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Abstract Short-interval and high-severity fires
combined are emerging as a catalyst of major reor-
ganization of understory plant communities. In tem-
perate forests of south-central Chile, concern exists
about the resilience of threatened Araucaria-Nothof-
agus forests, including its understory community fol-
lowing extensive and severe fires. In this study we use
an array of diversity indices and functional traits as
proxies of community resilience. We ask if the spe-
cies and communities are affected by wildfires, and
how these responses are mediated by burn severity
and frequency, and other biophysical variables. First,
we explore the hypothesis that fire is the major driver
of community changes, and that burn severity is the
main factor that shifts compositional attributes of
communities. Secondly, we hypothesize that a reburn
will lead to a greater shift than a single burn in under-
story compositional attributes, where resprouting
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species replace obligate seeders, reducing local diver-
sity. We established 120 field plots across a burn
severity gradient in two study sites: one affected by
a single (burned 2015), and the second by two fires
(burned 2002 and 2015), where vascular plant species
abundance, among other biotic, abiotic, and topo-
graphic variables were estimated. We found that burn
(high) severity is the main driver of post-fire under-
story assemblages, resulting in communities less
competitive and heterogeneous, with an increasing
number of exotic species. Also, post-fire responses
are resulting in communities in which the high abun-
dance of flammable taxa and post-fire resprouter spe-
cies at the early-seral stage may lead to large-scale
transitions from mesic forest ecosystems to dry, open
forest and fire-prone shrublands in reburned areas.
Our results highlight the ecological importance of
short-interval and severe wildfires as leading factors
in the transition of post-fire understory communities
of Araucaria-Nothofagus forests to a system domi-
nated by post-fire obligate resprouters, where tree
species are less represented compromising the recov-
ery of these ecosystems. These findings improve the
understanding of the current post-fire processes that
affect flammability feedbacks and contribute to a
baseline of the current patterns in a world of altered
fire regimes.

Keywords Understory composition - Araucaria-

Nothofagus forests - Species diversity - Post-fire
traits - Generalized linear models
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Introduction

The combined impact of climate change and direct
human activities is resulting in altered fire regimes
that are triggering rapid plant community reorgani-
zations, where high-severity and short-interval fires
increasingly select for traits that best resist fire or
recover from fire (Enright et al. 2015; Johnstone et al.
2016; McDowell et al. 2020; Steel et al. 2021). Rapid
post-fire reorganization involves changes in succes-
sional trajectories due to fire effects on structure and
understory composition (Stevens-Rumann and Mor-
gan 2016; Holz et al. 2020; Davis et al. 2020). This
reorganization and change in post-fire composition
has been observed in ecosystems exposed to exten-
sive high-severity fires (i.e., widespread fires) and/
or unprecedented short-interval fires (i.e., reburns),
where even species with traits adapted to high-sever-
ity burns fail to survive or recover from a second
fire (Donato et al. 2009; Enright et al. 2015; Harvey
et al. 2016; Busby et al. 2020). An extensive body
of research has shown that in some temperate forest
ecosystems in Tasmania (mixed evergreen conifer and
angiosperms; Holz et al. 2015), northwestern Patago-
nia Argentina (evergreen conifers; Kitzberger et al.
2016), and northwestern of the US (evergreen angio-
sperms; Tepley et al. 2017), the post-fire nature of the
plant community can be externally forced by climate
change (i.e., longer drought and dry seasons) and
mediated by local topographic settings (i.e., aspect
and microsite conditions; Su et al. 2019). Once shifts
have been initiated, internally stabilizing mechanisms
(e.g., fire trait effects on positive feedbacks), can
favor post-fire community transitions from a pyropho-
bic (cooler and shadier microclimate, less flammable,
fire inhibiting) forest to a pyrophytic (drier and sun-
nier microclimate, fire-prone) shrubland community
(Holz et al. 2015; Kitzberger et al. 2016; Tepley et al.
2017; Landesmann et al. 2021; Furlaud et al. 2021).
In the context of potential fire-driven forest con-
version to more flammable vegetation, the effects of
wildfire on the diversity of understory communities
(i.e., shrubs and herbaceous species) have been under-
studied. The understory community characterizes the
early post-fire environment and thus contributes to the
successional trajectory of a forest ecosystem (Nilsson
and Wardle 2005; Su et al. 2019), maintains forest
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structure and function by facilitating the regeneration
of the dominant tree species (Gilliam 2007), contrib-
utes resistance to and constrains abundance of exist-
ing invasive species (Levine et al. 2004; McGlone
et al. 2011), and overall provides most of the species
diversity in temperate forest communities (Roberts
2004). Recently burned ecosystems may experience a
reduction or sometimes an increase in native under-
story richness due to wildfire, depending on burn
severity, site productivity, post-fire competition and/
or climatic conditions (Connell 1978; Romme et al.
2016; Richter et al. 2019; Holz et al. 2020; Brodie
et al. 2021). Increased diversity has been observed
following low-to-moderate severity fires (Burkle
et al. 2015), as reduced competition favored the abun-
dance of pre-fire non-dominant taxa (Huston 2014).
In contrast, ecosystems affected by severe and/or by
frequent fires may exhibit a decrease in species abun-
dance and richness, reducing the capacity of the com-
munity to absorb new disturbances without compro-
mising its functioning (Fairman et al. 2017; Turner
et al. 2019). Thus, reduced post-fire diversity has the
potential to be used as a proxy to identify resilient
plants from the community (Johnstone et al. 2016;
Moreno-Mateos et al. 2017; Richter et al. 2019) or
compromised ecosystem functioning (Hooper et al.
2005). Moreover, a functional and ecological perspec-
tive is needed to understand and broadly predict and
generalize the effects of fire and associated biophysi-
cal drivers on post-fire diversity responses (Noble and
Gitay 1996; Reich et al. 2004; Lu et al. 2016). Only
a handful of post-fire classification response systems
exist that consider a plant functional trait approach,
most of which were developed for fire-prone environ-
ments (Pausas et al. 2004; Pausas and Keeley 2014;
Clarke et al. 2015), with only few recent efforts to
include frameworks that consider ecosystems that
historically experienced relatively little fire pressure
(McWethy et al. 2013; Prior and Bowman 2020). This
recent effort is of critical importance, as fire con-
tinues to expand into pyrophobic temperate forests
under warming trends and land use change practices
(Mariani et al. 2018).

Temperate forests of the southern hemisphere
have evolved under varying degrees and types of
fire activity, shaping landscapes and distributions of
plant communities from the most (SE Australia) to
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the least (New Zealand) affected by fire as a selec-
tive pressure (Whitlock et al. 2015; Gilliam 2016;
Kitzberger et al. 2016). Intermediate in this fire expo-
sure gradient lies southern South America, where in
recent decades Araucaria-Nothofagus forests (mon-
key puzzle — southern beech forests) in the northern
Patagonia region of Chile and Argentina have been
severely affected by fire (Gonzélez et al. 2005, 2020;
Mundo et al. 2017). The frequency of severe and
extensive fires has increased over recent decades,
which is attributable to anthropogenic impacts and
climate change (Gonzélez et al. 2005; Gonzalez and
Veblen 2007; Mundo et al. 2013), with studies mostly
focused on post-fire responses of tree or shrub spe-
cies (Franco et al. 2022). Studies conducted in north-
ern Patagonia in similar forest types but lacking the
fire-resistant Araucaria araucana (monkey puzzle
tree or pehuén; Veblen 1982a; Supplement 1) have
shown how positive feedbacks emerge and stabilize
burned forests, where resprouting shrub species (e.g.,
Chusquea spp.; Supplement 1) replace fire-intolerant
forests dominated by obligate seeder species (Caval-
lero and Blackhall 2020). The Chusquea genus is also
recognized as one of the most flammable taxa in the
understory of these forests and their proliferation is
favored by canopy openings, included those result-
ing from fire (Veblen 1982b; Blackhall and Raffaele
2019; Cavallero and Blackhall 2020). Overall, these
studies have reported a shift from pyrophobic to
pyrophytic (more flammable, fire promoting) commu-
nities (Mermoz et al. 2005; Paritsis et al. 2015; Kitz-
berger et al. 2016; Landesmann et al. 2021).

Less is known however about the effect and driv-
ers of fire on the understory functional traits and
their post-fire dynamics in Araucaria-Nothofagus
forests (Gonzalez and Veblen 2007; Urrutia-Estrada
et al. 2018; Arroyo-Vargas et al. 2019). The current
research seeks to fill this gap through the evaluation
of post-fire understory community responses and
interactions with the effects of short-interval fires,
burn severity and environmental factors. Specifically,
we address two key research questions:

(1) What are the effects of fire on species richness
composition of the Araucaria-Nothofagus under-
story communities? We hypothesize that a) there
is a decrease of species that establish in areas
affected by fire, and b) that increased fire sever-

ity will lead to community homogenization in
pyrophobic ecosystems.

(2) How are these responses mediated by burn sever-
ity, site, topographic predictors, and burn fre-
quency (single versus a double [reburn])? We
hypothesize that fire will lead to major commu-
nity changes and that the primary factors behind
landscape-scale shifts in the compositional attrib-
utes of these forests toward a more fire-prone
(i.e., resprouting-dominated) community is a)
burn severity, and b) a shorter fire interval (i.e.,
regardless of reburn severity).

In this study, we examine post-fire plant commu-
nity responses in Araucaria-Nothofagus forests in
two study sites, one that burned in 2002 and reburned
in 2015 and another that burned once in 2015, both
located in the Andes in south-central Chile. In addi-
tion, we quantified the recruitment of all tree spe-
cies to identify the potential for shifts in dominance
among species and vegetation types and overall
community reorganization, including changes from
obligate seeding tall forest to resprouter-dominated
shrubland (matorral).

Methods
Study area

The study areas, located in the Andes of south-
central Chile (Araucania district), were burned by a
single and second event: the China Muerta National
Reserve (hereafter CM study site; 38.8°S, 71.5°W)
burned in 2015, and the Malleco National Reserve
and Tolhuaca National Park (hereafter MT study
site; 38.2°, 71.8°W) burned in 2002 and reburned
in 2015 (Fig. 1). The regional climate is a transition
between warm temperate and cool Mediterranean,
characterized by dry and warm summer seasons and
cold winters (Luebert and Pliscoff 2017). The mean
annual (30-years: 1990-2020) precipitation at CM
is 1,430 mm, with average maximum and minimum
temperature in the warmest (Dec-Feb) and coldest
(Jun-Aug, with higher snow proportion) seasons of
24.2 °C and 5.2 °C, respectively (Lonquimay sta-
tion; CR2 2021). At the MT site, the mean annual
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Fig. 1 Locations of China Muerta (single burn) and Malleco-
Tolhuaca (reburned) study sites in the Araucania district,
south-central Chile. Maps highlight protected areas and wild-
fire boundaries, and plot locations in each study site. UN, HL,
HH, L, and H stand for unburned, high-low, high-high, low,
and high-severity fires, respectively. A total of 60 plots per
study area was placed according to burn severity maps (20 per

precipitation is substantially higher at 2,839 mm, with
a colder average maximum and warmer minimum
temperature in summer (Dec-Feb) and winter (Jun-
Aug) temperature of 22.6 °C and 5.9 °C, respectively
(Laguna Malleco station; CR2 2021). While the CM
area is slightly higher in both latitude and elevation,
it is also slightly eastward and exposed to a more con-
tinental (drier and cooler) climate than the MT area.
Both study areas are characterized by coarse-textured
volcanic soils, which are derived from medium to
coarse-grained tephras (Casanova et al. 2013). The
forests studied are dominated by Araucaria araucana
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condition in each study site), based on relativized delta nor-
malized burn ratio (RANBR), and field observations. Most of
the unburned plots are located inside of the fire perimeter in
each study site, but in patches that were not affected by wild-
fires. RN and PN stand for the Natural Reserve and National
Park, respectively

(pehuén; monkey puzzle) and southern beech spe-
cies, including Nothofagus dombeyi and N. pumilio
(Supplement 1). At lower elevations, the forests also
include N. alpina, N. obliqgua and in some cases N.
antarctica, which are capable of resprouting. Forest
understories are characterized by Chusquea bamboo
spp. (i.e., C. culeou, and C. quila; Poaceae), Mayte-
nus disticha (Celastraceae), Gaultheria spp. (i.e., G.
poeppigii, and G. phillyreifolia; Ericaceae), and the
herbs Alstroemeria aurea (Alstroemeriaceae), Sene-
cio spp., and Adenocaulon chilense (Asteraceae),
among others (Gonzilez and Veblen 2007; Arroyo-
Vargas et al. 2019).
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Araucaria-Nothofagus forests have important
cultural, subsistence and economic values for the
Pehuenche indigenous communities in the Andes of
south-central Chile (Aagesen 1998; Reis et al. 2014).
The increase of the human population at the end of the
XIX century due to the arrival of Euro-Chilean set-
tlers increased anthropogenic disturbances, especially
cattle grazing and logging of large individuals of
pehuén and southern beech; timber extraction intensi-
fied during the first half of the XX century simultane-
ously with intentional forest burning to open forested
areas for livestock raising (Aagesen 1998; Lara et al.
2012). It is estimated that the distribution of Arau-
caria forests has been reduced to 50% during the
XX century (~250.000 ha), of which half is within a
protected area (~130.500 ha; Gonzélez et al. 2006).
During the second half of the same century, following
the establishment of protected status for the pehuén
in 1976 as a Chilean Natural Monument (Veblen
1982a), and gradually better administration of several
protected areas, both selective logging, silvicultural
experiments and intentional burning ceased under
a fire suppression policy (CONAF 1996; Gonzilez
et al. 2005, 2020; Gonzalez and Veblen 2007). How-
ever, cattle grazing is a cultural and economic activity
of local communities that it is still practiced in these
protected ecosystems including moderate levels of
pervasive grazing in the areas sampled in the current
study (Zamorano-Elgueta et al. 2012). According to
local land managers and our own observations other

introduced herbivores (e.g., red deer, wild boar, hare)
were not common in our study sites.
Dendrochronological studies indicate that the
Araucaria-Nothofagus forests have been shaped by
both frequent low-to-moderate fires and infrequent
large, stand-replacing fire events (i.e., a mixed-sever-
ity regime; Gonzéalez et al. 2005, 2020; Mundo et al.
2013). Under the policy of fire suppression, no large
fires were recorded from the beginning of official
records in 1976 until 2002 (CONAF dataset; http://
conaf.cl/). Recently, these forests have experienced
an increase in the frequency and severity of wild-
fires as reflected by the 2002 and 2015 fire events
in our study sites. The MT site was affected by two
widespread wildfires in 2002 and 2015, which were
from lightning and human origin, respectively. Fine-
scale wildfires were previously recorded in 1960,
and later in 1987, both of which had minor impacts
(Gonzalez and Veblen 2007). The 2002 fire burned
an area of approximately 17,000 ha (ca. 70% of the
MT protected area), of which 30% corresponded to
Araucaria-Nothofagus forests (Gonzalez and Veblen
2007). At MT, the 2015 fire burned a surface of
approximately 5450 ha, fully overlapping the 2002
burned area (Table 1; Mora and Cris6stomo 2016).
In the case of the CM study site, the 2015 wildfire
was human originated and burned an area of approxi-
mately 3750 ha of the reserve (Table 1; Mora and
Cris6stomo 2016). There is no record of previous
wildfires since the creation of the CM protected area

Table 1 Description of the wildfires at China Muerta (CM; single burn) and Malleco-Tolhuaca (MT; reburned) study sites consider-
ing the year, total burn area (protected areas and surrounding areas), relative burn severity level and the origin of the wildfire

Study site Wildfire year Total burned = RANBR- Area burned  Fire origin No of Plot eleva-
area (hectares) derived severity (%) Field tion range

classes plots (masl)

CM 2015 6,355 Low 37.3 Accidental, human-caused 20 1053-1705
Moderate 31.4 20
High 31.3 20

MT 2002 16,751 Low 16.4 Natural, lightning NA -
Moderate 23.5 NA
High 60.1 NA

MT (reburn)® 2015 6,814 Low 20.2 Accidental, human-caused 20 988-1621
Moderate 36.1 20
High 43.8 20

The burn severity maps and areas were calculated and based on relativized delta normalized burn ratio (RANBR). In addition, the
number of sampling plots and plot elevation range are given (masl indicates meters above sea level)

2All reburn sampling was conducted on areas burned at high severity in the 2002 wildfire at MT
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in 1968. The 2015 wildfires started near the end of
the austral summer (March), and rapidly propagated
thanks to a severe regional drought due to low pre-
cipitation and high temperatures throughout central
and south-central Chile since 2010, and the influence
of the warm and dry foehn (puelche) winds coming
from the eastside of the Andes (Garreaud et al. 2017,
Gonzélez et al. 2018; McWethy et al. 2021).

Sampling design and data collection

A stratified random sampling, accounting for burn
severity and field accessibility (max 4500 m), mini-
mal cattle presence (direct observation of browsing
and dung), and areas outside of the 2002 post-fire
restoration efforts, was employed. In each study
area a total of 60 circular plots (radius=15 m, ca.
0.07 ha), spaced apart at least 100 m (average dis-
tance of 279 m at CM with a range of 117-822 m;
and 273 m at MT with a distance range 126-700 m),
were set in the 2020 austral summer (N =120 plots,
Fig. 1). Burn severity maps for each wildfire were
created using the relativized delta normalized burn
ratio (RANBR; Miller and Thode 2007), with pre-
fire and 1-year post-fire Landsat imagery. Burn
severity thresholds (i.e., low, moderate and high-
severity levels) were defined according to Assal
et al. (2018) and field verified. For the areas that
burned in 2002 at MT, and due to inaccessibility
and post-fire logging and restoration, only those
burned at high severity were available for sampling,
which were reburned at low- and high severity dur-
ing the 2015 fire (hereafter burn severity classes at
MT as High-Low: HL; and High-High: HH). At the
CM study site, plots were established in areas that
burned at low- and high severity in 2015 (hereaf-
ter at CM as Low: L; and High, H). Areas burned
at moderate severity (31.4% at CM and 36.1% sec-
ond burn at MT) were excluded from our study
due to low-accuracy and poor field-validation
(Franco et al. 2020). For comparison with burned
sites, 20 circular plots (radius=15 m) were estab-
lished in unburned forests (hereafter UN) in each
study site. Within each plot, 4 quadrats (1 m?),
distanced 7 m from the plot center to each cardi-
nal direction were located. Within each quadrat all
vascular species were identified and abundances
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(% cover) were directly estimated. The abundance
of tree species was estimated independently if the
regeneration strategy was from seeds or resprout.
Also, the coverage of coarse woody debris (CWD;
stems > 7.6 cm diameter), fine woody debris (FWD;
plant litter < 7.6 cm diameter) and bare ground were
estimated in the same quadrats. In addition, aver-
age canopy cover was recorded, by the same person
throughout the campaign, in each of four quadrats,
with a spherical crown densiometer placed at 50 cm
above the ground. Coordinates, elevation, aspect
and slope were recorded at the center of each plot.
A Heat Load Index (HLI), which is an integrated
metric of direct incident radiation according to lati-
tude, slope, and aspect at each plot (McCune and
Keon 2002; McCune 2007), was later computed as a
proxy of long-term moisture availability (Littlefield
2019; Busby et al. 2020; Brodie et al. 2021).
Finally, to evaluate post-fire traits of woody spe-
cies, we adopted Prior and Bowman (2020)’s post-fire
trait classification because it best represents the traits
of the affected taxa and applies to pyrophobic com-
munities (e.g., Paritsis et al. 2015; Kitzberger et al.
2016). The post-fire trait classes are: post-fire obli-
gate resprouter (i.e., survives complete defoliation by
resprouting and does not produce seedlings; PFOR),
post-fire obligate seeder (i.e., regenerates [often pro-
fusely] from seeds, but does not resprout; PFOS),
post-fire facultative resprouter/seeder (i.e., resprouts
and produces seedlings; PFFRS), and post-fire obli-
gate colonizer (i.e., neither resprout nor produce seed-
lings, but able to gradually recolonize burned areas
by dispersal from outside the high-severity burned
area; PFOC). Although in our study areas no taxa
were classified as it, Prior and Bowman’s (2020)’s
classification also includes a fire-intolerant (FI) class,
where post-fire populations are unable to recover by
post-fire resprouting, seeding or colonization and thus
collapse at the event scale. Woody species were clas-
sified into one of these categories (Supplement 2)
based on the available literature, field observations, or
consultations with local experts (Raffaele and Veblen
1998; Montenegro et al. 2003; Paritsis et al. 2006;
Gonzélez and Veblen 2007; Kitzberger et al. 2016;
Blackhall and Cavallero 2018). In the field, species
were classified according to their response to fire
disturbance rather than from the perspective of their
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attributes in the absence of fire (e.g., in the unburned
stands). In addition to FI, no woody species was clas-
sified as PFOS class in our study area. Additionally,
we defined bamboos as a separate life form classifica-
tion that encompasses several Chusquea species (i.e.,
identified only at the generic level due to the scarcity
of inflorescences except during rare masting event)
due to their distinct flammability, and their unique
capacity to resprout after fire from above and below-
ground meristems, even when the above biomass
is fully consumed (i.e., due to their widespread and
tough horizontal rhizome; Veblen 1982b; Cavallero
and Blackhall 2020).

Statistical analysis
Post-fire species diversity and composition

To evaluate post-fire diversity and understory compo-
sition, we first calculated alpha diversity in terms of
species richness (S; number of species), antilogarithm
of Shannon’s entropy index (eH’; number of species
if they were equally distributed), inverse Simpson
index (inverse D; which measures a species’ domi-
nance), and Pielou’s evenness index (J; which consid-
ers diversity along with species richness) at plot level
(Richter et al. 2019). To test for statistical differences
in the post-fire response of understory diversity indi-
ces, we compared the mean values of S, eH’, inverse
D and J indices among the burn severity classes and
the reference forest within each site using the non-
parametric Kruskal-Wallis rank-sum test. The post
hoc pairwise Wilcoxon rank-sum test was used to
identify differences considering the Bonferroni cor-
rection for multiple tests among groups. Normality
and homoscedasticity of the variance were verified
with the Shapiro—-Wilk Normality test and Levene’s
test, respectively, which were not met. Thus, all tests
were performed in the stats R package (R Core Team
2020). In addition, we calculated two beta diversity
indices using Whittaker’s species turnover metric,
or compositional change in a habitat gradient in the
same geographical region, to evaluate species com-
position change ratio among plots within each burn
severity class (i.e., beta diversity =gamma diversity/
alpha diversity-1; Whittaker 1972; Tuomisto 2010),
and Jaccard dissimilarity (1-J) as a proxy to identify
species homogenization between plots within burn

severity classification in each study site (Richter et al.
2019) using vegan R package (Oksanen et al. 2020).

We used non-metric multidimensional scaling
(NMDS) ordination with Euclidean distance and 2
dimensions (k=2) to summarize and explore the
post-fire understory responses to burn severity from
three different perspectives: (1) vascular plant spe-
cies; (2) life forms (i.e., herbs [graminoids and forbs],
vines, shrubs, bamboos, and trees; adapted from
Raunkier 1934); and (3) fire traits of the woody plant
taxa (adopted from Prior and Bowman 2020). The
NMDS ordination analyses and plots were conducted
in the vegan R package (Oksanen et al. 2020). Finally,
we conducted a permutational multivariate analysis of
the variance (PERMANOVA) to identify statistically
difference among fire severity groups. We considered
999 permutations and Bray—Curtis distance using the
vegan package (Oksanen et al. 2020). Then, a pair-
wise multilevel comparison procedure was conducted
when significant differences were detected among fire
groups. Permutations were set in 999 and p-values
were adjusted to reduce type I error of multiple com-
parisons with Holm method using pairwiseAdonis R
package (Martinez 2017).

Interaction of life form and post-fire trait class
responses with environmental factors

We used mvabund, an R package designed to relate
environmental predictors to community data, to inde-
pendently fit generalized linear models (GLMs; with
a negative binomial distribution and a log-link func-
tion) with both multivariate (community) and uni-
variate (individual classification levels used in the
NMDS) abundance data (Wang et al. 2021). Because
we expected local-to-landscape-scale biophysical
factors to affect our response variables, model pre-
dictors include burn severity classes (i.e., distur-
bance treatments), and fine-scale site and meso-scale
topographic variables. This model-based analysis
framework uses the deviance explained statistic
(i.e., pseudo-R?) to assess each GLM’s goodness of
fit and reported results from models with the lowest
maximum likelihood, and unlike traditional distance
matrix based methods this approach avoids inflation
of type 1 and type 2 errors (Warton et al. 2012; Wang
et al. 2012). Assumptions of these GLMs were met
and include independence of sites, mean—variance
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Table 2 Predictor variables included in multivariate and univariate post-fire abundance models* and their methods of measurements

Category Variable Method of measurement Unit Type Range
Fire Burn severity Relativized delta Normalized Burn Unitless Categorical Unburned, low, high,
Ratio (RANBR) and field verified high-low, high-high
Abiotic  Bare ground Field measured at quadrat level Relative coverage (%) Continuous Bounded [0 100]
Slope Field measured at plot level Degrees (°) Continuous Bounded [0 42]
Aspect Degrees (°) Continuous Bounded [4 360]
Elevation Meters (m) Continuous Bounded [988 1745]
HLI Derived from field-measured slope, Unitless Continuous Not bounded [0.53 1.24]
aspect, and latitude (McCune and
Keon 2002; McCune 2007)
Biotic Coarse woody debris Field measured (4 quadrats at 7m  Cover (%) Continuous Bounded [0 100]

Fine woody debris from plot center; averaged)

Canopy cover

*Response variables are life form (herbs, shrubs, bamboos, vines and trees) and wood species trait (post-fire obligate resprouters,
post-fire facultative resprouter/seeders, and post-fire obligate colonizers, following Prior and Bowman 2020)

and log-linear relationships between mean abundance
and the environmental variables. These were visu-

using the p.adjust (method= “adjusted”; Table 2;
Wang et al. 2012). Multicollinearity was assessed in

ally checked by plotting residual and fitted values and
trends in size of residuals at different fitted values
(Wang et al. 2012). The anova.manyglm function was

each model using the variance inflation factor (VIF)
measure in car package in R (Fox and Weisberg
2019).

used to generate an analysis of deviance table, which
summarize the statistical significance of the fitted
model regarding to the effects of burn severity and
other predictors on mean abundance of community
and individual classes. We corrected for multiple tests

Table 3 Diversity indices in response to burn severity classes at China Muerta (CM; single burn) and Malleco-Tolhuaca (MT;
reburned) study sites

Study site Burn sever-  Alpha diversity (o) Beta diversity () Total spe- % Non-
ity - ciesrich-  native (N)
Mean S Mean eH’ .Inverse D Meanl Whittaker  Mean Jd ness (S)
(SE) (SE) index (SE) (SE) Bw (SE)
CM (single  Unburned 9.5(0.8)*  40.8(5.7)* 3.4(0.2)* 0.70 (0.02)* 3.32 0.787% 41 9.8% (4)
burn) Low 8.1(0.5* 39.0(6.7)" 3.6(03)* 0.72(0.03)* 5.34 0.853° 51 17.6% (9)
High 53(0.5° 17.6(4.0°> 2.6(0.3)°  0.68 (0.04)* 4.32 0.877° 28 37.9% (11)
MT Unburned 8.4 (0.8  54.1(10.7)* 42(0.4)* 0.78 (0.02)* 3.76 0.769% 40 0% (0)
(reburned) High-Low 6.8 (0.6)*  35.1(8.2® 3.5(0.4)® 0.72(0.05)* 4.44 0.777% 37 15.8% (6)
High-High 7.0(0.6)* 26.8(5.4)® 3.0(0.3)> 0.67 (0.04)" 4.14 0.729° 36 16.2% (6)

Mean values of vascular plant species richness (S), antilogarithm of Shannon’s entropy index (eH’), inverse Simpson index (D),
Pielou’s evenness (J) and their respective standard errors (SE) are presented. In addition, Whittaker’s species turnover (Beta; Py),
mean Jaccard dissimilarity index (Jd), total species richness (S), and the relative and absolute (N) number of non-native species are
reported

Lowercase letters indicate statistical difference in each study site among burn severity levels according to each diversity index
(Kruskal-Wallis test, p <0.05)

*The Whittaker beta diversity was computed as gamma diversity/alpha diversity-1 (Whittaker 1972; Tuomisto 2010)
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Results 2). Total and mean species richness decline as burn
severity increases: at CM site the mean species rich-
Post-fire species diversity and composition response ness at the H plots was significantly lower than
at the L and UN plots (Table 3, Fig. 2a); but at the
We found a total of 71 and 69 vascular plant species MT site mean richness was not statistically differ-

at CM and MT study sites, respectively (Supplement ent among severity classes 5 years after the 2015
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reburn (p>0.05, Table 3, Fig. 2b). The other diver-
sity indices used here—including mean antiloga-
rithm of Shannon’s, inverse Simpson, and Pielou’s
evenness indices—also decrease at both study sites
as burn severity increases. The mean values of the
former two indices showed differences between the
UN and the high-severity class (i.e., H at CM, and
HH at MT; p<0.05, Table 3, Fig. 2), but no statisti-
cal differences were found between low-severity and
either the unburned and high-severity class (i.e., L
at CM, and HL at MT; p>0.05, Table 3). The mean
values of Pielou’s evenness index were not statisti-
cally different among burn severity classes in any of
the study sites (p>0.05, Table 3, Fig. 2). The Whit-
taker beta diversity index indicated that diversity
among plots declined in burned areas, as the lowest
burn severity class (L and HL at CM and MT sites,
respectively; Table 3), but the Jaccard dissimilarity
increases with the fire severity in areas burned once
and sightly decreases in areas severely burned twice
with HH (Fig. 2). The number of non-native species
increases, but at different rates, with burn severity:
at MT no exotic species were found in UN sites and
similar values were found in HL and HH class severi-
ties (ca. 16% in each; Table 3). At CM, more than a
third of the species identified in H burn severity plots
were exotic species (ca. 38%), in comparison to half
this number at L, and a third this number at the con-
trol (Table 3). Among the 18 exotic species recorded
in both study sites across burn severity classes, 14
are categorized as invasive species (Supplement
2; Fuentes et al. 2013). Eighty-nine percent of non-
native species were herbs, and the rest were woody
species (including Rosa rubiginosa found in the UN
and H burn severity class at CM and in the HL class
at MT, and Pseudotsuga menziesii sparsely found in
UN plots at the CM study site).

In general, the NMDS results at the CM site, post-
fire response patterns were statistical different and
distinguished according to the burn severity class in
all three NMDS analyses (p <0.05), with H sever-
ity and UN plots at opposite extremes of the NMDS
axis 1 (Fig. 3a—f). In contrast to MT, the separation
between the UN condition and either burn severity
class was clearer and statistically significant from
the other classes (p =0.001). The NMDS plot based
on life forms showed a shorter distance among the
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severity classes (Fig. 3b, e), with bamboo, vines and
herbs aligned around the zero value (Fig. 3b), where
L and H are not significantly different. Higher overlap
among classes and flatter (negative kurtosis) curves
along axis 1 were observed in the fire trait NMDS,
where PFOC and PFOR overlapped the most with
all three burn classes (Fig. 3c, f); however, the UN
plots were statistically different from each of the
other severity classes (Supplement 3). At the MT site
show that UN plots were different from plots affected
by fire; the PERMANOVA tests show that all the
evaluation criteria (plant composition, life forms and
post-fire traits) are statistical different at CM and MT
study sites (p <0.05; Supplement 3). The aggregation
pattern by severity was most pronounced and signifi-
cant when all vascular plant species were included in
the NMDS (Fig. 3g). When species were represented
by their life forms, UN plots are statistically different
but closer to both classes of burn severity (p =0.001),
which is mostly due to the overlapping of bamboo
along the NMDS axis 1 (Fig. 3h, k). HL and HH were
statistically different in the life form PERMANOVA,
but with higher significance (p =0.025). In contrast,
the post-fire response of woody plant species along
axis 1 placed the HH burn severity in between the
HL and the UN condition. However, UN is statisti-
cally different from HL and HH, but burned areas are
not significant different (p =0.115; Supplement 3). In
part this is due to the shared association of HL and
HH severity burn classes with both PFOR and PFOC
species, which were common in areas burned at both
burn severities and in the reference stands (Fig. 3i, 1).

Post-fire life form and trait responses to burn severity

Abundances of post-fire responses varied across burn
class at each site, but in general vines and trees were
consistently the least and shrubs the most abundant
post-fire life form. PFOR was the most abundant
woody species fire trait. At the CM site, the abun-
dance of the herb, shrub, and bamboo life forms
(median=13.8, 7.8, 5.0, respectively) were higher
than those of trees and vines (median=0.8 and 0.0,
respectively, Fig. 4b). Shrubs reached highest abun-
dance values under UN conditions (median=20.9,
Fig. 4a), as did trees, which were practically absent
from the H severity class (median=0.0, Fig. 4a).
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Fig. 3 Non-metric multidimensional scaling (NMDS) dia-
grams for the China Muerta (CM; a—c) and Malleco-Tolhuaca
study sites (MT; g—i), where each circle represents the location
of unburned (green), low (yellow), high (orange), high-low
(red) and high-high (purple) severity plots. Colors between
MT and CM differ to differentiate single fire vs. reburn sever-
ity classes. China Muerta NMDS ordination plots represent a
vascular plant community (71 species, black dots), b life forms
(71 species), and ¢ post-fire response of woody plant species

Herbs and vines had opposite abundance patterns;
the former was the most and the latter the least
common life form (median=13.8 and 0.0, respec-
tively, Fig. 4b) at the CM site, with the same pattern
repeated in the L severity class (median=13 and 0.1,
respectively, Fig. 4a). The abundance of PFFRS spe-
cies at CM was highest (median=_8.8, Fig. 4d), espe-
cially in the unburned forest (median=19.4, Fig. 4c).

(N

NMDS1

NMDS1

(26 species). Malleco-Tolhuaca NMDS ordination plots rep-
resent g vascular plant community (69 species, black dots), h
life forms (69 species), and i post-fire response of woody plant
species (36 species). Density plots derived from NMDS axis 1
are shown below each respective NMDS ordination plot (d—f at
CM, and j-1 at MT). PFFRS, PFOC, and PFOR indicate post-
fire facultative resprouter/seeder, post-fire obligate colonizer,
and post-fire obligate resprouter, respectively. Stress, non-met-
ric and linear fit R? values are reported

PFOC species were the least abundant species across
the gradient (median=2.1, Fig. 4d) and poorly rep-
resented in H severity sites (median=0.0, Fig. 4c).
PFOR species were more abundant in the L severity
class (median=10.3, Fig. 4c). At the MT site, the
bamboo and shrub life forms were most abundant,
especially in HL (median=14.6 and 12.9, respec-
tively, Fig. 4e), and mostly in HH plots for the former
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Abundance (%)

(median=28.4, Fig. 4f) and in UN plots for the lat-
ter (median=40.4, Fig. 4f). Finally, PFOR was by
far the most abundant post-fire response trait in the
MT site (median=33.8, Fig. 4h) and was found in all
severity classes (median=43.4, UN; 14.6, HL; 32.8,
HH; Fig. 4g). In contrast, PFOC had the lowest esti-
mated plant cover (median=1.5, Fig. 4g), with great-
est abundance in the unburned understory of MT site
(median=13.3, UN, Fig. 4g).
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The multivariate abundance models indicate that
burn severity and bare ground are the predictors that
best explain differences in the relative abundances of
post-fire life forms and trait responses among plant
communities (Table 4), whereas only burn sever-
ity best predicts most of the post-fire life forms and
post-fire traits individually (Table 5). Topographic
predictors were not statistically significant for any
of the species’ classifications in either study sites
(Table 4). Burn severity, bare ground, CWD and
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Table 4 Multivariate analyses of deviance (pseudo-R?) from
China Muerta (CM; single burn) and Malleco-Tolhuaca (MT;
reburned) studies sites according to their post-fire life forms

and post-fire trait classifications. Bold values indicate the sta-
tistical significance (p<0.05).

China Muerta (single burn)

Malleco-Tolhuaca (reburned)

Residual Degrees of Deviance Probability Residual Degrees of Deviance Probability
Degrees of freedom dif- (>devi- Degrees of freedom dif- (>deviance)
freedom ference ance) freedom ference
Life form multivariate analysis Life form multivariate analysis
Intercept 58 59
Burn severity 56 2 78.38 0.001 57 2 37.07 0.001
Slope 55 1 4.35 0.4 56 1 3.28 0.582
Aspect 54 1 2.31 0.762 55 1 2.56 0.703
Elevation 53 1 1.08 0.942 54 1 5.49 0.305
Bare ground 52 1 14.03 0.023 53 1 22.59 0.001
Coarse woody 51 1 16.33 0.007 52 1 10.31 0.088
debris
Fine woody 50 1 2421 0.001 51 1 9.53 0.125
debris
Mean canopy 49 1 6.62 0.299 50 1 12.23 0.055
cover
Heat Load 48 1 2.19 0.861 49 1 6.23 0.326
Index
Post-fire trait response multivariate analysis Post-fire trait response multivariate analysis
Intercept 57 59
Burn severity 55 2 45.36 0.001 57 2 17.72 0.002
Slope 54 1 2.66 0.354 56 1 2.47 0.367
Aspect 53 1 1.17 0.687 55 1 2.62 0.387
Elevation 52 1 0.19 0.984 54 1 1.99 0.474
Bare ground 51 1 14.53 0.004 53 1 23.96 0.001
Coarse woody 50 1 11.34 0.016 52 1 11.26 0.01
debris
Fine woody 49 1 19.18 0.002 51 1 14.84 0.007
debris
Mean canopy 48 1 4.34 0.297 50 1 14.52 0.013
cover
Heat Load 47 1 3.95 0.331 49 1 1.97 0.59
Index

FWD (Dev=78.4, 14.03, 16.3, 24.2, respectively,
p <0.05) are predictors that differentiate the commu-
nities according to the composition of the post-fire
life forms in CM study site (Table 4). The univari-
ate model indicates that only burn severity positively
predicts the abundance of shrubs, but it declines in
strength across the fire gradient (Table 5). This model

also shows that tree abundance is positively associ-
ated with UN and low-severity fire but is negatively
affected by high-severity fires (p <0.05; Table 5).
Post-fire life form communities at MT were best dif-
ferentiated by burn severity (Dev=37.1, p=0.001)
and bare ground (Dev=22.6, p=0.001; Table 4). The
univariate analysis (Table 5) shows that the greater
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Table 5 Univariate analyses of deviance (adjusted for multiple
testing) from China Muerta (CM; single burn) and Malleco-
Tolhuaca (MT; reburned) study sites according to their post-

fire life forms and post-fire trait classifications. Bold values
indicate the statistical significance (p<0.05) between both the
life forms and the post-fire traits against predictors.

China Muerta (single burn)

Predictor coefficient

Response variable Deviance Probability Burn severity class

(> deviance) - - -

Unburned High-Low High-High

Life forms
Bamboos 0.51 0.590 —-0.02 1.59 4.68
Herbs 2.59 0.282 2.69 3.64 4.19
Shrubs 18.76 0.001 1.64 0.75 0.60
Trees 50.44 0.001 5.98 4.90 —11.53
Vines 6.05 0.099 —-4.79 —-2.14 —-0.43
Post-fire traits
Post-fire obligate resprouter (PFOR) 0.73 0.496 1.05 2.30 4.93
Post-fire facultative resprouter/seeder (PFFRS) 24.35 0.001 1.06 —-0.27 —-0.41
Post-fire obligate colonizer (PFOC) 20.27 0.001 —-293 —1.34 —1.04
Malleco-Tolhuaca (reburned) Predictor coefficient
Response variable Deviance Probability Burn severity class

(>deviance) -

Unburned Low High

Life forms
Bamboos 3.29 0.210 2.99 4.30 4.25
Herbs 9.91 0.007 0.87 1.86 1.57
Shrubs 12.19 0.007 291 1.76 2.20
Trees 9.78 0.007 —-392 —4.30 —-3.31
Vines 1.91 0.320 6.73 6.68 6.49
Post-fire traits
Post-fire obligate resprouter (PFOR) 6.75 0.034 391 4.717 4.60
Post-fire facultative resprouter/seeder (PFFRS) 2.38 0.237 1.28 0.90 1.76
Post-fire obligate colonizer (PFOC) 8.59 0.021 1.23 0.50 0.93

the severity of the second burn the greater the mean
abundance of shrubs at the MT site. The opposite is
true for mean tree species abundance: the lower the
severity of the second burn the higher its impact on
mean tree abundance. The variance inflation factors
(VIF) of these explanatory variables were < 2.0.

In both study sites, burn severity, bare ground,
CWD and FWD were the main predictors of the mul-
tivariate abundance of post-fire trait responses. At
CM, burn severity, bare ground, CWD, and FWD
(Dev=454, 14.5, 11.4, 19.2, respectively, p<0.05)
were the best predictors of post-fire traits in the
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multivariate analysis (Table 4), and the univari-
ate model clarifies that burn severity (either high or
low) negatively predicts the abundance of PFOC, and
PFFRS species (Table 5). The abundances of PFOC
species are negatively associated with the unburned
class, whereas PFFRS species are positively associ-
ated with the unburned class at CM site (Table 5). At
MT, the multivariate abundance model indicated that
burn severity, bare ground, CWD, FWD and canopy
cover (Dev=17.7,24.0, 11.3, 14.8, 14.5, respectively,
p<0.05) were strong predictors of post-fire trait
abundance (Table 4). Here, the univariate analysis
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confirms that fire of any severity favors PFOR species
and less so for PFOC, which are dispersed from, and
are more abundant in the reference forest of the MT
site (Table 5).

Discussion

Our findings in Araucaria-Nothofagus temper-
ate forests show that in general high burn severity
was the main sampled driver of changes in post-fire
diversity and understory species assemblages. In
the study areas sampled, the community parameters
were less susceptible to being modified by a second
burn, regardless of its severity, in comparison to
the effects of the first burn. The abundance of herbs
responded positively to single fire, and along with
that of shrubs, PFOC, and PFOR responded posi-
tively to short-interval fire. Single fire and reburn
negatively affected the abundance of PFOC and
PFFRS and of trees, respectively, while trees were
also negatively affected by single, high-severity fire.
The bamboo life form showed a slight, non-signifi-
cant positive trend in its response to any fire. Shrubs
responded positively to any fire.

Post-fire species diversity and compositional
response

Wildfires that burned Araucaria-Nothofagus forests
in both study sites had a significant effect on the spe-
cies richness and composition of the understory com-
munity. At CM and MT sites approximately 58% and
56% of the species were found in UN plots, respec-
tively. Of the species that were established only in
unburned conditions, 10 and 18 were found at CM
and MT, respectively, whereas 30 at CM and 29 at
MT were found in burned areas. Species more sen-
sitive to fire, like some native herbs, were unique
to unburned areas (Supplement 2). In addition, all
exotic species that we recorded in MT, and most of
them in CM site, were mostly herbaceous and were
found in burned areas exclusively (Supplement 2).
These exotic species are mostly considered (shade-
intolerant) invasives, and as they continue to be
introduced to these protected areas by livestock, we

expect them to persist in these burned systems until
they are shaded and outcompeted by the native and
aggressive shade-intolerant bamboo and/or by canopy
closure. The high number of exotic invasive spe-
cies recorded indicates a high vulnerability of the
Araucaria-Nothofagus understories to shifts species
composition. High-elevation ecosystems, includ-
ing some we studied here are generally regarded as
harsh environments less suitable for the establishment
of exotic species (Pauchard et al. 2016; Lembrechts
et al. 2016). However, the combined effects of distur-
bance (natural and anthropogenic) and climate change
can favor the growth of these populations in high-ele-
vation ecosystems (Pauchard et al. 2009; Alexander
et al. 2016). Livestock grazing was observed across
the burn severity gradient in both study sites, which
would be expected to promote the spread of exotic
species as well as potentially negatively influencing
tree regeneration (Raffaele et al. 2011; Zamorano-
Elgueta et al. 2012; Blackhall et al. 2017). Previous
research in Patagonian Nothofagus forests has high-
lighted the role of livestock in promoting the abun-
dance of exotic forb species which in turn increase
flammable fine fuels potentially contributing to tran-
sitions to fire-prone shrublands (Raffaele et al. 2011).

Our results indicate that fire reorganizes plant
communities by reducing competition in burned
areas, which is reflected by the increase of species
richness relative to the reference forests. This type of
disturbance facilitates the establishment of species
that were absent prior to fire, which diversifies the
site conditions for plant establishment (Huston 2014;
Burkle et al. 2015). One of the common short-term
impacts of wildfire is nutrient enrichment on dis-
turbed sites (Caon et al. 2014), which also promotes
the initial establishment of exotic species (Brooks
2003; Liu et al. 2018). Five years since the 2015
wildfire, mean species richness within areas burned
at high severity appeared to be recovering but was
still below the reference condition, especially at the
CM site. Our findings show that total species rich-
ness is higher in areas affected by low-severity fires
(compared to high-severity fires) at both study sites,
consistent with our expectation and with theory (i.e.,
but only partially with the Intermediate Disturbance
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Hypothesis, which proposes highest richness and
diversity values at intermediate disturbance; Con-
nell 1978). Reburned areas experienced even further
declines in alpha diversity metrics (i.e., Shannon’s
entropy, inverse Simpson, and Pielou’s evenness),
especially in areas reburned at high severity. How-
ever, we did not find a significant shift of species
dominance. Although these results were not cor-
rected for spatial autocorrelation, we believe a mean
plot-to-plot distance of ca. 275 m reduced this noise.
Similar results have been found in the Rocky Moun-
tains in the western US, where density and richness
were reduced in the understory of subalpine temper-
ate conifer forests after a short-interval fire (Hoe-
cker and Turner 2022), and in repeatedly burned
sagebrush ecosystems (Mahood and Balch 2019). In
those studies, only a few species were able to persist
abundantly after frequent fires, either exotic species
or fire-tolerant species. However, the beta diver-
sity (dissimilarity) practically did not change in our
reburned areas, and it increased in areas burned once,
contrary to our hypothesis. The homogenization pat-
tern was not found in the studied understory compo-
sition, where we should expect a significant decrease
of the diversity indices when fire severity increases in
areas affected by infrequent fires (Richter et al. 2019).
Dendrochronological studies indicate that fire is not
naturally a frequent disturbance in a short-to-medium
period of time (Gonzalez and Veblen 2007; Gonzalez
et al. 2020). However, paleoecological studies show
that volcanic events have been part of the dynamic
of these ecosystems periodically at long time scales
(Dickson et al. 2021; Nanavati et al. 2021), suggest-
ing fires have shaped these ecosystems and that the
understory community may have evolved with these
disturbances. We also highlight that these trends in
our study sites agree with initial surveys conducted
after one (Urrutia-Estrada et al. 2018) and three years
(Arroyo-Vargas et al. 2019) post-fire at the CM site,
and therefore indicate that early surveys are good pre-
dictors of mean richness of understory communities
burned at high-severity five years post-fire. Similarly,
a survey conducted at MT in 2005 (three years after
the initial 2002 fire), reports that richness was also
lowest in areas burned at high severity (Gonzalez and
Veblen 2007).
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The dimensions of the NMDS plots, based on spe-
cies abundance, show that the reference conditions
remained separated from sites affected by an initial
fire at CM, yet these distances shrunk after a second
fire at MT, even when reburned at low severity. These
findings are not conclusive to suggest that high-sever-
ity burn and reburn have a homogenization effect on
the understory community, which has been found in
other forest ecosystems affected by severe wildfires
(da Silva et al. 2018; Richter et al. 2019). Research
in wetter temperate forests in Tasmania found that
short-interval fire also resulted in the homogenization
of the overstory taxa, but in contrast to our findings it
increased richness of the understory plant community
(Holz et al. 2020). Furthermore, and in contrast to
our expectations, mean species richness did not vary
between the UN and either HL severity at MT or L
severity class at CM. These findings may be reflecting
that the reference sites may not fully represent pris-
tine conditions due to anthropogenic influence at MT;
and similarities in the species composition following
a single low-severity event with the reference condi-
tions is consistent with the evolution of Araucaria-
Nothofagus forests under a history of a mixed-sever-
ity fire regime (Gonzalez et al. 2005; Mundo et al.
2017; Nanavati et al. 2021).

The use of the life forms and post-fire traits clas-
sification scheme allowed us to hone in on the vari-
ous strategies to resist and/or recover from wildfire.
For instance, while PFOR species from Poaceae
(Chusquea spp.) were more abundant in the under-
story, and Nothofagaceae (N. obliqua and N. alpina)
were more abundant in the forest structure of MT
study site, species from the PFFRS group were more
persistent in burned areas at the understory of CM
site. However, we did not record any individual of
N. obligua in the understory of MT, which can par-
tially underrepresent the PFOR results. The PFFRS
and PFOR groups have bud protection structures
that facilitate their growth after wildfires (Monte-
negro et al. 2003; Clarke et al. 2013; Kitzberger
et al. 2016). Some Nothofagus tree species (e.g., N.
dombeyi and N. pumilio) are fire-intolerant at the
individual tree level but as PFOC species are fire-
tolerant at the meta-population level (Prior and Bow-
man 2020). Moreover, they are dominant components
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of unburned forests that regenerate in both unburned
canopy gaps and can colonize even severely burned
sites from bordering seed trees and from remnant sur-
vivors in the interior of burned patches (Veblen et al.
1996; Gonzélez et al. 2010; Tiribelli et al. 2018).
Similarly, species classified as PFFRS belong to the
Fabaceae, Araucariaceae, Berberidaceae, among
other families (Supplement 2), were mostly found
in burned plots but also in lower abundance in the
UN sites. The species from this fire response class
can resprout and also have the capacity to produce
abundant seeds (Raffaele and Veblen 1998; Monte-
negro et al. 2003; Paritsis et al. 2006; Clarke et al.
2013; Kitzberger et al. 2016); thus, even though indi-
viduals do not survive fire, seeding allows them to
persist at a population level in more flammable envi-
ronments (Prior and Bowman 20202020).

Post-fire life form and trait responses to burn severity

Whether we evaluate post-fire life forms or trait
response classification of the species, our results indi-
cate that burn severity is the factor that best predicts
and selects for responses of the post-fire community
of Araucaria-Nothofagus forests. Most species lack-
ing fire adaptations within understory communities
in these forests are able to recover to a similar abun-
dance following a single low-severity fire (Gonzalez
et al. 2005). Previous studies after the 2002 wildfire at
Tolhuaca National Park indicate that Chusquea spp.
was the genus that recovered most rapidly following
fire (Gonzélez and Veblen 2007). Although these spe-
cies were still abundant 5 years after the 2015 reburn,
their response was not predicted by burn severity. In
the same line, we observed that PFOR species (e.g.,
Nothofagaceae, Proteaceae families, among others)
were not significant in areas affected by single fire,
presumably by the higher elevation and lower temper-
atures in the cold season, which are exacerbated by
the synergetic effects with droughts that are affecting
south-central Chile since 2010 (Garreaud et al. 2020;
Gonzalez et al. 2020; Nolan et al. 2021).

The severity of our single burn negatively
affected the abundances of PFOC species (i.e., N.
pumilio and N. dombeyi). Nothofagus pumilio was

found in unburned forests and in stands burned at
low severity at CM (mean abundance: 13.7% + 2.8
at UN, and 4.1% + 1.3 at L), but only in unburned
stands at MT (8.6% +2.5). Nothofagus dombeyi’s
seedlings were rarer, with a presence at unburned
reference forests at MT of only (7.7% +1.6) but
only scarcely found at CM in the low-severity
class (0.6% +0.1). Although N. pumilio and N.
dombeyi are considered post-disturbance coloniz-
ers (Veblen et al. 1981; Donoso 2006), we did not
find juveniles in areas burned at high severity, nor
in those plots burned twice at any reburn sever-
ity. These results are consistent with positive fire-
vegetation feedbacks under which high-severity
or severe wildfires reduce the abundance and seed
sources of the tree colonizer species while promot-
ing the abundance of resprouting flammable shrubs
(Paritsis et al. 2015; Kitzberger et al. 2016; Assal
et al. 2018; Tiribelli et al. 2018; Landesmann et al.
2021). The scarcity of post-fire regeneration of
these species may reflect limitations of seed avail-
ability due to distance of live N. pumilio and/or N.
dombeyi adult individuals (distance >60 m) from
sample sites or may reflect other factors such as
effects of high-severity fire on post-fire microsites,
not matching masting cycles between fire events,
and/or unfavorable climatic conditions for seedling
establishment.

Although limited in replication, our findings
indicate that high burn severity and short-interval
fires, can catalyze a rapid shift toward less diverse
and fire-prone shrubland communities, espe-
cially when resprouter species dominate and pro-
mote fire-vegetation feedbacks that persist over
time (Paritsis et al. 2015). Previous studies in the
Patagonian-Andean ecoregion have reported that
woody, resprouting shrub species have a greater
propensity to burn compared to tall N. pumilio
forests (Mermoz et al. 2005; Paritsis et al. 2013),
thus increasing the likelihood of subsequent burn-
ing due to fuel arrangements and environmental
conditions (Paritsis et al. 2015; Kitzberger et al.
2016; Landesmann et al. 2021). Under projected
warming, water stress, longer drought seasons and
increased fuel aridity for NW Patagonia (Boisier
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et al. 2018), an increase in high-severity, short-
interval fires are expected. However, these results
are taken with precaution because our study sites
differ in their fire histories and replication was not
feasible. Only the Malleco-Tolhuaca study site pre-
sented the option to evaluate the effect of short-
interval fire. Our results are consistent with the
change of the composition across study sites, and
the China Muerta study site has shown that high-
severity fires are causing these changes as well.
However, more studies of reburned areas in this
forest type will be needed to establish consistent
patterns of effects of short-interval fires.

Conclusion

This study assessed the effects of single fire, and (for
the first time in Patagonia) reburns, on the post-fire
response of understory communities of Araucaria-
Nothofagus forests. Although findings vary based on
the response variable (i.e., plant community com-
position, life forms, or fire-related trait), overall, we
found comparable understory community responses
following a single severe event as well as a second
burn that reburned a high-severity event 13-years
later. Fire triggered both a reorganization of the plant
community and the establishment of species absent in
the reference forests. Our findings confirm that Arau-
caria-Nothofagus understory communities are able to
absorb a single low-severity event, but that reburning
after a short-interval can affect the understory com-
position by favoring post-fire resprouters and/or fac-
ultative resprouter/seeder that quickly and extensively
respond. More broadly, our study highlights the role
of short-interval fires as a catalyst that reinforces the
persistence of pyrophytic communities that quickly
resprout, leading to landscape-scale losses of spe-
cies less tolerant to fire. However, our results do not
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demonstrate a homogenization of the plant commu-
nity after a single fire or reburn.
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Fig. 5 Images from Malleco-Tolhuaca (reburned; (a—c)) and China Muerta (f) sites and the variable mounts of resprouting
China Muerta (single burn; (d—f)) study sites. Note the pres- Chusquea bamboo
ence of livestock in burned areas in Malleco-Tolhuaca (¢) and
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