. Technically, the si-
multaneous block-diagonalization [10] can handle this case
of the noncommuting matrices; unfortunately, its application
transforms the six-dimensional (6D) system (2) into a more
complex 6D system1 without reducing its dimensionality.
Therefore, one has to rely on numerical simulations of the full
6D system that offer little insight into the underpinnings of the
role-exchanging effect.

Instead, we propose to constructively exploit structural
intrinsic properties of the Rössler oscillator to simplify and
transform stability equation (2) into an analytically tractable,
predictive tool. The synchronous trajectory s(t ) is governed by
the Rössler system which exhibits chaotic dynamics centered
around a saddle-focus at the origin. The origin is unstable in
the xy plane, which corresponds to the unstable focus part
while the z direction indicates the one-dimensional (1D) stable
manifold of the saddle-focus [43]. The synchronous trajec-
tory is an outward spiral which spends most of the time on
or close to the xy plane and then makes a large excursion
along the vertical z direction to return back to the xy plane
(Fig. 3). This important property suggests that the overall
transverse stability of the synchronous trajectory is essentially
controlled by the focal part of the synchronous trajectory that
lies in the xy plane. Our numerical calculations of the instan-
taneous Lyapunov exponent corresponding to the transverse
stability of the synchronous solution confirm this claim and
indicate that synchronization becomes stable as long as the
instantaneous transverse Lyapunov exponent becomes nega-
tive along the focal part of s (Fig. 3). Therefore, stability
equation (2) can be reduced to the linear system with constant

1The simultaneous block diagonalization transforms variational
equations (2) into the 6D coupled system ξ̇12 = −η12 − ζ12 − 2εxξ12,
η̇12 = ξ12 + aη12 + εy(

√
3
2 η23 − 1

2η12), ζ̇12 = z(t )ξ12 + (x(t ) − c)ζ12,

ξ̇23 = −η23 − ζ23, η̇23 = ξ23 + aη23 + εy(
√
3
2 η12 − 3

2η23), ζ̇23 =
z(t )ξ23 + (x(t ) − c)ζ23.

FIG. 3. (left column) Instantaneous Lyapunov exponent (ILE)
for the stability of synchronization and the z time series for the
parameters corresponding to points �, �, and ∇ in Fig. 2 from top to
bottom, respectively. (right column) The synchronous trajectory s =
(x, y, z) whose red (blue) part corresponds to a positive (negative)
instantaneous Lyapunov exponent. Note that the transverse stability
of the focal part of the trajectory in the (x, y) plane determines the
overall stability of synchronization (middle row panel).

coefficients

ξ̇12 = −η12 − 2εxξ12, η̇12 = ξ12 + aη12 + εyη23,

ξ̇23 = −η23 + εxξ12, η̇23 = ξ23 + aη23 − 2εyη23, (3)

by ignoring the ζi j perturbations corresponding to nonzero
values of z(t ). The stability of linear system (3) yields stable
synchronization and can be assessed via the characteristic
equation

λ4 + α1λ
3 + α2λ

2 + α3λ + α4 = 0, (4)

where α1 = 2(εx + εy − a), α2 = a2 − 4aεx − 2aεy + 4εxεy + 2,
α3 = 2(a2εx − 2aεxεy − a+ εx + εy), α4 = −2aεx + εxεy + 1.
By the Routh-Hurwitz stability criterion, all eigenvalues λ

have negative real parts if the principal diagonal minors of
the Hurwitz matrix are positive so that M1 = α1 > 0, M2 =
α1α2 − α3 > 0, M3 = α1α2α3 − a21a4 − a0a23 > 0, M4 =
α4 > 0. Figure 2 shows that analytical stability bounds
M1,M2,M3,M4 = 0 coincide with the actual bounds to a high
degree allowed by the constraints and imperfections imposed
by numerical simulations. More specifically, the lower border
of the stability region (dark) in Fig. 2 is predicted by the curve
εy = 2a − 1/εx that follows from M4 = 0. The upper border
of the stability region in Fig. 2 is bounded by the upper curve
governed by the condition M3 = 0 and defined by implicit
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FIG. 4. (top) Two-layer network of 2N oscillators. The layers
with global intralayer y coupling are connected via R interlayer x
links. (bottom) Stability of synchronization as a function of layer
size N and number of interlayer links R. Purple (tan) region corre-
sponds to negative (positive) largest transverse Lyapunov exponent,
numerically calculated via the 6D two-node mode system. White
region corresponds to irrelevant values of R > N and should be ig-
nored. Color dashed lines are analytical curvesM1,M2,M3,M4 = 0.
Analytical curve M3 = 0 precisely predicts the loss of stability with
increasing N for a fixed R. Parameters εx = 1 and εy = 1.

function f (εx, εy) = 0.2 Considered together, these analytical
curves effectively predict the role-exchange effect of the x and
y coupling in stabilizing and destabilizing synchronization
and resolve the puzzle.

IV. LARGE NETWORKS ALLOWING
SIGNIFICANT SIMULTANEOUS BLOCK

DIAGONALIZATION REDUCTION

Figure 4 shows a well-known example of a two-layer
2N-node network which consists of two fully y-connected
subnetworks with N nodes within each subnetwork and R x
links between the subnetworks [10]. It was previously shown
that the variational equations for the stability of synchroniza-
tion manifold S in this network can be reduced via SBD to a
two-node transverse mode and (2N − 3) one-node transverse
modes where the latter are represented by two distinct sets
of identical systems [10]. For the network of Rössler oscilla-
tors (1), the variational equations for the two-node transverse
mode can take the form

ξ̇1 = −η1 − ζ1 − 2εxξ1,

η̇1 = ξ1 + aη1 − (N − R)εyη1 + γ εyη2,

ζ̇1 = z(t )ξ1 + [x(t ) − c]ζ1,

2 f (εx, εy ) = a5εx − 4a4ε2x − 5a4εxεy − a4 + 4a3ε3x + 16a3ε2xεy +
8a3εxε2y + 4a3εx + 4a3εy − 12a2ε3xεy − 20a2ε2xε

2
y − 5a2ε2x −

4a2εxε3y − 13a2εxεy − 5a2ε2y + 8aε3xε
2
y + 2aε3x + 8aε2xε

3
y +

12aε2xεy + 12aεxε2y + 2aε3y − 3ε3xεy − 6ε2xε
2
y − 3εxε3y = 0.

ξ̇2 = −η2 − ζ2,

η̇2 = ξ2 + aη2 − Rεyη2 + γ εyη1,

ζ̇2 = z(t )ξ2 + [x(t ) − c]ζ2, (5)

where γ = √
(N − R)R, and (ξ1, η1, ζ1) and (ξ2, η2, ζ2) are

transverse perturbations associated with eigen-like modes 1
and 2. The variational equations for 2N − 2 − R identical
one-node transverse modes (ξl , ηl , ζl ) and R − 1 identical
one-node transverse modes (ξk, ηk, ζk ) are given below.3,4

To derive the variational equations, we used a SBD algo-
rithm [45] that yielded an outcome different from that of
Ref. [10]; however, the stability argument is essentially the
same. While the dimensionality reduction from the 2N-node
network is significant, to assess the stability of synchroniza-
tion, one has to numerically analyze the 6D variational system
for the two-node mode system (5) and two 3D systems for
each one-mode system. As a result, the origins of emergent
stability and instability of synchronization as a function of
intra- and interlayer connections and the network size remain
difficult to identify.

To resolve this problem, we apply our approximation
method by removing the ζ1 and ζ2 variables and equa-
tions from system (5) and therefore turning (5) into a
four-dimensional (4D) linear system. The stability of this
4D linear system with constant coefficients can be deter-
mined through the characteristic equation (A6) with new
coefficients α1 = Nεy + 2εx − 2/5, α2 = 2Nεxεy − Nεy/5 −
4εx/5 + 51/25, α3 = − 2Nεxεy

5 + Nεy + 52εx
25 − 2

5 , and α4 =
2Nεxεy − 2Rεxεy − 2εx

5 + 1. Bounds for the stability of the 4D
linear system determined by minors M1,M2,M3,M4 = 0 of
the corresponding Hurwitz matrix are plotted in Fig. 4. Notice
that analytical bound M3 = 0 (green dashed line) coincides
with the actual bound for the stability of synchronization
in the two-layer network, revealed through numerical sim-
ulations of 6D variational system (5). The stability bounds
for one-node modes (ξl , ηl , ζl ) and (ξk, ηk, ζk ) lie within the
stability region of the 4D linear system and therefore are not
shown. The white region in Fig. 4 corresponds to the two-layer
network with R > N which has a distinct network structure
with at least one node having more than one interlayer link,
and therefore, requiring a separate SBD reduction different
from (5). Remarkably, our study analytically predicts a sur-
prising effect that increasing the size of the globally coupled
layer, N , which in isolation would promote synchronization,
makes the two-layer network unsynchronizable (note the loss
of stability with increasing N for a fixed R in Fig. 4).

V. ARBITRARY NETWORK TOPOLOGIES

As our method turns the variational equations into a linear
system, the stability of synchronization can be treated in terms
of the eigenvalues of the 2(N − 1) × 2(N − 1) matrixM asso-
ciated with the corresponding reduced variational equations.

3,ξ̇l = −ηl − ζl , η̇l = ξl + aη1 −NRεyηl , ζ̇l = z(t )ξl + [x(t )− c]ζl ,
l = 3, . . . , 2N − R.
4ξ̇k = −ηk − ζk − 2εxξk , η̇k = ξk + aη1 − NRεyηk , ζ̇k = z(t )ξk +

[x(t ) − c]ζk , k = 2N − R + 1, . . . , 2N − 1.

024214-4



WHEN MULTILAYER LINKS EXCHANGE THEIR ROLES IN … PHYSICAL REVIEW E 106, 024214 (2022)

Therefore, our method can reliably predict stable synchroniza-
tion in complex multilayer networks (1) for which the SBD
may not yield any meaningful reduction. More specifically,
the variational equations for transverse stability of synchro-
nization in two-layer networks of N Rössler oscillators (1)
with an arbitrary network structure can be cast into the form

ξ̇i j = −ηi j − ζi j + εx

N∑
k=1

(d jkξ jk − dikξik ),

η̇i j = ξi j + aηi j + εy

N∑
k=1

(g jkη jk − gikηik ),

ζ̇i j = z(t )ξi j + [x(t ) − c]ζi j, (6)

where ξi j = xi − x j , ηi j = yi − y j , and ζi j = zi − z j , i =
1, . . . ,N − 1, j = i + 1 are N − 1 linearly independent trans-
verse perturbations.

Removing the ζi j variables and equations and therefore ig-
noring the dynamics of perturbations away from the focal part
of synchronous solution s(t ), we reduce 3(N − 1) × 3(N −
1) variational equations (6) with time-dependent coefficients
driven by z(t ) and x(t ) to the following linear differential
equations:

ξ̇i j = −ηi j − ζi j + εx

N∑
k=1

(d jkξ jk − dikξik ),

η̇i j = ξi j + aηi j + εy

N∑
k=1

(g jkη jk − gikηik ), (7)

where i = 1, . . . ,N − 1 and j = i + 1. The stability of linear
system (7) is determined by the eigenvalues of the correspond-
ing 2(N − 1) × 2(N − 1) matrix M. While deriving closed
form conditions for the negativeness of all 2 × (N − 1) eigen-
values is out of reach, calculating the largest (least negative)
eigenvalue of a 2(N − 1) × 2(N − 1) matrix in lieu of the
largest Lyapunov exponent of a 3(N − 1)-dimensional system
of variational equations gives a significant computational ad-
vantage.

We use a 20-node network composed of two Erdős-Rényi
random y-coupled subnetworks connected via random x links
(Fig. 5) as an example that does not allow a meaningful
SBD reduction. The two-component structure of this net-
work was chosen to preserve the role-exchange effect which
might not be present in more homogeneous networks that
have both x and y links between their components. Trivial
calculations of 2×19 eigenvalues of the corresponding matrix
M yield the bound at which the largest eigenvalue of matrix
M becomes zero and therefore determines the stability bound
for synchronization rather precisely (white dashed line in
Fig. 5). The code for setting up matrix M for an arbitrary
two-layer network and generating the bounds of Fig. 5 is
available [46].

VI. BEYOND RÖSSLER OSCILLATORS

Our method is also applicable to a class of saddle-focus
oscillatory systems that, similarly to Rössler oscillator, (i)
have linear or piecewise-smooth linear right-hand sides that

FIG. 5. (inset) Two Erdős-Rényi random subnetworks connected
via random links. Links within each subnetwork correspond to y cou-
pling with strength εy (light green). Links between the subnetworks
are x coupling with εx (black). Probability of a y link, py = 0.3. Prob-
ability of an x connection between the first (second) and second (first)
halves of the subnetworks is px = 0.6 (px = 0.24). (main) Largest
transverse Lyapunov exponent for the stability of synchronization in
network (1) (heat map). The bound (dashed white lines), at which the
largest eigenvalue of matrix M becomes zero, predicts the stability
region (black and purple color) remarkably well.

correspond to a focus manifold and (ii) are connected into a
network via these linear components. To support this claim,
we studied a three-node multilayer network composed of
chaotic saddle-focus piecewise-smooth systems [44] that sat-
isfy properties (i) and (ii). Our analysis (detailed in the
Appendix) precisely predicted the stability boundaries and
indicated that this network has synchronization properties
practically identical to those of the Rössler oscillator network,
thereby confirming the generic property of the role-exchange
effect and broader applicability of the method. Other ex-
amples of saddle-focus oscillators that could be treated by
the method include Lurie control systems with a nonlinear-
ity in only one of their dynamical equations [47] and Chua
circuits [48]. In such systems, it is common practice to im-
plement negative feedback control by connecting the units via
their linear components [49,50].

VII. CONCLUSIONS

In this paper, we developed an effective method for assess-
ing the stability of synchronization in multilayer networks of
saddle-focus oscillators. It enhances the predictive power of
the existing SBD methods [10,15] for networks that allow
significant SBD reduction and becomes the ultimate alter-
native to full-scale simulation of the Lyapunov exponents
for arbitrary complex networks for which the SBD reduction
is insignificant. The application of this method analytically
predicted counterintuitive effects caused by multilayer cou-
pling. In particular, the application of this method reveals and
analytically predicts a surprising “role-exchange” effect in
which one layer coupling that would destabilize synchroniza-
tion in a single layer network reverses its role in a two-layer
network.

Beyond the class of saddle-focus oscillators with linear
components amenable to analytical treatment, our preliminary
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analysis indicates that the role-exchange effect is common
among other oscillators, including multilayer networks of
tritrophic Rozenzweig-MacArthur models coupled via con-
sumer and predator dispersal [39].

Our method also opens the door to applying the mas-
ter stability function to approximate synchronization in
multilayer networks in the presence of small parameter mis-
match [25,31,51,52]. This can be done by simply calculating
the eigenvalues of the constant matrix corresponding to
the slightly mismatched variational equations. Similarly, our
approach exploiting the structural intrinsic oscillator prop-
erties can enable analytical stability treatment of cluster
synchronization [13,53] and synchronization in simplicial
complexes [54] by replacing multidimensional variational sta-
bility equations with their linear algebraic counterparts.
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APPENDIX

In this Appendix, we provide evidence that our method can
be applied to networks of piecewise linear saddle-focus os-
cillators with a bounded synchronization region (the bounded
type). Similarly to networks of Rössler oscillators (1), we con-
sider the following two-layer network of N piecewise linear
oscillators:

ẋi = Ai(xi − Bi ) + εx

N∑
j=1

di jHx(x j − xi )

+ εy

N∑
j=1

gi jHy(x j − xi ), (A1)

where xi = (xi, yi, zi ), and Ai = A0 and Bi = B0 if yi + zi <

1; otherwise, Ai = A1 and Bi = B1. Here, B0 = 0, B1 =
[0, 0.5, 0.5]�, and

A0 =
⎛
⎝0.2 −1 0

1 0.2 0
0 0 −2

⎞
⎠, A1 =

⎛
⎝−1.5 0 0

0 0 −1
0 1 0

⎞
⎠.

Hx = diag{1, 0, 0} and Hy = diag{0, 1, 0} are inner coupling
matrices that yield x and y coupling, respectively. Other nota-
tions are as in network (1). The individual unit of the network
is a 3D piecewise linear system

ẋ =
{
A0(x − B0), y + z < 1
A1(x − B1), y + z � 1 (A2)

that was previously shown to exhibit saddle-focus chaos [44].
Figure 6 (right panel) shows its typical chaotic attractor.
Figure 7 demonstrates that such piecewise linear oscillators
have synchronization properties nearly identical to Rössler
oscillators. More precisely, the x coupling (y coupling) in the

FIG. 6. Diagrams similar to Fig. 3 calculated for the three-node
two-layer network of two piecewise linear oscillators (A2). (left
column) Instantaneous Lyapunov exponent (ILE) for the stability
of synchronization and the y + z time series for the parameters
corresponding to points �, �, and ∇ in Fig. 8 from top to bottom,
respectively. (right column) The synchronous trajectory s = (x, y, z)
whose red (blue) part corresponds to a positive (negative) instanta-
neous Lyapunov exponent. Note that the transverse stability of the
focal part of the trajectory for y + z < 1 plane determines the overall
stability of synchronization (middle row panel).

simplest single-layer two-node network (A1) yields a bounded
(unbounded) interval of synchronization.

FIG. 7. Master stability function for synchronization of two
piecewise linear oscillators (A2). Note the striking resemblance with
the master stability function for Rössler oscillators in Fig. 1.
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FIG. 8. Stability diagram similar to Fig. 2 but calculated for
the three-node two-layer network of two piecewise linear oscilla-
tors (A2). Color coding corresponds to the synchronization error
averaged over the last 1000 integration steps. Dark color indicates
stability, while light color depicts instability. Yellow short-dashed,
white long-dashed, gray short-dashed lines are analytical curves
M2 = 0, M3 = 0, and M4 = 0, respectively. As in Fig. 2, analytical
curve M1 = 0 yields the condition that is guaranteed by the other
curves and therefore is not shown. Sample points� (εx = 4, εy = 2),
� (εx = 4, εy = 0.8), and ∇ (εx = 4, εy = 0.1) correspond to the
plots in Fig. 6.

Figure 8 provides evidence that (i) the role-exchange effect
of multilayer connections is also present in the three-node
two layer network of piecewise linear oscillators (A2) and (ii)
analytical bounds for stable synchronization can be derived
similarly to the three-node network of Rössler oscillators in
Fig. 2. In this case, we prefer to write the variational equa-
tions in the vector form:

ẋ12 = D f (s)x12 − 2εxHxx12 + εyHyx23,

ẋ23 = D f (s)x23 + εxHxx12 − 2εyHyx23, (A3)

where xi j = xi − x j = (ξi j, ηi j, ζi j )�, and D f (s) = A0 if y +
z < 1, otherwise D f (s) = A1. Exactly as for the Rössler os-
cillators, our numerical calculations of instantaneous largest
transverse Lyapunov exponent indicate that the overall trans-
verse stability of the synchronous trajectory is fully controlled
by the focal part of the synchronous trajectory that lies in the
region where y + z < 1 and the system dynamics is governed
by matrix A0 (Fig. 6). Therefore, we can turn the variational
equations (A3) with coefficients switching between A0 and A1

to the following linear variational equations determined via
matrix A0:

ξ̇12 = (0.2 − 2εx )ξ12 − η12, η̇12 = ξ12 + 0.2η12 + εyη23,

ζ̇12 = −2ζ12, ξ̇23 = εxξ12 + 0.2ξ23 − η23,

η̇23 = ξ23 + (0.2 − 2εy)η23, ζ̇23 = −2ζ23. (A4)

Removing the uncoupled stable ζ12 and ζ23 equations, we
further reduce (A4) to the 4D linear with constant coefficients:

ξ̇12 = (0.2 − 2εx )ξ12 − η12, η̇12 = ξ12 + 0.2η12 + εyη23,

ξ̇23 = εxξ12 + aξ23 − η23, η̇23 = ξ23 + (0.2 − 2εy)η23.
(A5)

As in the Rössler oscillator case, the stability of linear sys-
tem (A5) yields stable synchronization and can be assessed
via the characteristic equation

λ4 + α1λ
3 + α2λ

2 + α3λ + α4 = 0, (A6)

where α1 = 2(εx + εy − 2a), α2 = 6a2 + 2 − 6a(εx + εy) +
4εxεy, α3 = 2[−2a(a2 + 1) + (3a2 + 1)(εx + εy) − 4aεxεy],
α4 = (a2 + 1)2 − 2a(a2 + 1)(εx + εy) + (4a2 + 1)εxεy.

Analytical stability bounds M1,M2,M3,M4 = 0 for the
principal diagonal minors of the Hurwitz matrix, M1 = α1,
M2 = α1α2 − α3, M3 = α1α2α3 − a21a4 − a0a23, and M4 = α4

are depicted in Fig. 8.
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